1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
|
newPackage(
"RandomIdeals",
Version => "2.0",
Date => "May 9, 2016",
Authors => {
{Name => "Katie Ansaldi",
Email => "kansaldi@gmail.com"},
{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"},
{Name => "Robert Krone",
Email => "rckrone@gmail.com",
HomePage => "http://rckr.one"},
{Name => "Jay Yang",
Email => "jkelleyy@gmail.com"}
},
HomePage => "http://www.msri.org/~de",
Headline => "creating random ideals of various sorts",
Keywords => {"Examples and Random Objects"},
AuxiliaryFiles => false, -- set to true if package comes with auxiliary files,
PackageExports =>{"EdgeIdeals", "BinomialEdgeIdeals"},
DebuggingMode => false -- set to true only during development
)
export {
"randomIdeal",
"randomMonomialIdeal",
"randomSquareFreeMonomialIdeal",
"randomSquareFreeStep",
"randomBinomialIdeal",
"randomPureBinomialIdeal",
"randomSparseIdeal",
"randomEdgeIdeal",
"randomBinomialEdgeIdeal",
"randomToricEdgeIdeal",
"randomElementsFromIdeal",
"randomMonomial",
"squareFree",
"regSeq",
"AlexanderProbability",
"randomAddition",
"randomShelling",
"idealFromShelling",
"idealChainFromShelling",
"isShelling",
"randomShellableIdeal",
"randomShellableIdealChain"
}
randomMonomial = method(TypicalValue => RingElement)
randomMonomial(ZZ,Ring) := RingElement => (d,S) -> (
m := basis(d,S);
m_(0,random rank source m))
randomMonomialIdeal=method(TypicalValue => Ideal)
randomMonomialIdeal(Sequence, Ring) := Ideal => (L,S)->
randomMonomialIdeal(toList L, S)
randomMonomialIdeal(List, Ring) := Ideal => (L,S)->(
--produces an ideal minimally generated
--by random monomials of degrees given in L,
--unless the low degree terms generate all monomials
--in one of the higher degrees requested,
--in which case the ideal fulfills as many of
--the conditions as possible (from lowest degree),
--and produces a message.
--
--first produce a list in ascending order of degree,
--specifying how many elements are required from that degree
Lu := sort unique L;
Ls := apply(Lu, t -> #positions(L, s->(s==t)));
--handle the initial degree
M := flatten entries basis(Lu#0, S^1);
if Ls#0 < #M then I := ideal((random M)_{0..Ls#0-1})
else (
I = ideal(M);
<<"***** there are only "
<< binomial(Lu#0+numgens S-1,Lu#0)
<<" monomials of degree "
<< Lu#0
<<endl;
return I
);
--now the rest of the degrees, if any.
for t from 1 to #Lu-1 do (
M = flatten entries compress (basis(Lu#t,S^1) % I);
if Ls#t < #M then I = I+ideal((random M)_{0..Ls#t-1})
else (
if #M=!=0 then I = I+ideal(M);
print("low degree gens generated everything");
break)
);
I
)
randomSquareFreeMonomialIdeal=method(TypicalValue => Ideal)
randomSquareFreeMonomialIdeal(Sequence, Ring) := Ideal => (L,S)->
randomSquareFreeMonomialIdeal(toList L, S)
randomSquareFreeMonomialIdeal(List, Ring) := Ideal => (L,S)->(
--L is a list of degrees desired, The routine
--produces an ideal minimally generated by random
--square-free monomials of exactly the numbers and degrees given in L,
--unless the low degree terms generate
--all monomials in one of the higher degrees requested,
--in which case the ideal fulfills as
--many of the conditions as possible (from lowest degree).
--
--first produce a list in ascending order of degree, specifying how many elements are required from that degree
Lu := sort unique L;
Ls := apply(Lu, t -> #positions(L, s->(s==t)));
M := flatten entries gens squareFree(Lu#0, S);
if Ls#0 < #M then I := ideal((random M)_{0..Ls#0-1})
else (I = ideal(M);
<<"***** there are only " <<binomial(numgens S,Lu#0)<<
" square-free monomials of degree " << Lu#0 <<endl;
return I
);
for t from 1 to #Lu-1 do (
M=flatten entries compress (gens squareFree(Lu#t,S) % I);
if Ls#t < #M then I = I+ideal((random M)_{0..Ls#t-1})
else (if #M=!=0 then I = I+ideal(M);
print("low degree gens generated everything");
break
)
);
I
)
randomSquareFreeStep = method(Options=>{AlexanderProbability => .05})
soc = I -> (
--I should be a MonomialIdeal
p:=product gens ring I;
apply(flatten entries gens dual I, m->p//m))
prepare= I->(
--I should be a MonomialIdeal
Igens := flatten entries gens I;
ISocgens := soc I;
{I,Igens,ISocgens})
randomSquareFreeStep(Ideal) := o -> (I) ->(
if isMonomialIdeal I then randomSquareFreeStep(monomialIdeal I, o)
else error "ideal not generated by monomials")
randomSquareFreeStep(MonomialIdeal) := o -> (I) ->(
if isSquareFree I then randomSquareFreeStep (prepare I, o)
else error "ideal not square-free")
randomSquareFreeStep(List) := o -> (L) ->(
I := L_0;
S := ring I;
mm := monomialIdeal vars S;
mm2 := monomialIdeal apply (flatten entries vars S, p->p^2);
--With probability given by the option AlexanderProbability (default .05),
--the routine simply returns the Alexander dual of I.
if random RR <o.AlexanderProbability then return prepare dual I;
--form a candidate step
Igens := L_1;
nI := #Igens;
ISocgens := L_2;
nSocI := #ISocgens;
if random RR < nSocI/(nI+nSocI) then
J := I + monomialIdeal ISocgens_(random nSocI)
else (
--p := random nI;
p := monomialIdeal Igens_(random nI);
-- p' := select(toList(0..nI-1), j->j!=p);
p' := I-p; -- returns the ideal generated by all the gens but p
sqFreeMults := (mm*p)-mm2;
-- sqFreeMults := substitute(monomialIdeal(gens(mm*ideal(Igens_p))%mm2), S);
-- J = trim (ideal(Igens_p')+sqFreeMults)
J = p'+sqFreeMults
);
--Decide whether to accept the step or not
Jgens := flatten entries gens J;
nJ := #Jgens;
JSocgens := soc J;
nSocJ := #JSocgens;
--accept with probability P (if P<1) or unconditionally (P>=1):
P := (nI+nSocI)/(nJ+nSocJ);
if random RR < P then {J,Jgens,JSocgens} else {I,Igens,ISocgens}
)
squareFree = method(TypicalValue => Ideal)
squareFree(ZZ,Ring) := Ideal => (d,S) ->
--returns the ideal generated by all square free monomials of degree d
ideal compress(basis(d,S^1) % ideal apply (flatten entries vars S, p -> p^2))
randomPureBinomialIdeal = method(TypicalValue => Ideal)
randomPureBinomialIdeal(Sequence, Ring) := Ideal => (L,S)->randomPureBinomialIdeal(toList L, S)
randomPureBinomialIdeal(List, Ring) := Ideal => (L,S)->(
--L=list of degrees of the generators
trim ideal apply(L, d->randomMonomial(d,S)-randomMonomial(d,S))
)
randomBinomialIdeal = method(TypicalValue => Ideal)
randomBinomialIdeal(Sequence, Ring) := Ideal => (L,S)->randomPureBinomialIdeal(toList L, S)
randomBinomialIdeal(List, Ring) := Ideal => (L,S)->(
--L=list of degrees of the generators
kk:=ultimate (coefficientRing, S);
trim ideal apply(L, d->randomMonomial(d,S)-random(kk)*randomMonomial(d,S))
)
///
///
randomSparseIdeal = method(TypicalValue => Ideal)
randomSparseIdeal(Matrix, ZZ, ZZ) := Ideal => (B,s,n) -> (
-- B is a 1xt matrix of monomials
-- s is the size of each poly
-- n is the number of polys
S := ring B;
t := rank source B;
BB := (first entries B);
kk := ultimate(coefficientRing, S);
trim ideal apply(n, j ->
sum apply(s, i -> random kk * BB#(random t)))
)
randomIdeal = method(TypicalValue => Ideal)
randomIdeal(Sequence,Matrix) := Ideal => (L,B) -> randomIdeal(toList L, B)
randomIdeal(List,Matrix) := Ideal => (L,B) -> (
-- B is a 1 x n matrix of homogeneous polynomials
-- L is a list of degrees
trim ideal(B * random(source B, (ring B)^(-L)))
)
regSeq = method(TypicalValue => Ideal)
regSeq (Sequence, Ring) := Ideal => (L,S)-> regSeq(toList L, S)
regSeq (List, Ring) := Ideal => (L,S)->(
--forms an ideal generated by powers of the variables.
--L=list of NN. uses the initial subsequence of L as powers
ideal for m to min(#L,rank source vars S)-1 list S_m^(L_m))
randomElementsFromIdeal = method(TypicalValue => Ideal)
randomElementsFromIdeal(List, Ideal) := Ideal => (L,I)->(
trim ideal((gens I)*random(source gens I, (ring I)^(-L))))
----------From Shelling
testNewSimplex = method()
testNewSimplex(List, List) := (P, D) ->(
--given a pure, d-dimensional simplicial complex (sc) as a list of ordered lists of d+1 vertices in [n], and
--a simplex D as such a list, tests whether the intersection of D with P is a union of facets of D.
d := #D-1; --dimension
ints := apply(P, D' -> intersectLists(D',D));
facets := apply(unique select(ints, E -> #E==d),set);
antiFacets := apply(facets,F -> (D-F)#0);
if facets == {} then return false;
smalls := unique select(ints, E -> #E<d);
all(smalls, e -> any(antiFacets, v -> not member(v,e)))
)
intersectLists = (D',D) -> D - set(D-set D')
randomSubset = (n,m) -> (
L := new MutableList from toList (0..m-1);
for i from m to n-1 do (
j := random(i+1);
if j < m then L#j = i;
);
sort toList L
)
randomAddition = method()
randomAddition(ZZ,ZZ,List) := (n,m,P) ->(
if #P == 0 then return {randomSubset(n,m+1)};
Plarge := select(P, D-> #D >= m+1); -- the facets big enough to be glued to
if #Plarge == 0 then error "m is too large";
t := false;
D' := {null};
D := Plarge#(random(#Plarge)); -- a random facet from Plarge
compD := toList(0..n-1) - set D;
count := 0;
while not t and count < 20 do (
i := random (#compD);
J := randomSubset(#D,#D-m);
D' = sort(D - set apply(J, j->D_j) | {compD_i});
t = (testNewSimplex(P,D'));
count = count+1);
if count == 20 then return P;
unique (P|{D'})
)
listsToMonomials = (P,R) -> apply(P, D -> product apply(D,d->R_d))
squareFreeMonomialsToLists = (L,R)->(
varToIndex := i->position(gens R, j->j==i);
apply (L/support, j->j/varToIndex))
///
S = ZZ/101[a,b,c]
L = flatten entries matrix"ab,a2,abc2"
varToIndex b
viewHelp position
///
randomAddition(Ring,ZZ,List) := (R,m,L) -> (
P := squareFreeMonomialsToLists(L,R);
listsToMonomials(randomAddition(numgens R,m,P),R)
)
idealFromShelling = method()
idealFromShelling (Ring,List) := (S,P) -> (
Delta := toList (0..numgens S - 1);
V := vars S;
monomialIdeal intersect apply(P, D -> monomialIdeal {V_(Delta - set D)})
)
idealFromShelling List := P -> (
n := (max flatten P)+1;
x := symbol x;
S := QQ[x_0..x_(n-1)];
idealFromShelling(S,P)
)
///
R = ZZ/101[x_0..x_4];
I = randomShellableIdeal(R,2,6)
S
///
idealChainFromShelling = method()
idealChainFromShelling(Ring,List) := (S,P) -> toList apply(#P,i->idealFromShelling(S,take(P,i+1)))
idealChainFromShelling List := P -> toList apply(#P,i->idealFromShelling(take(P,i+1)))
isShelling = method()
isShelling(List) := P -> all(#P, i-> i==0 or testNewSimplex(take(P,i),P#i))
randomShelling = method()
-- random chain of shellable complexes on n vertices, with pure dim m, up to the complete m skeleton
randomShelling(ZZ,ZZ) := (n,m) -> randomShelling(n,m,binomial(n,m+1))
-- random chain of shellable complexes on n vertices, with pure dim m, and k facets
--Should we change the following to start with {{0..m}, {0..m-1,m} to diminish autos?
randomShelling(ZZ,ZZ,ZZ) := (n,m,k) -> (
if k > binomial(n,m+1) then error "k is too large";
P := {};
while #P < k do P = randomAddition(n,m,P);
P
)
randomShellableIdeal=method()
randomShellableIdeal(Ring,ZZ,ZZ) := (R,dimProj,deg) -> (
idealFromShelling(R,randomShelling(numgens R ,dimProj, deg))
)
randomShellableIdealChain=method()
randomShellableIdealChain(Ring,ZZ,ZZ) := (R,dimProj,deg)->(
idealChainFromShelling(R,randomShelling(numgens R,dimProj,deg))
)
randomShellableIdealChain(Ring,ZZ) := (R,dimProj)->(
idealChainFromShelling(R,randomShelling(numgens R,dimProj))
)
///
S = ZZ/101[x_0..x_5]
I = randomShellableIdeal(S,2,5)
dim I == 3
degree I == 5
S = ZZ/101[x_0..x_4]
I = randomShellableIdeal(S,2,6)
///
randomShelling(Ring,ZZ,ZZ) := (R,m,k) -> listsToMonomials(randomShelling(numgens R,m,k),R)
randomShelling(Ring,ZZ) := (R,m) -> listsToMonomials(randomShelling(numgens R,m),R)
randomEdgeIdeal = method()
randomEdgeIdeal(ZZ,ZZ) := (n,t) -> (
needsPackage "EdgeIdeals";
needsPackage "BinomialEdgeIdeals";
x:=symbol x;
G:=randomGraph(QQ[x_1..x_n],t);
(G, edgeIdeal(G))
)
TEST///
randomEdgeIdeal(8, 5)
randomBinomialEdgeIdeal(7, 4)
randomToricEdgeIdeal(6,10)
///
--Random binomial edge ideal
--n is number of vertices, t is number of edges of the graph
randomBinomialEdgeIdeal = method();
randomBinomialEdgeIdeal(ZZ,ZZ) := (n, t) -> (
needsPackage "EdgeIdeals";
needsPackage "BinomialEdgeIdeals";
x := symbol x;
G := randomGraph(QQ[x_1..x_n], t);
E := apply(edges G, i -> apply(i, j -> index j+1));
return (binomialEdgeIdeal(E), G)
)
--Random toric edge ideal
--n is number of variables, t is number of edges of the graph
randomToricEdgeIdeal = method();
randomToricEdgeIdeal(ZZ,ZZ) := (n, t) -> (
needsPackage "BinomialEdgeIdeals";
needsPackage "EdgeIdeals";
e := local e;
x := local x;
R := QQ[x_1..x_n];
S := QQ[e_1..e_t];
G := randomGraph(R,t);
E := apply(edges G, product);
(ker map(R,S,E), G)
)
------------------------------------------------------------
-- DOCUMENTATION RandomIdeals -- documentation
------------------------------------------------------------
beginDocumentation()
doc ///
Key
RandomIdeals
Headline
A package to construct various sorts of random ideals
Description
Text
This package can be used to make experiments, trying many ideals, perhaps
over small fields. For example...what would you expect the regularities of
"typical" monomial ideals with 10 generators of degree 3 in 6 variables to be?
Try a bunch of examples -- it's fast.
Here we do only 500 -- this takes about a second on a fast machine --
but with a little patience, thousands can be done conveniently.
Example
setRandomSeed(currentTime())
kk=ZZ/101;
S=kk[vars(0..5)];
time tally for n from 1 to 500 list regularity randomMonomialIdeal(10:3,S)
Text
How does this compare with the case of binomial ideals? or pure binomial ideals?
We invite the reader to experiment, replacing "randomMonomialIdeal" above with
"randomBinomialIdeal" or "randomPureBinomialIdeal", or taking larger numbers
of examples. Click the link "Finding Extreme Examples" below to see
some other, more elaborate ways to search.
SeeAlso
"Finding Extreme Examples"
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomSquareFreeStep
randomBinomialIdeal
randomPureBinomialIdeal
randomSparseIdeal
randomElementsFromIdeal
randomMonomial
randomShellableIdeal
randomShellableIdealChain
randomShelling
///
------------------------------------------------------------
-- DOCUMENTATION randomShelling
------------------------------------------------------------
doc ///
Key
randomShelling
(randomShelling,ZZ,ZZ)
(randomShelling,ZZ,ZZ,ZZ)
(randomShelling,Ring,ZZ)
(randomShelling,Ring,ZZ,ZZ)
Headline
produces a random chain of shellable complexes
Usage
P=randomShelling(n,m)
P=randomShelling(n,m,k)
P=randomShelling(R,m)
P=randomShelling(R,m,k)
Inputs
n:ZZ
the number of vertices
R:Ring
a polynomial ring with a variable for each vertex
m:ZZ
the dimension of the facets
k:ZZ
the number of facets (if omitted, the number will be {\tt n} choose {\tt m+1})
Outputs
P:List
A list of lists of integers. Each list of integers is a facet of the complex and the order is a shelling. If called with a Ring {\tt R} instead of an integer {\tt n}, each facet is represented by a square-free monomial instead of a list.
Description
Text
The function produces a list of facets of a random shellable simplicial complex.
The order of the facets is a shelling.
Text
The algorithm works by choosing one of the previous facets at random, and replacing one of its vertices with a new vertex chosen at random.
If the choice meets the criteria of a shelling, that facet is added to list, otherwise it is discarded and the algorithm tries again.
The first facet is chosen uniformly at random.
The call randomShelling(n,m) produces a *complete* chain -- that is, a shelling
of the m-skeleton of the (n-1)-simplex, with the simplices listed in order,
so that any initial subsequence of length d gives a (random) shellable simplicial
complex with d facets.
The probability distribution for this random selection
is presumably not the uniform one; it would be nice to write a reversible
markov chain that could be used with the Metropolis algorithm to produce
the uniform distribution, as is done in randomSquareFreeStep, and the
randomSquareFreeMonomialIdeal codes
Example
P = randomShelling(6,3,10)
Q = randomShelling(6,3)
Caveat
No claim is made on the distribution of the random chain.
SeeAlso
randomAddition
idealChainFromShelling
idealFromShelling
randomShellableIdeal
randomSquareFreeStep
randomSquareFreeMonomialIdeal
///
------------------------------------------------------------
-- DOCUMENTATION isShelling
------------------------------------------------------------
doc ///
Key
isShelling
(isShelling,List)
Headline
determines whether a list represents a shelling of a simplicial complex.
Usage
b = isShelling(P)
Inputs
P:List
A list of lists of integers. Each list of integers is a facet of the complex and the order is a possible shelling.
Outputs
b:Boolean
true if and only if P is a shelling.
Description
Text
An ordering $F_1,..F_d$ of the facets of a simplicial complex $P$ is shellable
if $(F_1 \cup .. \cup F_{k-1}) \cap F_k$ is pure of dim$F_k -1$ for all $k = 2,..,d$.
Determines if a list of faces is a shelling order of the simplicial complex.
Example
P = {{1, 2, 3}, {1, 2, 5}};
isShelling(P)
Q = {{1,2,3},{3,4,5},{2,3,4}};
isShelling(Q)
///
------------------------------------------------------------
-- DOCUMENTATION randomAddition
------------------------------------------------------------
doc ///
Key
randomAddition
(randomAddition,ZZ,ZZ,List)
(randomAddition,Ring,ZZ,List)
Headline
Adds a random facet to a shellable complex
Usage
p=randomAddition(n,m,P)
p=randomAddition(R,m,P)
Inputs
n:ZZ
the number of vertices (if a ring is specified, {\tt n} is the number of variables.
m:ZZ
the dimension of the new facet
P:List
A list of lists of integers. Each list of integers is a facet of the complex and the order is a shelling.
R:Ring
A polynomial ring.
Outputs
p:List
A list of lists of integers. Each list of integers is a facet of the complex and the order is a shelling.
Description
Text
This function randomly chooses a facet of size {\tt m+1} and checks whether the facet can be shellably added to the shelling.
If it can be shellably added to the shelling, it is added to the shelling and the new shelling is returned.
Otherwise, the process repeats up to 20 times.
Text
This function can be used to randomly construct non-pure shellable complexes. A new {\tt m}-simplex can only be
glued to previous simplices of dimension at least {\tt m}. If all previous simplices are smaller, then the addition will fail.
Example
P={{1,2,3}}
P=randomAddition(6,2,P)
P=randomAddition(6,1,P)
Caveat
If the input is not a shellable simplicial complex, the new complex will not be shellable. The function does not check whether the input is shellable.
SeeAlso
randomShelling
idealChainFromShelling
idealFromShelling
///
------------------------------------------------------------
-- DOCUMENTATION idealFromShelling
------------------------------------------------------------
doc ///
Key
idealFromShelling
(idealFromShelling,List)
(idealFromShelling,Ring,List)
Headline
Produces an ideal from a shelling
Usage
I = idealFromShelling(P)
I = idealFromShelling(S,P)
Inputs
S:Ring
(If omitted, it will use {\tt S=QQ[x_0..x_{n-1}]} where {\tt n} is the maximum integer in the lists of {\tt P}.
P:List
A list of lists of integers. Each list of integers is a facet of the complex and the order is a shelling.
S:Ring
(If omitted, it will use {\tt S=QQ[x_0..x_{n-1}]} where {\tt n} is the maximum integer in the lists of {\tt P}.
Outputs
I:Ideal
generated by the monomials representing the minimal nonfaces of {\tt P}
Description
Text
This gives the Stanley-Reisner ideal for the simplicial complex, that is the ideal generated by the monomials representing the minimal nonfaces of {\tt P}.
Example
S = QQ[x_0,x_1,x_2,x_3,x_4]
P = {{1, 2, 4}, {0, 1, 4}, {0, 2, 4}, {0, 3, 4}};
idealFromShelling(S,P)
SeeAlso
idealChainFromShelling
randomShellableIdeal
///
------------------------------------------------------------
-- DOCUMENTATION idealChainFromShelling
------------------------------------------------------------
doc ///
Key
idealChainFromShelling
(idealChainFromShelling,List)
(idealChainFromShelling,Ring,List)
Headline
Produces chains of ideals from a shelling.
Usage
L = idealChainFromShelling(P)
L = idealChainFromShelling(R,P)
Inputs
R:Ring
Polynomial ring
P:List
A (possibly impure) shelled simplicial complex, represented by a
list of lists of integers.
Each list of integers is a facet of the
complex and the order is a shelling. If the ring R is specified, the output
is a list of ideals in R; else it is a list of ideals in
QQ[x_0..x_{n-1}], where n is the maximum number of elements in one of the lists
of integers
Outputs
L:List
a list of ideals
Description
Text
Outputs the Stanley-Reisner ideal for each successive simplicial complex formed by truncating the shelling.
Example
P = {{1, 2, 4}, {0, 1, 4}, {0, 2, 4}, {0, 3, 4}};
idealChainFromShelling(P)
SeeAlso
idealFromShelling
randomShellableIdealChain
///
------------------------------------------------------------
-- DOCUMENTATION randomShellableIdeal
------------------------------------------------------------
doc ///
Key
randomShellableIdeal
(randomShellableIdeal,Ring,ZZ,ZZ)
Headline
Produces a ideal from a random shellable simplicial complex
Usage
I = randomShellableIdeal(R,m,k)
Inputs
R:Ring
a polynomial ring
m:ZZ
dimension of facets in shellable complex
k:ZZ
the degree of the shellable complex
Outputs
I:MonomialIdeal
the Stanley-Reisner ideal of a random shellable complex
Description
Text
The Stanley-Reisner ideal of a shellable simplicial complex is always
Cohen-Macaulay; the converse is not true, although, to paraphrase Arnol'd,
square-free monomial ideals that have a serious reason to be Cohen-Macaulay
generally do come from shellable complexes.
The program makes a (Cohen-Macaulay) square-free monomial ideal
from the Stanley-Reisner ideal of a random shellable simplicial complex.
simplicial complex relies on the code for producing random shellable simplicial
complexes; see randomShelling for a description.
Example
R = ZZ/101[x_0..x_4];
I = randomShellableIdeal(R,2,6)
Caveat
No claim is made on the distribution of the ideal.
SeeAlso
randomShelling
idealFromShelling
idealChainFromShelling
randomShellableIdealChain
///
------------------------------------------------------------
-- DOCUMENTATION randomShellableIdealChain
------------------------------------------------------------
doc ///
Key
randomShellableIdealChain
(randomShellableIdealChain,Ring,ZZ,ZZ)
(randomShellableIdealChain,Ring,ZZ)
Headline
Produces a chain of ideals from a random shelling
Usage
L = randomShellableIdealChain(R,m,k)
L = randomShellableIdealChain(R,m)
Inputs
R:Ring
a polynomial ring
m:ZZ
dimension of the facets in the shellable complex
k:ZZ
the degree of the smallest ideal
Outputs
L:List
list of Stanley-Riesner ideals of the simplicial complexes of the truncations of the shelling.
Description
Text
Example
R = ZZ/101[x_0..x_3];
L = randomShellableIdealChain(R,1)
Caveat
No claim is made on the distribution of the ideal.
SeeAlso
randomShelling
idealFromShelling
idealChainFromShelling
randomShellableIdeal
///
TEST///
setRandomSeed 0
S = ZZ/101[a,b,c,d,e]
I = randomShellableIdeal(S,2,3)
I == monomialIdeal (a, c*d*e)
///
TEST///
assert(#randomShelling(5,2,6)==6)
assert(#randomShelling(5,2)==binomial(5,3))
R=QQ[x1,x2,x3,x4,x5];
assert(#randomShelling(R,2,6)==6)
///
TEST///
assert(isShelling({}))
assert(isShelling({{1,2,3}}))
assert(isShelling({{1,2,3},{2,3,4}}))
assert(isShelling(randomShelling(5,3,5)))
--non pure shellings
assert(isShelling({{1,2,3},{2,4}}))
assert(isShelling({{1},{2}}))
assert(not isShelling({{1,3},{2,4}}))
assert(isShelling({{1,2},{3}}))
assert(not isShelling({{3},{1,2}}))
///
TEST///
setRandomSeed(0);
assert(#randomAddition(6,2,{{1,2,3}})==2)
assert(#randomAddition(6,3,{{1,2,3,4}})==2)
///
TEST///
needsPackage "SimplicialComplexes"
needsPackage "SimplicialDecomposability"
R=QQ[x1,x2,x3,x4,x5];
assert(isShellable simplicialComplex randomShelling(R,2,6))
///
beginDocumentation()
doc ///
Key
randomMonomial
(randomMonomial, ZZ, Ring)
Headline
Choose a random monomial of given degree in a given ring
Usage
m = randomMonomial(d,S)
Inputs
d: ZZ
non-negative
S: Ring
polynomial ring
Outputs
m: RingElement
monomial of S
Description
Text
Chooses a random monomial.
Example
setRandomSeed(currentTime())
kk=ZZ/101
S=kk[a,b,c]
randomMonomial(3,S)
SeeAlso
randomMonomialIdeal
randomSquareFreeMonomialIdeal
///
doc ///
Key
randomSquareFreeMonomialIdeal
(randomSquareFreeMonomialIdeal, List, Ring)
(randomSquareFreeMonomialIdeal, Sequence, Ring)
Headline
random square-free monomial ideal with given degree generators
Usage
I = randomSquareFreeMonomialIdeal(L,S)
Inputs
L:List
or sequence of non-negative integers
S:Ring
Polynomial ring
Outputs
I:Ideal
square-free monomial ideal with generators of specified degrees
Description
Text
Choose a random square-free monomial
ideal whose generators have the degrees
specified by the list or sequence L.
Example
setRandomSeed(currentTime())
kk=ZZ/101
S=kk[a..e]
L={3,5,7}
randomSquareFreeMonomialIdeal(L, S)
randomSquareFreeMonomialIdeal(5:2, S)
Caveat
The ideal is constructed degree by degree, starting from the lowest degree
specified. If there are not enough monomials of the next specified degree that
are not already in the ideal, the function prints a warning and returns an ideal
containing all the generators of that degree.
SeeAlso
randomMonomial
randomMonomialIdeal
///
doc ///
Key
randomSquareFreeStep
(randomSquareFreeStep, MonomialIdeal)
(randomSquareFreeStep, Ideal)
(randomSquareFreeStep, List)
[randomSquareFreeStep,AlexanderProbability]
Headline
A step in a random walk with uniform distribution over all monomial ideals
Usage
M = randomSquareFreeStep(I)
M = randomSquareFreeStep(I, AlexanderProbability => p)
M = randomSquareFreeStep(L)
M = randomSquareFreeStep(L, AlexanderProbability => p)
Inputs
I:Ideal
square-free monomial Ideal or MonomialIdeal
L:List
{I,Igens,ISocgens} where I is a square-free MonomialIdeal,
Igens is a List of its minimal generators,
ISocgens is a List of the minimal generators of the socle mod I.
Outputs
M:List
{J,Jgens,JSocgens} where J is a square-free MonomialIdeal,
Jgens is a List of its minimal generators,
JSocgens is a List of the minimal generators of the socle mod J.
Description
Text
With probability p the routine takes the Alexander dual of I;
the default value of p is .05, and it can be set with the option
AlexanderProbility.
Otherwise uses the Metropolis algorithm to produce a random walk on the space
of square-free ideals. Note that there are a LOT of square-free ideals;
these are the Dedekind numbers, and the sequence (with 1,2,3,4,5,6,7,8 variables)
begins
3,6,20,168,7581, 7828354, 2414682040998, 56130437228687557907788.
(see the Online Encyclopedia of Integer Sequences for more information).
Given I in a polynomial ring S, we make a list
ISocgens of the square-free minimal monomial generators of the socle of S/(squares+I)
and a list of minimal generators Igens of I. A candidate "next" ideal J is formed as follows:
We choose randomly from the
union of these lists; if a socle element is chosen, it's added to I; if
a minimal generator is chosen, it's replaced by the square-free part of
the maximal ideal times it.
the chance of making the given move is then 1/(#ISocgens+#Igens), and
the chance of making the move back would be the similar quantity for J,
so we make the move or not depending on whether
random RR < (nJ+nSocJ)/(nI+nSocI) or not; here random RR is
a random number in [0,1].
Example
setRandomSeed(currentTime())
S=ZZ/2[vars(0..3)]
J = monomialIdeal"ab,ad, bcd"
randomSquareFreeStep J
Text
With 4 variables and 168 possible monomial ideals, a run of 5000
takes less than 6 seconds on a reasonably fast machine. With
10 variables a run of 1000 takes about 2 seconds.
Example
setRandomSeed(1)
rsfs = randomSquareFreeStep
J = monomialIdeal 0_S
time T=tally for t from 1 to 5000 list first (J=rsfs(J,AlexanderProbability => .01));
#T
T
J
///
doc ///
Key
AlexanderProbability
Headline
option to randomSquareFreeStep
Usage
M = randomSquareFreeStep(L, AlexanderProbability => p)
Inputs
p: RR
real number between 0 and 1.
Description
Text
Controls how often the Alexander dual is taken
SeeAlso
randomSquareFreeStep
///
doc ///
Key
squareFree
Headline
ideal of all square-free monomials of given degree
Usage
I = squareFree(d,S)
Inputs
d:ZZ
positive
S:Ring
Polynomial ring
Outputs
I:Ideal
all square-free monomials of degree d
Description
Example
kk=ZZ/101
S=kk[a..e]
squareFree(3, S)
SeeAlso
randomSquareFreeMonomialIdeal
///
doc ///
Key
(squareFree, ZZ, Ring)
Headline
ideal of all square-free monomials of given degree
Usage
I = squareFree(d,S)
Inputs
d:ZZ
positive
S:Ring
Polynomial ring
Outputs
I:Ideal
all square-free monomials of degree d
Description
Example
kk=ZZ/101
S=kk[a..e]
squareFree(3, S)
SeeAlso
randomSquareFreeMonomialIdeal
///
doc ///
Key
regSeq
(regSeq, List, Ring)
(regSeq, Sequence, Ring)
Headline
regular sequence of powers of the variables, in given degrees
Usage
I = regSeq(L,S)
Inputs
L:List
or sequence of positive integers
S:Ring
Polynomial ring
Outputs
I:Ideal
generated by the given powers of the variables
Description
Example
kk=ZZ/101
S=kk[a..e]
regSeq((2,3,4),S)
Caveat
If the number of elements of L differs from the number of
variables in the ring, the length of the regular sequence
will be the minimum of the two.
///
doc ///
Key
randomIdeal
(randomIdeal, List, Matrix)
(randomIdeal, Sequence, Matrix)
Headline
randomIdeal made from a given set of monomials
Usage
I = randomIdeal(L,m)
Inputs
L:List
or sequence of positive integers
m: Matrix
1xn matrix of homogeneous polynomials in a ring S
Outputs
I:Ideal
generated by random linear combinations of degrees given by L of the given polynomials
Description
Text
This function composes m with a random map from a free module with degrees
specified by L to the source of m.
Example
kk=ZZ/101
S=kk[a..e]
L={3,3,4,6}
m = matrix{{a^3,b^4+c^4,d^5}}
I=randomIdeal(L,m)
SeeAlso
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomBinomialIdeal
randomPureBinomialIdeal
randomElementsFromIdeal
///
doc ///
Key
randomBinomialIdeal
(randomBinomialIdeal, List, Ring)
(randomBinomialIdeal, Sequence, Ring)
Headline
randomBinomialIdeal with binomials of given degrees
Usage
I = randomBinomialIdeal(L,S)
Inputs
L:List
or sequence of positive integers
S: Ring
Polynomial ring
Outputs
I:Ideal
generated by random binomials of the given degrees
Description
Example
kk=ZZ/101
S=kk[a..e]
L={3,3,4,6}
I=randomBinomialIdeal(L,S)
Caveat
The binomials are generated one at a time, and there is no checking to
see whether the ideal returned is minally generated by fewer elements,
so the number of minimal generators may not be what you expect.
SeeAlso
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomPureBinomialIdeal
randomElementsFromIdeal
///
doc ///
Key
randomPureBinomialIdeal
(randomPureBinomialIdeal, List, Ring)
(randomPureBinomialIdeal, Sequence, Ring)
Headline
randomPureBinomialIdeal with binomials of given degrees
Usage
I = randomPureBinomialIdeal(L,S)
Inputs
L:List
or sequence of positive integers
S: Ring
Polynomial ring
Outputs
I:Ideal
generated by random pure binomials (that is, differences of monomials without coefficients) of the given degrees
Description
Text
Example
kk=ZZ/101
S=kk[a..e]
L={3,3,4,6}
I=randomPureBinomialIdeal(L,S)
Caveat
The binomials are generated one at a time, and there is no checking to
see whether the ideal returned is minally generated by fewer elements,
so the number of minimal generators may not be what you expect.
SeeAlso
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomBinomialIdeal
randomElementsFromIdeal
///
doc ///
Key
randomSparseIdeal
(randomSparseIdeal, Matrix, ZZ, ZZ)
Headline
randomSparseIdeal made from a given set of monomials
Usage
I = randomSparseIdeal(B,s,n)
Inputs
B:Matrix
1xn matrix of monomials
s: ZZ
positive integer, the number of terms in the generators of I
n: ZZ
positive integer, the number of generators of I
Outputs
I:Ideal
generated by n polynomials, each a random linear combination of s monomials
Description
Text
Each generator of I is formed by randomly choosing s (the sparsity) entries
of the matrix B and taking a random linear combinations with coefficients in
the (ultimate) coefficient ring of S, the ring in which the monomials lie.
Example
kk=ZZ/101
S=kk[a..e]
L={3,3,4,6}
B = matrix{{a^3,b^4,d^5,a*b*c,e}}
I=randomSparseIdeal(B,3,2)
SeeAlso
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomBinomialIdeal
randomPureBinomialIdeal
randomElementsFromIdeal
///
doc ///
Key
randomElementsFromIdeal
(randomElementsFromIdeal,List, Ideal)
Headline
Chooses random elements of given degrees in a given ideal.
Usage
I = randomElementsFromIdeal(L,I)
Inputs
L:List
of integers
I:Ideal
that should be homogeneous
Outputs
I:Ideal
generated by (at most) n homogeneous polynomials that are random linear combination of the
generators of I, with degrees specified by the list L
Description
Example
kk=ZZ/101
S=kk[a..c]
L={3,3,4,6}
I = ideal(a^3,b^3, c^3)
J=randomElementsFromIdeal(L,I)
SeeAlso
"Finding Extreme Examples"
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomBinomialIdeal
randomPureBinomialIdeal
///
doc ///
Key
randomMonomialIdeal
(randomMonomialIdeal, List, Ring)
(randomMonomialIdeal, Sequence, Ring)
Headline
random monomial ideal with given degree generators
Usage
I = randomMonomialIdeal(L,S)
Inputs
L:List
or sequence of non-negative integers
S:Ring
Polynomial ring
Outputs
I:Ideal
monomial ideal with generators of specified degrees
Description
Text
Choose a random ideal whose generators have the degrees specified by the list or sequence L.
Example
kk=ZZ/101
S=kk[a..e]
L={3,5,7}
randomMonomialIdeal(L, S)
randomMonomialIdeal(5:2, S)
Caveat
The ideal is constructed degree by degree, starting from the lowest degree
specified. If there are not enough monomials of the next specified degree that
are not already in the ideal, the function prints a warning and returns an ideal
containing all the generators of that degree.
SeeAlso
randomMonomial
randomSquareFreeMonomialIdeal
///
doc ///
Key
"Finding Extreme Examples"
Headline
Ways to use random ideals to search for (counter)-examples
Description
Text
A common use of Macaulay2 is to look for extreme or particularly
interesting examples. Here are some examples of how this may be done.
Supposing first that some space of examples is finite; for
example, we might be interested in monomial ideals with a certain
number of generators of a certain degree d. Suppose, to be concrete,
that we want to compare the
maximum degree of a first syzygy with the regularity of the ideal,
and also with the maximum degree of the last syzygy. (To make the
comparison interesting, it seems reasonable to subtract i from the maximum
degree of an i-th syzygy.)
Text
We may have no idea where to look for extreme examples, and it seems
that examples with small numbers of variables and generators may not
show the range of phenomena that actually occur. In large degree there
may be too many examples to search systematically; so instead we may
choose many examples at random, and hope to see a pattern.
Here is a simple example
First we tally the projective dimensions of 500
random square-free monomial ideals (what's the average?), then
looking how big the difference between the regularity of R/I and the
"relation degree"-2 can be. It turns out this the differences are rather
small, only 1 in a typical run of 5000. So one might look for ideals with
a difference of 2, as in the following (in a real run, one would make
the number of iterations much bigger; here we keep it small so
that Macaulay2 doesn't take too long to build it's documentation files.)
Example
kk=ZZ/101
S=kk[vars(0..5)]
L=for n from 1 to 100 list res randomSquareFreeMonomialIdeal(10:3,S);
tally apply(L, F -> length F)
tally apply(L, F -> regularity F - ((max flatten degrees F_2) - 2))
L=for n from 1 to 500 list res randomSquareFreeMonomialIdeal(10:3,S);
scan(L, F -> if 1<(regularity F - (max flatten degrees F_2) + 2) then print F.dd_1)
Text
A typical problem might be to find how high the regularity of R/I can
be when R has reasonably few variables, and the degrees of the generators of
I are reasonably small; despite the wild examples of Mayr-Mayer, we don't
know how to make examples with large regularity without letting the
number of variables become large. The following program computes
"rep" examples of random ideals with monomial and binomial generators,
and prints any whose regularity exceeds the number "bound"
looper = (rep,bound, L1, L2) -> (for i from 1 to rep do (
if i % 1000 == 0 then << "." << flush;
J := randomMonomialIdeal(L1,S) + randomBinomialIdeal(L2,S);
m := regularity coker gens J;
if m >= bound then << "reg " << m << " " << toString J << endl;))
For example:
kk=ZZ/2
S=kk[a,b,c,d]
looper(30000,10,{4},{4,4}) -- finds examples with on monomial of degree 4
and 2 binomials of degree 4. The largest largest regularity it has found
(and the largest I know for an ideal in 4 variables of degree 4) is 14.
Here is an example it found:
ideal(a*b^3,a^4+b^4,b*c^3+a*d^3)
Similarly:
looper(30000,10,{4,4},{4}) -- looks for examples with
2 monomials and 1 binomial of degree 4. Suggestively, the
largest regularity it found was also 14:
betti res ideal(c^4,b^4,a^3*c+b*d^3) -- reg 14
Text
A more sophisticated and difficult situation arises when the space
of examples is not necessarily finite (except over a finite field) but
is a unirational
variety (such as the space of ideals generated by (at most) a certain
number of forms of certain given degrees, or the space of smooth curves
of genus g for some g <= 14) one may be able to do a search for random
examples, taking a rational parametrization of the space of examples
and plugging in random inputs.
If the "interesting" examples live in
a subvariety whose codimension is small, then, working over a small field
(say 2,3, or 5 elements) one might hope to see elements of the subvariety
"not too rarely". This principle has been used to good effect for example
by (Caviglia and Decker-Schreyer, ****--Schreyer).
SeeAlso
randomIdeal
randomMonomialIdeal
randomSquareFreeMonomialIdeal
randomMonomial
randomBinomialIdeal
randomPureBinomialIdeal
///
--Documentation
doc ///
Key
randomEdgeIdeal
(randomEdgeIdeal, ZZ, ZZ)
Headline
Creates an edge ideal from a random graph with n vertices and t edges.
Usage
(I,G) = randomEdgeIdeal(n,t)
Inputs
n:ZZ
number of vertices
t:ZZ
number of edges
Outputs
I:Ideal
a random edge ideal
G:Graph
the graph underlying I
Description
Text
The edge ideal of a graph is the quadratic monomial ideal generated by x_v*x_w for all edges (v,w) in the graph.
This method returns the edge ideal {\tt I} of a random graph {\tt G} which has n vertices and t edges.
Example
randomEdgeIdeal(7, 4)
SeeAlso
randomGraph
edgeIdeal
///
doc ///
Key
randomBinomialEdgeIdeal
(randomBinomialEdgeIdeal, ZZ, ZZ)
Headline
Creates a binomial edge ideal from a random graph with n vertices and t edges.
Usage
(I,G) = randomBinomialEdgeIdeal(n,t)
Inputs
n:ZZ
number of vertices
t:ZZ
number of edges
Outputs
I:Ideal
a random binomial edge ideal
G:Graph
the graph underlying I
Description
Text
The binomial edge ideal associated to a graph G is the quadratic binomial ideal generated by the set containing x_v*y_w-x_w-y_v for every edge (v,w) in G.
This method returns the binomial edge ideal {\tt I} of a random graph {\tt G} which has n vertices and t edges.
Example
randomBinomialEdgeIdeal(7, 4)
SeeAlso
randomGraph
binomialEdgeIdeal
randomToricEdgeIdeal
///
doc ///
Key
randomToricEdgeIdeal
(randomToricEdgeIdeal, ZZ, ZZ)
Headline
Creates a toric edge ideal from a random graph with n vertices and t edges.
Usage
(I, G) = randomToricEdgeIdeal(n,t)
Inputs
n:ZZ
number of vertices
t:ZZ
number of edges
Outputs
I:Ideal
a random toric edge ideal
G:Graph
the graph underlying I
Description
Text
The toric edge ideal of a graph G is the kernel of the map from the polynomial ring k[edges(G)] to the polynomial ring k[vertices G] taking an x_e to y_i*y_j, where e = (i,j).
This method returns the toric edge ideal {\tt I} of a random graph {\tt G} which has n vertices and t edges. {\tt I} is the kernel of the homomorphism from QQ[x_1..x_n] to QQ/101[e_1..e_t] which sends each vertex in the graph {\tt G} to the product of its endpoints.
Example
randomToricEdgeIdeal(4,5)
Text
Note that his is different than the randomBinomialEdgeIdeal!
Example
randomBinomialEdgeIdeal(4,5)
SeeAlso
randomGraph
randomBinomialEdgeIdeal
///
TEST ///
S=ZZ/101[a..e]
setRandomSeed 123456
assert (randomMonomial(7,S)==a*b^3*c^3)
setRandomSeed 123456
assert(randomMonomialIdeal({3,4,5}, S)==ideal(d*e^2,a*b*d^2,b*c^3*e))
setRandomSeed 123456
assert(randomSquareFreeMonomialIdeal({6,4,4},S)==ideal(a*b*c*e,a*c*d*e))
setRandomSeed 123456
assert(ideal(8*a^2+5*a*b+4*b^2+35*b*c+3*b*d+36*b*e,29*a^2+22*a*b+32*b^2-44*b*c-6*b*d+40*b*e) == randomIdeal({2,2},matrix{{a^2,b}}))
setRandomSeed 123456
assert(ideal(-29*b^2+b*e,-4*a^2+b*c,45*a*d) == randomBinomialIdeal({2,2,2},S))
setRandomSeed 123456
assert(ideal(b*e-d*e,b^2-b*c,-a^2+a*e)== randomPureBinomialIdeal({2,2,2}, S))
setRandomSeed 123456
assert(randomSparseIdeal(matrix"a2,ab,b2", 2,2)==ideal(8*a*b+5*b^2,4*a^2+35*a*b))
assert(ideal(a*b,a*c,a*d,a*e,b*c,b*d,b*e,c*d,c*e,d*e)==squareFree(2,S))
assert( regSeq((1,2,3,4,5,6), S)==ideal(a,b^2,c^3,d^4,e^5))
setRandomSeed 123456
assert(degrees randomElementsFromIdeal({2,3,6},ideal"a2,ab,c5") == {{2}, {3}, {6}})
S=ZZ/2[a,b]
setRandomSeed 1
--assert(prepare monomialIdeal(a^2, a*b)=={monomialIdeal (a^2 , a*b), {a^2 , a*b}, {0, 1}})
setRandomSeed 1
S=ZZ/2[vars(0..3)]
J = ideal"ab,ad, bcd"
assert( (randomSquareFreeStep J) === {monomialIdeal map((S)^1,(S)^{{-2},{-2}},{{a*b, a*d}}),{a*b,a*d},{b*c*d,a*c}} );
///
end--
restart
loadPackage ("RandomIdeals", Reload =>true)
load "RandomIdeals.m2"
uninstallPackage "RandomIdeals"
restart
installPackage "RandomIdeals"
check "RandomIdeals"
viewHelp RandomIdeals
|