1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
|
newPackage( "RationalMaps",
Version => "1.0", Date => "March 11th, 2022", Authors => {
{Name => "Karl Schwede",
Email=> "kschwede@gmail.com",
HomePage=> "http://www.math.utah.edu/~schwede"
}, --Karl Schwede was partially supported by NSF FRG Grant DMS #1265261/1501115, NSF CAREER Grant DMS #1252860/1501102, and NSF grant #1801849
{Name => "Daniel Smolkin",
Email=> "smolkind@umich.edu",
HomePage=> "http://dan.smolk.in"
},--Dan Smolkin was partially supported by NSF FRG Grant DMS #1265261/1501115, NSF CAREER Grant DMS #1252860/1501102
{Name => "S. Hamid Hassanzadeh",
Email => "hassanzadeh.ufrj@gmail.com",
HomePage=>"https://www.researchgate.net/profile/Seyed_Hassanzadeh"
}, --S. Hamid Hassanzadeh was supported by CNPq-bolsa de Produtividade
{Name => "C.J. Bott",
Email => "cjamesbott@gmail.com",
HomePage=>"https://www.math.tamu.edu/directory/formalpg.php?user=cbott2"}
}, --this file is in the public domain
Keywords => {"Commutative Algebra"},
Headline => "rational maps between varieties",
PackageExports => {"FastMinors"}
)
--Hassanzadeh was supported by CNPq-bolsa de Produtividade and by the MathAmSud project ``ALGEO''
--Schwede was supported in part by the NSF FRG Grant DMS \#1265261/1501115, NSF CAREER Grant DMS \#1252860/1501102, NSF Grants DMS \#1840190 and DMS \#2101800.
--Smolkin was supported in part by the NSF FRG Grant DMS \#1265261/1501115, NSF CAREER Grant DMS \#1252860/1501102 and NSF Grant DMS \#1801849.
export{
"RationalMapping", --a new type
"rationalMapping", --constructor
"isBirationalMap",
"idealOfImageOfMap",
"baseLocusOfMap",
"isRegularMap",
"isEmbedding",
-- "relationType",
"jacobianDualMatrix",
"isBirationalOntoImage",
"inverseOfMap",
"mapOntoImage",
"QuickRank",
--"blowUpIdeals", --at some point we should document this and expose it to the user
--"nonZeroMinor",-- it is internal because the answer is probabilistic (either it finds one or it doesn't) and it is controlled by MinorsLimit option
"isSameMap",
"sourceInversionFactor",
--"simisAlgebra", --at some point we should document this and expose it to the user
--**********************************
--*************OPTIONS**************
--**********************************
"SaturationStrategy", --an option for controlling how inversion of maps is run.
"ReesStrategy", --an option for controlling how inversion of maps is run.
"SimisStrategy", --an option for controlling how inversion of maps is run.
"HybridStrategy", --an option for controlling how inversion of maps is run. (This is the default)
"MinorsLimit", --an option for how many times we should randomly look for a minor before calling syz in inverseOfMap
"HybridLimit", --an option for controlling inversion of maps (whether to do more Simis or more Rees strategies)
"CheckBirational", --an option for inverseOfMap, whether or not to check whether something is birational
"SaturateOutput", --option to turn off saturation of the output
"AssumeDominant" --option to assume's that the map is dominant (ie, don't compute the kernel)
}
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isSameDegree:=method();
isSameDegree(BasicList):=(L)->(
-- n:=#L;
-- flag := true;
-- if n!=0 then (
-- d:=max(apply(L,zz->degree zz));
-- i := 0;
-- while ((i < n) and (flag == true)) do(
-- if (isHomogeneous(L#i) == false) then flag = false;
-- if ((L#i) != sub(0, ring(L#i))) then (
-- if (degree(L#i) != d) then flag = false;
-- );
-- i = i+1;
-- );
-- );
-- flag
--);
--***the following code is modified from what was provided by the referee.
if #L == 0 then return true; --it is true vacuously
R:=ring(first L);
d:=degree(first L);
all(drop(L, 1), z -> ((z == 0_R) or (degree z == d) ))
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
RationalMapping = new Type of HashTable;
--note Cremona already has a class called RationalMap, I'm trying to avoid conflicts
--a RationalMapping has the following entries
--map, a RingMap, corresponding to the rational map
--cache, a CacheTable, storing anything that happens to be cached
rationalMapping = method(Options=>{}); --constructor for RationalMapping
rationalMapping(RingMap) := o->(phi) -> (
if not isSameDegree(first entries matrix phi) then error "rationalMapping: expected all terms to have the same degree";
new RationalMapping from {map=>phi, cache => new CacheTable from {}}
);
rationalMapping(Ring, Ring, BasicList) := o->(R1, R2, L1) -> (
rationalMapping(map(R1, R2, L1))
);
rationalMapping(Ring, Ring, Matrix) := o->(R1, R2, M1) -> (
rationalMapping(map(R1, R2, M1))
);
rationalMapping(ProjectiveVariety, ProjectiveVariety, BasicList) := o->(X1, X2, L1) -> (
rationalMapping(map(ring X2, ring X1, L1))
);
rationalMapping(ProjectiveVariety, ProjectiveVariety, Matrix) := o->(X1, X2, M1) -> (
rationalMapping(map(ring X2, ring X1, M1))
);
target(RationalMapping) := myMap ->(
Proj source (myMap#map)
)
source(RationalMapping) := myMap ->(
Proj target (myMap#map)
)
net RationalMapping := t -> (
net(source t) | " - - - > " | net(target t) | " " | net(first entries matrix map t)
)
RationalMapping * RationalMapping := RationalMapping => (phi, psi) -> (
rationalMapping( (psi#map)*(phi#map))
);
RationalMapping == RationalMapping := Boolean => (phi, psi) -> (
isSameMap(phi, psi)
);
map(RationalMapping) := o -> phi -> (
phi#map
);
RationalMapping ^ ZZ := RationalMapping => (myphi, n1) -> (
if (n1 == 1) then return myphi;
if (n1 == -1) then return inverseOfMap(myphi, Verbosity => 0);
if not (source myphi === target myphi) then error "RationalMapping^ZZ : expected a RationalMapping with the same target and source.";
if (n1 == 0) then (
--map to the zero should be the identity
return rationalMapping map(ring source myphi, ring source myphi);
)
else if (n1 > 0) then (
return fold((a,b)->a*b, apply(n1, i->myphi));
)
else if (n1 < 0) then (
inverseOfMyPhi := inverseOfMap(myphi, Verbosity=>0);
m1 := abs(n1);
return fold((a,b)->a*b, apply(m1, i->inverseOfMyPhi));
);
);
-------------------------------------------------------
StrategyGRevLexSmallestTerm = new HashTable from {LexLargest=>0, LexSmallestTerm => 0, LexSmallest=>0, GRevLexSmallestTerm => 100, GRevLexSmallest => 0, GRevLexLargest=>0,Random=>0,RandomNonzero=>0,Points => 0};
----------------------------------------------------------------
--************************************************************--
-------------------- Function Definitions ----------------------
--************************************************************--
----------------------------------------------------------------
idealOfImageOfMap = method(Options=>{Verbosity=>0, QuickRank=>true});
idealOfImageOfMap(RationalMapping) := o-> (phi) -> (
if (phi#cache#?idealOfImageOfMap) then return phi#cache#idealOfImageOfMap;
J := idealOfImageOfMap(phi#map, o);
phi#cache#idealOfImageOfMap = J;
J
);
idealOfImageOfMap(RingMap) := o -> (p) -> (
--h := map(target p, ambient source p,p);
--do a quick check to see if the map is injective
if (instance(target p, PolynomialRing)) then(
if (o.Verbosity >= 2) then print "idealOfImageOfMap: checking if map is zero using rank of the jacobian";
jac := jacobian matrix p;
if (o.QuickRank == true) then (
if (isRankAtLeast(dim source p, jac, Strategy => StrategyGRevLexSmallestTerm, MaxMinors=>2)) then return ideal(sub(0, source p));
)
else (
if (rank jac >= dim source p) then return ideal(sub(0, source p));
);
if (o.Verbosity >= 2) then print "idealOfImageOfMap: map not injective, computing the kernel.";
);
im := ker p;
im
);
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
baseLocusOfMap = method(Options=>{Verbosity=>0, SaturateOutput=>true});
internalBaseLocusOfMap = method(Options=>{SaturateOutput=>true, Verbosity=>0});
internalBaseLocusOfMap(Matrix) := o->(L1) -> ( --L1 is a row matrix
if (o.Verbosity >= 2) then print "baseLocusOfMap: starting";
if numRows L1 > 1 then error "baseLocsOfMap: Expected a row matrix";
if isSameDegree( first entries L1 )==false then error "baseLocsOfMap: Expected a matrix of homogeneous elements of the same degree";
if (o.Verbosity >= 2) then print "baseLocusOfMap: about to compute ways to write the map";
M:= gens ker transpose presentation image L1;
-- this matrix gives all the "equivalent"
-- ways to write the map in question (e.g. (xy : xz) is
-- equivalent to (y : z) ). So we do this to get the
-- representation of our map that's defined on the biggest
-- set of points (e.g. (y : z) extends (xy : xz) to the locus where
-- x is zero). C.f. proposition 1.1 of the paper
-- "Cremona Transformations and some Related Algebras" by Aron Simis,
-- J. Algebra 280 (2004)
L:= apply(entries M, ll->ideal(ll));
if (o.SaturateOutput == true) then (
if (o.Verbosity >= 1) then print "baseLocusOfMap: saturating output, if this is slow set SaturateOutput => false";
saturate sum L
)
else (
sum L
)
-- the "apply" statement makes a list of ideals; each element of the
-- list is the ideal generated by elements in a given row of the matrix M
-- the fold statement adds all of these ideals together into one ideal
-- each column of M gives a representation of the map with the smallest possible
-- base locus. So the output of these two commands is the intersection of the base loci
-- of all the representatives of your map.
);
baseLocusOfMap(RingMap) := o->(ff) ->(
mm := sub(matrix ff, target ff);
internalBaseLocusOfMap(mm, o)
);
baseLocusOfMap(RationalMapping) := o->(phi) -> (
if phi#cache#?baseLocusOfMap then return phi#cache#baseLocusOfMap;
J := baseLocusOfMap(phi#map, o);
phi#cache#baseLocusOfMap = J;
J
)
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- isRegularMap returns true if a map is regular (ie, has no base locus)
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isRegularMap = method(Options=>{Verbosity=>0});
isRegularMap(RingMap) := o->(ff) ->(
I:=baseLocusOfMap(ff, SaturateOutput=>false, Verbosity=>o.Verbosity);
--(dim I <= 0)
if (o.Verbosity >= 2) then print "isRegularMap: computed base locus, now checking its dimension.";
b := null;
b = isDimAtMost(0, I);
if (b === null) then b = dim I <= 0;
b
);
isRegularMap(RationalMapping) := o->(phi) ->(
isRegularMap(map phi, o)
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
blowUpIdeals:=method(Options => {Strategy=>ReesStrategy});
blowUpIdealsSaturation := method();
blowUpIdealsRees := method();
--this is to compute the ideal definition of the blowup of a subvariety Z
--in the projective variety X
--the defining ideal of the variety X=a
--the subvariety Z = L list of element in the ring of X
blowUpIdeals(Ideal, BasicList):=o->(a,L)->(
if (o.Strategy == ReesStrategy) then (
blowUpIdealsRees(a,L)
)
else if (o.Strategy == SaturationStrategy) then (
blowUpIdealsSaturation(a,L)
)
);
--the Rees algebra computation below is too slow, we need to modify it
--Hamid: we may add all of the strategies and options which are applied in saturate
blowUpIdealsSaturation(Ideal, BasicList):=(a,L)->(
r:=length L;
SS:=ring a;
RRR:= ring L#0;
LL:=apply(L,uu->sub(uu, SS));
n:=numgens ambient SS;
K:=coefficientRing SS;
yyy:=local yyy;
elt := 0;
i := 0;
while ( (i < r) and (sub(L#i,RRR) == sub(0, RRR))) do (i = i+1;);
if (i == r) then error "blowUpIdealsSaturation: Map is zero map";
nzd1 := sub(L#i, RRR);
Rs:=RRR[ toList(yyy_0..yyy_(r-1))];
M1:=syz(matrix{L},Algorithm =>Homogeneous);
M2:=sub(M1,Rs);
N:=matrix{{yyy_0..yyy_(r-1)}};
symIdeal:=ideal(N*M2);
--print"symideal ok";
mymon := monoid[gens ambient SS | toList(yyy_0..yyy_(r-1)), Degrees=>{n:{1,0},r:{0,1}}];
flatAmbRees:= K(mymon);
symIdeal2:=sub(a, flatAmbRees)+sub(symIdeal, flatAmbRees);
nzele:=sub(nzd1,flatAmbRees);
myReesIdeal:=saturate(symIdeal2,nzele, MinimalGenerators=>false);
myReesIdeal
);
blowUpIdealsRees(Ideal, BasicList):=(a,L)->(
r:=length L;
SS:=ring a;
LL:=apply(L,uu->sub(uu, SS));
n:=numgens ambient SS;
K:=coefficientRing SS;
yyy:=local yyy;
ttt:=local ttt;
mymon:=monoid[({ttt}|gens ambient SS|toList(yyy_0..yyy_(r-1))), MonomialOrder=>Eliminate 1];
tR:=K(mymon);
-- tR:=K[t,gens ambient SS,vars(0..r-1), MonomialOrder=>Eliminate 1];
f:=map(tR,SS,submatrix(vars tR,{1..n}));
F:=f(matrix{LL});
myt:=(gens tR)#0;
J:=sub(a,tR)+ideal apply(1..r,j->(gens tR)_(n+j)-myt*F_(0,(j-1)));
L2:=ideal selectInSubring(1,gens gb J);
W:=local W;
nextmon:=monoid[(gens ambient SS|toList(W_0..W_(r-1))), Degrees=>{n:{1,0},r:{0,1}}];
RR:=K(nextmon);
g:=map(RR,tR,0|vars RR);
trim g(L2));
blowUpIdeals(Ideal, Ideal):=o->(a,b)->(
blowUpIdeals(a, first entries gens b,Strategy=>o.Strategy)
);
--Matrix M consists of elements in the ring of a
blowUpIdeals(Ideal, Matrix):=o->(a,M)->(
blowUpIdeals(a, first entries gens M,Strategy=>o.Strategy)
);
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- the following is basically a variant of the blowUpIdeals strategy, used for more speed
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
simisAlgebra := method();
simisAlgebra(Ideal, BasicList, ZZ):=(a,L,m)->(
r:=length L;
SS:=ring a;
LL:=apply(L,uu->sub(uu, SS));
n:=numgens ambient SS;
K:=coefficientRing SS;
yyy:=local yyy;
ttt:=local ttt;
if r!=0 then (d:=max(apply(L,zz->degree zz)));--the degree of the elements of linear sys
mymon:=monoid[({ttt}|gens ambient SS|toList(yyy_0..yyy_(r-1))), MonomialOrder=>Eliminate 1,
Degrees=>{{(-d_0),1},n:{1,0},r:{0,1}}];
tR:=K(mymon); --ambient ring of Rees algebra with weights
f:=map(tR,SS,submatrix(vars tR,{1..n}));
F:=f(matrix{LL});
myt:=(gens tR)#0;
J:=sub(a,tR)+ideal apply(1..r,j->(gens tR)_(n+j)-myt*F_(0,(j-1)));
M:=gb(J,DegreeLimit=>{1,m}); --instead of computing the whole Grob. Basis of J we only compute the parts of degree (1,m) or less,
gM:=selectInSubring(1,gens M);
L2:=ideal mingens ideal gM;
W:=local W;
nextmon:=monoid[(gens ambient SS|toList(W_0..W_(r-1))), Degrees=>{n:{1,0},r:{0,1}}];
RR:=K(nextmon);
g:=map(RR,tR,0|vars RR);
trim g(L2));
simisAlgebra(Ideal, Ideal,ZZ):=(a,b,m)->(
simisAlgebra(a, first entries gens b,m)
);
--Matrix M consists of elements in the ring of a
simisAlgebra(Ideal, Matrix,ZZ):=(a,M,m)->(
simisAlgebra(a, first entries gens M)
);
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
relationType=method(Options => {Strategy=>ReesStrategy, Verbosity=>1});
--this function computes the "relation type" of an ideal in a ring R.
--Let R be the ring given bythe ideal a and L be a list of elements in R.
--the relation type is the biggest degree in terms of new variables in the
--defining ideal of the Rees algebra of I over R.
--
relationType(Ideal,BasicList):=o->(a,L)->(
S:=ring L_0;
J:=blowUpIdeals(a,L,Strategy=>o.Strategy);
if (o.Verbosity >= 2) then print"blowUpIdeals computed.";
n:=numgens J;
L2:={};
for i from 0 to n-1 do L2=append(L2,(degree J_i)_1);
max L2);
relationType(Ideal,Ideal):=o->(a,b)->(
relationType(ideal,first entries gens b, Strategy=>o.Strategy)
);
relationType(Ring,Ideal):=o->(R1,b)->(
relationType(ideal R1,first entries gens b,Strategy=>o.Strategy)
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- dgi:=method();
--this function computes the degeneration index of an ideal a which is the
--number of t linear generators among the generators of a.
--dgi measures the number of hyperPlanes which cut the variety
-- defined by a.
--dgi(Ideal):=(a)->(
-- S := ring a;
-- n:=numgens a;
-- d:=0;
-- for i from 0 to n-1 do (
-- if (a_i != sub(0, S)) then (
-- if (degree a_i)=={1} then d=d+1
-- );
-- );
--);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isBirationalMap = method(Options => {AssumeDominant=>false, Strategy=>HybridStrategy,MinorsLimit=>null, Verbosity=>1, HybridLimit=>15, Verbosity=>1, QuickRank=>true});
isBirationalMapInternal = method(Options => {AssumeDominant=>false, Strategy=>HybridStrategy,MinorsLimit=>null, Verbosity=>1, HybridLimit=>15, Verbosity=>1, QuickRank=>true});
--this checks whether a map X -> Y is birational.
--X = Proj R
--Y = Proj S
--This map is given by a list of elements in R, all homogeneous
--of the same degree.
--Below we have defining ideal of X = di
--defining ideal of Y = im
--list of elements = bm
--Strategy => HybridStrategy, ReesStrategy, SimisStrategy, SaturationStrategy
isBirationalMap(RationalMapping) := o-> (phi) -> (
if (phi#cache#?isBirationalMap) then return phi#cache#isBirationalMap;
b := isBirationalMapInternal(phi, o);
phi#cache#isBirationalMap = b;
b
);
isBirationalMap(RingMap) :=o->(f)->(
isBirationalMapInternal(rationalMapping f, o)
);
isBirationalMapInternal(RationalMapping) :=o->(phi1)->(
f := map phi1;
di := ideal target f;
R := ring di;
im := ideal source f;
S := ring im;
bm := first entries matrix f;
local im1;
--isBirationalMap(target f, source f, first entries matrix f,AssumeDominant=>o.AssumeDominant,Strategy=>o.Strategy,Verbosity=>o.Verbosity, HybridLimit=>o.HybridLimit,QuickRank=>o.QuickRank)
if (o.AssumeDominant==false) then (
if (o.Verbosity >= 1) then (
print "isBirationalMap: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
if (instance(target f, PolynomialRing)) then(
if (o.Verbosity >= 2) then print "isBirationalMap: initial birationality via rank of the jacobian";
jac := jacobian matrix f;
local rk;
fSourceDim := dim source f;
if (o.QuickRank == true) then (
l1 := getSubmatrixOfRank(fSourceDim, jac, Strategy => LexSmallest, MaxMinors=>1);
if (l1 === null) then l1 = getSubmatrixOfRank(fSourceDim, jac, Strategy => GRevLexSmallest, MaxMinors=>1, Verbose=>(o.Verbosity >= 2));
if (l1 === null) then l1 = getSubmatrixOfRank(fSourceDim, jac, Strategy => GRevLexSmallestTerm, MaxMinors=>1, Verbose=>(o.Verbosity >= 2));
if (l1 === null) then (
rk = rank jac;
)
else (
rk = fSourceDim;
);
)
else (
rk = rank jac;
);
if (o.Verbosity >= 2) then print("isBirationalMap: jac rank = " | toString(rk) | ". sourceDim = " | fSourceDim);
if (rk == fSourceDim) then (im1 = im) else (
if (char S == 0) then print (
if (o.Verbosity >= 2) then print "isBirationalMap: the dimension is wrong, not birational.";
return false;)
else (im1 = im + sub(ker f, S));
);
)
else (
im1 = idealOfImageOfMap( map((ring di)/di, ring im, bm), QuickRank=>o.QuickRank);
);
if (o.Verbosity >= 2) then print "isBirationalMap: Found the image of the map.";
if (dim (S^1/im1) >= dim (source f)) then( --first check if the image is the closure of the image is even the right thing
if (o.Strategy==ReesStrategy or o.Strategy==SaturationStrategy ) then (isBirationalOntoImageInternal(phi1,AssumeDominant=>true, MinorsLimit=>o.MinorsLimit, Strategy=>o.Strategy, Verbosity=>o.Verbosity, QuickRank=>o.QuickRank))
else if (o.Strategy==HybridStrategy) then ( isBirationalOntoImageInternal(phi1,AssumeDominant=>true, MinorsLimit=>o.MinorsLimit, Strategy=>HybridStrategy, HybridLimit=>o.HybridLimit,Verbosity=>o.Verbosity, QuickRank=>o.QuickRank))
else if (o.Strategy==SimisStrategy) then (isBirationalOntoImageInternal(phi1,AssumeDominant=>true, MinorsLimit=>o.MinorsLimit, Strategy=>SimisStrategy, Verbosity=>o.Verbosity, QuickRank=>o.QuickRank))
)
else(
if (o.Verbosity >= 2) then print "isBirationalMap: the dimension is really wrong, not birational.";
false
)
)
else(
isBirationalOntoImageInternal(phi1,AssumeDominant=>true,Strategy=>o.Strategy,Verbosity=>o.Verbosity, MinorsLimit=>o.MinorsLimit, HybridLimit=>o.HybridLimit, QuickRank=>o.QuickRank)
)
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isBirationalOntoImage = method(Options => {AssumeDominant=>false, MinorsLimit => null, Strategy=>HybridStrategy,Verbosity=>1, HybridLimit=>15, QuickRank=>true});
--if AssumeDominant is true, it doesn't form the kernel.
--*********************************************
--*************the actual functions that do the work
isBirationalOntoImageRees := method(Options => {AssumeDominant=>false, MinorsLimit => null, Strategy=>ReesStrategy,Verbosity=>1, QuickRank=>true});
isBirationalOntoImageSimis := method(Options => {AssumeDominant=>false, MinorsLimit=> null, HybridLimit=>15,Verbosity=>1, QuickRank=>true});
--*****************************Strategies
--the following method controls how strategies are chosen
isBirationalOntoImageInternal = method(Options => {AssumeDominant=>false, MinorsLimit => null, Strategy=>HybridStrategy,Verbosity=>1, HybridLimit=>15, QuickRank=>true});
isBirationalOntoImageInternal(RationalMapping) :=o->(phi1)->(
--isBirationalOntoImageInternal(Ideal,Ideal, BasicList) :=o->(di,im,bm)->(
if (o.Verbosity >= 2) then (print "Starting isBirationalOntoImage" );
if ((o.Strategy == ReesStrategy) or (o.Strategy == SaturationStrategy)) then (
isBirationalOntoImageRees(phi1, AssumeDominant=>o.AssumeDominant, Strategy=>o.Strategy,Verbosity=>o.Verbosity, QuickRank=>o.QuickRank)
)
else if (o.Strategy == SimisStrategy) then (
isBirationalOntoImageSimis(phi1, AssumeDominant=>o.AssumeDominant, HybridLimit=>infinity,Verbosity=>o.Verbosity, QuickRank=>o.QuickRank)
)
else if (o.Strategy == HybridStrategy) then(
isBirationalOntoImageSimis(phi1, AssumeDominant=>o.AssumeDominant, HybridLimit=>o.HybridLimit,Verbosity=>o.Verbosity, QuickRank=>o.QuickRank)
)
);
isBirationalOntoImage(RingMap) :=o->(f)->(
--isBirationalOntoImageInternal(ideal target f, ideal source f, first entries matrix f, o)
isBirationalOntoImageInternal(rationalMapping f, o)
);
isBirationalOntoImage(RationalMapping) := o->(phi)->(
if (phi#cache#?isBirationalOntoImage) then return phi#cache#isBirationalOntoImage;
b := isBirationalOntoImageInternal(phi, o);
phi#cache#isBirationalOntoImage = b;
b
);
-*
isBirationalOntoImageRees(Ring,Ring,BasicList) := o->(R1, S1, bm)->(
isBirationalOntoImageRees(ideal R1, ideal S1, bm, o)
);
isBirationalOntoImageRees(RingMap) :=o->(f)->(
--isBirationalOntoImageRees(target f, source f, first entries matrix f, o)
isBirationalOntoImageRees(rationalMapping f)
);
*-
-*
isBirationalOntoImageSimis(Ring,Ring,BasicList) := o->(R1, S1, bm)->(
isBirationalOntoImageSimis(ideal R1, ideal S1, bm, o)
);
isBirationalOntoImageSimis(RingMap) :=o->(f)->(
isBirationalOntoImageSimis(target f, source f, first entries matrix f, o)
);
*-
--*************main part of function
isBirationalOntoImageRees(RationalMapping) := o -> (phi1) -> (
f := map phi1;
di := ideal target f;
im := ideal source f;
bm := first entries matrix f;
--isBirationalOntoImageRees(Ideal,Ideal, BasicList) :=o->(di,im,bm)->(
if isSameDegree(bm)==false then error "isBirationalOntoImageRees: Expected a list of homogeneous elements of the same degree";
R:=ring di;
S:=ring im;
im1 := im;
if (o.AssumeDominant == true) then (
im1 = im;
)
else (
if (o.Verbosity >= 1) then (
print "isBirationalOntoImageRees: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
im1 = idealOfImageOfMap( map((ring di)/di, ring im, bm), QuickRank=>o.QuickRank);
);
K:=coefficientRing R;
--In the following lines we remove the linear parts of the ideal di and
--modify our map bm
Rlin:=(ambient ring di)/di;
Rlin2 := minimalPresentation(Rlin);
phi:=Rlin.minimalPresentationMap;
Rlin1:=target phi;
di1:=ideal Rlin1;
bm0:=phi(matrix{bm});
bm1:=flatten first entries bm0;
--From here the situation is under the assumption that the variety is not contained in any hyperplane.
r:=numgens ambient Rlin1;
if (o.Verbosity >= 1) then print "isBirationalOntoImageRees: About to compute the Jacobian Dual Matrix,";
if (o.Verbosity >= 1) then print " if it is slow, run again and set Strategy=>HybridStrategy or SimisStrategy.";
local barJD;
if phi1#cache#?jacobianDualMatrix then (
barJD = phi1#cache#jacobianDualMatrix;
)
else (
barJD=jacobianDualMatrix(phi1,AssumeDominant=>true, Strategy=>o.Strategy);
);
--barJD:=jacobianDualMatrix(di1,im1,bm1,AssumeDominant=>true);--JacobianDual Matrix is another function in this package
nc:=numColumns(transpose barJD);
nr:=numRows(transpose barJD);
if (o.Verbosity >= 1) then print "isBirationalOntoImageRees: computed Jacobian dual matrix";
if (o.Verbosity >= 2) then(
print ( "Jacobian dual matrix has " |nc|" columns and "|nr|" rows.");
);
jdd:=(numgens ambient Rlin1)-1;
if (o.Verbosity >= 2) then print "isBirationalOntoImageRees: is computing the rank of the Jacobian dual matrix- barJD";
--not(isSubset(minors(jdd,barJD),im1))
if (o.QuickRank == true) then (
isRankAtLeast(jdd, barJD, Strategy => StrategyDefault, MaxMinors=>2)
)
else (
rank barJD >= jdd
)
);
--isBirationalOntoImageSimis
---***************************************************
isBirationalOntoImageSimis(RationalMapping) := o-> (phi1) -> (
f := map phi1;
di := ideal target f;
im := ideal source f;
bm := first entries matrix f;
--isBirationalOntoImageSimis(Ideal,Ideal, BasicList) :=o->(di,im,bm)->(
-- invList := inverseOfMap(target f, source f, first entries matrix f);
-- map(source f, target f, invList)
-- inverseOfMap(target f, source f, first entries matrix f, AssumeDominant=>o.AssumeDominant)
---*******************
if (o.Verbosity >= 2) then print "Starting inverseOfMapOntoImageSimis(SimisStrategy or HybridStrategy)";
im1 := im;
if (o.AssumeDominant == true) then (
im1 = im;
)
else (
if (o.Verbosity >= 1) then (
print "isBirationalOntoImageSimis: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
im1 = idealOfImageOfMap( map((ring di)/di, ring im, bm), QuickRank=>o.QuickRank);
if (o.Verbosity >= 2) then print "isBirationalOntoImageSimis: Found the image of the map.";
);
if isSameDegree(bm)==false then error "isBirationalOntoImageSimis: Expected a list of homogeneous elements of the same degree";
R:=ring di;
K:=coefficientRing R;
S:=ring im;
--In the following lines we remove the linear parts of the ideal di and
--modify our map bm
Rlin:=(ambient ring di)/di;
Rlin2 := minimalPresentation(Rlin);
phi:=Rlin.minimalPresentationMap;
Rlin1:=target phi;
di1:=ideal Rlin1;
bm0:=phi(matrix{bm});
bm1:=flatten first entries bm0;
--From here the situation is under the assumption that the variety is not contained in any hyperplane.
r:=numgens ambient Rlin1;
jdd:=(numgens ambient Rlin1)-1;
--THe following is a part of simisAlgebra
minorsCt := o.MinorsLimit;
if (o.MinorsLimit === null) then ( --if the user didn't specify MinorsLimit, we make some educated guesses
if (jdd < 6) then(
minorsCt = 3;
)
else if (jdd < 9) then (
minorsCt = 2;
)
else if (jdd < 12) then (
minorsCt = 1;
)
else (
minorsCt = 0;
);
);
rs:=length bm1;
SS:=ring di1;
LL:=apply(bm1,uu->sub(uu, SS));
n:=numgens ambient SS;
Kf:=coefficientRing SS;
yyy:=local yyy;
ttt:=local ttt;
if rs!=0 then (d:=max(apply(bm1,zz->degree zz)));--the degree of the elements of linear sys
degList := {{(-d_0),1}} | toList(n:{1,0}) | toList(rs:{0,1});
mymon:=monoid[({ttt}|gens ambient SS|toList(yyy_0..yyy_(rs-1))), Degrees=>degList, MonomialOrder=>Eliminate 1];
tR:=Kf(mymon); --ambient ring of Rees algebra with weights
f1:=map(tR,SS,submatrix(vars tR,{1..n}));
F:=f1(matrix{LL});
myt:=(gens tR)#0;
J:=sub(di1,tR)+ideal apply(1..rs,j->(gens tR)_(n+j)-myt*F_(0,(j-1)));
flag := false; --this boolean checks whether it is birational
giveUp := false; --this checks whether we give up checkin birationality or not yet
secdeg:=1; --the second degree of Rees equations
jj := 1;
M := null;
while (giveUp == false) do (
if (o.Verbosity >= 2) then print("isBirationalOntoImageSimis: About to compute partial Groebner basis of Rees ideal up to degree " | toString({1, secdeg}) | "." );
if (secdeg < o.HybridLimit) then (
M=gb(J,DegreeLimit=>{1,secdeg}); --instead of computing the whole Grob.
--Basis of J we only compute the parts of degree (1,m) or less,
)
else(
if (o.Verbosity >= 1) then print("isBirationalOntoImageSimis: gave up, it will just compute the whole Groebner basis of the Rees ideal. Increase HybridLimit and rerun to avoid this." );
M=gb(J);
giveUp = true;
);
gM:=selectInSubring(1,gens M);
L2:=ideal mingens ideal gM;
W:=local W;
nextmon:=monoid[(gens ambient SS|toList(W_0..W_(rs-1))), Degrees=>{n:{1,0},rs:{0,1}}];
RR:=Kf(nextmon);
g1:=map(RR,tR,0|vars RR);
Jr:= g1(L2);
JD:=diff(transpose ((vars ambient ring Jr)_{0..(r-1)}) ,gens Jr);
vS:=gens ambient S;
g:=map(S/im1,ring Jr, toList(apply(0..r-1,z->0))|vS);
barJD:=g(JD);
nc:=numColumns(transpose barJD);
nr:=numRows(transpose barJD);
if (o.Verbosity >= 2) then( print ( "isBirationalOntoImageSimis: Found Jacobian dual matrix (or a weak form of it), it has " |nc|" columns and about "|nr|" rows.");
);
if (giveUp == false) then(
if (o.Verbosity >= 2) then print "isBirationalOntoImageSimis: is computing the rank of the Jacobian Dual Matrix- barJD";
if (o.QuickRank == true) then (
if (isRankAtLeast(jdd, barJD, Strategy => StrategyDefault, MaxMinors=>minorsCt, Verbose=>(o.Verbosity >= 2))) then (
flag=true;
giveUp=true;
);
)
else (
if (rank barJD >= jdd) then (
flag=true;
giveUp=true;
)
);
)
else (
if (o.Verbosity >= 2 ) then( print ( "isBirationalOntoImageSimis: Found Jacobian dual matrix (or a weak form of it), it has " |nc|" columns and "|nr|" rows.");
);
if (o.Verbosity >= 2) then print "isBirationalOntoImageSimis: is computing the rank of the Jacobian Dual Matrix- barJD";
if (o.QuickRank == true) then (
if (isRankAtLeast(jdd, barJD, Strategy => StrategyDefault, MaxMinors=>minorsCt, Verbose=>(o.Verbosity >= 2))) then (
flag = true;
giveUp=true;
);
)
else (
if (rank barJD >= jdd) then (
flag=true;
giveUp=true;
)
);
);
secdeg=secdeg + jj;
jj = jj + 1; --we are basically growing secdeg in a quadratic way now, but we could grow it faster or slower...
);
flag
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
inverseOfMap = method(Options => {AssumeDominant=>false, CheckBirational=>true, Strategy=>HybridStrategy, HybridLimit=>15, Verbosity=>1, MinorsLimit=>null, QuickRank=>true});
inverseOfMapRees := method(Options => {AssumeDominant=>false, CheckBirational=>true, Strategy=>ReesStrategy, Verbosity=>1,MinorsLimit=>null, QuickRank=>true, RationalMapping=>null});
inverseOfMapSimis := method(Options => {AssumeDominant=>false, CheckBirational=>true, HybridLimit=>15, Verbosity=>1,MinorsLimit=>null, QuickRank=>true});
--this checks whether a map X -> Y is birational.
--X = Proj R
--Y = Proj S
----This map is given by a list of elements in R, all homogeneous
--of the same degree.
--Below we have defining ideal of X = di
--defining ideal of Y = im
--list of elements = bm
------*****************************Strategies
inverseOfMap(RingMap):=o->(f)->(
inverseOfMap(rationalMapping f, o)
);
inverseOfMap(RationalMapping) := o -> (phi) ->(
f := map phi;
minorsCt := o.MinorsLimit;
if (o.MinorsLimit === null) then ( --if the user didn't specify MinorsLimit, we make some educated guesses
nn := #(gens ambient target f);
if (nn < 6) then(
minorsCt = 10;
)
else if (nn < 9) then (
minorsCt = 6;
)
else if (nn < 12) then (
minorsCt = 2;
)
else (
minorsCt = 0;
);
);
if ((o.Strategy == ReesStrategy) or (o.Strategy == SaturationStrategy)) then (
rationalMapping inverseOfMapRees(phi, QuickRank=>o.QuickRank, AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational, Strategy=>o.Strategy,Verbosity=>o.Verbosity, MinorsLimit=>minorsCt)
)
else if (o.Strategy == SimisStrategy) then (
rationalMapping inverseOfMapSimis(phi, QuickRank=>o.QuickRank, AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational, HybridLimit=>infinity,Verbosity=>o.Verbosity, MinorsLimit=>minorsCt)
)
else if (o.Strategy == HybridStrategy) then(
rationalMapping inverseOfMapSimis(phi, QuickRank=>o.QuickRank, AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational, HybridLimit=>o.HybridLimit,Verbosity=>o.Verbosity, MinorsLimit=>minorsCt)
)
);
-*
inverseOfMapRees(Ideal,Ideal,BasicList) :=o->(di,im,bm)->(
inverseOfMapRees( (ring di)/di, (ring im)/im, bm, o)
);
inverseOfMapRees(Ring,Ring,BasicList) := o->(R1, S1, bm)->(
inverseOfMapRees(map(R1, S1, bm), o)
);
*-
--********************************main part Rees
inverseOfMapRees(RationalMapping) := o->(phi1)->(
-- invList := inverseOfMap(target f, source f, first entries matrix f);
-- map(source f, target f, invList)
-- inverseOfMap(target f, source f, first entries matrix f, AssumeDominant=>o.AssumeDominant)
---*******************
f := map phi1;
if (o.Verbosity >= 2) then print "Starting inverseOfMapRees(ReesStrategy or SaturationStrategy)";
if (o.AssumeDominant == false) then (
if (o.Verbosity >= 1) then (
print "inverseOfMapRees: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
f = mapOntoImage(f);
if (o.Verbosity >= 2) then print "inverseOfMapRees: Found the image of the map.";
);
di := ideal target f;
im := ideal source f;
bm := first entries matrix f;
if isSameDegree(bm)==false then error "inverseOfMapRees: Expected a list of homogeneous elements of the same degree";
R:=ring di;
K:=coefficientRing R;
S:=ring im;
im1 := im;
--In the following lines we remove the linear parts of the ideal di and
--modify our map bm
Rlin:=(ambient ring di)/di;
Rlin2 := minimalPresentation(Rlin);
phi:=Rlin.minimalPresentationMap;
Rlin1:=target phi;
di1:=ideal Rlin1;
bm0:=phi(matrix{bm});
bm1:=flatten first entries bm0;
--From here the situation is under the assumption that the variety is not contained in any hyperplane.
r:=numgens ambient Rlin1;
if (o.Verbosity >= 2) then print "inverseOfMapRees: About to compute the Jacobian dual matrix";
local barJD;
if phi1#cache#?jacobianDualMatrix then (
barJD = phi1#cache#jacobianDualMatrix;
)
else (
barJD=jacobianDualMatrix(phi1,AssumeDominant=>true, Strategy=>o.Strategy);
);
--JacobianDual Matrix is another function in this package
if (o.Verbosity >= 2) then print "inverseOfMapRees: Computed Jacobian dual matrix";
--print "JD computed";
jdd:=(numgens ambient Rlin1)-1;
if (o.CheckBirational== true) then (
if (o.QuickRank) then (
if not (isRankAtLeast(jdd, barJD, Strategy => StrategyDefault, MaxMinors=>2, Verbose=>(o.Verbosity >= 2))) then error "inverseOfMapRees: The map is not birational onto its image";
)
else (
if not (rank barJD >= jdd) then error "inverseOfMapRees: The map is not birational onto its image";
)
);
Inv:={};
psi:=null;
Col:={};
SbarJD:=null;
nc:=numColumns(transpose barJD);
nr:=numRows(transpose barJD);
if (o.Verbosity >= 2 ) then(
print ( "Jacobian dual matrix has " |nc|" columns and about "|nr|" rows.");
);
nonZMinor := null;
if (o.MinorsLimit > 0) then (
if (o.Verbosity >= 1) then print ("inverseOfMapRees: Looking for a nonzero minor. \r\n If this fails, you may increase the attempts with MinorsLimit => #");
--nonZMinor = getSubmatrixOfRank(jdd, barJD, MaxMinors => o.MinorsLimit, Verbosity=>o.Verbosity);
nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>LexSmallest, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) then nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>GRevLexSmallest, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) then nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>GRevLexSmallestTerm, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) and (o.MinorsLimit > 3) then nonZMinor = getSubmatrixOfRank(jdd, barJD, MaxMinors => o.MinorsLimit-3, Verbose=>(o.Verbosity >= 2));
--nonZeroMinor(barJD,jdd,o.MinorsLimit, Verbosity=>o.Verbosity);
);
if (nonZMinor === null) then (
if (o.Verbosity >= 2) then (
if (o.MinorsLimit > 0) then print "inverseOfMapRees: Failed to find a nonzero minor. We now compute syzygies instead.";
if (o.MinorsLimit == 0) then print "inverseOfMapRees: MinorsLimit => 0, so we now compute syzygies instead.";
print " If this doesn't terminate quickly, you may want to try increasing the option MinorsLimit.";
);
Inv =syz(transpose barJD,SyzygyLimit =>1);
psi = map(source f, Rlin1, sub(transpose Inv, source f));
)
else (
if (o.Verbosity >= 1) then print "inverseOfMapRees: We found a nonzero minor. If this doesn't terminate quickly, rerun with MinorsLimit=>0.";
Col = (nonZMinor)#1;
SbarJD=submatrix(barJD,,Col);
for i from 0 to jdd do Inv=append(Inv,(-1)^i*det(submatrix'(SbarJD,{i},)));
psi=map(source f,Rlin1,matrix{Inv});
);
psi*phi
);
--**********************************
--inverse of map using simis algebra
--**********************************
inverseOfMapSimis(RationalMapping) :=o->(phi1)->(
-- invList := inverseOfMap(target f, source f, first entries matrix f);
-- map(source f, target f, invList)
-- inverseOfMap(target f, source f, first entries matrix f, AssumeDominant=>o.AssumeDominant)
---*******************
f := map phi1;
if (o.Verbosity >= 2) then print "Starting inverseOfMapSimis(SimisStrategy or HybridStrategy)";
if ((o.CheckBirational == true) and (o.HybridLimit == infinity)) then print "Warning: when using the current default SimisStrategy, the map must be birational. If the map is not birational, this function will never terminate.";
if (o.AssumeDominant == false) then (
if (o.Verbosity >= 1) then (
print "inverseOfMapSimis: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
f = mapOntoImage(f);
if (o.Verbosity >= 2) then print "inverseOfMapSimis: Found the image of the map.";
);
di := ideal target f; -- the defining ideal of the source variety
im := ideal source f; -- the defining ideal of the target variety
bm := first entries matrix f; --the list defining the map from the source to target variety
if isSameDegree(bm)==false then error "inverseOfMapSimis: Expected a list of homogeneous elements of the same degree";
R:=ring di;
K:=coefficientRing R;
S:=ring im;
im1 := im;
--In the following lines we remove the linear parts of the ideal di and
--modify our map bm
Rlin:=target f;
Rlin2 := minimalPresentation(Rlin);
phi:=Rlin.minimalPresentationMap;
Rlin1:=target phi;
di1:=ideal Rlin1;
bm0:=phi(matrix{bm});
bm1:=flatten first entries bm0;
--From here the situation is under the assumption that the variety is not contained in any hyperplane.
r:=numgens ambient Rlin1;
jdd:=(numgens ambient Rlin1)-1;
--THe following is a part of simisAlgebra
rs:=length bm1;
SS:=ring di1;
LL:=apply(bm1,uu->sub(uu, SS));
n:=numgens ambient SS;
Kf:=coefficientRing SS;
yyy:=local yyy;
ttt:=local ttt;
if rs!=0 then (d:=max(apply(bm1,zz->degree zz)));--the degree of the elements of linear sys
degList := {{(-d_0),1}} | toList(n:{1,0}) | toList(rs:{0,1});
mymon:=monoid[({ttt}|gens ambient SS|toList(yyy_0..yyy_(rs-1))), Degrees=>degList, MonomialOrder=>Eliminate 1];
tR:=Kf(mymon); --ambient ring of Rees algebra with weights
f1:=map(tR,SS,submatrix(vars tR,{1..n}));
F:=f1(matrix{LL});
myt:=(gens tR)#0;
J:=sub(di1,tR)+ideal apply(1..rs,j->(gens tR)_(n+j)-myt*F_(0,(j-1)));
flag := false;
giveUp := false;
secdeg:=1;
jj := 1;
M := null;
while (flag == false) do (
-- Jr:= simisAlgebra(di1,bm1,secdeg);
--THe following is substituting simisAlgebra, we don't call that because we want to save the stored groebner basis
if (o.Verbosity >= 2) then print("inverseOfMapSimis: About to compute partial Groebner basis of Rees ideal up to degree " | toString({1, secdeg}) | "." );
if (secdeg < o.HybridLimit) then (
M=gb(J,DegreeLimit=>{1,secdeg}); --instead of computing the whole Grob.
--Basis of J we only compute the parts of degree (1,m) or less,
)
else( --we are running the hybrid strategy, so we compute the whole gb
if (o.Verbosity >= 1) then print("inverseOfMapSimis: We give up. Using the previous computations, we compute the whole \r\n Groebner basis of the Rees ideal. Increase HybridLimit and rerun to avoid this." );
M=gb(J); -- probably this should be DegreeLimit=>{1,infinity}, not sure if that works or not
giveUp = true;
);
gM:=selectInSubring(1,gens M);
L2:=ideal mingens ideal gM;
W:=local W;
nextmon:=monoid[(gens ambient SS|toList(W_0..W_(rs-1))), Degrees=>{n:{1,0},rs:{0,1}}];
RR:=Kf(nextmon);
g1:=map(RR,tR,0|vars RR);
Jr:= g1(L2);
JD:=diff(transpose ((vars ambient ring Jr)_{0..(r-1)}) ,gens Jr);
vS:=gens ambient S;
g:=map(source f,ring Jr, toList(apply(0..r-1,z->0))|vS);
barJD:=g(JD);
if (o.Verbosity >= 2) then print("inverseOfMapSimis: computed barJD.");
if (giveUp == false) then(
--if (rank barJD >= jdd) then (
if (o.QuickRank == true) then (
if (o.Verbosity >= 1) then print("inverseOfMapSimis: About to check rank, if this is very slow, you may want to try turning QuickRank=>false." );
if (isRankAtLeast(jdd, barJD, MaxMinors=>1, Strategy=>LexSmallest) or
isRankAtLeast(jdd, barJD, MaxMinors=>1, Strategy=>GRevLexSmallest) or
isRankAtLeast(jdd, barJD, MaxMinors=>1, Strategy=>GRevLexSmallestTerm) ) then (
if (o.Verbosity >= 1) then print("inverseOfMapSimis: rank found, we computed enough of the Groebner basis." );
flag = true;
);
)
else (
if (rank barJD >= jdd) then (
flag = true;
);
);
)
else (
flag = true;
if (o.CheckBirational == true) then (
if (o.QuickRank) then (
if (not isRankAtLeast(jdd, barJD, Strategy => StrategyDefault, MaxMinors=>min(2, o.MinorsLimit), Verbose=>(o.Verbosity >= 2))) then error "inverseOfMapSimis: The map is not birational onto its image";
)
else(
if (not (rank barJD >= jdd)) then error "inverseOfMapSimis: The map is not birational onto its image";
)
);
);
secdeg=secdeg + jj;
jj = jj + 1; --we are basically growing secdeg in a quadratic way now, but we could grow it faster or slower...
--maybe the user should control it with an option
);
Inv:={};
psi:=null;
Col:={};
SbarJD:=null;
nc:=numColumns(transpose barJD);
nr:=numRows(transpose barJD);
if (o.Verbosity >= 2 ) then(
print ( "inverseOfMapSimis: Found Jacobian dual matrix (or a weak form of it), it has " |nc|" columns and about "|nr|" rows.");
);
nonZMinor := null;
if (o.MinorsLimit > 0) then (
if (o.Verbosity >= 1) then print "inverseOfMapSimis: Looking for a nonzero minor.\r\n If this fails, you may increase the attempts with MinorsLimit => #";
nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>LexSmallest, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) then nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>GRevLexSmallest, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) then nonZMinor = getSubmatrixOfRank(jdd, barJD, Strategy=>GRevLexSmallestTerm, MaxMinors => 1, Verbose=>(o.Verbosity >= 2));
if (nonZMinor === null) and (o.MinorsLimit > 3) then nonZMinor = getSubmatrixOfRank(jdd, barJD, MaxMinors => o.MinorsLimit-3, Verbose=>(o.Verbosity >= 2));
--nonZeroMinor(barJD,jdd,o.MinorsLimit, Verbosity=>o.Verbosity);
);
if (nonZMinor === null) then (
if (o.Verbosity >= 2) then (
if (o.MinorsLimit > 0) then print "inverseOfMapSimis: Failed to find a nonzero minor. We now compute syzygies instead.";
if (o.MinorsLimit == 0) then print "inverseOfMapSimis: MinorsLimit => 0, so we now compute syzygies instead.";
print " If this doesn't terminate quickly, you may want to try increasing the option MinorsLimit.";
);
Inv =syz(transpose barJD,SyzygyLimit =>1);
psi = map(source f, Rlin1, sub(transpose Inv, source f));
)
else (
if (o.Verbosity >= 1) then print "inverseOfMapSimis: We found a nonzero minor.";
Col = (nonZMinor)#1;
SbarJD=submatrix(barJD,,Col);
for i from 0 to jdd do Inv=append(Inv,(-1)^i*det(submatrix'(SbarJD,{i},)));
psi=map(source f,Rlin1,matrix{Inv});
);
psi*phi
);
-*
inverseOfMapSimis(Ideal,Ideal,BasicList) :=o->(di,im,bm)->(
inverseOfMapSimis( (ring di)/di, (ring im)/im, bm, AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational,Verbosity=>o.Verbosity, MinorsLimit=>o.MinorsLimit)
);
*-
inverseOfMapSimis(Ring,Ring,BasicList) := o->(R1, S1, bm)->(
inverseOfMapSimis(map(R1, S1, bm), AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational,Verbosity=>o.Verbosity, MinorsLimit=>o.MinorsLimit)
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mapOntoImage = method(Options=>{QuickRank=>true}); --given a map f : X -> Y, this creates the map f : X -> f(X).
mapOntoImage(RingMap) := o -> (f)->(
S1 := ambient source f;
R1 := source f;
I1 := ideal source f;
local kk;
JJ := idealOfImageOfMap(f, QuickRank=>o.QuickRank);
if ( JJ == ideal(sub(0, R1)) ) then (
return f;
)
else (
kk = sub(JJ, S1) + I1;
);
-- newMap := map(target f, ambient source f, matrix f);
map(target f, (S1)/kk, matrix f)
);
mapOntoImage(RationalMapping) := o -> (phi) -> (
rationalMapping mapOntoImage(map phi, o)
)
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isEmbedding = method(Options => {AssumeDominant=>false, Strategy=>HybridStrategy,
HybridLimit=>15, Verbosity=>1, MinorsLimit=>0, QuickRank=>true});
--checks whether a map is a closed embedding.
isEmbedding(RationalMapping) := o -> (phi1) -> (
isEmbedding(map phi1, o)
)
isEmbedding(RingMap):= o-> (f1)->(
f2:=null;
if (o.AssumeDominant==false) then(
if (o.Verbosity >= 1) then (
print "isEmbedding: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
f2 = mapOntoImage(f1);
)
else (
f2=f1;
);
if (o.Verbosity >= 2) then print "isEmbedding: Checking to see whether the map is a regular map";
flag := isRegularMap(f2, Verbosity => o.Verbosity);
if (flag == true) then (
if (o.Verbosity >= 2) then (print "isEmbedding: computing the inverse map");
try(h := (inverseOfMap(f2, AssumeDominant=>true, CheckBirational=>true, QuickRank=>o.QuickRank, Strategy=>o.Strategy,HybridLimit=>o.HybridLimit, Verbosity=>o.Verbosity, MinorsLimit=>o.MinorsLimit))#map; ) then
(
if (o.Verbosity >= 2) then print "isEmbedding: checking whether the inverse map is a regular map";
flag = isRegularMap(h, Verbosity=>o.Verbosity);
)
else(
flag=false
);
);
flag
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
isSameMap = method(); --checks whether two rational maps are the same. Assumes domain is irreducible
isSameMapInternal = method();
isSameMapInternal(List, List, Ring) := (L1, L2, R1) -> (
rank matrix(frac(R1), {L1, L2}) == 1
);
isSameMap(RationalMapping, RationalMapping) := (phi, psi) -> (
isSameMap(map phi, map psi)
);
isSameMap(RingMap, RingMap) := (f1, f2) -> (
if (not (target f1 === target f2)) then (
error "isSameMap: The ring maps should have the same target.";
);
if (not (source f1 === source f2)) then (
error "isSameMap: The ring maps should have the same source.";
);
theRing := target f1;
-- rank matrix(frac(theRing), entries ((matrix f1) || (matrix f2))) == 1
isSameMapInternal(first entries matrix f1, first entries matrix f2, theRing)
-- isSameMapToPn( first entries matrix f1, first entries matrix f2)
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
jacobianDualMatrix = method(Options => {AssumeDominant=>false, Strategy=>ReesStrategy, QuickRank=>true});
internalJacobianDualMatrix = method(Options => {AssumeDominant=>false, Strategy=>ReesStrategy, QuickRank=>true});
--this the jacobian dual matrix of a rational map X -> Y.
--X = Proj R
--Y = Proj S
--This map is given by a list of elements in R, all homogeneous
--of the same degree.
--Below we have defining ideal of X = di
--defining ideal of Y = im
--list of elements = bm
internalJacobianDualMatrix(Ideal,Ideal,BasicList) :=o->(di,im,bm)->(
if isSameDegree(bm)==false then error "jacobianDualMatrix: Expected a list of homogeneous elements of the same degree";
R:=ring di;
K:=coefficientRing R;
S:=ring im;
im1 := im;
if (o.AssumeDominant == true) then (
im1 = im;
)
else (
im1 = idealOfImageOfMap( map( (ring di)/di, ring im, bm), QuickRank=>o.QuickRank);
);
--In the following lines we remove the linear parts of the ideal di and
--modify our map bm
Rlin:=(ambient ring di)/di;
Rlin2 := minimalPresentation(Rlin);
phi:=Rlin.minimalPresentationMap;
Rlin1:=target phi;
di1:=ideal Rlin1;
bm0:=phi(matrix{bm});
bm1:=flatten first entries bm0;
--From here the situation is under the assumption that the variety is not contained in any hyperplane.
r:=numgens ambient Rlin1;
Jr:= blowUpIdeals(di1,bm1, Strategy=>o.Strategy);
n:=numgens Jr;
L:={};
for i from 0 to (n-1) do(
if (degree Jr_i)_0==1 then L=append(L, Jr_i);
);
JD:=diff(transpose ((vars ambient ring Jr)_{0..(r-1)}) ,gens ideal L);
vS:=gens ambient S;
g:=map(S/im1,ring Jr, toList(apply(0..r-1,z->0))|vS);
barJD:=g(JD);
barJD
);
jacobianDualMatrix(RingMap) := o->(f)->(
internalJacobianDualMatrix(ideal target f, ideal source f, first entries matrix f, o)
);
jacobianDualMatrix(RationalMapping) := o->(phi)->(
if (phi#cache#?jacobianDualMatrix) then return phi#cache#jacobianDualMatrix;
myDual := jacobianDualMatrix(map phi, o);
phi#cache#jacobianDualMatrix = myDual;
myDual
);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
--SourceInversionFactor is an invariant associated to a rational map which is useful in computation of symbolic powers
sourceInversionFactor=method(Options => {AssumeDominant=>false, CheckBirational=>false, Strategy=>HybridStrategy,
HybridLimit=>15, Verbosity=>1, MinorsLimit=>0, QuickRank=>true});
sourceInversionFactor(RingMap):=o->(f)->(
R:= target f;
x:=R_0;
f2:=f;
if (o.AssumeDominant==false) then(
if (o.Verbosity >= 1) then (
print "sourceInversionFactor: About to find the image of the map. If you know the image, ";
print " you may want to use the AssumeDominant option if this is slow.";
);
f2 = mapOntoImage(f);
);
invf2:=(inverseOfMap(f2, AssumeDominant=>o.AssumeDominant, CheckBirational=>o.CheckBirational, Strategy=>o.Strategy,
HybridLimit=>o.HybridLimit, Verbosity=>o.Verbosity, MinorsLimit=>o.MinorsLimit, QuickRank=>o.QuickRank))#map;
I:=ideal(matrix((f2)*invf2));
s:=quotient(ideal(I_0),ideal(x));
s_0
);
--****************************************************--
--*****************Documentation**********************--
--****************************************************--
--needsPackage "Parametrization";
--needsPackage "Cremona";
beginDocumentation();
document {
Key => RationalMaps,
Headline => "rational maps between projective varieties",
EM "RationalMaps", " is a package for computing things related to maps between projective varieties.",
BR{},BR{},
"It focuses on finding where a birational map is undefined, checking whether a map is a closed embedding, checking birationality and computing inverse maps",
BR{},BR{},
BOLD "Mathematical background:",BR{},
UL {
{"A. V. Dória, S. H. Hassanzadeh, A. Simis, ",EM " A characteristic free criterion of birationality", ", Advances in Mathematics, Volume 230, Issue 1, 1 May 2012, Pages 390-413."},
{"A. Simis, ",EM " Cremona Transformations and some Related Algebras", ", Journal of Algebra, Volume 280, Issue 1, 1 October 2004, Pages 162--179"},
},
BOLD "Functionality overlap with other packages:\n\n",BR{},BR{},
EM HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization"},
": While the package ", HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization"}, " focuses mostly on curves, it also includes a function ", HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/_invert__Birational__Map.html", "invertBirationalMap"}, "
that has the same functionality as ", TO "inverseOfMap", ". On the other hand, these two functions were implemented differently and so sometimes one function can be substantially faster than the other.\n", BR{}, BR{},
EM HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html", "Cremona"},
": The package ", HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html", "Cremona"}, " focuses on fast probabilistic computations in general cases and deterministic computations for special
kinds of maps from projective space. More precisely, ",BR{},
UL {
{HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/_is__Birational.html","isBirational"}, " gives a probabilistic answer to the question of whether a map between varieties is birational. Furthermore, if the
source is projective space, then ", TT "degreeOfRationalMap", " with ", TT "MathMode=>true", " gives a deterministic correct answer.
In some cases, the speed of the latter is comparable with ", TO "isBirationalMap", " with ", TT "AssumeDominant=>true." },
{HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/_inverse__Map.html","inverseMap"}, " gives a fast computation of the inverse of a birational map if the source is projective space ", EM " and ",
"the map has maximal linear rank. In some cases, even if the map has maximal linear rank, our function ", TO "inverseOfMap",
" appears to be competitive however. If you pass inverseMap a map not from projective space, then it calls a modified and improved version of ",
HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/_invert__Birational__Map.html", "invertBirationalMap"}, " from ", HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization"}, "."},
},
}
--***************************************************************
document{
Key=>{CheckBirational},
Headline=> "whether to check birationality",
Usage =>" CheckBirational=>b",
"If true, inverseOfMap, isEmbedding and sourceInversionFactor will check whether the passed map is birational.
If it is not birational, it will throw an error.",
SeeAlso =>{
"inverseOfMap",
"isEmbedding",
"sourceInversionFactor"
}
}
--***************************************************************
document{
Key=>{HybridLimit},
Headline=>"an option to control HybridStrategy",
"This controls behavior when using ", TT "Strategy=>HybridStrategy", ". ", "By increasing the HybridLimit value (default 15),
HybridStrategy will execute SimisStrategy longer.
Infinity will behave exactly like SimisStrategy.",
SeeAlso=>{
"HybridStrategy"
}
}
--***************************************************************
--***************************************************************
document{
Key=>{MinorsLimit},
Headline=>"an option to limit the number of random minors computed",
"One of the ways to invert a map is to find a nonzero minor of a variant of the jacobianDualMatrix.
This function controls how many minors (heuristically chosen via ", TO "FastMinors", ") to check before switching to another strategy (involving computing a syzygy).
Setting it to zero will mean no minors are checked.
If it is left as null (the default), these functions will determine a value using a heuristic that depends on the varieties involved.",
SeeAlso=>
inverseOfMap
}
document{
Key=>{QuickRank},
Headline=>" an option for controlling how rank is computed",
"If set to true, then checking whether rank is at least a certain number will be computed via the package ", TO "FastMinors", ".",
SeeAlso=>
inverseOfMap
}
--***************************************************************
document{
Key=>{ SaturateOutput},
Headline =>"whether the value returned should be saturated",
Usage =>"SaturateOutput=>b",
" If ", TT "SaturateOutput"," is ", TT "true"," (the default), then functions will saturate their output.
Otherwise they will not. It may be beneficial not to saturate in certain circumstances as saturation may slow computation.",
}
--***************************************************************
document{
Key=>{ AssumeDominant},
Headline =>"whether to assume a rational map between projective varieties is dominant",
Usage =>"AssumeDominant=>b",
" If ", TT "AssumeDominant"," is ", TT "true",", it can speed up computation as a kernel will not be computed.",
}
--***************************************************************
doc ///
Key
HybridStrategy
Headline
A strategy for determining whether a map is birational and computing its inverse
Description
Text
HybridStrategy is a valid value for the Strategy Option for inverseOfMap, isBirationalMap, and isEmbedding.
This is currently the default strategy. It is a combination of ReesStrategy and SimisStrategy.
Increasing the HybridLimit value (default 15) will force SimisStrategy to be executed longer.
SeeAlso
ReesStrategy
SaturationStrategy
SimisStrategy
HybridLimit
///
--***************************************************************
--relationType used to be valid
doc ///
Key
ReesStrategy
Headline
a strategy for determining whether a map is birational and computing its inverse
Description
Text
ReesStrategy is a valid value for the Strategy Option for inverseOfMap, isBirationalMap, and isEmbedding. By choosing Strategy=>ReesStrategy, the ideal of
definition of the Rees algebra is computed by the known elimination technique.
This technique is described in Proposition 1.5 on page 21 in the book
Text
@UL{
{"Vasconcelos, Wolmer. ", BOLD "Integral closure.", " Springer Monographs in Mathematics. ", EM "Springer-Verlag, Berlin,", "2005. xii+519 pp."}
}@
SeeAlso
SaturationStrategy
SimisStrategy
HybridStrategy
///
--***************************************************************
--relationType used to be documented here
doc ///
Key
SaturationStrategy
Headline
a strategy for determining whether a map is birational and computing its inverse
Description
Text
SaturationStrategy is a valid value for the Strategy Option for inverseOfMap, isBirationalMap, and isEmbedding. By choosing Strategy=>SaturationStrategy,
the equations of the ideal of definition of the Rees algebra are generated by saturating the ideal of definition of the symmetric algebra into a non-zero element.
Notice that in this package (and in particular, in this Strategy option) the rings are assumed to be integral domains.
This Strategy appears to be slower in some examples.
SeeAlso
ReesStrategy
SimisStrategy
HybridStrategy
///
--***************************************************************
doc ///
Key
SimisStrategy
Headline
a strategy for determining whether a map is birational and computing its inverse
Description
Text
SimisStrategy is a valid value for the Strategy Option of inverseOfMap, isBirationalMap, and isEmbedding. Considering the bigraded structure of the
equations of the ideal of definition of a Rees algebra, SimisStrategy looks for all Gröbner bases where the degree is (1, n) for some natural number n. The advantage
of this restriction is that this part of the Rees ideal is enough to decide birationality and to compute the inverse map; this strategy reduces
computation time. A disadvantage of this Strategy is that if the given map is not birational this Strategy may never
end because the jacobianDualMatrix will not attain its maximum rank. To circumvent this problem we implemented HybridStrategy.
SeeAlso
ReesStrategy
SaturationStrategy
HybridStrategy
///
--***************************************************************
doc ///
Key
RationalMapping
rationalMapping
(rationalMapping, RingMap)
(rationalMapping, Ring, Ring, BasicList)
(rationalMapping, Ring, Ring, Matrix)
(rationalMapping, ProjectiveVariety, ProjectiveVariety, BasicList)
(rationalMapping, ProjectiveVariety, ProjectiveVariety, Matrix)
Headline
a rational mapping between projective varieties
Usage
phi = rationalMapping(f)
phi = rationalMapping(targetRing, sourceRing, l)
phi = rationalMapping(targetRing, sourceRing, m)
phi = rationalMapping(targetVariety, sourceVariety, l)
phi = rationalMapping(targetVariety, sourceVariety, m)
Inputs
f:RingMap
a ring map corresponding to the rational map between varieties
targetRing:Ring
the ring corresponding to the source variety
sourceRing:Ring
the ring corresponding to the target variety
targetVariety:ProjectiveVariety
the target variety
sourceVariety:ProjectiveVariety
the source variety
l:BasicList
the list of elements describing the map
m:Matrix
the matrix describing the map
Description
Text
A {\tt RationalMapping} is a Type that is used to treat maps between projective varieties geometrically. It stores essentially equivalent data to the corresponding map between the homogeneous coordinate rings. The way to construct the object is to use the function {\tt rationalMapping}.
Text
For example, the following is a Cremona transformation on $P^2$ constructed in multiple ways (in this case, the entries describing the map all have degree 2).
Example
R = QQ[x,y,z]
P2 = Proj(R)
phi1 = rationalMapping(P2, P2, {y*z,x*z,x*y})
phi2 = rationalMapping(R, R, matrix{{y*z,x*z,x*y}})
phi3 = rationalMapping(map(R, R, {y*z,x*z,x*y}))
Text
The source and target can also be different. For example, consider the following map from $P^1$ to a nodal cubic in $P^2$.
Example
S = QQ[x,y,z];
P2 = Proj S;
R = QQ[a,b];
P1 = Proj R;
phi = rationalMapping(P2, P1, {b*a*(a-b), a^2*(a-b), b^3})
h = map(R, S, {b*a*(a-b), a^2*(a-b), b^3})
psi = rationalMapping h
phi == psi
Text
Notice that when defining a map between projective varieties, we keep the target then source input convention.
Text
Warning, the list or matrix describing the map needs every entry to have the same degree.
SeeAlso
(symbol *, RationalMapping, RationalMapping)
(symbol ==, RationalMapping, RationalMapping)
///
doc ///
Key
(symbol *, RationalMapping, RationalMapping)
(symbol ^, RationalMapping, ZZ)
Headline
compose rational maps between projective varieties
Description
Text
This allows one to compose two rational maps between projective varieties.
Example
R = QQ[x,y,z]
P2 = Proj(R)
phi = rationalMapping (P2, P2, {y*z,x*z,x*y})
ident = rationalMapping (P2, P2, {x,y,z})
phi*phi == ident
Text
Raising a map to the negative first power means computing the inverse birational map. Raising a map to the first power simply returns the map itself. In the next example we compute the blowup of a point on $P^2$ and its inverse.
Example
P5ring = ZZ/103[a..f];
R = ZZ/103[x,y,z];
P2 = Proj R;
identP2 = rationalMapping(P2, P2, {x,y,z});
M = matrix{{a,b,c},{d,e,f}};
blowUp = Proj(P5ring/(minors(2, M)+ideal(b - d)));
identBlowUp = rationalMapping(blowUp, blowUp, {a,b,c,d,e,f});
tau = rationalMapping(P2, blowUp,{a, b, c});
tauInverse = tau^-1;
tau*tauInverse == identP2 --a map composed with its inverse is the identity
tauInverse*tau == identBlowUp
Text
Note that one can only raise maps to powers (with the exception of 1 and -1) if the source and target are the same. In that case, raising a map to a negative power means compose the inverse of a map with itself. We illustrate this with the quadratic transformation on $P^2$ that we started with (an transformation of order 2 in the Cremona group).
Example
phi^3 == phi^-1
phi^-2 == ident
phi^1 == ident
SeeAlso
isSameMap
///
doc ///
Key
(map, RationalMapping)
Headline
the ring map associated to a RationalMapping between projective varieties
Description
Text
Given a {\tt RationalMapping} between projective varieties, this returns the associated map between projective varieties.
///
doc ///
Key
(source, RationalMapping)
(target, RationalMapping)
Headline
returns the source or target of a RationalMapping between projective varieties.
Description
Text
Given a {\tt RationalMapping} between projective varieties these functions can be used to return the source or target.
Example
R = QQ[a,b];
S = QQ[x,y,z];
P2 = Proj R;
P3 = Proj S;
f = map(R, S, {a,b,0});
phi = rationalMapping f;
source phi
target phi
source f
target f
Text
Note that the source of phi corresponds to the target of f and the target of phi corresponds to the source of f.
///
--***************************************************************
doc ///
Key
isBirationalMap
(isBirationalMap, RingMap)
(isBirationalMap, RationalMapping)
[isBirationalMap, AssumeDominant]
[isBirationalMap, Strategy]
[isBirationalMap,Verbosity]
[isBirationalMap,HybridLimit]
[isBirationalMap,MinorsLimit]
[isBirationalMap, QuickRank]
Headline
whether a map between projective varieties is birational
Usage
val = isBirationalMap(Pi)
val = isBirationalMap(phi)
Inputs
Pi:RingMap
a ring map S to R corresponding to X mapping to Y
phi:RationalMapping
a rational map between projective varieties X to Y
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
AssumeDominant => Boolean
whether to assume the provided rational map of projective varieties is dominant, if set to true it can speed up computation
Strategy=>Symbol
choose the strategy to use: HybridStrategy, SimisStrategy, or ReesStrategy
HybridLimit => ZZ
within HybridStrategy, within HybridStrategy, the option HybridLimit controls how often SimisStrategy and ReesStrategy are used
MinorsLimit => ZZ
how many submatrices of a variant of the Jacobian dual matrix to consider before switching to a different strategy
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
val:Boolean
true if the map is birational, false if otherwise
Description
Text
The function {\tt isBirationalMap} computes whether a map between projective varieties is birational. The option {\tt AssumeDominant} being true will cause the function to assume that the kernel of the associated ring map is zero (default value is false). The target and source must be varieties; their defining ideals must be prime. Let's check that the plane quadratic Cremona transformation is birational.
Example
R=QQ[x,y,z];
S=QQ[a,b,c];
Pi = map(R, S, {x*y, x*z, y*z});
isBirationalMap(Pi, Verbosity=>0, Strategy=>SimisStrategy )
Text
We can also verify that a cover of $P^1$ by an elliptic curve is not birational.
Example
R=QQ[x,y,z]/(x^3+y^3-z^3);
S=QQ[s,t];
Pi = map(R, S, {x, y-z});
isBirationalMap(Pi, Verbosity=>0)
Text
Note that the Frobenius map is not birational.
Example
R = ZZ/5[x,y,z]/(x^3+y^3-z^3);
S = ZZ/5[a,b,c]/(a^3+b^3-b^3);
h = map(R, S, {x^5, y^5, z^5});
isBirationalMap(h, Strategy=>SaturationStrategy)
SeeAlso
isBirationalOntoImage
HybridStrategy
SimisStrategy
ReesStrategy
Caveat
Also see the very fast probabilistic birationality checking of the @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html", "Cremona"}@ package: @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/_is__Birational.html","isBirational"}@.
///
--***************************************************************
doc ///
Key
isBirationalOntoImage
(isBirationalOntoImage, RingMap)
(isBirationalOntoImage, RationalMapping)
[isBirationalOntoImage,Verbosity]
[isBirationalOntoImage, AssumeDominant]
[isBirationalOntoImage, Strategy]
[isBirationalOntoImage, HybridLimit]
[isBirationalOntoImage, MinorsLimit]
[isBirationalOntoImage, QuickRank]
Headline
whether a map between projective varieties is birational onto its image
Usage
val = isBirationalOntoImage(Pi)
val = isBirationalOntoImage(phi)
Inputs
Pi:RingMap
A ring map S to R corresponding to a rational map between projective varieties
phi:RationalMapping
A rational map between projective varieties
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
AssumeDominant => Boolean
whether to assume the provided rational map of projective varieties is dominant, if true it can speed up computation as a kernel will not be computed
Strategy=>Symbol
choose the strategy to use: HybridStrategy, SimisStrategy, or ReesStrategy
HybridLimit => ZZ
within HybridStrategy, the option HybridLimit controls how often SimisStrategy and ReesStrategy are used, larger numbers means SimisStrategy will be executed longer
MinorsLimit => ZZ
how many submatrices of a variant of the Jacobian dual matrix to consider before switching to a different strategy
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
val:Boolean
true if the map is birational onto its image, false if otherwise
Description
Text
The function {\tt isBirationalOntoImage} computes whether $f : X \to Y$ is birational onto its image. It is essentially a combination of {\tt mapOntoImage} with {\tt isBirationalOntoImage}. Setting option {\tt AssumeDominant} to true will cause the function to assume that the kernel of the associated ring map is zero (default value is false). The source must be a variety; its defining ideal must be prime. In the following example, the map is not birational, but it is birational onto its image.
Example
R=QQ[x,y];
S=QQ[a,b,c,d];
Pi = map(R, S, {x^3, x^2*y, x*y^2, y^3});
isBirationalOntoImage(Pi, Verbosity=>0)
isBirationalMap(Pi, Verbosity=>0)
Text
Sub-Hankel matrices (matrices whose ascending skew-diagonal entries are constant) have homaloidal determinants (the associated partial derivatives define a Cremona map).
For more discussion see:
Text
@UL{
{ "Mostafazadehfard, Maral; Simis, Aron. Homaloidal determinants.", EM " J. Algebra ", " 450 (2016), 59--101."}
}@
Text
Consider the following example illustrating this.
Example
A = QQ[z_0..z_6];
H=map(A^4,4,(i,j)->A_(i+j));
SH=sub(H,{z_5=>0,z_6=>0})
sh=map(A, A, transpose jacobian ideal det SH );
isBirationalOntoImage(sh, Verbosity=>0)
B=QQ[t_0..t_4];
li=map(B,A,matrix{{t_0..t_4,0,0}});
phi=li*sh;
isBirationalOntoImage(phi, HybridLimit=>2)
SeeAlso
isBirationalMap
///
--***************************************************************
doc ///
Key
idealOfImageOfMap
(idealOfImageOfMap, RingMap)
(idealOfImageOfMap, RationalMapping)
[idealOfImageOfMap, Verbosity]
[idealOfImageOfMap, QuickRank]
Headline
finds defining equations for the image of a rational map between varieties or schemes
Usage
im = idealOfImageOfMap(p)
im = idealOfImageOfMap(phi)
Inputs
p:RingMap
corresponding to a rational map of projective varieties
phi:RationalMapping
a rational map between projective varieties
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
im:Ideal
defining equations for the image
Description
Text
Given a rational map $f : X \to Y \subset P^N$, {\tt idealOfImageOfMap} returns the defining ideal of the image of $f$ in $P^N$. The rings provided implicitly in the inputs should be polynomial rings or quotients of polynomial rings. In particular, {\tt idealOfImageOfMap} function returns an ideal defining a subset of the ambient projective space of the image. In the following example we consider the image of $P^1$ inside $P^1 \times P^1$.
Example
S = QQ[x,y,z,w];
b = ideal(x*y-z*w);
R = QQ[u,v];
a = ideal(sub(0,R));
f = matrix {{u,0,v,0}};
phi = rationalMapping(R/a, S/b, f)
idealOfImageOfMap(phi)
psi = rationalMapping(Proj(S/b), Proj(R/a), f)
idealOfImageOfMap(psi)
Text
This function frequently just calls @TO2((kernel, RingMap), "ker")@ from Macaulay2. However, if the target of the ring map is a polynomial ring, then it first tries to verify whether the ring map is injective. This is done by computing the rank of an appropriate Jacobian matrix.
///
--***************************************************************
doc ///
Key
jacobianDualMatrix
(jacobianDualMatrix, RingMap)
(jacobianDualMatrix, RationalMapping)
[jacobianDualMatrix,AssumeDominant]
[jacobianDualMatrix,Strategy]
[jacobianDualMatrix, QuickRank]
Headline
computes the Jacobian dual matrix
Usage
M = jacobianDualMatrix(p)
M = jacobianDualMatrix(phi)
Inputs
phi:RationalMapping
a rational map between projective varieties
p:RingMap
ring map corresponding to a rational map between projective varieties
Strategy=>Symbol
choose the strategy to use: ReesStrategy or SaturationStrategy
AssumeDominant => Boolean
whether to assume the provided rational map of projective varieties is dominant, if set to true it can speed up computation
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
M:Matrix
a matrix $M$ over the coordinate ring of the image, the kernel of $M$
describes the syzygies of the inverse map, if it exists.
Description
Text
The Jacobian dual matrix is a matrix whose kernel describes the syzygies of the matrix corresponding to the inverse map.
For more information, see
Text
@UL{
{"Doria, A. V.; Hassanzadeh, S. H.; Simis, A.", " A characteristic-free criterion of birationality.", EM " Adv. Math.", " 230 (2012), no. 1, 390--413."}
}@
Text
This is mostly an internal function. It is used when checking whether a map is birational and when computing the inverse map. If the {\tt AssumeDominant} option is set to {\tt true}, it assumes that the kernel of the associated ring map is zero (default value is false). Valid values for the {\tt Strategy} option are {\tt ReesStrategy} and {\tt SaturationStrategy}.
Example
R=QQ[x,y];
S=QQ[a,b,c,d];
Pi = map(R, S, {x^3, x^2*y, x*y^2, y^3});
jacobianDualMatrix(Pi, Strategy=>SaturationStrategy)
SeeAlso
HybridStrategy
SimisStrategy
ReesStrategy
///
--***************************************************************
--***************************************************************
doc ///
Key
mapOntoImage
(mapOntoImage, RingMap)
(mapOntoImage, RationalMapping)
[mapOntoImage, QuickRank]
Headline
the induced map from a variety to the closure of its image under a rational map
Usage
h = mapOntoImage(f)
psi = mapOntoImage(phi)
Inputs
f:RingMap
the ring map corresponding to a rational map $\phi$ of projective varieties
phi:RationalMapping
a rational map $\phi$ of projective varieties
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
h:RingMap
the map of rings corresponding to $X \to \overline{\phi(X)}$.
psi:RationalMapping
the rational map
Description
Text
Given $f : X \to Y$ {\tt mapOntoImage} returns $X \to \overline{\phi(X)}$. Alternately, given $f: S \to R$, {\tt mapOntoImage} just returns $S/(kernel f) \to R$. {\tt mapOntoImage} first computes whether the kernel is $0$ without calling @TO2((kernel, RingMap), "ker")@, which can have speed advantages.
Example
R = QQ[x,y];
S = QQ[a,b,c];
f = map(R, S, {x^2, x*y, y^2});
mapOntoImage(f)
phi = rationalMapping f
mapOntoImage(phi)
///
--***************************************************************
doc ///
Key
isEmbedding
(isEmbedding, RingMap)
(isEmbedding, RationalMapping)
[isEmbedding, AssumeDominant]
[isEmbedding, HybridLimit]
[isEmbedding, Strategy]
[isEmbedding, MinorsLimit]
[isEmbedding, Verbosity]
[isEmbedding, QuickRank]
Headline
whether a rational map of projective varieties is a closed embedding
Usage
val = isEmbedding(f)
val = isEmbedding(phi)
Inputs
f:RingMap
the ring map corresponding to $f : X \to Y$
phi:RationalMapping
a rational map of projective varieties, $f : X \to Y$.
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
AssumeDominant => Boolean
whether to assume the provided rational map of projective varieties is dominant, if set to true it can speed up computation
Strategy=>Symbol
choose the strategy to use: HybridStrategy, SimisStrategy, or ReesStrategy
HybridLimit => ZZ
within HybridStrategy, the option HybridLimit controls how often SimisStrategy and ReesStrategy are used, larger numbers means SimisStrategy will be executed longer
MinorsLimit => ZZ
how many submatrices of a variant of the Jacobian dual matrix to consider before switching to a different strategy
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
val:Boolean
true if the map is an embedding, otherwise false.
Description
Text
Given a map of rings, corresponding to a rational map $f : X \to Y$, {\tt isEmbedding} determines whether $f$ map embeds $X$ as a closed subscheme into $Y$. The target and source must be varieties; their defining ideals must be prime. Consider the Veronese embedding.
Example
R = ZZ/7[x,y];
S = ZZ/7[a,b,c];
h = map(R, S, {x^2, x*y, y^2});
isEmbedding(h, Verbosity=>1)
Text
If the option {\tt Verbosity} is set to {\tt 2}, the function will produce very detailed output. Setting it to {\tt 0} will suppress output such output.
Now consider the projection from a point on the plane to the line at infinity.
Example
R=QQ[x,y,z];
S=QQ[a,b];
h=rationalMapping(R, S, {y,z});
isEmbedding(h, Verbosity=>0)
Text
That is obviously not an embedding. It is even not an embedding when we restrict to a quadratic curve, even though it is a regular map.
Example
R=QQ[x,y,z]/(x^2+y^2-z^2);
S=QQ[a,b];
h=map(R,S, {y,z});
isRegularMap(h)
isEmbedding(h, Verbosity=>0)
Text
If the option {\tt AssumeDominant} is set to {\tt true}, the function won't compute the kernel of the ring map. Otherwise it will.
Text
The remaining options, {\tt Strategy}, {\tt HybridLimit}, {\tt MinorsLimit}, and {\tt CheckBirational} are simply passed when {\tt isEmbedding} calls {\tt inverseOfMap}. Note, this function, {\tt isEmbedding}, will only behave properly if {\tt CheckBirational} is set to {\tt true}.
Text
We conclude by considering the map from $P^1$ to a cuspidal curve in $P^2$. This is not an embedding, but if we take the strict transform in the blowup of $P^2$, it is an embedding.
Example
R = ZZ/103[x,y,z];
T = ZZ/103[u,v];
P2 = Proj R;
P1 = Proj T;
phi = rationalMapping(P2, P1, {u^3, u^2*v, v^3});
isEmbedding(phi, Verbosity=>0)
P5ring = ZZ/103[a..f];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = Proj(P5ring/(minors(2, M)+ideal(b - d)));
tau = rationalMapping(P2, blowUpSubvar,{a, b, c}); --the blowup
tauInverse = tau^-1; --the inverse blowup
isEmbedding(tauInverse*phi, Verbosity => 0)
SeeAlso
HybridStrategy
SimisStrategy
ReesStrategy
///
--***************************************************************
doc ///
Key
baseLocusOfMap
(baseLocusOfMap, RingMap)
(baseLocusOfMap, RationalMapping)
[baseLocusOfMap, SaturateOutput]
[baseLocusOfMap, Verbosity]
Headline
the base locus of a map from a projective variety to projective space
Usage
I = baseLocusOfMap(h)
I = baseLocusOfMap(phi)
Inputs
h: RingMap
a ring map corresponding to a rational map of projective varieties
phi: RationalMapping
a rational map between projective varieties
SaturateOutput => Boolean
if set to true then the output will be saturated
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
Outputs
I: Ideal
the saturated defining ideal of the base locus of the corresponding maps
Description
Text
This defines the locus where a given map of projective varieties is not defined. If the option {\tt SaturateOutput} is set to {\tt false}, the output will not be saturated. The default value is true. Consider the following rational map from $P^2$ to $P^1$.
Example
R = QQ[x,y,z];
S = QQ[a,b];
f = map(R, S, {x,y});
baseLocusOfMap(f)
Text
Observe it is not defined at the point [0:0:1], which is exactly what one expects. However, we can restrict the map to a curve in $P^2$ and then it will be defined everywhere.
Example
R=QQ[x,y,z]/(y^2*z-x*(x-z)*(x+z));
S=QQ[a,b];
f=rationalMapping(R,S,{x,y});
baseLocusOfMap(f)
Text
Let us next consider the quadratic Cremona transformation.
Example
R=QQ[x,y,z];
S=QQ[a,b,c];
f=map(R,S,{y*z,x*z,x*y});
J=baseLocusOfMap(f)
minimalPrimes J
Text
The base locus is exactly the three points one expects.
///
--***************************************************************
--doc ///
-- Key
-- relationType
-- (relationType, Ideal,BasicList)
-- (relationType, Ideal,Ideal)
-- (relationType, Ring,Ideal)
-- [relationType,Strategy]
-- [relationType,Verbosity]
-- Headline
-- Given an ideal in a ring this computes the maximum degree, of the new variables, of the minimal generators of the defining ideal of the associated Rees algebra.
-- Usage
-- n = relationType(I, L)
-- n = relationType(I, J)
-- n = relationType(R,J)
-- Inputs
-- I: Ideal
-- The ideal defining the base ring $R$.
-- L: List
-- The list of generators of the ideal $J$ we are forming the Rees algebra of.
-- R: Ring
-- The base ring.
-- J: Ideal
-- The ideal we are forming the Rees algebra of.
-- Outputs
-- n: ZZ
-- The maximum degree of the generators of the defining ideal of the Rees algebra.
-- Description
-- Text
-- Suppose $( g_1, \ldots, g_m ) = J \subseteq R$ is an ideal in a ring $R$. We form the Rees algebra $R[Jt] = R[Y_1, \ldots, Y_m]/K$ where the $Y_i$ map to the $g_i$. This function returns the maximum $Y$-degree of the generators of $K$. For more information, see page 22 of Vasconcelos, Rees algebras, multiplicities, algorithms. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.
-- Example
-- R = QQ[x_0..x_8];
-- M = genericMatrix(R,x_0,3,3)
-- J = minors (2,M)
-- relationType(R,J)
--///
--***************************************************************
doc ///
Key
isSameMap
(symbol ==, RationalMapping, RationalMapping)
(isSameMap, RingMap,RingMap)
(isSameMap, RationalMapping, RationalMapping)
Headline
whether two rational maps to between projective varieties are really the same
Usage
b = isSameMap(f1, f2)
phi == psi
b = isSameMap(phi, psi)
Inputs
f1: RingMap
a map of rings corresponding to a rational map between projective varieties
f2: RingMap
a map of rings corresponding to a rational map between projective varieties
phi: RationalMapping
a map between projective varieties
psi: RationalMapping
a rational map between projective varieties
Outputs
b: Boolean
true if the rational maps are the same, false otherwise.
Description
Text
Checks whether two rational maps between projective varieties are really the same (that is, agree on a dense open set).
Example
R=QQ[x,y,z];
S=QQ[a,b,c];
f1=map(R, S, {y*z,x*z,x*y});
f2=map(R, S, {x*y*z,x^2*z,x^2*y});
isSameMap(f1,f2)
Text
The Cremona transformation is not the identity, but its square is.
Example
R = ZZ/7[x,y,z]
phi = rationalMapping(R, R, {y*z,x*z,x*y})
ident = rationalMapping(R, R, {x,y,z})
phi == ident
phi^2 == ident
-- Example
-- R = QQ[x_0..x_8];
-- M = genericMatrix(R,x_0,3,3);
-- A = submatrix'(M,{2},)
-- B = submatrix'(M,{0},)
-- L1 = first entries gens minors(2,A)
-- L2 = first entries gens minors(2,B)
-- isSameMapToPn(L1,L2)
///
--***************************************************************
doc ///
Key
isRegularMap
(isRegularMap, RingMap)
(isRegularMap, RationalMapping)
[isRegularMap, Verbosity]
Headline
whether a map to projective space is regular
Usage
b = isRegularMap(f)
Inputs
f: RingMap
a ring map corresponding to a rational map of projective varieties
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
Outputs
b: Boolean
Description
Text
This function runs baseLocusOfMap(f) and checks whether the ideal defining the base locus is the whole ring.
Example
P5 = QQ[a..f];
P2 = QQ[x,y,z];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = P5/(minors(2, M) + ideal(b - d));
f = map(blowUpSubvar, P2, {a, b, c});
isRegularMap(f)
///
--***************************************************************
doc ///
Key
inverseOfMap
(inverseOfMap, RingMap)
(inverseOfMap, RationalMapping)
[inverseOfMap, AssumeDominant]
[inverseOfMap, Strategy]
[inverseOfMap, CheckBirational]
[inverseOfMap, HybridLimit]
[inverseOfMap, Verbosity]
[inverseOfMap, MinorsLimit]
[inverseOfMap, QuickRank]
Headline
inverse of a birational map between projective varieties
Usage
psi = inverseOfMap(g)
psi = inverseOfMap(phi)
Inputs
g: RingMap
corresponding to a birational map $f : X \to Y$
phi: RationalMapping
a rational map between projective varieties $f : X \to Y$
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
CheckBirational => Boolean
whether to check birationality (if it is not birational, and CheckBirational is set to true, then an error will be thrown)
AssumeDominant => Boolean
whether to assume a rational map of schemes is dominant, if set to true it can speed up computation
Strategy=>Symbol
choose the strategy to use: HybridStrategy, SimisStrategy, or ReesStrategy
HybridLimit => ZZ
within HybridStrategy, the option HybridLimit controls how often SimisStrategy and ReesStrategy are used, larger numbers means SimisStrategy will be executed longer
MinorsLimit => ZZ
how many submatrices of a variant of the Jacobian dual matrix to consider before switching to a different strategy
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
psi: RationalMapping
inverse function of the birational map
Description
Text
Given a rational map $f : X \to Y$, {\tt inverseOfMap} computes the inverse of the induced map $X \to \overline{f(X)}$, provided it is birational."
The target and source must be varieties; their defining ideals must be prime.
Text
If {\tt AssumeDominant} is set to {\tt true} (default is {\tt false}) then it assumes that the rational map of projective varieties is dominant, otherwise the function will compute the image by finding the kernel of $f$.
Text
The {\tt Strategy} option can be set to {\tt HybridStrategy} (default), {\tt SimisStrategy}, {\tt ReesStrategy}, or {\tt SaturationStrategy}. Note that {\tt SimisStrategy} will never terminate for non-birational maps. If {\tt CheckBirational} is set to {\tt false} (default is {\tt true}), then no check for birationality will be done. If it is set to {\tt true} and the map is not birational, then an error will be thrown if you are not using {\tt SimisStrategy}. The option {\tt HybridLimit} controls {\tt HybridStrategy}. Larger values of {\tt HybridLimit} (the default value is 15) will mean that {\tt SimisStrategy} is executed longer, smaller values will mean that {\tt ReesStrategy} will be switched to sooner.
Example
R = ZZ/7[x,y,z];
S = ZZ/7[a,b,c];
h = map(R, S, {y*z, x*z, x*y});
inverseOfMap (h, Verbosity=>0)
Text
Notice that removal of the leading minus signs would not change the projective map. Next let us compute the inverse of the blowup of $P^2$ at a point.
Example
P5 = QQ[a..f];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = P5/(minors(2, M)+ideal(b - d));
h = map(blowUpSubvar, QQ[x,y,z],{a, b, c});
g = inverseOfMap(h, Verbosity=>0)
baseLocusOfMap(g)
baseLocusOfMap(h)
Text
The next example is a birational map on $\mathbb{P}^4$.
Example
Q=QQ[x,y,z,t,u];
phi=map(Q,Q,matrix{{x^5,y*x^4,z*x^4+y^5,t*x^4+z^5,u*x^4+t^5}});
time inverseOfMap(phi,CheckBirational=>false, Verbosity=>0)
Text
Finally, we do an example of plane Cremona maps whose source is not minimally embedded.
Example
R=QQ[x,y,z,t]/(z-2*t);
F = {y*z*(x-z)*(x-2*y), x*z*(y-z)*(x-2*y),y*x*(y-z)*(x-z)};
S = QQ[u,v,w];
ident = rationalMapping map(S, S)
h = rationalMapping(R, S, F);
g = inverseOfMap(h, Verbosity=>0)
h*g == ident
SeeAlso
HybridStrategy
SimisStrategy
ReesStrategy
Caveat
The current implementation of this function works only for irreducible varieties. Also see the function @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/_inverse__Map.html","inverseMap"}@ in the package @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html", "Cremona"}@, which for some maps from projective space is faster. Additionally, also compare with the function @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/_invert__Birational__Map.html", "invertBirationalMap"}@ of the package @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization"}@.
///
--***************************************************************
doc ///
Key
sourceInversionFactor
(sourceInversionFactor, RingMap)
[sourceInversionFactor, AssumeDominant]
[sourceInversionFactor, Strategy]
[sourceInversionFactor, CheckBirational]
[sourceInversionFactor, HybridLimit]
[sourceInversionFactor, Verbosity]
[sourceInversionFactor, MinorsLimit]
[sourceInversionFactor, QuickRank]
Headline
computes the common factor among the components of the composition of the inverse map and the original map
Usage
s = sourceInversionFactor(g)
Inputs
g: RingMap
a birational map $f : X \to Y$.
Verbosity => ZZ
if 0 then silence the function, if 1 then generate informative output which can be used to adjust strategies, if > 1 then generate a detailed description of the execution
CheckBirational => Boolean
whether to check birationality (if it is not birational, and CheckBirational is set to true, then an error will be thrown)
Strategy=>Symbol
choose the strategy to use: HybridStrategy, SimisStrategy, or ReesStrategy
HybridLimit => ZZ
within HybridStrategy, the option HybridLimit controls how often SimisStrategy and ReesStrategy are used, larger numbers means SimisStrategy will be executed longer
MinorsLimit => ZZ
how many submatrices of a variant of the Jacobian dual matrix to consider before switching to a different strategy
AssumeDominant => Boolean
whether to assume a rational map of schemes is dominant, if set to true it can speed up computation
QuickRank => Boolean
whether to compute rank via the package @TO2(FastMinors, "FastMinors")@
Outputs
s: RingElement
an element of the coordinate ring of $X$ .
Description
Text
Given a map $f : X \to Y$, sourceInversionFactor computes the common factor among the components of, $f^{(-1)}$ composed with $f$, which is an element of the coordinate ring of $X$.
Text
If {\tt AssumeDominant} is set to {\tt true} (default is {\tt false}) then it assumes that the rational map of projective varieties is dominant, otherwise the function will compute the image by finding the kernel of $f$.
Text
The {\tt Strategy} option can be set to {\tt HybridStrategy} (default), {\tt SimisStrategy}, {\tt ReesStrategy}, or {\tt SaturationStrategy}. Note {\tt SimisStrategy} will never terminate for non-birational maps. If {\tt CheckBirational} is set to {\tt false} (default is {\tt true}), then no check for birationality will be done. If it is set to {\tt true} and the map is not birational, then an error will be thrown if you are not using {\tt SimisStrategy}. The option {\tt HybridLimit} controls {\tt HybridStrategy}. Larger values of {\tt HybridLimit} (the default value is 15) will mean that {\tt SimisStrategy} is executed longer, smaller values will mean that {\tt ReesStrategy} will be switched to sooner.
Example
R = ZZ/7[x,y,z];
S = ZZ/7[a,b,c];
h = map(R, S, {y*z, x*z, x*y});
sourceInversionFactor h
Example
S=QQ[a,b,c,d];
g=(b^2-a*c)*c*d;
phi=map(S,S,transpose jacobian ideal g);
sourceInversionFactor(phi, Verbosity=>0)
Caveat
The current implementation of this function works only for irreducible varieties.. Also see the function @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/_inverse__Map.html","inverseMap"}@ in the package @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Cremona/html/index.html", "Cremona"}@, which for some maps from projective space is faster. Additionally, also compare with the function @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/_invert__Birational__Map.html", "invertBirationalMap"}@ of the package @HREF{"https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2/share/doc/Macaulay2/Parametrization/html/index.html", "Parametrization"}@.
SeeAlso
HybridStrategy
SimisStrategy
ReesStrategy
///
--******************************************
--******************************************
--******TESTS TESTS TESTS TESTS TESTS*******
--******************************************
--******************************************
TEST /// --test #0
------------------------------------
------- Tests for idealOfImageOfMap -------
------------------------------------
S = QQ[x,y,z,w];
b = ideal(x*y-z*w);
R = QQ[u,v];
a = ideal(sub(0,R));
f = matrix {{u,0,v,0}};
psi = rationalMapping(R/a, S/b, f)
im = idealOfImageOfMap(psi);
assert (im == sub(ideal(y,w), S/b));
T = QQ[x,y,z];
phi = map(T, T, {y*z, x*z, x*y});
assert(ideal(0_T) == idealOfImageOfMap(phi));
///
TEST /// --test #1
S = QQ[x0,x1];
T = QQ[y0,y1,y2];
f = map(S,T,{x0^4,x0^2*x1^2,x1^4});
im = idealOfImageOfMap(f);
assert(im == ideal(y1^2-y0*y2))
///
TEST /// --test #2
-- Since in Projective Space, check to make sure different representations give the same result
S = QQ[x,y];
T = QQ[u,v];
f1 = map(S,T,{x,y});
f2 = map(S,T,{x^3*y^2,x^2*y^3});
assert(idealOfImageOfMap(f1)==idealOfImageOfMap(f2))
///
-------------------------------------
-- Tests for baseLocusOfMap ---------
-------------------------------------
TEST /// --test #3
R = QQ[x,y,z]
f = map(R, R, matrix{{x^2*y, x^2*z, x*y*z}})
I = ideal(x*y, y*z, x*z)
assert(I == baseLocusOfMap(f))
///
TEST /// --test #4
R = QQ[x,y,z]
f = map(R, R, {x^2*y, x^2*z, x*y*z})
I = ideal(x*y, y*z, x*z)
assert(I == baseLocusOfMap(f))
///
TEST /// --test #5
-- reducible source
R = QQ[x,y,z]/(x*y)
f = map(R, R, matrix{{x^2, x*y, y^2}})
I = ideal(x,y)
assert(I == baseLocusOfMap(f))
-- we should have a test for when that kernel is not a cyclic module
///
-------------------------------------
----- isRegularMap -----------------
-------------------------------------
TEST /// --test #6
R = QQ[x,y,z,w]/(x*y - z*w)
S = QQ[a,b,c]
f = map(R, S, matrix{{sub(1,R), 0, 0}})
assert(isRegularMap(f))
///
TEST /// --test #7
R = QQ[x,y]/(x*y)
f = map(R, R, matrix{{x,y}})
assert(isRegularMap(f))
///
TEST /// --test #8
R = QQ[x,y,z]/(x^3 + y^3 - z^3)
S = QQ[a,b]
f = map(R,S,matrix{{(y-z)*x, x^2}})
assert(isRegularMap(f))
///
TEST /// --test #9
R=QQ[x,y,z];
S=QQ[a,b];
h = map(R, S, {x,y});
assert(isRegularMap(h) == false)
///
TEST /// --test #10
R=QQ[x,y,z];
S=QQ[a,b,c];
h = map(R,S,{y*z,x*z,x*y});
assert(isRegularMap(h) == false)
///
TEST /// -- test #11
-- projection from the blow up of P2 to P2
P5 = QQ[a..f];
M = matrix{{a,b,c},{d,e,f}};
P2 = QQ[x,y,z];
blowUpSubvar = P5/(minors(2,M) + ideal(b - d));
f = map(blowUpSubvar, P2, {a, b, c});
assert(isRegularMap(f))
///
-------------------------------------
----- isBirationalOntoImage --------
-------------------------------------
TEST /// --test #12 (a map from the blowup of P^2 at a point back down to P^2)
P5 = QQ[a..f];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = P5/(minors(2, M) + ideal(b-d));
f = map(blowUpSubvar, QQ[x,y,z], {a, b, c});
assert(isBirationalOntoImage(f, Verbosity=>0) == true)
///
TEST /// --test #13 (quadratic cremona transformation)
R = QQ[x,y,z];
S = QQ[a,b,c];
f = map(R, S, {y*z, x*z, x*y});
assert(isBirationalOntoImage(f) == true)
///
TEST /// --test #14 (map P^1 to P^2)
R = QQ[x,y];
S = QQ[a,b,c];
f = map(R, S, {x,y,0});
assert(isBirationalOntoImage(f) == true)
///
TEST /// --test #15 (let's map an elliptic curve onto P^1)
R = QQ[x,y,z]/(x^3+y^3-z^3);
S = QQ[a,b];
f = map(R, S, {x, y-z});
assert(isBirationalOntoImage(f) == false)
///
TEST /// --test #16 (map P^2\pt -> P^1)
R = QQ[x,y,z];
S = QQ[a,b];
f = map(R, S, {x,y});
assert(isBirationalOntoImage(f) == false)
///
TEST /// --test #17 (3rd veronese embedding of P^1)
R = QQ[x,y];
S = QQ[a,b,c,d];
f = map(R, S, {x^3,x^2*y,x*y^2,x^3});
assert(isBirationalOntoImage(f) == true)
///
-------------------------------------
----- isBirationalMap --------------
-------------------------------------
TEST /// --test #18 (quadratic cremona)
R = QQ[x,y,z];
S = QQ[a,b,c];
f = map(R, S, {y*z, x*z, x*y});
assert(isBirationalMap(f) == true)
///
TEST /// --test #19 (map P^1 to P^2)
R = QQ[x,y];
S = QQ[a,b,c];
f = map(R, S, {x,y,0});
assert(isBirationalMap(f) == false)
///
TEST /// --test #20 (let's map an elliptic curve onto P^1)
R = QQ[x,y,z]/(x^3+y^3-z^3);
S = QQ[a,b];
f = map(R, S, {x, y-z});
assert(isBirationalOntoImage(f, Strategy=>SaturationStrategy, QuickRank=>true) == false)
assert(isBirationalOntoImage(f, Strategy=>SaturationStrategy, QuickRank=>false) == false)
///
TEST /// --test #21 (3rd veronese embedding of P^1)
R = QQ[x,y];
S = QQ[a,b,c,d];
f = map(R, S, {x^3,x^2*y,x*y^2,x^3});
assert(isBirationalOntoImage(f, QuickRank=>true, HybridLimit=>20) == true);
assert(isBirationalOntoImage(f, QuickRank=>false, HybridLimit=>20) == true);
///
TEST /// --test #22 (Frobenius on an elliptic curve)
R = ZZ/5[x,y,z]/(x^3+y^3-z^3);
S = ZZ/5[a,b,c]/(a^3+b^3-b^3);
h = map(R, S, {x^5, y^5, z^5});
assert(isBirationalMap(h, QuickRank=>false) == false);
assert(isBirationalMap(h, QuickRank=>true) == false);
///
-------------------------------------
----- Tests for inverseOfMap -------
-------------------------------------
TEST /// --test #23
-- Let's find the inverse of the projection map from
-- the blow up of P^2 to P^2
-- the blow up of P^2 is a projective variety in P^5:
P5 = QQ[a..f];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = P5/(minors(2, M)+ideal(b - d));
T = QQ[x,y,z];
h = map(blowUpSubvar, T, {a, b, c});
assert( (baseLocusOfMap(inverseOfMap(h, QuickRank=>true)) == sub(ideal(x,y), T)) and (baseLocusOfMap(inverseOfMap(h, QuickRank=>true, Strategy=>ReesStrategy)) == sub(ideal(x,y), T)) );
assert( (baseLocusOfMap(inverseOfMap(h, QuickRank=>false)) == sub(ideal(x,y), T)) and (baseLocusOfMap(inverseOfMap(h, QuickRank=>false, Strategy=>ReesStrategy)) == sub(ideal(x,y), T)) )
///
TEST /// --test #24
R = QQ[a..d]/(a*d - b*c);
S = QQ[x,y,z];
h = rationalMapping(S, R, {x^2, x*y, x*z, y*z});
f = inverseOfMap(map(R, S, {a,b,c}));
g = inverseOfMap(map(R, S, {a,b,c}),Strategy=>ReesStrategy);
assert( (isSameMap(f, h)) and (isSameMap(g, h)) )
///
TEST /// --test #25 (quadratic cremona)
R = ZZ/11[x,y,z];
S = ZZ/11[a,b,c];
h = rationalMapping(R, S, {y*z, x*z, x*y});
phi = rationalMapping(S, R, {b*c,a*c,a*b});
g = inverseOfMap(h,AssumeDominant=>true);
f = inverseOfMap(h,AssumeDominant=>true, Strategy=>ReesStrategy);
assert((g == phi) and (f == phi))
///
-----------------------------------
------- isEmbedding ---------------
-----------------------------------
TEST /// --test #26
-- Consider the projection map from
-- the blow up of P^2 to P^2
-- the blow up of P^2 is a projective variety in P^5:
P5 = QQ[a..f]
M = matrix{{a,b,c},{d,e,f}}
blowUpSubvar = P5/(minors(2, M)+ideal(b - d))
h = map(blowUpSubvar, QQ[x,y,z],{a, b, c})
assert(isEmbedding(h)==false)
///
TEST /// --test #27
--Let's do the twisted cubic curve
P3 = ZZ/101[x,y,z,w];
C = ZZ/101[a,b];
h = map(C, P3, {a^3, (a^2)*b, a*b^2, b^3});
assert(isEmbedding(h) == true)
///
TEST /// --test #28
--let's parametrize the nodal plane cubic
P2 = QQ[x,y,z]
C = QQ[a,b]
h = map(C, P2, {b*a*(a-b), a^2*(a-b), b^3})
assert((isBirationalMap h == false) and (isBirationalOntoImage h == true) and (isEmbedding(h) == false) and (isRegularMap inverseOfMap h == false))
///
TEST /// --test #29, map from genus 3 curve to projective space
needsPackage "Divisor";
C = ZZ/103[x,y,z]/(x^4+x^2*y*z+y^4+z^3*x);
Q = ideal(y,x+z); --a point on our curve
f2 = mapToProjectiveSpace(7*divisor(Q)); --a divisor of degree 7 (this is degree 7, so should induce an embedding)
assert( (isEmbedding(f2) == true)) --note for this example, 6*divisor(Q) is not an embedding, indeed it appears the image is singular for 6*D.
///
-----------------------------------
------- Further Tests -------------
-----------------------------------
--finally we test a map between non-rational varieties
TEST /// --test #30, maps between cones over elliptic curves and their blowups
--the cone over an elliptic curve lies in P3, the blowup lives in P11
P3 = QQ[x,y,z,w];
P11 = QQ[a_{0,0}..a_{2,3}];
M = matrix{{a_{0,0}..a_{0,3}},{a_{1,0}..a_{1,3}},{a_{2,0}..a_{2,3}}};
blowUpP3 = P11/(minors(2,M) + ideal(a_{1,0}-a_{0,1}, a_{2,0}-a_{0,2}, a_{2,1}-a_{1,2}));
h = map(blowUpP3, P3, {a_{0,0}..a_{0,3}}); -- map from blowup of P3 back down to P3
J = ideal(h(x^3+y^3+z^3)) --x^3+y^3+z^3 defines the projective cone over an elliptic curve
I = saturate(J, ideal(h(x), h(y), h(z))); -- strict transform of the projective cone over an elliptic curve
S = P11/(ideal(blowUpP3) + sub(I, P11));
T = P3/ideal(x^3+y^3+z^3);
g = map(S, T, toList(a_{0,0}..a_{0,3}));
b = isRegularMap g;
gg = inverseOfMap g;
assert( b and ( isRegularMap gg == false))
///
------------------------------------------
------- Testing RationalMapping Type------
------------------------------------------
TEST /// --test #31, constructor testing, equality testing, source target testing
R = ZZ/101[x,y,z];
S = ZZ/101[u,v,w];
PR = Proj R;
PS = Proj S;
L = {random(3, R), random(3,R), random(3,R)};
M = matrix{L};
p1 = rationalMapping map(R, S, L);
p2 = rationalMapping map(R, S, M);
p3 = rationalMapping(R, S, L);
p4 = rationalMapping(R, S, M);
p5 = rationalMapping(PS, PR, L);
p6 = rationalMapping(PS, PR, M);
assert (source p1 === PR and source p2 === PR and source p3 === PR and source p4 === PR and source p5 === PR and source p6 === PR)
assert (target p1 === PS and target p2 === PS and target p3 === PS and target p4 === PS and target p5 === PS and target p6 === PS)
assert( p1 == p2 and p1 == p3 and p1 == p4 and p1 == p5 and p1 == p6);
L1 = {L#0 + x^3, L#1, L#2}
M1 = matrix{L1};
q1 = rationalMapping map(R, S, L1);
q2 = rationalMapping map(R, S, M1);
q3 = rationalMapping(R, S, L1);
q4 = rationalMapping(R, S, M1);
q5 = rationalMapping(PS, PR, L1);
q6 = rationalMapping(PS, PR, M1);
assert( p1 != q1 and p2 != q2 and p3 != q3 and p4 != q4 and p5 != q5 and p6 != q6)
///
TEST /// --test #32, composition testing, birational and embedding testing
R = ZZ/103[x,y,z];
T = ZZ/103[u,v];
P2 = Proj R;
P1 = Proj T;
phi = rationalMapping(P2, P1, {u^3, u^2*v, v^3});
psi = rationalMapping(P2, P2, {y*z,x*z,x*y});
assert isBirationalOntoImage(phi);
assert not isEmbedding(phi);
assert not isBirationalMap(phi);
assert not isRegularMap(inverseOfMap phi);
rho = psi*phi;
assert isBirationalOntoImage(rho);
assert not isBirationalMap(rho);
S = ZZ/103[m,n,l]/ideal(m^3 - n^2*l); --a cusp
cusp = Proj S;
kappa = rationalMapping(P2, cusp, {m,n,l});
assert isBirationalOntoImage(kappa);
assert isEmbedding(kappa); --this should be an embedding by definition
assert isBirationalOntoImage(psi*kappa);
P5 = ZZ/103[a..f];
M = matrix{{a,b,c},{d,e,f}};
blowUpSubvar = Proj(P5/(minors(2, M)+ideal(b - d)));
tau = rationalMapping(P2, blowUpSubvar,{a, b, c});
tauI = inverseOfMap tau;
assert isEmbedding(tauI*phi); --the map of P1 to a cusp was not an embedding before but after we blow up the origin, it's fine.
///
TEST /// --test #33, self composition testing
R = ZZ/59[x,y,z];
P2 = Proj R;
phi = rationalMapping(P2, P2, {y*z, x*z, x*y});
ident = rationalMapping(P2, P2, {x,y,z});
assert(phi^2 == ident and phi^-1 == phi and ident^-1 == ident and phi^-2 == ident and phi^3 == ident*phi^-1 and phi^0 == ident)
///
TEST /// --test #34, an interesting example based on a question of Abbas Nasrolanejad.
A=QQ[x,y,z,w];
S={y*z*w^2,x*z*w^2,x*y*w^2,y*z^2*w,x*z^2*w,y^2*z*w,x^2*z*w,x*y^2*w,x^2*y*w,x*y*z*w,x*y*z^2,x*y^2*z,x^2*y*z};
R=QQ[t_0..t_12];
phi=map(A,R,S);
J=ker phi;
S=QQ[s_0..s_5];
psi=map(A,S, {x*y,x*z,x*w,y*z,y*w,z*w});
I=ker psi;
R1=R/J;
identR1 = rationalMapping(map(R1, R1));
S1=S/I;
identS1 = rationalMapping(map(S1, S1));
rat=rationalMapping(S1,R1,{s_4*s_5,s_2*s_5,s_2*s_4,s_3*s_5,s_1*s_5,s_3*s_4,s_1*s_2,s_0*s_4,s_0*s_2,s_0*s_5,s_1*s_3,s_0*s_3,s_0*s_1});
assert( isBirationalMap(rat, AssumeDominant=>true) )
ratI = rat^-1;
assert(rat*ratI == identR1 and ratI*rat == identS1)
///
----Version information----
--0.1 First version.
--0.2 Substantial improvements in speed and documentation.
--0.21 Minor changes especially to documentation.
--1.0 added new Type RationalMapping, various rewrites, numerous small improvements, improved documentation
----FUTURE PLANS------
--1. Handle multi-graded rings (multi-graded maps etc.)
--2. Find generic degree of a map (generic rank).
--3. Degree of inverse map as well.
--4. Make faster.
------a) maybe add multi-core support?
------b) find the relevant low degree part of the blowup ideal
------c) be smarter when looking at ranks of matrices, in particular
---------when trying to show that the rank is at least x, we should evaluate
---------the variables appropriately to some (large) field randomly, and then
---------check the rank there.
--5. Check for smoothness/flatness of map (find loci)?
|