1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
newPackage(
"RandomSpaceCurves",
Version => "0.5",
Date => "March 1, 2011",
Authors => {
{Name => "Hans-Christian Graf v. Bothmer",
Email => "bothmer@uni-math.gwdg.de",
HomePage => "http://www.crcg.de/wiki/User:Bothmer"},
{Name=> "Florian Geiss",
Email=> "fg@math.uni-sb.de",
HomePage=>"http://www.math.uni-sb.de/ag/schreyer/"},
{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer/"}
},
Headline => "random smooth space curves",
Keywords => {"Examples and Random Objects"},
PackageExports => {"RandomObjects"},
DebuggingMode => false
)
if not version#"VERSION" >= "1.8" then
error "this package requires Macaulay2 version 1.8 or newer"
export{"randomSpaceCurve",
"hartshorneRaoModule",
"constructHartshorneRaoModule",
"certifyHartshorneRaoModule",
"knownUnirationalComponentOfSpaceCurves",
"hilbertNumerator",
"expectedBetti",
"certifyRandomSpaceCurve",
"spaceCurve"
}
------------------------------------
-- Hilbert Function and Numerator --
------------------------------------
-- calculate the numerator of a Hilbert function
-- from the first d+r+1 values where
-- d is the regularity of the corresponding module
-- and r is the dimension of the ambient space
--
-- L = a list of dimensions
-- r = the dimension of the ambient space
-- t = the variable to be used in the numerator
hilbertNumerator=method()
hilbertNumerator(List,ZZ,RingElement):=(L,r,t)->(
-- the beginning of the Hilbert series
p:=sum(#L,i->L#i*t^i);
-- the numerator
p*(1-t)^(r+1)%t^(#L)
)
TEST ///
T = QQ[t];
assert (hilbertNumerator({1,3,0,0,0,0},3,t) == 3*t^5-11*t^4+14*t^3-6*t^2-t+1)
///
TEST ///
T = QQ[t];
assert (hilbertNumerator({1,4,10,15,20,25,30,35,40},3,t) == -t^5+5*t^4-5*t^3+1)
///
-----------------------------
-- Expected Betti Tableaux --
-----------------------------
-- convert c*t^d to (c,({d},d))
-- assumes only one term c*t^d
-- ring of t must be over ZZ or QQ
-- and singly graded
--
-- this function is needed to construct
-- expected betti tables from
-- a HilbertNumerator
termToBettiKey = (mon) -> (
-- the coefficient of the monomial
c := lift((last coefficients mon)_0_0,ZZ);
-- the degree of the monomial
d := sum degree mon;
(c,({d},d))
)
--TEST ///
-- T = QQ[t];
-- assert (termToBettiKey(-4*t^3,T)==(-4,({3},3)))
--///
-- construct a minimal free resolution with expected betti tableau
expectedBetti=method()
-- calculates the expected betti tableau
-- from a Hilbert Numerator
--
-- For this every term a_i*t^i will represent a summand R^{abs(a_i):-i}
-- in the ChainComplex represented by the desired BettiTableau
-- The step where this summand is used depends on the number of
-- sign switches that occur in the Hilbert numerator before this monomial
--
-- the ring of the Hilbert numerator is expected to singly graded
-- and contain only one variable
expectedBetti(RingElement):= (hilbNum) ->(
-- find terms of Hilbert Numerator
-- smallest degree first
termsHilbNum := reverse terms hilbNum;
-- convert terms into pairs (coefficient, ({d},d))
bettiKeys := apply(termsHilbNum,m->termToBettiKey(m));
-- put the summands into the appropriate step of F
-- j contains the current step
j := -1;
-- previous Coefficient is needed to detect sign changes
previousCoefficient := -(first bettiKeys)#0;
-- step through all keys and calculate which step a
-- given entry must go based on the number of sign-changes
L := for b in bettiKeys list (
-- has a sign change occurred?
if (b#0*previousCoefficient) < 0 then (
-- sign change => next step in the resolution
j = j+1;
);
-- store previous coefficient
previousCoefficient = b#0;
-- make entry for the betti Tally
(prepend(j,b#1) => abs(b#0))
);
-- return the complex
new BettiTally from L
)
TEST ///
T = QQ[t];
e = expectedBetti(t^5-5*t^4+5*t^3-1)
b = new BettiTally from {
(0,{0},0) => 1,
(1,{3},3) => 5,
(2,{4},4) => 5,
(3,{5},5) => 1
}
assert(e == b)
///
-- calculate the expected betti tableau
-- from a given Hilbert function.
-- hilb = {h0,...,h_(d+r+1)}
-- where d is the regularity of the variety described
-- and r is the dimension of the ambient space
expectedBetti(List,ZZ) := (L,r)->(
t := local t;
T := QQ[t];
expectedBetti(hilbertNumerator(L,r,t))
)
TEST ///
T = QQ[t];
e = expectedBetti({1,3,0,0,0,0},3)
b = new BettiTally from {
(0,{0},0) => 1,
(1,{1},1) => 1,
(1,{2},2) => 6,
(2,{3},3) => 14,
(3,{4},4) => 11,
(4,{5},5) => 3};
assert(e == b)
///
-- calculate the expected betti tableau
-- for a curve of degree d, genus g in IP^r.
-- we assume C non-degenerate, O_C(2) nonspecial and maximal rank
expectedBetti(ZZ,ZZ,ZZ) := (g,r,d)->(
b := d+r+1;
L := apply(b,i->(if i>1 then
min(d*i+1-g,binomial(r+i,r))
else binomial(r+i,r)));
expectedBetti(L,r)
)
TEST ///
e = expectedBetti(1,3,5)
b = new BettiTally from {
(0,{0},0) => 1,
(1,{3},3) => 5,
(2,{4},4) => 5,
(3,{5},5) => 1
};
assert(e == b)
///
-- given a betti Table b and a Ring R make a chainComplex
-- with zero maps over R that has betti diagram b.
--
-- negative entries are ignored
-- rational entries produce an error
-- multigraded R's work only if the betti Tally
-- contains degrees of the correct degree length
Ring ^ BettiTally := (R,b) -> (
F := new ChainComplex;
F.ring = R;
--apply(pDim b,i->F_i = null);
for k in keys b do (
-- the keys of a betti table have the form
-- (homological degree, multidegree, weight)
(i,d,h) := k;
-- use F_i since it gives 0 if F#0 is not defined
F#i = F_i ++ R^{b#k:-d};
);
F
)
TEST ///
R = QQ[x_0..x_3];
b = betti (random(R^{1,2},R^{0,0,1}))
assert (b == betti (R^b))
///
--------------------
-- Finite Modules --
--------------------
-- calculate the number of expected syzygies of a
-- random a x b matrix with linear entries in R
expectedLinearSyzygies = (a,b,R) -> (
n := dim R;
b*n-a*binomial(n+1,2)
)
--TEST ///
-- setRandomSeed("I am feeling lucky");
-- R = ZZ/101[x_0..x_3];
-- assert(expectedLinearSyzygies(2,6,R) ==
-- (betti res coker random(R^{2:0},R^{6:-1}))#(2,{2},2)
-- )
--///
-- Try to construct a random HartshorneRao module of
-- length 3 starting at the beginning of the
-- minimal free resolution.
--
-- The main difficulty is in getting the number of
-- linear syzygies of the first matrix in the resolution right
--
-- HRau = {h1,h2,h3} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter3oneDirection = (HRao,R) -> (
-- construct a chain complex with expected betti tableau
-- and 0 differentials
--
-- calculate the expected betti diagram to find out whether linear syzygies
-- are required (this is the difficult part in the construction)
e := expectedBetti(HRao|{0,0,0,0},3);
F := R^e;
-- find betti Numbers of the linear strand
linearStrand := for i from 0 list (if e#?(i,{i},i) then e#(i,{i},i) else break);
-- construction depends on length of linear strand.
if #linearStrand == 0 then error"linear Stand has length 0. This should never happen";
if #linearStrand == 1 then (
-- first matrix can neither have nor be required to have linear syzygies
-- choose first matrix randomly
return coker random (F_0,F_1)
);
if #linearStrand == 2 then (
-- no linear syzygies of the first matrix are required
-- check if first matrix always has unwanted syzygies
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) <= 0 then (
-- no unwanted syzygies
-- choose first matrix randomly
return coker random (F_0,F_1)
);
);
if #linearStrand == 3 then (
-- is the number of expected syzygies == the number of required syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) == linearStrand#2 then (
-- choose first matrix randomly
return coker random (F_0,F_1)
);
-- too many syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) > linearStrand#2 then (
-- in this case the construction method will not work
return null
);
-- too few syzygies?
if expectedLinearSyzygies(linearStrand#0,linearStrand#1,R) < linearStrand#2 then (
-- try to choose the syzygies first
-- this will work if the transpose of a generic map between
-- 1. and 2. module of the linear strand has more expected syzygies
-- than required in the 0. step
if expectedLinearSyzygies(linearStrand#2,linearStrand#1,R) >= linearStrand#0 then (
-- syzygies of the transpose of second step in linear strand
s := syz random(R^{linearStrand#2:2},R^{linearStrand#1:1});
-- choose linearStrand#0 syzygies randomly among those and transpose again
return coker (transpose (s*random(source s,R^{linearStrand#0:0})));
);
)
);
-- if we arrive here there were either to few or to many linear
-- syzygies required
return null
);
-- Try to construct a random Hartshorne-Rau module of
-- length 3 by starting at both ends of the expected
-- minimal free resolution.
--
-- HRau = {h1,h2,h3} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring singly graded. It is checked that the ring has 4 variables
randomHartshorneRaoModuleDiameter3 = (HRao,R)->(
if #HRao != 3 then error"Hilbert function has to have length 3";
-- start at the beginning of the resolution
M := randomHartshorneRaoModuleDiameter3oneDirection(HRao,R);
-- did this direction work?
if M =!= null and apply(3,i->hilbertFunction(i,M)) == HRao then return M;
-- start at the end of the resolution
Mdual := randomHartshorneRaoModuleDiameter3oneDirection(reverse HRao,R);
Fdual := res Mdual;
M = (coker transpose Fdual.dd_4)**R^{ -6};
return M
)
-- Try to construct a random Hartshorne-Rau module of
-- length 2. Here the only problem is, that the
-- generic module may not have expected syzygies
--
-- HRau = {h1,h2} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter2 = (HRao,R)->(
if #HRao != 2 then error"Hilbert function has to have length 2";
-- some special cases with non expected resolution
--
--if HRao == {1,1} then return coker random(R^{0},R^{3:-1,1:-2});
--if HRao == {1,2} then return coker random(R^{0},R^{2:-1,3:-2});
--if HRao == {2,1} then return coker random(R^{2:0},R^{7:-1});
--
-- the standard construction still works since the unexpected
-- part is not in the first 2 steps.
--
-- now assume expected resolution
--
-- always start at the beginning of the resolution
F := R^(expectedBetti(HRao|{0,0,0,0},3));
M := coker random(F_0,F_1)
)
-- Construct a random Hartshorne-Rau module of
-- length 1. This always works
--
-- HRau = {h1} the Hilbertfunction of the desired module
-- R the ring where the module should live. It is assumed, that
-- this ring has 4 variables and is singly graded.
randomHartshorneRaoModuleDiameter1 = (HRao,R)->(
if #HRao != 1 then error"Hilbert function has to have length 1";
return coker (vars R**R^{HRao#0:0})
)
--randomHartshorneRaoModule=method()
constructHartshorneRaoModule=method(Options=>{Certify=>false})
constructHartshorneRaoModule(ZZ,List,PolynomialRing):=opt->(e,HRao,R)->(
if dim R != 4 then error "expected a polynomial ring in 4 variables";
if degrees R !={{1}, {1}, {1}, {1}} then error "polynomial ring is not standard graded";
if #HRao > 3 then error "no method implemented for Hartshorne Rao module of diameter >3";
M := null;
if #HRao == 1 then M = randomHartshorneRaoModuleDiameter1(HRao,R);
if #HRao == 2 then M = randomHartshorneRaoModuleDiameter2(HRao,R);
if #HRao == 3 then M = randomHartshorneRaoModuleDiameter3(HRao,R);
if M === null then return null else return M**R^{ -e};
)
undocumented constructHartshorneRaoModule
certifyHartshorneRaoModule=method()
certifyHartshorneRaoModule(Module,ZZ,List,PolynomialRing):=(M,e,HRao,R)->(
(betti res (M**R^{e})) == expectedBetti(HRao|{0,0,0,0},3)
)
undocumented certifyHartshorneRaoModule
hartshorneRaoModule = new RandomObject from {
Construction => constructHartshorneRaoModule,
Certification => certifyHartshorneRaoModule}
------------------
-- Space Curves --
------------------
-- the Harshorne Rao module of a curve is defined as
-- M = \oplus_i H^1(I_C(-i)) is can also be obtained as
-- the cokernel of the transpose of the last map
-- in a minimal free resolution of a curve
--
-- conversely one can construct a curve, by first
-- constructing the Harshorne Rao Module an therefore
-- the last matrix in the minimal free resolution of
-- the curve
randomSpaceCurve=method(TypicalValue=>Ideal,Options=>{Certify=>false})
randomSpaceCurve(ZZ,ZZ,PolynomialRing) := opt->(d,g,R)->(
if not knownUnirationalComponentOfSpaceCurves(d,g) then return null;
G:=R^(expectedBetti(g,dim R-1,d));
-- calculate values of h^1 that are forced by the maximal rank assumption
h1 := for i from 0 when ((i<4) or(d*i+1-g)>binomial(i+3,3)) list max(d*i+1-g-binomial(3+i,3),0);
-- calculate offset (i.e. number of leading 0's in h1)
e := 0; for i in h1 when i==0 do e=e+1;
-- calculate support of Hartshorne Rao Module
HRao := select(h1,i->i!=0);
-- if the Hartshorne Rao Module is zero, the curve is ACM
-- and it can be defined by the minors of an appropriate
-- Hilbert-Birch-Matrix
if #HRao==0 then (
if length G !=2
then error "cannot be ACM"
else return minors(rank G_2,random(G_1,G_2))
);
M:=(random hartshorneRaoModule)(e,HRao,R);
if M === null then return null;
F :=res M;
-- detect syzygies in the second step, that do not
-- come from the HR-Module
H := R^((betti G_2)-(betti F_3));
-- calculate a presentation matrix of
-- the ideal of the curve
N := random(G_1,F_2++H_0)*(F.dd_3++id_(H_0));
-- calculate the ideal presented by this matrix
return ideal syz transpose N
)
undocumented randomSpaceCurve
certifyRandomSpaceCurve=method()
-- old certification for SpaceCurves
certifyRandomSpaceCurve(Ideal,ZZ,ZZ,PolynomialRing) := (J,d,g,R)->(
singJ := minors(2,jacobian J)+J;
(dim singJ==0) and (g == genus J) and (d == degree J) and (2 == codim J)
)
undocumented certifyRandomSpaceCurve
knownUnirationalComponentOfSpaceCurves=method()
knownUnirationalComponentOfSpaceCurves(ZZ,ZZ) := (d,g)->(
x := local x;
R := QQ[x_0..x_3];
n:=4;
while
d*n+1-g>binomial(n+3,3)
do n=n+1;
HRao1:=select(apply(toList(1..n),n->(n,max(d*n+1-g-binomial(3+n,3),0))), i-> i_1 !=0);
G:=R^(expectedBetti(g,3,d));
if length G >3 then return false;
if #HRao1 >3 then return false;
if #HRao1 <=1 then return true;
HRao:=apply(HRao1,i->i_1);
if #HRao <=2 then if HRao=={1,1} or HRao=={2,1} or HRao=={1,2} then return false else return true;
a:=HRao_0,b:=HRao_1,c:=HRao_2;
b>=4*a or b>=4*c
or
b<4*a and -6*a+4*b-c>=0
or
b<4*c and -6*c+4*b-a>=0
or
b<4*a and 6*c-4*b+a>0 and 4*(4*c-b)-10*(6*c-4*b+a)>=c
or
b<4*c and 6*a-4*b+c>0 and 4*(4*a-b)-10*(6*a-4*b+c)>=a
)
--- interface for (random spaceCurves)
spaceCurve = new RandomObject from {
Construction => randomSpaceCurve,
Certification => certifyRandomSpaceCurve
}
beginDocumentation()
doc ///
Key
"spaceCurve"
Headline
Generates the ideal of a random space curve of genus g and degree d
Usage
(random spaceCurve)(d,g,R)
Inputs
d:ZZ
the desired degree
g:ZZ
the desired genus
R:PolynomialRing
homogeneous coordinate ring of $\PP^{ 3}$
Outputs
:Ideal
of R
Description
Text
Creates the ideal of a random curve of degree d and genus g via the construction of its expected
Hartshorne-Rao module, which should have diameter $\le 3$. The construction is implemented for non-degenerate,
linearly normal curves C of maximal rank with O_C(2) non-special, where moreover
both C and its Hartshorne-Rao module
have a "natural" free resolution.
Text
There are the following options:
* {\tt Attempts => ... } a nonnegative integer or {\tt infinity} (default) that limits the maximal number
of attempts for the construction of the curve
* {\tt Certify => ... } {\tt true} or {\tt false} (default) checks whether the output is of correct
dimension and the constructed curve is smooth and actually has the desired degree d and genus g
Text
There are 63 possible families satisfying the four conditions above.
Our method can provide random curves in 60 of these families, simultaneously proving the unirationality of each of these 60 components of the
Hilbert scheme.
If there is a construction can be checked with @ TO "knownUnirationalComponentOfSpaceCurves" @.
Example
setRandomSeed("alpha");
R=ZZ/20011[x_0..x_3];
d=10;g=7;
betti res (J=(random spaceCurve)(d,g,R))
-- betti res randomHartshorneRaoModule(d,g,R)
degree J==d and genus J == g
Text
We verify that the Hilbert scheme has (at least) 60 components consisting of smooth non-degenerate curves
with $h^1 O_C(2)=0$. The degree d, genus g and Brill-Noether number $\rho$ of these families and the generic Betti tables
are given below.
Example
setRandomSeed("alpha");
kk=ZZ/20011;
R=kk[x_0..x_3];
L=flatten apply(toList(0..40),g->apply(toList(3..30),d->(d,g)));
halpenBound = d ->(d/2-1)^2;
L = select(L,(d,g) ->
g <= halpenBound d
and
knownUnirationalComponentOfSpaceCurves(d,g));
#L
hashTable apply(L,(d,g) -> (
J = (random spaceCurve)(d,g,R);
assert (degree J == d and genus J == g);
(d,g) => g-4*(g+3-d) => betti res J))
SeeAlso
knownUnirationalComponentOfSpaceCurves
hartshorneRaoModule
///
doc ///
Key
knownUnirationalComponentOfSpaceCurves
(knownUnirationalComponentOfSpaceCurves,ZZ,ZZ)
Headline
check whether there is a unirational construction for a component of the Hilbert scheme of space curves
Usage
knownUnirationalComponentOfSpaceCurves(d,g)
Inputs
d: ZZ
g: ZZ
Outputs
: Boolean
whether there is a component of maximal rank curves of degree d
and genus g in $\PP^{ 3}$ with O_C(2) non-special and Hartshorne-Rao module of diameter $\le 3$
that have a natural free resolution
Description
Text
* diameter = 1. All modules can be constructed
* diameter = 2. The modules can be constructed if the resolution of the generic module is minimal. This is for instance not the case for
{\tt (d,g) } being among {\tt (2,1), (1,2), (1,1) }.
* diameter = 3. The construction is possible
unless the expected Betti table of the Hartshorne-Rao module has shape
{\tt a b c_1 - - }
{\tt - - c_2 - - }
{\tt - - c_3 d e }
with both {\tt 4b-10c_1 < a} and {\tt 4d-10c_3 < e}.
diameter {\ge} 4. he routine returns false, although we actually do know a couple of constructions which work in a few further cases.
The following example prints an overview table for the constructable cases:
Example
matrix apply(toList(2..18),d-> apply(toList(0..26),g->
if knownUnirationalComponentOfSpaceCurves(d,g) then 1 else 0))
SeeAlso
spaceCurve
hartshorneRaoModule
///
doc ///
Key
hartshorneRaoModule
-- (randomHartshorneRaoModule,ZZ,ZZ,PolynomialRing)
-- (randomHartshorneRaoModule,ZZ,List,PolynomialRing)
Headline
Compute a random Hartshorne-Rao module
Usage
-- randomHartshorneRaoModule(d,g,R)
(random hartshorneRaoModule)(e,HRao,R)
Inputs
e: ZZ
smallest degree of the Hartshorne-Rao module
HRao: List
desired dimensions of $H^1(\PP^3,I_C(n))$
R: PolynomialRing
coordinate ring of $\PP^{ 3}$
Outputs
: Module
Description
Text
Returns the Hartshorne-Rao Module over {\tt R} with Hilbert function {\tt HRao} and
expected betti table. The constructions works only for many modules with
diameter {\le} 3.
Example
setRandomSeed("alpha");
R = ZZ/101[x_0..x_3];
betti res (random hartshorneRaoModule)(0,{1},R)
betti res (random hartshorneRaoModule)(0,{1,4},R)
betti res (random hartshorneRaoModule)(0,{1,4,1},R)
betti res (random hartshorneRaoModule)(0,{1,4,2},R)
Text
There are the following options:
* {\tt Attempts => ... } a nonnegative integer or {\tt infinity} (default) that limits the maximal number of attempts for the construction of the module
* {\tt Certify => ... } {\tt true} or {\tt false} (default) checks whether the constructed module has the expected betti Table
Example
setRandomSeed("alpha");
betti res (random hartshorneRaoModule)(0,{1,3,2},R)
expectedBetti({1,3,2,0,0,0,0},3)
null =!= (random hartshorneRaoModule)(0,{1,3,2},R)
null =!= (random hartshorneRaoModule)(0,{1,3,2},R,Certify=>true,Attempts=>1)
Text
if Certify => true and Attempts=>infinity (the default!) are given in this example, the construction never stops.
Caveat
The list {\tt HRao} needs only to contain the non-zero values of the Hilbert function.
SeeAlso
spaceCurve
knownUnirationalComponentOfSpaceCurves
///
doc ///
Key
expectedBetti
(expectedBetti,RingElement)
Headline
compute the expected betti table from the Hilbert numerator
Usage
B=expectedBetti q
Inputs
q: RingElement
a polynomial in ZZ[t]
Outputs
B: BettiTally
a Betti table that has Hilbert numerator q,
assuming that each sign change in the coefficients of q corresponds to a step
Description
Text
calculates the expected betti table from a given Hilbert Numerator.
Example
T=ZZ[t]
q=1-3*t^2+2*t^3
expectedBetti q
q=1-5*t^2+5*t^3-t^5
expectedBetti q
///
doc ///
Key
(expectedBetti,ZZ,ZZ,ZZ)
Usage
B=expectedBetti(g,r,d)
Inputs
g: ZZ
the genus
r: ZZ
dimension of $\PP^{ r}$
d: ZZ
the degree
Outputs
B: BettiTally
a Betti table that has Hilbert numerator the same as
for a nondegenerate maximal-rank curve of genus g and degree d in $\PP^{ r}$, with O_C(2) non-special.
Description
Example
betti expectedBetti(0,4,4)
betti expectedBetti(16,3,15)
///
doc ///
Key
(expectedBetti,List,ZZ)
Usage
B=expectedBetti(h,r)
Inputs
h: List
values of the Hilbert function
r: ZZ
dimension of ambient protective space
Outputs
B: BettiTally
expected Betti table of module with Hilbert function h
Description
Example
betti expectedBetti({0,0,4,6,3,0,0,0,0},3)
Caveat
The Hilbert function has to be given at positions {\tt 0} to {\tt d+r+1} where {\tt d} is the regularity of the considered variety
///
doc ///
Key
hilbertNumerator
(hilbertNumerator,List,ZZ,RingElement)
Headline
calculate Hilbert numerator from Hilbert function
Usage
p=hilbertNumerator(L,r,t)
Inputs
L: List
values of the Hilbert function
r: ZZ
dimension of ambient projective space
t: RingElement
variable in which the hilbertNumerator is given
Description
Example
T=QQ[t];
hilbertNumerator({0,0,4,6,3,0,0,0,0},3,t)
Caveat
The Hilbert function has to be given at positions {\tt 0} to {\tt d+r+1} where {\tt d} is the regularity of the considered variety
///
-- calculate the numerator of a Hilbert function
-- from the first d+r+1 values where
-- d is the regularity of the corresponding module
-- and r is the dimension of the ambient space
--
-- L = a list of dimensions
-- r = the dimension of the ambient space
-- t = the variable to be used in the numerator
doc ///
Key
"RandomSpaceCurves"
Headline
Construction of random space curves of various kinds.
Description
Text
This package provides the construction of random curves $C \subset \mathbb{P}^{ 3}$ for various values for its degree $d$ and genus $g$.
A space curve $C \subset \mathbb{P}^{ 3}$ is constructed via its Hartshorne-Rao module $M= H^1_*(\mathcal{I}_C(n))$.
In particular, there are constructions for random points in $M_g$ for $g=11,12,13$.
For a algorithms and theoretical background see
@ HREF("http://www.math.uiuc.edu/Macaulay2/Book/", "Needles in a Haystack") @
///
-------------- TESTS --------------------
TEST ///
setRandomSeed("alpha");
R=ZZ/32003[x_0..x_3];
d=12,g=11;
betti(J=(random spaceCurve)(d,g,R,Certify=>true))
assert (degree J==d and genus J == g)
///
TEST ///
setRandomSeed("alpha");
R=(ZZ/32003)[x_0..x_3]
HRao = {1,4,2};
e = 1;
betti res (M=(random hartshorneRaoModule)(1,HRao,R))
assert(apply(toList(e..e+#HRao-1),i->hilbertFunction(i,M))==HRao)
///
end
restart
uninstallPackage("RandomSpaceCurves")
installPackage("RandomSpaceCurves",RerunExamples=>true,RemakeAllDocumentation=>true);
check("RandomSpaceCurves")
viewHelp"RandomSpaceCurves"
matrix apply(toList(2..18),d-> apply(toList(0..26),g->
if knownUnirationalComponentOfSpaceCurves(d,g) then 1 else 0))
restart
needsPackage("RandomSpaceCurves")
R = (ZZ/7)[x_0..x_3]
betti res (random spaceCurve)(12,11,R)
time tally apply(10,i->null === (random spaceCurve)(12,11,R,Certify=>true,Attempts=>1))
time tally apply(10,i->time certifyRandomSpaceCurve(randomSpaceCurve(12,11,R),12,11,R))
R = ZZ[]/49
(matrix{{11_R,12_R},{13_R,14_R}})^-1
--
R=ZZ/101[x_0..x_3];
|