1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
|
newPackage(
"RandomCurvesOverVerySmallFiniteFields",
Version => "0.3",
Date => "March 20, 2018",
Authors => {{Name => "Christian Bopp",
Email =>"bopp@math.uni-sb.de",
HomePage =>"http://www.math.uni-sb.de/ag-schreyer/index.php/people/researchers/75-christian-bopp"},
{Name => "Frank-Olaf Schreyer",
Email =>"schreyer@math.uni-sb.de",
HomePage =>"https://www.math.uni-sb.de/ag/schreyer"}},
Headline=> "general canonical curves of genus <= 15 over fields with small characteristic",
Keywords => {"Examples and Random Objects"},
PackageImports => {"Elimination","Truncations"}
)
export{"isSmoothCurve",
"smoothCanonicalCurve",
"canonicalCurveViaPlaneModel",
"smoothCanonicalCurveViaPlaneModel",
"hilbertNumerator",
"expectedBetti",
"randomHartshorneRaoModule",
"smoothCanonicalCurveViaSpaceModel",
"randomCanonicalCurveGenus8with8Points",
"randomCurveGenus8Degree14inP6",
"randomCurveGenus14Degree18inP6",
"smoothCanonicalCurveGenus14",
"hasFactor",
"selectFactor",
"getAuxilaryCurveAndPts",
"getModuleN",
"curveFromModule",
"smoothCanonicalCurveGenus15",
"Printing",
"Details"}
-- 14.09.2015
-- the aim is to provide functions which compute canonical curves over fields with very small characteristic
-- at the moment we are only interested in the odd genus cases
-- for g<=10 we use a construction via plane models
-- for g=11,13 we use a construction via space model
-- for g=14 the construction follows Verra's unirationality proof of M_14
-- for g=15 we want to use similar methods as in the "MatFac15" package by F.-O. Schreyer
--Bug-report
-- running the code for g=14 and p=2 multiple times, it can happen that an M2 error occurs
-- because M2 can no longer compute the genus of some ideal (even the irrelevant ideal)
-- for genus 15 this might as well happen, but we catch this cases by using the "try" command
-- NOTE:
-- The option "Details" for the genus 14 and 15 construction is only for testing / tweaking the construction:
-- it prints the precise step of the computation /its failure
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== SOME HANDY FUNCTIONS =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
-- this function is a refinement of the function "isSmoothCurve" from Matfac15-package
isSmoothCurve = method(TypicalValue => Boolean)
isSmoothCurve (Ideal) := C -> (
S := ring C;
kk := coefficientRing S;
if not (dim C == 2) then error "isSmoothCurve: expected the ideal of a curve";
-- if embedded points then
n := dim S;
if n <= 4 then (
-- check for no associated points
if not dim Ext^(codim C)(C,S) <= 0 then (use S;<<"isSmoothCurve: there are associated points" <<endl; return false);
-- check smoothness
singC := C +minors (n-2, jacobian C);
return(dim singC <= 0));
if n>4 then (
--projectionCenter:=ideal(apply(4,i->S_i));-- we should use a random projection center here and iterate a few times!!!!
while(-- deg C == degC1
while(-- dim projectionCenter == 0 and dim(projectionCenter+C) == 0
projectionCenter := ideal(apply(4,i->random(1,S)));
dim(projectionCenter+C) != 0 or dim(projectionCenter+C) != 0) do();
x := getSymbol"x";
y := getSymbol"y";
PP := kk[x_0..x_3,y_0..y_(n-5)];
f := map(S,PP, gens(projectionCenter) | random(S^1,S^{n-4:-1}) );
C' := preimage_f(C);
--C1'=eliminate(C' + ideal(x_0..x_3), toList(x_0..x_3));
--if not dim(projectionCenter+C) == 0 then (use S; <<"bad projection center" <<endl; return false);
-- use S;
C1 := eliminate(C',toList(apply(n-4,i->PP_(i+4))));
not (degree C1 == degree C)) do();
S1 := kk[x_0..x_3];
C2 := substitute(C1,S1);
if not dim Ext^2(C2,S1) <= 0 then (use S;<<"isSmoothCurve: there are associated points after projection" <<endl; return false);
-- check smoothness
singC2 := C2 +minors (2,jacobian C2);use S;
return(dim singC2 <= 0)
);
)
----------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------
--This function puts everything together
smoothCanonicalCurve = method(Options => {Details => false, Printing => false})
smoothCanonicalCurve (ZZ,ZZ) := opt -> (g,p) -> (
if p == 57 then error "57 is the Grotehdieck prime number";
if isPrime(p) == false then error "p is not prime";
if (g > 15) then error"not implemented yet";
if (g < 11) then (
return smoothCanonicalCurveViaPlaneModel(g,p, Printing => opt.Printing)
);
if (g < 14 and g > 10) then (
return smoothCanonicalCurveViaSpaceModel(g,p, Printing => opt.Printing)
);
if (g == 14) then (
return smoothCanonicalCurveGenus14(p, Details => opt.Details, Printing => opt.Printing) );
if (g == 15) then (
return smoothCanonicalCurveGenus15(p, Details => opt.Details, Printing => opt.Printing)
);
return null);
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== CURVES VIA PLANE MODEL =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
--Input: genus g, char p
-- output: ideal of canonically embedded curve of genus g over F_p
canonicalCurveViaPlaneModel = method(Options => {Printing => false})
canonicalCurveViaPlaneModel (ZZ,ZZ) := opt -> (g,p) -> (
if isPrime(p) == false then error "p is not prime";
while( -- get curve data correct
-- we determine the generic degree d of the plane model and the number of double points
s := floor(g/3);
d := g+2-s;
delta := binomial(d-1,2)-g;
-- now we construct delta points in P^2 given by an Hilbert-Burch-matrix
kk := ZZ/p;
u := getSymbol "u";
P2 := kk[u_0,u_1,u_2];
--the construction of the correct Hilbert-Burch matrix is based on the M2-package randomPlaneCurves.m2
n := ceiling((-3+sqrt(9.0+8*delta))/2);
eps := delta-binomial(n+1,2);
if opt.Printing then (print("--> computing plane curve of degree "|toString(d)|" with "|toString(delta)|" double points"));
while(
betti(M := random(P2^{n+1-eps:0,2*eps-n:-1},P2^{n-2*eps:-1,eps:-2}));
points := minors(rank source M,M);
singularPoints := points + minors(2,jacobian(points));
not (degree points == delta and codim points == 2 and dim singularPoints == 0)) do ();
--Now we construct the plane model and a basis for the canonical system
points2 := saturate(points^2);
while(
Cplane := ideal ((gens points2)*random(source gens points2, P2^{1:-d}));
betti(K := gens intersect(points, (ideal vars P2)^(d-3)));
not (source K == P2^{g:-(d-3)})) do ();
-- next we embed the curve in P^{g-1}
t := getSymbol "t";
T := kk[t_0..t_(g-1)];
if opt.Printing then (print("--> computing canonical embedding"));
canEmb := map(P2,T,K);
Ican := saturate ideal mingens preimage_canEmb(Cplane);
--test:
((dim Ican, degree Ican, genus Ican) != (2,2*g-2,g) or numgens Ican != 1/2*(g-2)*(g-3) or unique flatten degrees Ican != {2})) do ();
--if (dim Ican, degree Ican, genus Ican)!=(2,2*g-2,g) then error "something went wrong (genus, dim or degree)";
--if numgens Ican != 1/2*(g-2)*(g-3) then error "something went wrong (number of generators)";
--if unique flatten degrees Ican! = {2} then error "something went wrong (degree of generators)";
Ican );
undocumented { canonicalCurveViaPlaneModel, (canonicalCurveViaPlaneModel,ZZ,ZZ), [canonicalCurveViaPlaneModel,Printing] }
----------------------------------------------------------------------------------------------------------------------------
smoothCanonicalCurveViaPlaneModel = method(Options => {Printing => false})
smoothCanonicalCurveViaPlaneModel (ZZ,ZZ) := opt -> (g,p) -> (
smoothLimit :=20 ;
while (
Ican := canonicalCurveViaPlaneModel(g,p,Printing=>opt.Printing);
counterSmoothness := 0;
if opt.Printing then (print("--> testing smoothness"));
while(
counterSmoothness = counterSmoothness+1;
not( isSmoothCurve(Ican) or counterSmoothness >= smoothLimit )) do();
counterSmoothness == smoothLimit ) do();
Ican);
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== CURVES VIA SPACE MODELS =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
--First we define some functions from the "RandomSpaceCurves"-package
------------------------------------
-- Hilbert Function and Numerator --
------------------------------------
-- calculate the numerator of a Hilbert function
-- from the first d+r+1 values where
-- d is the regularity of the corresponding module
-- and r is the dimension of the ambient space
--
-- L = a list of dimensions
-- r = the dimension of the ambient space
-- t = the variable to be used in the numerator
hilbertNumerator = method()
hilbertNumerator (List,ZZ,RingElement) := (L,r,t) -> (
-- the beginning of the Hilbert series
p := sum(#L,i -> L#i*t^i);
-- the numerator
p*(1-t)^(r+1)%t^(#L)
);
undocumented { hilbertNumerator, (hilbertNumerator,List,ZZ,RingElement) }
----------------------------------------------------------------------------------------------------------------------------
-----------------------------
-- Expected Betti Tableaux --
-----------------------------
-- convert c*t^d to (c,({d},d))
-- assumes only one term c*t^d
-- ring of t must be over ZZ or QQ
-- and singly graded
--
-- this function is needed to construct
-- expected betti tables from
-- a HilbertNumerator
termToBettiKey = (mon) -> (
-- the coefficient of the monomial
c := lift((last coefficients mon)_0_0,ZZ);
-- the degree of the monomial
d := sum degree mon;
(c,({d},d))
);
----------------------------------------------------------------------------------------------------------------------------
-- construct a minimal free resolution with expected betti tableau
expectedBetti = method()
-- calculates the expected betti tableau
-- from a Hilbert Numerator
--
-- For this every term a_i*t^i will represent a summand R^{abs(a_i):-i}
-- in the ChainComplex represented by the desired BettiTableau
-- The step where this summand is used depends on the number of
-- sign switches that occur in the Hilbert numerator before this monomial
--
-- the ring of the Hilbert numerator is expected to singly graded
-- and contain only one variable
expectedBetti (RingElement) := (hilbNum) -> (
-- find terms of Hilbert Numerator
-- smallest degree first
termsHilbNum := reverse terms hilbNum;
-- convert terms into pairs (coefficient, ({d},d))
bettiKeys := apply(termsHilbNum,m->termToBettiKey(m));
-- put the summands into the appropriate step of F
-- j contains the current step
j := -1;
-- previous Coefficient is needed to detect sign changes
previousCoefficient := -(first bettiKeys)#0;
-- step through all keys and calculate which step a
-- given entry must go based on the number of sign-changes
L := for b in bettiKeys list (
-- has a sign change occurred?
if (b#0*previousCoefficient) < 0 then (
-- sign change => next step in the resolution
j = j+1;
);
-- store previous coefficient
previousCoefficient = b#0;
-- make entry for the betti Tally
(prepend(j,b#1) => abs(b#0))
);
-- return the complex
new BettiTally from L
);
-- calculate the expected betti tableau
-- from a given Hilbert function.
-- hilb = {h0,...,h_(d+r+1)}
-- where d is the regularity of the variety described
-- and r is the dimension of the ambient space
expectedBetti (List,ZZ) := (L,r) -> (
t := local t;
T := QQ[t];
expectedBetti(hilbertNumerator(L,r,t))
);
-- calculate the expected betti tableau
-- for a curve of degree d, genus g in IP^r.
-- we assume C non-degenerate, O_C(2) nonspecial and maximal rank
expectedBetti (ZZ,ZZ,ZZ) := (g,r,d) -> (
b := d+r+1;
L := apply(b,i->(if i>1 then
min(d*i+1-g,binomial(r+i,r))
else binomial(r+i,r)));
expectedBetti(L,r)
);
undocumented { expectedBetti, (expectedBetti,RingElement), (expectedBetti, List,ZZ), (expectedBetti, ZZ,ZZ,ZZ) }
----------------------------------------------------------------------------------------------------------------------------
-- given a betti Table b and a Ring R make a chainComplex
-- with zero maps over R that has betti diagram b.
--
-- negative entries are ignored
-- rational entries produce an error
-- multigraded R's work only if the betti Tally
-- contains degrees of the correct degree length
Ring ^ BettiTally := (R,b) -> (
F := new ChainComplex;
F.ring = R;
--apply(pDim b,i->F_i = null);
for k in keys b do (
-- the keys of a betti table have the form
-- (homological degree, multidegree, weight)
(i,d,h) := k;
-- use F_i since it gives 0 if F#0 is not defined
F#i = F_i ++ R^{b#k:-d};
);
F
);
----------------------------------------------------------------------------------------------------------------------------
--------------------
-- Finite Modules --
--------------------
-- calculate the number of expected syzygies of a
-- random a x b matrix with linear entries in R
expectedLinearSyzygies = (a,b,R) -> (
n := dim R;
b*n-a*binomial(n+1,2)
);
----------------------------------------------------------------------------------------------------------------------------
-- Try to construct a random HartshorneRao module of
-- length 3 starting at the beginning of the
-- minimal free resolution.
--
-- The main difficulty is in getting the number of
-- linear syzygies of the first matrix in the resolution right
--
-- HRau = {h1,h2,h3} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter3oneDirection = (HRao,R) -> (
-- construct a chain complex with expected betti tableau
-- and 0 differentials
--
-- calculate the expected betti diagram to find out whether linear syzygies
-- are required (this is the difficult part in the construction)
e := expectedBetti(HRao|{0,0,0,0},3);
F := R^e;
-- find betti Numbers of the linear strand
linearStrand := for i from 0 list (if e#?(i,{i},i) then e#(i,{i},i) else break);
-- construction depends on length of linear strand.
if #linearStrand == 0 then error"linear Stand has length 0. This should never happen";
if #linearStrand == 1 then (
-- first matrix can neither have nor be required to have linear syzygies
-- choose first matrix randomly
return coker random (F_0,F_1)
);
if #linearStrand == 2 then (
-- no linear syzygies of the first matrix are required
-- check if first matrix always has unwanted syzygies
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) <= 0 then (
-- no unwanted syzygies
-- choose first matrix randomly
return coker random (F_0,F_1)
);
);
if #linearStrand == 3 then (
-- is the number of expected syzygies == the number of required syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) == linearStrand#2 then (
-- choose first matrix randomly
return coker random (F_0,F_1)
);
-- too many syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) > linearStrand#2 then (
-- in this case the construction method will not work
return null
);
-- too few syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) < linearStrand#2 then (
-- try to choose the syzygies first
-- this will work if the transpose of a generic map between
-- 1. and 2. module of the linear strand has more expected syzygies
-- than required in the 0. step
if expectedLinearSyzygies(linearStrand#2,linearStrand#1,R) >= linearStrand#0 then (
-- syzygies of the transpose of second step in linear strand
s := syz random(R^{linearStrand#2:2},R^{linearStrand#1:1});
-- choose linearStrand#0 syzygies randomly among those and transpose again
return coker (transpose (s*random(source s,R^{linearStrand#0:0})));
);
)
);
-- if we arrive here there were either to few or to many linear
-- syzygies required
return null
);
----------------------------------------------------------------------------------------------------------------------------
-- Try to construct a random Hartshorne-Rau module of
-- length 3 by starting at both ends of the expected
-- minimal free resolution.
--
-- HRau = {h1,h2,h3} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring singly graded. It is checked that the ring has 4 variables
randomHartshorneRaoModuleDiameter3 = (HRao,R) -> (
if #HRao != 3 then error"Hilbert function has to have length 3";
-- start at the beginning of the resolution
M := randomHartshorneRaoModuleDiameter3oneDirection(HRao,R);
-- did this direction work?
if M =!= null and apply(3,i->hilbertFunction(i,M)) == HRao then return M;
-- start at the end of the resolution
Mdual := randomHartshorneRaoModuleDiameter3oneDirection(reverse HRao,R);
--Mdual==null-- comment out
if Mdual===null then return M;
Fdual := res Mdual;
M = (coker transpose Fdual.dd_4)**R^{ -6};
return M
);
----------------------------------------------------------------------------------------------------------------------------
-- for g=11,12,13 we will only need the diameter 3 part, but we also include the functions for diameter 1 and 2:
-- Try to construct a random Hartshorne-Rau module of
-- length 2. Here the only problem is, that the
-- generic module may not have expected syzygies
--
-- HRau = {h1,h2} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter2 = (HRao,R) -> (
if #HRao != 2 then error"Hilbert function has to have length 2";
-- some special cases with non expected resolution
--
--if HRao == {1,1} then return coker random(R^{0},R^{3:-1,1:-2});
--if HRao == {1,2} then return coker random(R^{0},R^{2:-1,3:-2});
--if HRao == {2,1} then return coker random(R^{2:0},R^{7:-1});
--
-- the standard construction still works since the unexpected
-- part is not in the first 2 steps.
--
-- now assume expected resolution
--
-- always start at the beginning of the resolution
F := R^(expectedBetti(HRao|{0,0,0,0},3));
M := coker random(F_0,F_1)
);
----------------------------------------------------------------------------------------------------------------------------
-- Construct a random Hartshorne-Rau module of
-- length 1. This always works
--
-- HRau = {h1} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter1 = (HRao,R) -> (
if #HRao != 1 then error"Hilbert function has to have length 1";
return coker (vars R**R^{HRao#0:0})
);
----------------------------------------------------------------------------------------------------------------------------
randomHartshorneRaoModule = method()
randomHartshorneRaoModule (ZZ,List,PolynomialRing) := (e,HRao,R) -> (
if dim R != 4 then error "expected a polynomial ring in 4 variables";
if degrees R !={{1}, {1}, {1}, {1}} then error "polynomial ring is not standard graded";
if #HRao > 3 then error "no method implemented for Hartshorne Rao module of diameter >3";
M := null;
while(
if #HRao == 1 then M = randomHartshorneRaoModuleDiameter1(HRao,R);
if #HRao == 2 then M = randomHartshorneRaoModuleDiameter2(HRao,R);
if #HRao == 3 then M = randomHartshorneRaoModuleDiameter3(HRao,R);
( M === null )) do();
M**R^{ -e}
);
undocumented { randomHartshorneRaoModule, (randomHartshorneRaoModule,ZZ,List,PolynomialRing) }
----------------------------------------------------------------------------------------------------------------------------
--Input: genus g, char p
-- output: ideal of canonically embedded curve of genus g over F_p
smoothCanonicalCurveViaSpaceModel = method(Options => {Printing => false})
smoothCanonicalCurveViaSpaceModel (ZZ,ZZ) := opt -> (g,p) -> (
kk := ZZ/p;
if isPrime(p) == false then error "p is not prime";
-- construction of space model of degree d and genus g
-- therefore we first construct the HR-module
d := g+4-floor(g/3);
if opt.Printing then (print("--> computing space curve of genus "|toString(g)|" and degree "|toString(d)));
y := getSymbol "y";
R := kk[y_0..y_3];
-- calculate values of h^1 that are forced by the maximal rank assumption
h1 := for i from 0 when ((i < 4) or(d*i+1-g) > binomial(i+3,3)) list max(d*i+1-g-binomial(3+i,3),0);
e := 0; for i in h1 when i == 0 do e = e+1;
-- calculate support of Hartshorne Rao Module
HRao := select(h1,i->i!=0);
expBettiHR := expectedBetti(HRao|{0,0,0,0},3);
emptyResHR := R^expBettiHR;
-- depending if the genus is 11,12 or 13 the length of the linear strand of the expected resolution of the HR-modules differs
-- therefore we distinguish 2 cases:
-- a) length linear strand==2 (g=12):
-- b) length linear strand==3 (g=11,13):
linearStrand := for i from 0 list (if expBettiHR#?(i,{i},i) then expBettiHR#(i,{i},i) else break);
-- while ( --loops don't work for g=12
-- if (g==12) then (Mpres= random (emptyResHR_0,emptyResHR_1)) --the presentation of the HR-module if #lengthLinStrand==2
-- else (s:= syz random(R^{linearStrand#2:2},R^{linearStrand#1:1});
-- Mpres= (transpose (s*random(source s,R^{linearStrand#0:0}))); --the presentation of the HR-module if #lengthLinStrand==3
-- );
-- M:=(coker Mpres)**R^{ -e}; -- the HR-module
-- not (select(subsets(rank source Mpres,rank target Mpres),l->det(Mpres_l)==0)=={} and betti(resHR=res coker Mpres) == expBettiHR )--test --apply(2..5,i->hilbertFunction(i,M)) == HRao
-- ) do() --need maybe dual construction
--another constr using the package
if opt.Printing then (print("--> testing smoothness"));
while(--get smooth curve
while(--get dimension correct
while( M := (randomHartshorneRaoModule)(e,HRao,R);
Mpres := presentation M;
not (select(subsets(rank source Mpres,rank target Mpres),l->det(Mpres_l) == 0) == {}
and betti(resHR := res coker Mpres**R^{e}) == expBettiHR
and toList(apply(2..4,i->hilbertFunction(i,M))) == HRao)--tests
) do();
-- we can now construct the space model of the curve from the expected resolution of the coordinate ring of C and the HR-module
-- this part is baes on the function "randomSpaceCurve" in the package "randomSpaceCurves.m2"
expBettiC := expectedBetti(g,dim R-1,d);
emptyResC := R^expBettiC;
-- detect syzygies in the second step, that do not
-- come from the HR-Module
resHR = res M;
H := R^((betti emptyResC_2)-(betti resHR_3));
--while( --needs to long
N := random(emptyResC_1,resHR_2++H_0)*(resHR.dd_3++id_(H_0));
-- not (select(subsets(rank source N,rank target N),l->det(N_l)==0)=={})
--) do();
I := ideal syz transpose N;
not(dim I == 2)) do(); --maybe it is enough to rerun just a part of this function
not (isSmoothCurve(I))) do() ;
--(dim I, genus I, degree I, betti res I)==(2,g,d, expBettiC)
-- now we embed the space curve canonically
t := getSymbol"t";
T := kk[t_0..t_(g-1)];
if opt.Printing then (print("--> computing canonical embedding"));
S := T**R;
omegaC := presentation prune truncate(0,Ext^1(I,R^{ -4}));
graph := substitute(vars T,S)*substitute(omegaC,S);
while (-- get canonical embedding correct
J := saturate(ideal graph, substitute(random(1,R),S));--why not random(1,R) instead of y_0?
Ican := ideal mingens substitute(J,T);
not((dim Ican, genus Ican, degree Ican) == (2,g,2*g-2))) do();
Ican
)
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== CURVES OF GENUS 14 =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
--Input: the characteristic
--Output: a pair of an ideal of a canonical curve C
-- together with a list of ideals of 8 points
--Method: Mukai's structure theorem on genus 8 curves.
-- Note that the curves have general Clifford index.
-- This function is similar to the function "randomCanonicalCurveGenus8with8Points"
-- from the Macaulay2-Package "RandomGenus14Curves.m2"
-- For more information about this function see the Macaulay2-Package "RandomGenus14Curves.m2"
randomCanonicalCurveGenus8with8Points = method()
randomCanonicalCurveGenus8with8Points (ZZ) := p -> (
kk := ZZ/p;
x := symbol x;
R := kk[x_0..x_7];
q := symbol q;
-- coordinate ring of the Plücker space:
P := kk[flatten apply(6,j->apply(j,i->q_(i,j)))];
skewMatrix := matrix table(6,6,
(i,j) -> (
if i<j then q_(i,j)
else if i>j then -q_(j,i)
else 0_P));
-- ideal of the Grassmannian G(2,6):
IGrass := pfaffians(4,skewMatrix);
while( -- get data of the curve correct
while (-- get points and dimension of their span correct
while (
points := apply(8,k->exteriorPower(2,random(P^2,P^6)));
-- the 8 ideals corresponding to the 8 points
ideals := apply(points,pt->ideal( vars P*(syz pt**P^{-1})));
-- linear span of the points:
L1 := intersect ideals;
not( degree L1 == 8 ) ) do();
L := super basis(1,L1);
not (dim ideal L == 8) ) do();
phi := vars P%L; -- coordinates as function on the span
-- actually the last 8 coordinates represent a basis
phi2 := matrix{toList(7:0_R)}|vars R;
-- matrix for map from R to P/IC
IC := ideal (gens IGrass%L); --the ideal of C on the span
-- obtained as the reduction of the Grassmann equation mod L
IC2 := ideal mingens substitute(IC,phi2);
idealsOfPts := apply(ideals,Ipt->
ideal mingens ideal sub(gens Ipt%L,phi2));
not (dim IC2 == 2 and genus IC2 == 8 and #idealsOfPts == 8)) do();
(IC2,idealsOfPts))
undocumented { randomCanonicalCurveGenus8with8Points, (randomCanonicalCurveGenus8with8Points,ZZ) }
----------------------------------------------------------------------------------------------------------------------------
-- Input: the characteristic
-- Output: ideal of a genus 8 degree 14 curve in P^6
-- This function is similar to the function "randomCurveGenus8Degree14inP6"
-- from the Macaulay2-Package "RandomGenus14Curves.m2"
-- For more information about this function see the Macaulay2-Package "RandomGenus14Curves.m2"
-- this step seems to take some time over ZZ/2. TODO: Further tests for characteristic 2!!
randomCurveGenus8Degree14inP6 = method(Options => {Details => false})
randomCurveGenus8Degree14inP6 (ZZ) := opt -> p -> (
y := getSymbol "y";
kk := ZZ/p;
S := kk[y_0..y_6];
--if opt.Details then print"--> computing canonical genus 8 curve with 8 pts";
while( -- get correct data for IC3
while ( --get Linearseries L correct
while ( -- get data for D1 and D2 correct
(I,points) := randomCanonicalCurveGenus8with8Points(p);
if opt.Details then print"--<< canonical genus 8 curve with 8 pts computed (check)";
R := ring I;
if I === null then return null;
D1 := intersect apply(4,i->points_i); -- divisors of degree 4
D2 := intersect apply(4,i->points_(4+i));
if opt.Details then print"--<< testing D1 and D2";
not (degree D1 == 4 and degree D2 == 4)) do();
-- compute the complete linear system |K+D1-D2|, note K=H1, the hyperplane section
counter := 0;
attempts := 200;
--print"==>testing source L";
while( -- get correct dimension of the linear series
counter = counter+1;
H1 := gens D1*random(source gens D1,R^{-1});
E1 := (I+ideal H1):D1; -- the residual divisor
L := mingens ideal(gens intersect(E1,D2)%I);
not (source L == R^{7:-2}or counter >= attempts )) do();
--print"==>testing counter in source L loop";
counter == attempts ) do();
-- the complete linear system
-- note: all generatore of the intersection have degree 2.
RI := R/I; -- coordinate ring of C' in P^7
phi := map(RI,S,substitute(L,RI));
IC3 := ideal mingens ker phi;
if opt.Details then print"--<< testing data of IC3";
-- dim seems to work but the genus and degree take strange values (-5,5)..(1,7) etc
not( dim IC3 == 2 and genus IC3 == 8 and degree IC3 == 14)) do();
IC3)
undocumented { randomCurveGenus8Degree14inP6, (randomCurveGenus8Degree14inP6,ZZ), [randomCurveGenus8Degree14inP6,Details] }
----------------------------------------------------------------------------------------------------------------------------
-- Input: S PolynomialRing in 7 variables
-- Output: ideal of a curve of genus 14
-- Method: Verra's proof of the unirationality of M_14
-- This function is similar to the function "randomCurveGenus14Degree18inP6"
-- from the Macaulay2-Package "RandomGenus14Curves.m2"
-- For more information about this function see the Macaulay2-Package "RandomGenus14Curves.m2"
randomCurveGenus14Degree18inP6 = method(Options => {Details => false, Printing => false})
randomCurveGenus14Degree18inP6 (ZZ) := opt -> p -> (
while(
if opt.Details then print"--<< computing Genus 8 degree 14 curve in P^6";
if (opt.Details or opt.Printing) then print("--> computing genus 8 degree 14 curve in P^6");
IC' := randomCurveGenus8Degree14inP6(p, Details => opt.Details);
if opt.Details then print"--<< (check) computing Genus 8 degree 14 curve in P^6";
S := ring IC';
if IC' === null then return null;
if (opt.Details or opt.Printing) then print"--> computing genus 14 degree 18 curve in P^6";
-- Choose a complete intersection:
counter := 0;
attempts := 30;
while(
CI := ideal (gens IC'*random(source gens IC',S^{5:-2}));
IC := CI:IC'; -- the desired residual curve
counter = counter+1;
not((dim IC == 2 and genus IC == 14 and degree IC == 18) or counter >= attempts) ) do();
counter == attempts) do();
IC)
undocumented { randomCurveGenus14Degree18inP6, (randomCurveGenus14Degree18inP6,ZZ), [randomCurveGenus14Degree18inP6,Printing],[randomCurveGenus14Degree18inP6,Details]}
----------------------------------------------------------------------------------------------------------------------------
smoothCanonicalCurveGenus14 = method(Options => {Details => false, Printing => false})
smoothCanonicalCurveGenus14 (ZZ) := opt -> p -> (
smoothLimit := 20;
while(
I := randomCurveGenus14Degree18inP6(p,Details => opt.Details, Printing => opt.Printing);
--if opt.Printing then print"-->checking smoothnessof C'" ;
counterSmoothness := 0;
if (opt.Details or opt.Printing) then print("--> testing smoothness");
while(-- test smoothness multiple times
counterSmoothness = counterSmoothness+1;
not( isSmoothCurve(I) or counterSmoothness >= smoothLimit )) do();
counterSmoothness == smoothLimit ) do();
if (opt.Details or opt.Printing) then print"--> computing canonical embedding" ;
S := ring I;
kk := coefficientRing S;
--time omegaC := presentation truncate(0, Ext^4(I,S^{ -7}));
-- the following seems faster:
fI := res I;
omegaC := presentation truncate(0,((coker transpose fI.dd_5)**S^{ -7}));
t := getSymbol "t";
T := kk[t_0..t_13];
TS := T**S;
graph := substitute(vars T,TS)*substitute(omegaC,TS);
while(
J := saturate(ideal graph, substitute(random(1,S),TS));
Ican := ideal mingens substitute(J,T);
not((dim Ican, genus Ican, degree Ican) == (2,14,26))) do();
Ican)
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== CURVES OF GENUS 15 =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
--TODO: Write better comments to the functions
-- hasFactor is contained in the Glicci package
hasFactor = method(TypicalValue=>Boolean)
hasFactor (RingElement,ZZ) := (f,n) -> (
hasFactor(ideal f,n)
)
hasFactor (Ideal,ZZ) := (I,n) -> (
-- check whether a homogeneous principal ideal I in two variables over finite ground field FF
-- is square-free and has a factor of degree n defined over FF.
R := ring I;
if not class R === PolynomialRing and dim R !=2 then error "expected a polynomial in P^1";
cp := decompose I; -- decompose I in its irreducible factors
t := tally apply(cp,c -> degree c); -- frequency of degree c factors
dc := unique select(apply(cp,c -> degree c),d -> d <= n); --degrees of factors of degree at most n
if sum apply(cp,c -> degree c) =!= degree I then return false; -- check that f has no multiple factor
L := {0};
Ld := 0;
--sum the degrees of subsets of factors of degree <=n recursively
scan(dc,d -> (Ld = apply(t_d+1,i -> i*d); L = flatten apply(L,l -> apply(Ld,k -> l+k))));
member(n,L)
)
undocumented { hasFactor, (hasFactor,RingElement,ZZ), (hasFactor,Ideal,ZZ) }
----------------------------------------------------------------------------------------------------------------------------
-- selectFactor is contained in the Glicci package
selectFactor = method()
selectFactor (Ideal,ZZ) := (J,n) -> (
S := ring J;
kk := coefficientRing S;
--project to a line
S1 := kk[gens S,MonomialOrder => Eliminate 2];
S2 := kk[S_2,S_3];
J1 := sub(J,S1);
f := sub(selectInSubring(1,gens gb J1),S2);
cp := decompose ideal f;
t := tally apply(cp,c -> degree c); -- frequencies in which a factor occurs
dc := unique select(apply(cp,c->degree c),d -> d <= n);
L := {{0,{{0,0}}}};
Ld:=0;
-- we build a list of factors consisting of tuples {m,L1}, of a possible degree m of a factor and a list L1 of tuples
-- {d,i}, with d the degree of an irreducible factor and 0 <= i <= t_d the number of factors we take in this degree
scan(dc,d -> (Ld = apply(t_d+1,i -> {i*d,{{d,i}}});
L = flatten apply(L,l -> apply(Ld,k -> {l_0+k_0,l_1|k_1})))
);
A := (select(L,l -> l_0 == n))_0_1; -- select takes all possibilities to reach the desired degree n,
--_0 takes the first possibility
-- and _1 the list L1 of {d,i} of degrees d and number i of factors of degree d
A1 := select(A,a -> a_1 > 0);-- remove factors with i=0, i.e. those we did not use
fs := 0;
try (fn := product(A1,a -> (fs = select(cp,c -> degree c == a_0);
product(a_1,j -> fs_j))
)) else return S; -- compute the corresponding product
try(I1 := J:sub(fn,S)) else (I1 = J); -- compute the residual scheme to the scheme defined by sub(fn,S), the lift of the factor back to P3.
--note that we do not check that the lifted factor has the right cardinality. This must be checked by the calling routine.
try (J2 := J:I1) else J2 = ideal S;
--return J:I1 --return the ideal of the subscheme corresponding to the selected factor.
J2
)
undocumented { selectFactor, (selectFactor, Ideal,ZZ) }
----------------------------------------------------------------------------------------------------------------------------
getAuxilaryCurveAndPts = method()
getAuxilaryCurveAndPts (ZZ) := (p) -> (
kk := ZZ/p;
y := getSymbol "y";
R := kk[y_0..y_3];
-- the Chang-Ran construction of a degree 12 and genus 11 curve in P^3:
while(--find good E together with points
while(--find good E
HRao := coker random(R^3,R^{6:-1,2:-2});
betti(fRao := res HRao);
betti (syzE := fRao.dd_2*random(fRao_2,R^{6:-3}));
try (E := ideal syz syzE) else E = ideal vars R;-- todo: test if the try fct here is still relevant
-- following line seems only relevant in char 2 due to strange errors
try ((dim E, degree E,genus E) == (2,12,11)) else return (ideal vars R,0_R);-- comment in!!!
not ((dim E, degree E,genus E) == (2,12,11)) ) do();
S1 := kk[gens R,MonomialOrder => Eliminate 2]; --prepare projection to P^1
S2 := kk[R_2,R_3];
Epts := 0; Epts1 := 0; f := 0;
counter1 := 0;
while ( -- deg==6
while ( -- has factor of deg 6
Epts = E+random(2,R);
Epts1 = sub(Epts,S1);
f = sub(selectInSubring(1,gens gb Epts1),S2); -- project to P^1
counter1 = counter1+1;
not(hasFactor(ideal f,6) or counter1 >= 100)) do();
-- (not hasFactor(ideal f,6)) and (counter1<100)) do ();
if counter1 < 100 then pts := selectFactor(Epts,6) else pts = ideal R;
(degree pts =!= 6) and (counter1 < 100) ) do ();
-- counter <100 should be sufficient
(dim pts, degree pts) =!= (1,6)) do();
(E,pts)
)
undocumented { getAuxilaryCurveAndPts, (getAuxilaryCurveAndPts,ZZ) }
----------------------------------------------------------------------------------------------------------------------------
getModuleN = method(Options=>{Details => false})
getModuleN (Ideal,Ideal) := opt -> (E,pts) -> (
--(E,pts)=getAuxilaryCurveAndPts(3);
R := ring E;
kk := coefficientRing R;
x := getSymbol"x";
S := kk[x_0..x_4];
N := module ideal(0);
-- dim E, degree E, genus E, dim pts, degree pts
--D6:=intersect pts;--D6=pts
D6 := pts; -- just to make the notation the same as in the Matfac15-package
omegaE := Ext^1(E,R^{ -4});
counterK := 0;
while(--dim K
betti (K1 := presentation omegaE|random(target presentation omegaE,R^1));
K := annihilator coker K1; -- a canonical divisor on E
counterK = counterK+1;
not ((dim K, degree K) == (1,20) or counterK >= 10)) do();--this loop might not terminate
if ((dim K, degree K) =!= (1,20) and counterK == 10) then( if opt.Details then print"--<< data K"; return N);
counterH := 0;
while(--rank source H
H5 := ideal(gens K*random(source gens K,R^{ -5}));
try (H := mingens ideal (gens intersect(H5+E:K,D6)%E) ) else H = mingens (ideal 1_(ring E));
counterH = counterH+1;
not(rank source H == 5 or counterH >= 10)) do(); -- this loop might not terminate!
if ( rank source H =!= 5 and counterH == 10) then (if opt.Details then print"--<< data H"; return N);
-- re-embed E into P^4
RE := R/E;
phi := map(RE,S,sub(H,RE));
IE := ker phi;
if (isHomogeneous(IE) == false) then (if opt.Details then print"data IE"; return N);-- error which might occurs if char(kk) small / maybe running the few line above again will fix this error
if (not((dim IE, degree IE, genus IE) == (2,14,11))) then (if opt.Details then print"--<< data IE"; return N); -- if genus (or data) is wrong start with new auxiliary curve
betti (L1 := presentation omegaE|random(target presentation omegaE,R^{1}));
D := saturate annihilator coker L1;
RD := R/D;
D8 := ideal mingens ker map(RD,S,sub(H,RD));
if ((dim D8,degree D8) =!= (1,8)) then (if opt.Details then print"--<< data D8"; return N); ----if dim=2 then start with new curve E !! but why? (also if other data incorrect?)
counterResidual:=0;
while(
H5' := ideal(gens D8*random(source gens D8,S^{ -5}));
residual := (H5'+IE):D8;
counterResidual = counterResidual+1;
not(degree residual == 5*14-8 or counterResidual >= 10)) do();
if (degree residual =!= 5*14-8 and counterResidual == 10) then (if opt.Details then print"--<< data residual"; return N);
betti (A := saturate residual);
betti(A1 := syz gens A);
genericBettiA1 := new BettiTally from {(0, {3}, 3) => 3, (0, {4}, 4) => 9, (0, {5}, 5) => 2, (0, {6}, 6) => 2, (1, {5}, 5) => 24, (1, {7}, 7) => 14};
if (betti A1 =!= genericBettiA1) then (if opt.Details then print"--<< data A1"; return N);
betti(N1 := (transpose(transpose A1_{24..37})_{12..15})**S^{5});
betti(N2 := N1*syz(random(S^{ -1},target N1)*N1,DegreeLimit=>2));
N = coker transpose syz transpose syz N2;-- further tests for N might be needed
N)--fct close
undocumented { getModuleN, (getModuleN,Ideal,Ideal), [getModuleN, Details] }
----------------------------------------------------------------------------------------------------------------------------
--combines the functions MatrixfactorizationFromModule and CurveFromMatrixFactorization
-- it might happen, that the fct getModuleN produces a module,
-- for which the following fct does not terminate
curveFromModule = method(Options=>{Details => false})
curveFromModule (Module) := opt -> (N) -> (
-- we first build the matrix factorization from the module N
--if (opt.Details or opt.Printing) then print("--> building curve from module")
SN := ring N;
gIE := gens annihilator N;
counter := 0;
genericBettiM0 := new BettiTally from {(0, {0}, 0) => 3, (0, {1}, 1) => 15, (1, {2}, 2) => 18};
genericBettiM1 := new BettiTally from {(0, {2}, 2) => 18, (1, {3}, 3) => 3, (1, {4}, 4) => 15} ;
while(-- repeat this step until we rank source sms==4
while (-- get matrix factorization data correct
-- since running this fct with a timelimit does not work, we have the following loop:
-- force an error in case this does not terminate (e.g. for char 2)
counter = counter+1;
if (opt.Details and counter == 100) then print("infinite loop");
if counter == 100 then error;
X' := ideal(gIE * random(source gIE,SN^{ -3}));
SNX := SN/X';
-- if something is wrong with N the next step might take "forever". Hence: alarm
if opt.Details then print("--<< computing fNX");
fNX := res (N**SNX);
if (opt.Details and length fNX < 2) then print("--> length fNX < 2");
(M0,M1) := (fNX.dd_5**SNX^{6},fNX.dd_6**SNX^{6});
not (betti M0 == genericBettiM0 and betti M1 == genericBettiM1 )) do();
-- and now build the curve from the matrix factorization
SX := ring M0;
bSX := SX.baseRings;
S := last bSX;
X := ideal SX;
m0 := M0; m1 := M1;
-- (betti m0, betti m1) <<endl ;
if #unique degrees target m1 == 2 then (m0 = m1; m1 = syz m0);
degs := apply(degrees source m1, d -> d_0);
d0 := min degs;
-- (betti m0,betti m1) <<endl;
if #select(degs,d -> d == d0) == 15 then (
(m0,m1) = (transpose m1,transpose m0);
degs = apply(degrees source m1, d-> d_0);
d0 = min degs);
-- (betti m0, betti m1) << endl;
d0s := select(rank source m1,i -> degs_i == d0);
sm1 := syz(transpose m1_d0s,DegreeLimit=>-d0+1);
-- if we are unlucky the following step takes forever. Therefore we set the alarm
if opt.Details then print("--<< computing sms");
sms := syz transpose (sm1|transpose m0);
if (opt.Details and rank(sms) == 0) then print("--<< sms failure");
not(rank source sms >= 4)) do();
C:=ideal mingens ((sub(ideal((transpose syz transpose sms_{0..2})*sms_{3}),S)+X));
-- (dim C,degree C, genus C) << endl;
return C)
undocumented { curveFromModule, (curveFromModule,Module), [curveFromModule, Details] }
----------------------------------------------------------------------------------------------------------------------------
smoothCanonicalCurveGenus15 = method(Options=>{Details => false, Printing=>false})
smoothCanonicalCurveGenus15 (ZZ) := opt -> (p) -> (
expectedBettiN := new BettiTally from { (0,{0},0) => 2, (0,{1},1) => 1, (1,{2},2) => 9};
expectedBettiSyzN := new BettiTally from { (0, {2}, 2) => 9, (1, {4}, 4) => 14};
smoothLimit := 20;-- maybe include this in the input
--time while (-- get smooth curve
--time while(-- get data of curve in P4 correct
while (-- get smooth curve
while(-- get data of curve in P4 correct
while( -- data of N
while ( -- get good E (this loop seems only relevant for char 2, i.e. errors in the getAuxillaryCurve fct)
(E,pts) := getAuxilaryCurveAndPts(p);
not(dim E == 2) ) do();
if (opt.Details or opt.Printing) then print("computing the matrix factorization");
N := getModuleN(E,pts, Details => opt.Details);-- sometimes it seems to be sufficient to reroll this fct
bettiSyzN := betti syz presentation N;
(N == 0 or (betti N =!= expectedBettiN) or (bettiSyzN =!= expectedBettiSyzN))) do();-- N might still ne chooses badly--> one step in the curveFromModule fct takes forever
if (opt.Details or opt.Printing) then print"--> building curve from matrixfactorization";
--IC:=curveFromModule(N); --might not terminate
--try (alarm 60; IC:=curveFromModule(N)) else IC=ideal ring N; -- time limit useless
try(IC := curveFromModule(N, Details=>opt.Details)) else IC = ideal ring N;
((dim IC, genus IC, degree IC) != (2,15,16))) do();
counterSmoothness := 0;
if (opt.Details or opt.Printing) then print"--> testing smoothness";
while(-- test smoothness multiple times
counterSmoothness = counterSmoothness+1;
not( isSmoothCurve(IC) or counterSmoothness >= smoothLimit )) do();
counterSmoothness == smoothLimit ) do();
-- now the canonical embedding:
if (opt.Details or opt.Printing) then print"--> computing canonical embedding";
S := ring IC;
kk := coefficientRing S;
omegaC := presentation truncate(0, Ext^2(IC,S^{ -5}));
t := getSymbol"t";
T := kk[t_0..t_14];
TS := T**S;
graph := substitute(vars T,TS)*substitute(omegaC,TS);
while(
--time J := saturate(ideal graph, substitute(random(1,S),TS));
J := saturate(ideal graph, substitute(random(1,S),TS));
Ican := ideal mingens substitute(J,T);
--counterCanEmb=counterCanEmb+1;
not((dim Ican, genus Ican, degree Ican) == (2,15,28))) do();
Ican)
--===========================================================================================================================--
--===========================================================================================================================--
--=============================== DOCUMENTATION =============================================--
--===========================================================================================================================--
--===========================================================================================================================--
beginDocumentation()
document {
Key => RandomCurvesOverVerySmallFiniteFields,
Headline => "randomly chosen smooth canonical curves over small finite fields",
"This package can be seen as a refined version of the ",
HREF("https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.11/share/doc/Macaulay2/RandomCanonicalCurves/html/","RandomCanonicalCurves"),
" package, which catches all possible missteps in the constructions.
The construction follows the unirationality proof of M_g for g<=14 and the article ",
HREF("http://arxiv.org/abs/1311.6962","Matrix factorizations and families of curves of genus 15"),
" for the genus g=15 case. Since a unirational parametrization of M_g is only a rational map, bad choices of parameters
in the construction might end up in the indeterminacy locus or other undesired subloci.
Since for example a hypersurface in characteristic 2 contains about 90% of the F_2-rational points (see ",
HREF("http://arxiv.org/abs/math/0404342","A quick and dirty irreducibility Test for Multivariate Polynomials over F_q"),
"), a failure of the construction in the various steps is quite likely.
We catch all possible missteps, and try again until success.",
PARA{},
"For g<=10 we construct the canonical curves via plane models.",
PARA{},
"For 10<g<14 the canonical curves are constructed via space models.",
PARA{},
"For g=14 the construction is based on Verra's proof of the unirationality of M_14 (see ",
HREF("http://arxiv.org/abs/math/0402032" ," The unirationality of the moduli space of curves of genus ≤14") ,"
).",
PARA{},
"The g=15 construction relies on matrix factorizations and is based on the Macaulay2 Package ",
HREF("http://arxiv.org/abs/1311.6962","Matrix factorizations and families of curves of genus 15"),
".",
PARA{},
" For g <=14, the methods used in this package are based on the Macaulay2 Package ",
HREF("http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.8.2/share/doc/Macaulay2/RandomCurves/html/","randomCurves"),
" and the methods for the g=15 case are based on the Macaulay2-package ",
HREF("http://www.math.uni-sb.de/ag-schreyer/images/data/computeralgebra/M2/doc/Macaulay2/MatFac15/html/index.html","MatFac15"),
".",
Caveat => {"This package requires Macaulay2 Version 1.9 or newer."}
}
doc ///
Key
isSmoothCurve
(isSmoothCurve,Ideal)
Headline
Tests smoothness of a curve
Usage
isSmoothCurve(IC)
Inputs
IC: Ideal
the Ideal of a curve
Outputs
: Boolean
, whether the curve is smooth or not
Description
Text
Checks whether a curve is smooth or not
Example
S = QQ[x,y,z];
IC = ideal(x*y);
isSmoothCurve(IC)
IC2 = ideal (x^2+y^2+z^2);
isSmoothCurve(IC2)
///
doc ///
Key
smoothCanonicalCurve
(smoothCanonicalCurve,ZZ,ZZ)
--[smoothCanonicalCurve,Printing]
Headline
Computes the ideal of canonical curve
Usage
smoothCanonicalCurve(g,p)
Inputs
g: ZZ
the genus
p: ZZ
a prime number defining the characteristic
Outputs
ICan: Ideal
the ideal of a (smooth) canonical curve of genus g over a field with characteristic p
Description
Text
Computes a smooth canonical curve of genus g<=15 over a field of characteristc p.
For genus g<=14 are based on the unirationality of M_g for g<=14 and the RandomCurves-package.
A unirational parametrization of M_g is only a rational map and bad choices of parameters
(which are quite likely over small fields) might end up in the indeterminacy locus or some
other undesired subloci.
In this constructions we catch the steps which do not work out for
very small characteristic by catching all possible missteps.
For g<=10 the curves are constructed via plane models.
For g<=13 the curves are constructed via space models.
For g=14 the curves are constructed by Verra's method.
For g=15 the curves are constructed via matrix factorizations.
If the option {\tt Printing} is set to {\tt true} then printings about the current step in the construction are displayed.
Example
time ICan = smoothCanonicalCurve(11,5);
(dim ICan, genus ICan, degree ICan)
betti ICan
SeeAlso
smoothCanonicalCurveViaPlaneModel
smoothCanonicalCurveViaSpaceModel
smoothCanonicalCurveGenus14
smoothCanonicalCurveGenus15
///
doc ///
Key
smoothCanonicalCurveViaPlaneModel
(smoothCanonicalCurveViaPlaneModel,ZZ,ZZ)
--[smoothCanonicalCurveViaPlaneModel,Printing]
Headline
Computes the ideal of canonical curve via plane models
Usage
smoothCanonicalCurveViaPlaneModel(g,p)
Inputs
g: ZZ
the genus
p: ZZ
a prime number defining the characteristic
Outputs
ICan: Ideal
the ideal of a (smooth) canonical curve of genus g over a field with characteristic p
Description
Text
Computes a smooth canonical curve of genus g over a field of characteristc p.
The constructions are based on the unirationality proofs of M_g for g<=10 and the methods
in the RandomCurves-package.
A unirational parametrization of M_g is only a rational map and bad choices of parameters
(which are quite likely over small fields) might end up in the indeterminacy locus or some
other undesired subloci.
In this constructions we catch the steps which do not work out for
very small characteristic.
The function works for g<=10.
If the option {\tt Printing} is set to {\tt true} then printings about the current step in the construction are displayed.
SeeAlso
smoothCanonicalCurve
smoothCanonicalCurveViaSpaceModel
smoothCanonicalCurveGenus14
smoothCanonicalCurveGenus15
///
doc ///
Key
smoothCanonicalCurveViaSpaceModel
(smoothCanonicalCurveViaSpaceModel,ZZ,ZZ)
--[smoothCanonicalCurveViaSpaceModel,Printing]
Headline
Computes the ideal of canonical curve via space models
Usage
smoothCanonicalCurveViaSpaceModel(g,p)
Inputs
g: ZZ
the genus
p: ZZ
a prime number defining the characteristic
Outputs
ICan: Ideal
the ideal of a (smooth) canonical curve of genus g over a field with characteristic p
Description
Text
Computes a smooth canonical curve of genus g over a field of characteristc p.
The constructions are based on the unirationality proofs of M_g for g<=10 and the methods
in the RandomCurves-package.
A unirational parametrization of M_g is only a rational map and bad choices of parameters
(which are quite likely over small fields) might end up in the indeterminacy locus or some
other undesired subloci.
In this constructions we catch the steps which do not work out for
very small characteristic.
The Function works for 11<=g<=13.
If the option {\tt Printing} is set to {\tt true} then printings about the current step in the construction are displayed.
SeeAlso
smoothCanonicalCurve
smoothCanonicalCurveViaPlaneModel
smoothCanonicalCurveGenus14
smoothCanonicalCurveGenus15
///
doc ///
Key
smoothCanonicalCurveGenus15
(smoothCanonicalCurveGenus15,ZZ)
--[smoothCanonicalCurveGenus15,Printing]
Headline
Computes the ideal of canonical curve of genus 15
Usage
smoothCanonicalCurveGenus15(p)
Inputs
p: ZZ
the characteristic
Outputs
ICan: Ideal
the ideal of a (smooth) canonical curve of genus g over a field with characteristic p
Description
Text
Computes a smooth canonical curve of genus g over a field of characteristc p. The construction uses matrixfactorizations
and we catch the steps which do not work out for very small characteristic.
The whole construction is based on the Macaulay2 package "MatFac15"
If the option {\tt Printing} is set to {\tt true} then printings about the current step in the construction are displayed.
SeeAlso
smoothCanonicalCurve
smoothCanonicalCurveViaPlaneModel
smoothCanonicalCurveViaSpaceModel
smoothCanonicalCurveGenus14
///
doc ///
Key
smoothCanonicalCurveGenus14
(smoothCanonicalCurveGenus14,ZZ)
--[smoothCanonicalCurveGenus14,Printing]
Headline
Compute a random canonical curve of genus 14
Usage
smoothCanonicalCurveGenus14(p)
Inputs
p: ZZ
a prime number defining the characteristic
Outputs
ICan: Ideal
the ideal of a smooth canonically embedded genus 14 curve
Description
Text
Computes a smooth canonical curve of genus 14 over a field of characteristc p.
The constructions are based on the unirationality proof of M_14 by A. Verra (See "http://arxiv.org/abs/math/0402032")
and the methods in the Macaulay2-Package "RandomGenus14Curves".
A unirational parametrization of M_g is only a rational map and bad choices of parameters
(which are quite likely over small fields) might end up in the indeterminacy locus or some
other undesired subloci.
In this constructions we catch the steps which do not work out for
very small characteristic.
If the option {\tt Printing} is set to {\tt true} then printings about the current step in the construction are displayed.
SeeAlso
smoothCanonicalCurve
smoothCanonicalCurveViaPlaneModel
smoothCanonicalCurveViaSpaceModel
smoothCanonicalCurveGenus15
///
doc ///
Key
Printing
[smoothCanonicalCurve, Printing]
[smoothCanonicalCurveViaPlaneModel, Printing]
[smoothCanonicalCurveViaSpaceModel, Printing]
[smoothCanonicalCurveGenus14, Printing]
[smoothCanonicalCurveGenus15, Printing]
Headline
displays information about the current step in the constructions. Default value is "false".
Description
Text
Setting the option {\tt Printings} to {\tt true} displays information about step in the construction which is currently performed.
The default value for all functions is {\tt false}.
This might be helpful in order to check how often a particular construction step fails in small characteristic.
SeeAlso
smoothCanonicalCurve
smoothCanonicalCurveViaPlaneModel
smoothCanonicalCurveViaSpaceModel
smoothCanonicalCurveGenus14
smoothCanonicalCurveGenus15
///
doc ///
Key
Details
[smoothCanonicalCurve, Details]
[smoothCanonicalCurveGenus14, Details]
[smoothCanonicalCurveGenus15, Details]
Headline
keeps track of the precise step in the construction of canonical genus 14 and 15 curves. Default value is "false".
Description
Text
Setting the option {\tt Details} to {\tt true} displays the precise step in the construction which is currently performed.
This option displays additional information compared to the option {\tt Printing}.
The purpose of this additional option is to further test and tweak the genus 14 and 15 construction.
The output displayed uses the notation from the sourcecode. Thus, without having a look into the sourcecode this option might not be helpful.
The default value for all functions is {\tt false}.
Enabling this option also enable the option {\tt Printing}.
SeeAlso
Printing
smoothCanonicalCurve
smoothCanonicalCurveGenus14
smoothCanonicalCurveGenus15
///
end
restart
uninstallPackage("RandomCurvesOverVerySmallFiniteFields")
restart
installPackage("RandomCurvesOverVerySmallFiniteFields", RerunExamples=>false)
viewHelp
--loadPackage("RandomCurvesOverVerySmallFiniteFields")
TEST ///
time I=smoothCanonicalCurve(11,2);
time I=smoothCanonicalCurve(11,3);
time I=smoothCanonicalCurve(11,5);
time I=smoothCanonicalCurve(11,101); -- used 7.73312 seconds
///
|