1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
|
-------------------------------------------------------------------------
-- PURPOSE : Compute the Rees algebra of a module as it is defined in the
-- paper "What is the Rees algebra of a module?" by Craig Huneke,
-- David Eisenbud and Bernde Ulrich.
-- Also to compute many of the structures that require a Rees
-- algebra, including
-- analyticSpread
-- specialFiber
-- idealIntegralClosure
-- distinguished -- distinguished subvarieties of a variety
-- (components of the support of the normal cone)
-- PROGRAMMERs : Rees algebra code written by David Eisenbud,
-- Amelia Taylor, Sorin Popescu, and students (see the JSAG description)
-- UPDATE HISTORY : created 27 October 2006
-- updated 29 June 2008
-- updated 19-21 July 2017 (Berkeley M2 Workgroup)
-- updated November 2017
--
---------------------------------------------------------------------------
newPackage(
"ReesAlgebra",
Version => "2.3",
Date => "November 2019",
Authors => {{
Name => "David Eisenbud",
Email => "de@msri.org"},
{Name => "Amelia Taylor",
Email => "originalbrickhouse@gmail.com"},
{Name => "Sorin Popescu",
Email => "sorin@math.sunysb.edu"},
{Name => "Michael E. Stillman", Email => "mike@math.cornell.edu"}},
DebuggingMode => false,
Headline => "Rees algebras",
Keywords => {"Commutative Algebra"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "The ReesAlgebra package in Macaulay2",
"acceptance date" => "21 May 2018",
"published article URI" => "https://msp.org/jsag/2018/8-1/p05.xhtml",
"published article DOI" => "10.2140/jsag.2018.8.49",
"published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x05-ReesAlgebra.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/ReesAlgebra.m2",
"release at publication" => "0ccfca1d3d08d13ed0da78435b2106209fcee1b1", -- git commit number in hex
"version at publication" => "2.2",
"volume number" => "8",
"volume URI" => "https://msp.org/jsag/2018/8-1/"
}
)
-*
restart
uninstallPackage "ReesAlgebra"
restart
installPackage "ReesAlgebra"
viewHelp ReesAlgebra
check "ReesAlgebra"
*-
export{
"analyticSpread",
"distinguished",
"intersectInP",
"isLinearType",
"minimalReduction",
"isReduction",
"multiplicity",
"normalCone",
"reductionNumber",
"reesIdeal",
"reesAlgebra",
"specialFiberIdeal",
"specialFiber",
"symmetricKernel",
"versalEmbedding",
"whichGm",
"Tries",
"jacobianDual",
"symmetricAlgebraIdeal",
"expectedReesIdeal",
"PlaneCurveSingularities",
--synonyms
"associatedGradedRing" => "normalCone",
"reesAlgebraIdeal" => "reesIdeal",
"Trim" -- option in reesIdeal
}
symmetricAlgebraIdeal = method(Options =>
{ VariableBaseName => "w"
})
symmetricAlgebraIdeal Module := Ideal => o -> M -> (
ideal presentation symmetricAlgebra(M, o))
symmetricAlgebraIdeal Ideal := Ideal => o -> M -> (
ideal presentation symmetricAlgebra(module M, o))
symmetricKernel = method(Options=>{Variable => "w"})
symmetricKernel(Matrix) := Ideal => o -> (f) -> (
if rank source f == 0 then return trim ideal(0_(ring f));
w := o.Variable;
if instance(w,String) then w = getSymbol w;
S := symmetricAlgebra(source f, VariableBaseName => w);
T := symmetricAlgebra target f;
trim ker symmetricAlgebra(T,S,f))
versalEmbedding = method()
versalEmbedding(Ideal) :=
versalEmbedding(Module) := Matrix => (M) -> (
if (class M) === Ideal then M = module M;
UE := transpose syz transpose presentation M;
map(target UE, M, UE)
)
fixupw = w -> if instance(w,String) then getSymbol w else w
reesIdeal = method(
Options => {
Jacobian =>false,
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w",
Trim => true
}
)
--the following uses a versal embedding
reesIdeal(Module) := Ideal => o -> M -> (
if o.Trim == true then P := presentation minimalPresentation M else P = presentation M;
UE := transpose syz transpose P;
symmetricKernel(UE,Variable => fixupw o.Variable)
)
--in the case of ideals we don't need a versal embedding; any embedding in the ring will do.
reesIdeal(Ideal) := Ideal => o-> (J) -> (
if o.Trim == true then J' := mingens J else J' = gens J;
symmetricKernel(J', Variable => fixupw o.Variable)
)
-- the following method, usually faster,
-- needs a user-provided non-zerodivisor a such that M[a^{-1}] is of linear type.
reesIdeal(Module,RingElement) := Ideal => o-> (I,I0) ->(
if o.Trim == true then I' := trim I else I' = I;
K' := if o.Jacobian == true then expectedReesIdeal I' else(
K' = symmetricAlgebraIdeal I';
R := ring K';
IR := substitute(I0, R);
trim saturate(K',IR)
)
)
reesIdeal(Ideal, RingElement) := Ideal => o -> (I,a) -> (
if o.Trim == true then I' := trim I else I' = I;
reesIdeal(module I', a, Trim => o.Trim)
)
reesAlgebra = method (TypicalValue=>Ring,
Options => {Jacobian => false,
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
}
)
-- accepts a Module, Ideal, or pair (depending on the method) and
-- returns the quotient ring isomorphic to the Rees Algebra rather
-- than just the defining ideal as in reesIdeal.
reesAlgebra Ideal :=
reesAlgebra Module := o-> M -> quotient reesIdeal(M, o)
reesAlgebra(Ideal, RingElement) :=
reesAlgebra(Module, RingElement) := o->(M,a)-> quotient reesIdeal(M,a,o)
isLinearType=method(TypicalValue =>Boolean,
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null--,
--Variable => "w"
}
)
isLinearType(Ideal):=
isLinearType(Module):= o-> N->(
if class N === Ideal then N = module N;
M := prune N;
I := reesIdeal (M,o);
S := ring I;
P := promote(presentation M, S);
J := ideal((vars S) * P);
((gens I) % J) == 0)
isLinearType(Ideal, RingElement):=
isLinearType(Module, RingElement):= o-> (N,a)->(
if class N === Ideal then N = module N;
M := prune N;
I := reesIdeal(M,a,o);
S := ring I;
P := promote(presentation M, S);
J := ideal((vars S) * P);
((gens I) % J) == 0)
normalCone = method(TypicalValue => Ring,
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
}
)
normalCone(Ideal) := o -> I -> (
RI := reesAlgebra(I,o);
RI/promote(I,RI)
)
normalCone(Ideal, RingElement) := o -> (I,a) -> (
RI := reesAlgebra(I,a,o);
RI/promote(I,RI)
)
multiplicity = method(
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
}
)
multiplicity(Ideal) := ZZ => o -> I -> (
RI := normalCone (I,o);
J := ideal RI;
J1 := first flattenRing J;
S1 := newRing(ring J1, Degrees=>{numgens ring J1 : 1});
degree substitute(J1,S1)
)
multiplicity(Ideal,RingElement) := ZZ => o -> (I,a) -> (
RI := normalCone (I,a,o);
J := ideal RI;
J1 := first flattenRing J;
S1 := newRing(ring J1, Degrees=>{numgens ring J1 : 1});
degree substitute(J1,S1)
)
isEquigenerated = A -> (
if isHomogeneous A and
all(A_*, a->degree a == degree(A_*_0)) then true else false)
specialFiberIdeal=method(TypicalValue=>Ideal,
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w",
Jacobian =>false,
Trim => true
}
)
specialFiberIdeal(Ideal):= o-> I ->(
if isEquigenerated I then(
kk := ultimate(coefficientRing, ring I);
Z := symbol Z;
ker map(ring I, kk[Z_0..Z_(numgens I -1)], gens I)) else
specialFiberIdeal (module I, o))
specialFiberIdeal(Module):= o->i->(
Reesi:= reesIdeal(i, o);
S := ring Reesi;
kk := ultimate(coefficientRing, S);
T := kk(monoid [gens S]);
minimalpres := map(T,S);
trim minimalpres Reesi
)
specialFiberIdeal(Ideal, RingElement):= o->(i,i0) ->(
if isEquigenerated i then return(
kk := ultimate(coefficientRing, ring i);
w := symbol w;
ker map(ring i, kk[w_0..w_(numgens i -1)], gens i));
specialFiberIdeal(module i, i0))
specialFiberIdeal(Module,RingElement):= o->(i,a)->(
Reesi:= reesIdeal(i, o);
S := ring Reesi;
kk := ultimate(coefficientRing, S);
T := kk[gens S];
minimalpres := map(T,S);
trim minimalpres Reesi
)
--The following returns a ring with just the new vars.
--The order of the generators is supposed to be the same as the order
--of the given generators of I.
specialFiber=method(TypicalValue=>Ring,
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w",
Jacobian => false,
Trim => true
}
)
specialFiber(Ideal):=
specialFiber(Module):= o->i->(
spIdeal := specialFiberIdeal(i,o);
(ring spIdeal)/spIdeal
)
specialFiber(Ideal, RingElement):=
specialFiber(Module, RingElement):= o->(i,a)->(
spIdeal := specialFiberIdeal(i,a,o);
(ring spIdeal)/spIdeal
)
isReduction=method(TypicalValue=>Boolean,
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
}
)
--test whether the SECOND arg is a reduction of the FIRST arg
isReduction(Module,Module):=
isReduction(Ideal,Ideal):= o->(I,J)->(
if isSubset(J, I) then (
I' := trim I;
Sfib:= specialFiber(I', o);
Ifib:=ideal presentation Sfib;
kk := coefficientRing Sfib;
M := sub(gens J // gens I', kk);
M = promote(M, Sfib);
L :=(vars Sfib)*M;
0===dim ideal L)
else false)
isReduction(Module,Module,RingElement):=
isReduction(Ideal,Ideal,RingElement):= o->(I,J,a)->(
if isSubset(J, I) then (
Sfib :=specialFiber(I, a, o);
Ifib:= ideal presentation Sfib;
kk := coefficientRing Sfib;
M := sub(gens J // gens I, kk);
M = promote(M, Sfib);
L :=(vars Sfib)*M;
0===dim ideal L)
else false)
analyticSpread = method(
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null--,
--Variable => "w"
}
)
analyticSpread(Ideal) :=
analyticSpread(Module) := ZZ => o->(M) -> dim specialFiberIdeal(M,o)
analyticSpread(Ideal,RingElement) :=
analyticSpread(Module,RingElement) := ZZ => o->(M,a) -> dim specialFiberIdeal(M,a,o)
distinguished = method(Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
}
)
distinguished(RingMap, Ideal) := o -> (f,I) ->(
--f: S -> R, I\subset S, J\subset R, f(I)\subset J:
S := source f;
R := target f;
NI := normalCone (I,o);
NJ := normalCone(f I,o);
K := ker map(NJ,NI,(vars NJ));
L := decompose K;
M := apply(L,P->(Pcomponent := K:(saturate(K,P))));
--the P-primary component. The multiplicity is
--computed as (degree M_i)/(degree L_i)
prune NI;
mp := NI.minimalPresentationMap;
apply(#L, i -> {(degree mp(M_i))/(degree mp(L_i)),kernel(map(NI/L_i, S/I))})
)
distinguished(Ideal,Ideal) := o -> (I,J) -> (
--I,J ideals in the same ring S
S := ring I;
f := map(S/J,S);
distinguished(f,I)
)
distinguished(Ideal) := o -> I -> (
S := ring I;
f := map(S,S);
distinguished(f,I)
)
intersectInP = method(Options=>{
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
Variable => "w"
})
intersectInP(Ideal,Ideal) := o->(I,J) ->(
--I,J in a polynomial ring; intersection done with the diagonal, then pulled back
P := ring I;
kk := coefficientRing P;
n := numgens P;
if P =!=ring J then error"requires two ideals in the same ring";
if not isPolynomialRing P and isField kk then
error" ring should be a polynomial ring over a field";
X:=symbol X;
Y:=symbol Y;
PP := kk[X_0..X_(n-1),Y_0..Y_(n-1)];
diag := ideal apply(n, i-> X_i-Y_i);
toP := map(P,PP/diag,vars P | vars P);
inX := map(PP,P,apply(n,i->X_i));
inY := map(PP,P,apply(n,i->Y_i));
II := inX I + inY J;
L := distinguished(diag,II);
apply(L, l-> {l_0, trim toP l_1})
)
rand = method()
rand(Ideal, ZZ, ZZ) := (I,s,d) ->
--s elements of degree d chosen at random from I
ideal ((gens I)*random(source gens I, (ring I)^{s:-d}))
rand(Ideal, ZZ) := (I,s) ->(
--without the third argument d, the function takes
--random linear combinations of the generators, without
--regard for the degrees, thus sometimes inhomogeneous.
kk := ultimate(coefficientRing, ring I);
choose1 := I -> sum(I_*, i-> random(kk)*i);
ideal apply(s, i-> choose1 I))
rand(Module, ZZ) := (M,s) ->(
--random linear combinations of the generators, without
--regard for the degrees, thus sometimes inhomogeneous.
kk := ultimate(coefficientRing, ring M);
choose1 := M -> sum(M_*, i-> random(kk)*i);
map(M,(ring M)^s, matrix apply(s, i-> choose1 M))
)
minimalReduction = method(
Options => {
DegreeLimit => {},
BasisElementLimit => infinity,
PairLimit => infinity,
MinimalGenerators => true,
Strategy => null,
--Variable => "w",
Tries => 20
}
)
minimalReduction Ideal := Ideal => o -> i -> (
S:=ring i;
ell := analyticSpread(i,
DegreeLimit => o.DegreeLimit,
BasisElementLimit => o.BasisElementLimit,
PairLimit => o.PairLimit,
MinimalGenerators => true,
Strategy => o.Strategy
); -- the list is necessary because isReduction doesn't know about "Tries"
J:=null;
for b from 1 to o.Tries do(
J = rand(i, ell);
if isReduction(i,J,
DegreeLimit => o.DegreeLimit,
BasisElementLimit => o.BasisElementLimit,
PairLimit => o.PairLimit,
MinimalGenerators => true,
Strategy => o.Strategy
)
then return J);
<<o.Tries <<" iterations were not enough to randomly find a minimal reduction"; endl;
error("not random enough")
)
reductionNumber = method()
reductionNumber (Ideal,Ideal) := (i,j) -> (
rN:=0;
I := (gens i)%j; -- will be a power of i
if isHomogeneous j then (
while I!=0 do (
j = trim(i*j);
I = (gens trim (i*ideal I))%j;
rN =rN+1))
else(
M:= ideal vars ring i; -- we're pretending to be in a local ring
while I!=0 do (
j = trim(i*j+M*ideal I);
I = (gens trim (i*ideal I))%j;
rN =rN+1));
rN)
whichGm = method()
whichGm Ideal := i -> (
--This *probabilistic* procedure returns the largest number m for which the ideal i satisfies
--the condition
--
--G_m: i_P is generated by <= codim P elements for all P with codim P < m.
--
f:=presentation module i;
S:=ring f;
if f==0 then "infinity" else(
q:=rank target f;
maxSource := (max degrees source f)_0;
minTarget := (min degrees target f)_0;
randomMinor := (f,t)->(
if t<=0 then ideal(1_S) else
if t >min(rank source f, rank target f) then ideal(0_S) else
ideal det (random(S^{t:-minTarget},target f)*f*random(source f, S^{t:-maxSource})));
d:=dim ring i;
m:=codim i;
j:=i+randomMinor(f,q-m);
while m<d+1 and codim j > m do (
m=m+1;
j=j+randomMinor(f, q-m));
if m<=d then m else "infinity"))
------------------------------------------------------------------
jacobianDual = method(Options=>{Variable => "w"})
jacobianDual Matrix := o-> phi ->(
S := ring phi;
X := vars S;
ST := symmetricAlgebra(target phi, VariableBaseName => fixupw o.Variable);
(vars ST * promote(phi, ST))//promote(X,ST)
)
jacobianDual(Matrix,Matrix, Matrix) := o -> (phi,X,T) -> (
--Suppose that T is a 1 x m matrix of variables in the ring ST = R[T_0..T_(m-1)],
--and phi is a matrix over ST that is defined over the subring R.
--Suppose also that X is a 1 x n matrix defined over ST whose
--entries generate ideal containing the entries of the matrix phi.
--the routine returns a matrix psi over ST such that
--T phi = X psi.
--Thus psi is a Jacobian dual of phi with respect to X.
if numcols T != numrows phi then error"if phi has m rows then T must have m cols.";
psi := (T * phi)//X;
--check that this worked:
if not T*phi == X*psi then error"requires
ideal flatten entries matrix phi subset ideal flatten entries X";
psi
)
expectedReesIdeal = method()
expectedReesIdeal Ideal := I -> expectedReesIdeal module I
expectedReesIdeal Module := Ideal => I -> (
S := ring I;
I1 := symmetricAlgebraIdeal I;
S1 := ring I1;
if numgens I < numgens S then return I1;
X := promote(vars ring I, S1);
jImat := jacobianDual (presentation I, X, vars S1);
I2 := minors(numrows jImat,jImat);
trim(I1+I2)
)
beginDocumentation()
///
restart
uninstallPackage "ReesAlgebra"
restart
installPackage "ReesAlgebra"
viewHelp ReesAlgebra
check "ReesAlgebra"
///
doc ///
Key
ReesAlgebra
Headline
Compute Rees algebras and their invariants
Description
Text
The Rees Algebra of an ideal is the
commutative algebra analogue of the blow up in algebraic
geometry. (In fact, the ``Rees Algebra''
is sometimes called the ``blowup algebra''.)
A great deal of modern
commutative algebra is devoted to studying them.
Classically the Rees algebra appeared as the bihomogeneous coordinate
ring of the blowup of a projective variety along a subvariety or
subscheme, used for resolution of singularities.
Though this is computationally slow on interesting examples,
we illustrate with some elementary cases of resolution of plane curve
singularities in @TO PlaneCurveSingularities@.
The Rees algebra was
studied in the commutative algebra context (in the case where M is an ideal of a ring R),
by David Rees in
a famous paper,
{\em On a problem of Zariski}, Illinois J. Math. (1958) 145-149).
In fact,
Rees mainly studied the ring
$R[It,t^{-1}]$, now also called the `extended Rees
Algebra' of I.
The original goal of this package, first written around 2002,
was to compute the Rees
algebra of a module as it is defined in the paper {\em What is the
Rees algebra of a module?}, by Craig Huneke, David Eisenbud and Bernd
Ulrich, Proc. Am. Math. Soc. 131, 701-708, 2002.
It has since expanded to include routines
for computing many of the invariants of an ideal or module
defined in terms of Rees algebras.
The Rees algebra, or more precisely the associated graded ring, which
we compute as a biproduct, plays a central role in modern intersection
theory: it is the basis of the Fulton-MacPherson definition of the
intersection product in the Chow ring. We illustrate this in
@TO distinguished@ and @TO intersectInP@.
The Rees algebra of a module M is defined
by a certain ideal in the symmetric
algebra $Sym(M)$ of $M$, or, as in this package,
by an ideal in the symmetric algebra of any
free module $F$ that maps onto $M$.
When $\phi: M \to G$ is the {\em versal embedding}
of $M$, then, by the definition of Huneke-Eisenbud-Ulrich,
the {\em Rees ideal of M} is the kernel of $Sym(\phi)$. Thus the
Rees Algebra of M is the image of $Sym(\phi)$.
In most cases the kernel of the
$Sym(\phi)$ is the same for any embedding $\phi$ of
$M$ into a free module:
{\bf Theorem (Eisenbud-Huneke-Ulrich, Thms 0.2 and 1.4):} Let R be a Noetherian ring
and let $M$ be a finitely generated R-module. Let $\phi: M \to G$
be a versal map of $M$ to a free module. Assume that $\phi$ is an inclusion, and let
$\psi: M \to G'$ be any inclusion. If $R$ is torsion-free over $\ZZ$
or $R$ is unmixed and generically Gorenstein, or $M$ is free locally
at each associated prime of $R$, or $G=R$, then the kernel of $Sym(\phi)$ and the
kernel of $Sym(\psi)$ are equal.
It follows that in the good cases above the Rees
ideal is equal to the saturation
of the defining ideal of symmetric
algebra of $M$ with respect to any
element f of the ground ring such
that $M[f^{-1}]$ is free, or is simply {\em of linear type},
meaning that $Sym(\phi)$ is a monomorphism. This is the case,
for example, when M is an ideal and $M[f^{-1}]$ is generated
by a regular sequence.
This fact often leads to
a faster computation than computing the
kernel of $Sym(\phi)$ directly.
Here is an example of the pathological case of
inclusions $\phi: M \to G$ and $\psi: M \to G'$ where $ker(\phi) \neq ker(\psi)$.
In the following, any finite characteristic would work as well.
Example
p = 5;
R = ZZ/p[x,y,z]/(ideal(x^p,y^p)+(ideal(x,y,z))^(p+1));
M = module ideal(z);
Text
It is easy to check that M \cong R^1/(x,y,z)^p.
We write iota: M\to R^1 for the embedding as an ideal
and psi for the embedding M \to R^2 sending z to (x,y).
Example
iota = map(R^1,M,matrix{{z}});
psi = map(R^2,M,matrix{{x},{y}});
Text
Finally, a versal embedding is M \to R^3,
sending z to (x,y,z):
Example
phi = versalEmbedding(M);
Text
We now compute the kernels of the three maps
on symmetric algebras:
Example
Iiota = symmetricKernel iota;
Ipsi = symmetricKernel psi;
Iphi = symmetricKernel phi;
Text
and check that the ones corresponding to phi and iota
are equal, whereas the ones corresponding to psi and phi
are not:
Example
Iiota == Iphi
Ipsi == Iphi
Text
In fact, they differ in degree p:
Example
numcols basis(p,Iphi)
numcols basis(p,Ipsi)
SeeAlso
PlaneCurveSingularities
distinguished
intersectInP
///
doc ///
Key
symmetricAlgebraIdeal
(symmetricAlgebraIdeal,Ideal)
(symmetricAlgebraIdeal,Module)
[symmetricAlgebraIdeal,VariableBaseName]
Headline
Ideal of the symmetric algebra of an ideal or module
Usage
I = symmetricAlgebraIdeal J
Inputs
I:Ideal
I: Module
Outputs
J:Ideal
Description
Text
Uses the built-in function @TO symmetricAlgebra@. The function returns J an ideal in a
new ring, with generators corresponding to those of th eideal or module I. The name
of the new generators may be set, for example to T, with the form
symmetricAlgebraIdeal(J, VariableBaseName =>"T")
SeeAlso
reesIdeal
///
-- viewHelp symmetricAlgebra
doc ///
Key
symmetricKernel
(symmetricKernel,Matrix)
Headline
Compute the Rees ring of the image of a matrix
Usage
I = symmetricKernel f
Inputs
f:Matrix
Outputs
:Ideal
the defining ideal of the image of $Sym(f)$
Description
Text
Given a map between free modules $f: F \to G$ this function computes the
kernel of the induced map of symmetric algebras, $Sym(f): Sym(F) \to
Sym(G)$ as an ideal in $Sym(F)$. When $f$ defines a versal embedding
of $Im f$ then by the definition
of Huneke-Eisenbud-Ulrich) this is equal to the defining ideal of the Rees
algebra of the module Im f, the Rees ideal of M.
When $M$ is an ideal (and in general in characteristic 0) then, by a
theorem of Eisenbud-Huneke-Ulrich,
any embedding of M into a free module may be used,
and it follows that the Rees ideal is equal to the saturation
of the defining ideal of symmetric algebra of M with respect to any
element f of the ground ring such that M[f^{-1}] is free. And this
often gives a faster computation.
Most users will prefer to use one of the front
end commands @TO reesAlgebra@, @TO reesIdeal@ to compute the ideal.
Example
R = QQ[a..e]
J = monomialCurveIdeal(R, {1,2,3})
symmetricKernel (gens J)
Text
Let I be the ideal returned and let S be the ring it lives in
(also printed). The ring S/I is isomorphic to
the Rees algebra R[Jt]. We can get the same information
above using {\tt reesIdeal(J)}, see @TO reesIdeal@. Note that the degree length
of S is one more than the degree length of R; the old variables
now have first degree 0, while the new variables have first degree 1.
Example
S = ring oo;
(monoid S).Options.Degrees
Text
The function {\tt symmetricKernel} can also be computed over a quotient ring.
Example
R = QQ[x,y,z]/ideal(x*y^2-z^9)
J = ideal(x,y,z)
symmetricKernel(gens J)
Text
The many ways of working with this function allows the system
to compute both the classic Rees algebra of an ideal over a ring
(polynomial or quotient) and to compute the Rees algebra of a
module or ideal using a versal embedding as described in the paper
of Eisenbud, Huneke and Ulrich. It also allows different ways of
setting up the quotient ring.
SeeAlso
reesIdeal
reesAlgebra
versalEmbedding
///
doc ///
Key
Trim
Headline
Choose whether to trim (or find minimal generators) for the ideal or module.
Usage
reesIdeal(..., Trim => true)
Description
Text
Note that when Trim=>true, the generators used will be the ones (and in the order) M2 likes,
possibly not the original ones.
SeeAlso
reesIdeal
reesAlgebra
specialFiberIdeal
specialFiber
expectedReesIdeal
///
///
Description
Text
When searching for a minimal reduction of an ideal over a field with
a small number of elements, random choices of generators are often
not good enough. This option controls how many times the routine
will try new random choices before giving up and reporting an error.
Example
setRandomSeed(314159268)
kk=ZZ/2
S = kk[a,b,c,d];
I = monomialCurveIdeal(S, {1,3,4});
minimalReduction(I, Tries=>30);
///
doc ///
Key
[minimalReduction, Tries]
Tries
Headline
Set the number of random tries to compute a minimal reduction
Usage
minimalReduction(..., Tries => 20)
Description
Text
When searching for a minimal reduction of an ideal over a field with
a small number of elements, random choices of generators are often
not good enough. This option controls how many times the routine
will try new random choices before giving up and reporting an error.
Example
setRandomSeed(314159268)
kk=ZZ/2
S = kk[a,b,c,d];
I = monomialCurveIdeal(S, {1,3,4});
minimalReduction(I, Tries=>30);
///
doc ///
Key
versalEmbedding
(versalEmbedding,Ideal)
(versalEmbedding,Module)
Headline
Compute a versal embedding
Usage
u = versalEmbedding M
Inputs
M:Module
or @ofClass Ideal@
Outputs
u:Matrix
a matrix that induces a versal embedding of the R-module M
into a free R-module.
Description
Text
For any module M over a Noetherian ring R there is a map $u: M \to H$
that is versal for maps from M to free modules; that is,
such that any map from M to a free module factors through u. Such a map
may be constructed by choosing a set of s generators for Hom(M,R), and using
them as the components of a map $u: M \to H := R^s$.
(NOTE: In the paper of Eisenbud, Huneke and Ulrich
cited below, the versal map is described with the
term ``universal'', which is misleading, since the induced map
from H is generally not unique.)
Suppose that $M$ has a free presentation $F \to G$, and let $u1$ be the
map $u1: G\to H$ induced by composing $u$ with the surjection $p: G \to
M$. By definition, the Rees algebra of $M$ is the image of the induced
map $Sym(u1): Sym(G)\to Sym(H)$, and thus can be computed with
symmetricKernel(u1). The map u is computed from the dual of the first
syzygy map of the dual of the presentation of $M$.
We first give a simple example looking at the syzygy matrix of the cube of
the maximal ideal of a polynomial ring.
Example
S = ZZ/101[x,y,z];
FF=res ((ideal vars S)^3);
M=coker (FF.dd_2)
versalEmbedding M
Text
A more complicated example.
Example
x = symbol x;
R=QQ[x_1..x_8];
m1=genericMatrix(R,x_1,2,2); m2=genericMatrix(R,x_5,2,2);
m=m1*m2
d1=minors(2,m1); d2=minors(2,m2);
M=matrix{{0,d1_0,m_(0,0),m_(0,1)}, {0,0,m_(1,0),m_(1,1)}, {0,0,0,d2_0}, {0,0,0,0}}
M=M-(transpose M);
N= coker(res coker transpose M).dd_2
versalEmbedding(N)
Text
Here is an example from the paper "What is the Rees Algebra of a
Module" by David Eisenbud, Craig Huneke and Bernd Ulrich,
Proc. Am. Math. Soc. 131, 701-708, 2002. The example shows that one
cannot, in general, define the Rees algebra of a module by using *any*
embedding of that module, even when the module is isomorphic to an ideal;
this is the reason for using the map provided by the routine
versalEmbedding. Note that the same paper shows that such problems do
not arise when the ring is torsion-free as a ZZ-module, or when one takes
the natural embedding of the ideal into the ring.
Example
p = 3;
S = ZZ/p[x,y,z];
R = S/((ideal(x^p,y^p))+(ideal(x,y,z))^(p+1))
I = module ideal(z)
Text
As a module (or ideal), $Hom(I,R^1)$ is minimally generated by 3 elements,
and thus a versal embedding of $I$ into a free module is into $R^3$.
Example
betti Hom(I,R^1)
ui = versalEmbedding I
Text
it is injective:
Example
kernel ui
Text
It is easy to make two other embeddings of $I$ into free modules. One is
the natural inclusion of $I$ into $R$ as an ideal:
Example
inci = map(R^1,I,matrix{{z}})
kernel inci
Text
Another is the map defined by multiplication by x and y.
Example
gi = map(R^2, I, matrix{{x},{y}})
kernel gi
Text
We can compose $ui, inci$ and $gi$ with a surjection $R\to i$ to get maps
$u:R^1 \to R^3, inc: R^1 \to R^1$ and $g:R^1 \to R^2$ having image $i$.
Example
u= map(R^3,R^{-1},ui)
inc=map(R^1, R^{-1}, matrix{{z}})
g=map(R^2, R^{-1}, matrix{{x},{y}})
Text
We now form the symmetric kernels of these maps and compare them. Note
that since symmetricKernel defines a new ring, we must bring them to the
same ring to make the comparison. First the map u, which would be used
by reesIdeal:
Example
A=symmetricKernel u
Text
Next the inclusion:
Example
B1=symmetricKernel inc
B=(map(ring A, ring B1)) B1
Text
Finally, the map g1:
Example
C1 = symmetricKernel g
C=(map(ring A, ring C1)) C1
Text
The following test yields ``true'', as implied by the theorem of
Eisenbud, Huneke and Ulrich.
Example
A==B
Text
But the following yields ``false'', showing that one must take care
in general, which inclusion one uses.
Example
A==C
SeeAlso
reesIdeal
reesAlgebra
symmetricKernel
///
doc ///
Key
reesIdeal
(reesIdeal,Ideal)
(reesIdeal,Module)
(reesIdeal,Ideal, RingElement)
(reesIdeal,Module, RingElement)
[reesIdeal,Jacobian]
[reesIdeal,Trim]
Headline
Compute the defining ideal of the Rees Algebra
Usage
reesIdeal M
reesIdeal(M,f)
Inputs
M:Module
or @ofClass Ideal@ of a quotient polynomial ring $R$
f:RingElement
any non-zerodivisor in ideal or the first Fitting ideal of the module. Optional
Outputs
:Ideal
defining the Rees algebra of M
Description
Text
This routine gives the user a choice between two methods for finding the
defining ideal of the Rees algebra of an ideal or module $M$ over a ring
$R$: The command {\tt reesIdeal(M)}
computes a versal embedding $g: M\to G$ and a surjection $f: F\to M$
and returns the result of symmetricKernel(gf).
When M is an ideal (the usual case) or in characteristic 0, the same
ideal can be computed by an alternate method that is often faster.
If the
user knows a non-zerodivisor $a\in{} R$ such that $M[a^{-1}$ is a free
module (for example, when M is an ideal, any non-zerodivisor $a \in{} M$
then it is often much faster to compute
{\tt reesIdeal(M,a)}
which computes the saturation of the defining ideal of the symmetric algebra
of M with respect to a. This
gives the correct answer even under the slightly weaker hypothesis that
$M[a^{-1}]$ is {\em of linear type}. (See also @TO isLinearType@.)
Example
kk = ZZ/101;
S=kk[x_0..x_4];
i= trim monomialCurveIdeal(S,{2,3,5,6})
time V1 = reesIdeal i;
time V2 = reesIdeal(i,i_0);
Text
The following example shows how we handle degrees
Example
S=kk[a,b,c]
m=matrix{{a,0},{b,a},{0,b}}
i=minors(2,m)
time I1 = reesIdeal i;
time I2 = reesIdeal(i,i_0);
transpose gens I1
transpose gens I2
Text
{\bf Investigating plane curve singularities:}
Proj of the Rees algebra of I \subset{} R
is the blowup of I in spec R. Thus the Rees algebra is a basic construction in
resolution of singularities. Here we work out a simple case:
Example
R = ZZ/32003[x,y]
I = ideal(x,y)
cusp = ideal(x^2-y^3)
RI = reesIdeal(I)
S = ring RI
totalTransform = substitute(cusp, S) + RI
D = decompose totalTransform -- the components are the strict transform of the cuspidal curve and the exceptional curve
totalTransform = first flattenRing totalTransform
L = primaryDecomposition totalTransform
apply(L, i -> (degree i)/(degree radical i))
Text
The total transform of the cusp contains the exceptional divisor with
multiplicity two. The strict transform of the cusp is a smooth curve but
is tangent to the exceptional divisor
Example
use ring L_0
singular = ideal(singularLocus(L_0));
SL = saturate(singular, ideal(x,y));
saturate(SL, ideal(w_0,w_1))
Text
This shows that the strict transform is smooth.
SeeAlso
symmetricKernel
reesAlgebra
///
doc ///
Key
reesAlgebra
(reesAlgebra,Ideal)
(reesAlgebra, Module)
(reesAlgebra,Ideal, RingElement)
(reesAlgebra,Module, RingElement)
Headline
Compute the defining ideal of the Rees Algebra
Usage
A = reesAlgebra M
A = reesAlgebra(M,f)
Inputs
M:Module
or @ofClass Ideal@ of a quotient polynomial ring $R$
f:RingElement
any non-zerodivisor in ideal or the first Fitting ideal of the module. Optional
Outputs
A:Ring
defining the Rees algebra of M
Description
Text
If $M$ is an ideal or module over a ring $R$, and $F\to M$ is a
surjection from a free module, then reesAlgebra(M) returns the ring
$Sym(F)/J$, where $J = reesIdeal(M)$.
In the following example, we find the Rees Algebra of a monomial curve
singularity. We also demonstrate the use of @TO reesIdeal@, @TO symmetricKernel@,
@TO isLinearType@, @TO normalCone@, @TO associatedGradedRing@, @TO specialFiberIdeal@.
Example
S = QQ[x_0..x_3]
i = monomialCurveIdeal(S,{3,7,8})
I = reesIdeal i;
reesIdeal(i, Variable=>v)
I=reesIdeal(i,i_0);
(J=symmetricKernel gens i);
isLinearType(i,i_0)
isLinearType i
reesAlgebra (i,i_0)
trim ideal normalCone (i, i_0)
trim ideal associatedGradedRing (i,i_0)
trim specialFiberIdeal (i,i_0)
SeeAlso
reesIdeal
symmetricKernel
///
doc ///
Key
isLinearType
(isLinearType, Module)
(isLinearType, Ideal)
(isLinearType,Module, RingElement)
(isLinearType, Ideal, RingElement)
Headline
Determine whether module has linear type
Usage
isLinearType M
isLinearType(M,f)
Inputs
M:Module
or @ofClass Ideal@
f:RingElement
any non-zero divisor modulo the ideal or module. Optional
Outputs
:Boolean
true if M is of linear type, false otherwise
Description
Text
A module or ideal $M$ is said to be ``of linear type'' if the natural map
from the symmetric algebra of $M$ to the Rees algebra of $M$ is an
isomorphism. It is known, for example, that any complete intersection
ideal is of linear type.
This routine computes the @TO reesIdeal@ of M. Giving the element f
computes the @TO reesIdeal@ in a different manner, which is sometimes
faster, sometimes slower.
Example
S = QQ[x_0..x_4]
i = monomialCurveIdeal(S,{2,3,5,6})
isLinearType i
isLinearType(i, i_0)
I = reesIdeal i
select(I_*, f -> first degree f > 1)
Example
S = ZZ/101[x,y,z]
for p from 1 to 5 do print isLinearType (ideal vars S)^p
SeeAlso
reesIdeal
monomialCurveIdeal
///
doc ///
Key
isReduction
(isReduction, Ideal, Ideal)
(isReduction, Ideal, Ideal, RingElement)
(isReduction, Module, Module)
(isReduction, Module, Module, RingElement)
Headline
Determine whether an ideal is a reduction
Usage
t=isReduction(I,J)
t=isReduction(I,J,f)
Inputs
I:Ideal
J:Ideal
f:RingElement
an optional element, which is a non-zerodivisor modulo M and the ring of M
Outputs
t:Boolean
true if J is a reduction of I, false otherwise
Description
Text
For an ideal $I$, a subideal $J$ of $I$ is said to be a {\bf reduction}
of $I$ if there exists a nonnegative integer n such that
$JI^{n}=I^{n+1}$.
This function returns true if $J$ is a reduction of $I$ and returns false
if $J$ is not a subideal of $I$ or $J$ is a subideal but not a reduction of $I$.
Example
S = ZZ/5[x,y]
I = ideal(x^3,x*y,y^4)
J = ideal(x*y, x^3+y^4)
isReduction(I,J)
isReduction(J,I)
isReduction(I,I)
g = I_0
isReduction(I,J,g)
isReduction(J,I,g)
isReduction(I,I,g)
SeeAlso
minimalReduction
reductionNumber
///
doc ///
Key
normalCone
(normalCone, Ideal)
(normalCone, Ideal, RingElement)
Headline
The normal cone of a subscheme
Usage
normalCone I
normalCone(I,f)
Inputs
I:Ideal
f:RingElement
optional argument, if given it should be a non-zero divisor in the ideal I
Outputs
:Ring
the ring $R[It] \otimes{} R/I$ of the normal cone of $I$
Description
Text
The normal cone of an ideal $I\subset{} R$ is the ring $R/I \oplus{} I/I^2
\oplus \ldots$, also called the associated graded ring of $R$ with
respect to $I$. If $S$ is the Rees algebra of $I$, then this ring is
isomorphic to $S/IS$, which is how it is computed here.
SeeAlso
reesAlgebra
associatedGradedRing
normalCone
///
doc ///
Key
multiplicity
(multiplicity, Ideal)
(multiplicity, Ideal, RingElement)
Headline
Compute the Hilbert-Samuel multiplicity of an ideal
Usage
multiplicity I
multiplicity(I,f)
Inputs
I:Ideal
f:RingElement
optional argument, if given it should be a non-zero divisor in the ideal I
Outputs
:ZZ
the normalized leading coefficient of the Hilbert-Samuel polynomial of $I$
Description
Text
Given an ideal $I\subset{} R$, ``multiplicity I'' returns the degree of the
normal cone of $I$. When $R/I$ has finite length this is the sum of the
Samuel multiplicities of $I$ at the various localizations of $R$. When $I$
is generated by a complete intersection, this is the length of the ring
$R/I$ but in general it is greater. For example,
Example
R=ZZ/101[x,y]
I = ideal(x^3, x^2*y, y^3)
multiplicity I
degree I
Caveat
The normal cone is computed using the Rees algebra, thus may be slow.
SeeAlso
///
doc ///
Key
specialFiberIdeal
(specialFiberIdeal, Module)
(specialFiberIdeal, Ideal)
(specialFiberIdeal, Module, RingElement)
(specialFiberIdeal, Ideal, RingElement)
[specialFiberIdeal, Jacobian]
[specialFiberIdeal, Trim]
Headline
Special fiber of a blowup
Usage
specialFiberIdeal M
specialFiberIdeal(M,f)
Inputs
M:Module
or @ofClass Ideal@
f:RingElement
a non-zerodivisor such that $M[f^{-1}]$ is a free module when $M$ is a module, an element in $M$ when $M$ is an ideal
Outputs
:Ideal
Description
Text
Let $M$ be an $R = k[x_1,\ldots,x_n]/J$-module (for example an ideal), and
let $mm=ideal vars R = (x_1,\ldots,x_n)$, and suppose that $M$ is a
homomorphic image of the free module $F$. Let $T$ be the Rees algebra of
$M$. The call specialFiberIdeal(M) returns the ideal $J\subset{} Sym(F)$
such that $Sym(F)/J \cong{} T/mm*T$; that is, $specialFiberIdeal(M) =
reesIdeal(M)+mm*Sym(F).$
The name derives from the fact that $Proj(T/mm*T)$ is the special fiber of
the blowup of $Spec R$ along the subscheme defined by $I$.
With the default Trim => true, the computation begins by computing minimal generators,
which may result in a change of generators of M
Example
R=QQ[a..h]
M=matrix{{a,b,c,d},{e,f,g,h}}
analyticSpread minors(2,M)
specialFiberIdeal minors(2,M)
Text
If M is an n x n+1 matrix in n variables, and all generators have the
same degree d, with ell = n as expected,
then the special fiber is a rational hypersurface of degree $D := d^n$, and
the reduction number is D-1.
Example
n = 2
x = symbol x
S = ZZ/32003[x_1..x_n]
M = matrix{{x_1,x_2,0},{0,x_1,x_2}}
I = minors(n,M)
specialFiber(I,I_0)
Caveat
Special fiber is here defined to be the fiber of the blowup over the
subvariety defined by the vars of the original ring. Note that if the
original ring is a tower ring, this might not be the fiber over the
closed point! To get the closed
fiber, flatten the base ring first.
SeeAlso
reesIdeal
///
doc ///
Key
specialFiber
(specialFiber, Module)
(specialFiber, Ideal)
(specialFiber, Module, RingElement)
(specialFiber, Ideal, RingElement)
[specialFiber, Jacobian]
[specialFiber, Trim]
Headline
Special fiber of a blowup
Usage
specialFiber M
specialFiber(M,f)
Inputs
M:Module
or @ofClass Ideal@
f:RingElement
an optional element, which is a non-zerodivisor such that $M[f^{-1}]$ is a free module when $M$ is a module, an element in $M$ when $M$ is an ideal
Outputs
:Ring
Description
Text
Let $M$ be an $R = k[x_1,\ldots,x_n]/J$-module (for example an ideal), and
let $mm=ideal vars R = (x_1,\ldots,x_n)$, and suppose that $M$ is a
homomorphic image of the free module $F$ with $m+1$ generators. Let $T$ be the Rees algebra of
$M$. The call specialFiber(M) returns the ideal $J\subset{} k[w_0,\dots,w_m]$
such that $k[w_0,\dots,w_m]/J \cong{} T/mm*T$; that is, $specialFiber(M) =
reesIdeal(M)+mm*Sym(F)$. This routine differs from @TO specialFiberIdeal@ in that
the ambient ring of the output ideal is $k[w_0,\dots,w_m]$ rather than
$R[w_0,\dots,w_m]$.
The coefficient ring $k$ used is always the
@TO ultimate@ @TO2 {coefficientRing, "coefficient ring"} @ of $R$.
The name derives from the fact that $Proj(T/mm*T)$ is the special fiber of
the blowup of $Spec R$ along the subscheme defined by $I$.
With the default Trim => true, the computation begins by computing minimal generators,
which may result in a change of generators of M
Example
R=QQ[a..h]
M=matrix{{a,b,c,d},{e,f,g,h}}
analyticSpread minors(2,M)
specialFiber minors(2,M)
SeeAlso
reesIdeal
specialFiberIdeal
///
doc ///
Key
analyticSpread
(analyticSpread, Module)
(analyticSpread, Ideal)
(analyticSpread, Module, RingElement)
(analyticSpread, Ideal, RingElement)
Headline
Compute the analytic spread of a module or ideal
Usage
analyticSpread M
analyticSpread(M,f)
Inputs
M:Module
or @ofClass Ideal@
f:RingElement
an optional element, which is a non-zerodivisor such that $M[f^{-1}]$ is a free module when $M$ is a module, an element in $M$ when $M$ is an ideal
Outputs
:ZZ
the analytic spread of a module or an ideal $M$
Description
Text
The analytic spread of a module is the dimension of its special fiber
ring. When $I$ is an ideal (and more generally, with the right
definitions) the analytic spread of $I$ is the smallest number of
generators of an ideal $J$ such that $I$ is integral over $J$. See for
example the book Integral closure of ideals, rings, and modules. London
Mathematical Society Lecture Note Series, 336. Cambridge University Press,
Cambridge, 2006, by Craig Huneke and Irena Swanson.
Example
R=QQ[a..h]
M=matrix{{a,b,c,d},{e,f,g,h}}
analyticSpread minors(2,M)
specialFiberIdeal minors(2,M)
R=QQ[a,b,c,d]
M=matrix{{a,b,c,d},{b,c,d,a}}
analyticSpread minors(2,M)
specialFiberIdeal minors(2,M)
SeeAlso
specialFiberIdeal
reesIdeal
///
doc ///
Key
distinguished
(distinguished, RingMap, Ideal)
(distinguished, Ideal, Ideal)
(distinguished, Ideal)
Headline
Compute the distinguished subvarieties of a pullback, intersection or cone
Usage
L = distinguished(f,I)
L = distinguished(I,J)
L = distinguished(I)
Inputs
f:RingMap
I:Ideal
J:Ideal
Outputs
L:List
Description
Text
Suppose that f:S\to R is a map of rings, and I is an ideal of S.
Let K be the kernel of the map of associated graded rings
gr_I(S) \to gr_(fI)R.
The distinguished primes p_i in S/I are the intersections of the
minimal primes P_i over K with S/I \subset{} gr_IS, that is,
the minimal primes of the support in R/I of the normal cone of f(I).
The multiplicity associated
with p_i is by definition the multiplicity of P_i in the primary
decomposition of K.
Distinguished subvarieties and their multiplicity
(defined by the distinguished primes, usually
in the global case of a quasi-projective variety and its sheaf of rings)
play a central role in the Fulton-MacPherson
construction of refined intersection products. See William Fulton, Intersection Theory,
Section 6.1 for the geometric context and the general case, and the explanation
in the article Rees Algebras in JSAG (submitted).
This application is illustrated in the code for @TO intersectInP@.
We allow the special cases
{\tt distinguished(I,J) := distinguished(f,I)}, with f:S\to S/J the projection
and
{\tt distinguished(I) := distinguished(f,I)}, with f:S\to S the identity.
which computes the distinguished primes in the support of the normal cone gr_IS
itself.
An interesting application is given in the paper
``A geometric effective Nullstellensatz,''
Invent. Math. 137 (1999), no. 2, 427--448 by
Ein and Lazarsfeld.
Here is an example showing that associated primes need not be distinguished primes:
Example
R = ZZ/101[a,b]
I = ideal(a^2, a*b)
ass I
Text
There is one minimal associated prime (a thick line in $P^3$) and one
embedded prime.
Example
distinguished I
intersectInP(I,I)
SeeAlso
intersectInP
saturate
///
doc ///
Key
intersectInP
(intersectInP, Ideal, Ideal)
Headline
Compute distinguished varieties for an intersection in A^n or P^n
Usage
L = intersectInP(I,J)
Inputs
I:Ideal
of a polynomial ring P over a field
J:Ideal
of the same ring
Outputs
L:List
Description
Text
This function applies the technology of @TO distinguished @ to compute
the distinguished subvarieties, with their multiplicities, for an intersection
in affine or projective space. The function @TO distinguished @ is actually applied
to the diagonal ideal in P**P and the ideal I**P + P**I, and the answer is
pulled back to P.
Example
kk = ZZ/101
P = kk[x,y]
I = ideal"x2-y";J=ideal y
intersectInP(I,J)
I = ideal"x4+y3+1"
intersectInP(I,J)
I = ideal"x2y";J=ideal"xy2"
intersectInP(I,J)
intersectInP(I,I)
Text
Note that in the last two cases, which are improper intersections of
two cubics, the total multiplicity is 9 = 3*3. But this is not always the case
(in the actual definition of the intersection product, the multiplicity is
multiplied by the class of a certain cycle supported on the distinguished subvariety).
Example
I = ideal"y-x2"
intersectInP(I,I)
Caveat
SeeAlso
distinguished
///
doc ///
Key
[intersectInP,BasisElementLimit]
[intersectInP,DegreeLimit]
[intersectInP,MinimalGenerators]
[intersectInP,PairLimit]
[intersectInP,Strategy]
[intersectInP,Variable]
[multiplicity,Variable]
Headline
Option for intersectInP
Description
Text
see the options for @TO saturate@.
SeeAlso
intersectInP
distinguished
saturate
///
doc ///
Key
minimalReduction
(minimalReduction, Ideal)
Headline
Find a minimal reduction of an ideal
Usage
J = minimalReduction I
Inputs
I:Ideal
Outputs
:Ideal
A minimal reduction of I (defined below)
Description
Text
{\tt minimalReduction} takes an ideal I that is homogeneous or inhomogeneous
(in the latter case the ideal is to be regarded as an ideal in the
localization of the polynomial ring at the origin.). It returns an ideal $J$
contained in $I$, with a minimal number of generators
such that $I$ is integrally dependent on $J$. This minimal number is called
the analyticSpread of $I$.
This routine is probabilistic: $J$ is computed as the ideal generated by the
right number of random linear combinations of the generators of $I$. However, the
routine checks rigorously that the output ideal is a reduction, and tries
probabilistically again if it is not. If it cannot find a minimal reduction after
a certain number of tries, it returns an error. The number of tries defaults
to 20, but can be set with the optional argument @TO Tries@.
To say that $I$ is integrally dependent on $J$ means that
$JI^k = I^{k+1}$ for some non-negative integer $k$. The smallest $k$ with this
property is called the reduction number of $I$, and can be computed
with @TO reductionNumber@ i.
See the book
Huneke, Craig; Swanson, Irena: Integral closure of ideals, rings, and modules.
London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.
for further information.
Example
kk = ZZ/101;
S = kk[a..c];
m = ideal vars S;
i = (ideal"a,b")*m+ideal"c3"
analyticSpread i
minimalReduction i
Text
Note that this is inhomogeneous--
it is generated by 3 random linear combinations
of the generators of i.
There is no homogeneous ideal with just 3 generators
on which i is integrally dependent.
Example
f = gens i
for a from 0 to 3 do(jhom:=ideal (f*random(source f, S^{3-a:-2,a:-3})); print(i^6 == (i^5)*jhom))
Caveat
It is possible that the ideal returned is not a minimal reduction,
due to the probabilistic nature of the routine. This will be addressed in a future version
of the package. The larger the size of the base field, the less likely this is to happen.
SeeAlso
analyticSpread
reductionNumber
whichGm
///
doc ///
Key
reductionNumber
(reductionNumber, Ideal, Ideal)
Headline
Reduction number of one ideal with respect to another
Usage
k = reductionNumber(I,J)
Inputs
I:Ideal
J:Ideal
Outputs
:ZZ
the reduction number of $I$ (defined below)
Description
Text
The function {\tt reductionNumber} takes a pair of ideals $I,J$, homogeneous or inhomogeneous
(in the latter case $I$ and $J$ are to be regarded as ideals in the
localization of the polynomial ring at the origin.).
The ideal $J$ must be a reduction of $I$ (that is, $J\subset{} I$
and $I$ is integrally dependent on $J$. This condition is checked by
the function @TO isReduction@. It returns the smallest integer $k$ such that
$JI^k = I^{k+1}$.
For further information, see the book:
Huneke, Craig; Swanson, Irena: Integral closure of ideals, rings, and modules,
London Mathematical Society Lecture Note Series, 336. Cambridge University Press,
Cambridge, 2006.
Example
setRandomSeed()
kk = ZZ/32003;
S = kk[a..c];
m = ideal vars S;
i = (ideal"a,b")*m+ideal"c3"
analyticSpread i
j=minimalReduction i
reductionNumber (i,j)
Caveat
It is possible for the routine to not finish in reasonable time, due to the
probabilistic nature of the routine. What happens is that
the routine @TO minimalReduction@ occasionally, but rarely, returns an ideal
which is not a minimal reduction. In this case, the routine goes into an infinite loop.
This will be addressed in a future version
of the package. In the meantime, simply interrupt the routine, and restart the
computation.
SeeAlso
analyticSpread
minimalReduction
whichGm
///
doc ///
Key
whichGm
(whichGm, Ideal)
Headline
Largest Gm satisfied by an ideal
Usage
whichGm I
Inputs
I:Ideal
Outputs
:ZZ
what it does
Description
Text
An ideal $I$ in a ring $S$ is said to satisfy the condition $G_m$ if, for every prime ideal $P$ of
codimension $0<k<m$, the ideal $I_P$ in $S_P$ can be generated by at most $k$ elements.
The command {\tt whichGm I}
returns the largest $m$ such that $I$ satisfies $G_m$, or infinity if $I$ satisfies $G_m$
for every $m$.
This condition arises frequently in work of Vasconcelos and Ulrich and their schools
on Rees algebras and powers of ideals. See for example
Morey, Susan; Ulrich, Bernd:
Rees algebras of ideals with low codimension.
Proc. Amer. Math. Soc. 124 (1996), no. 12, 3653--3661.
Example
kk=ZZ/101;
S=kk[a..c];
m=ideal vars S
i=(ideal"a,b")*m+ideal"c3"
whichGm i
SeeAlso
analyticSpread
minimalReduction
reductionNumber
///
doc ///
Key
jacobianDual
(jacobianDual, Matrix)
(jacobianDual, Matrix, Matrix, Matrix)
Headline
Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
Usage
psi = jacobianDual phi
psi = jacobianDual(phi, X, T)
Inputs
phi:Matrix
presentation matrix of an ideal
X:Matrix
row matrix generating an ideal that contains the entries of phi
T:Matrix
row matrix of variables that will be generators of the Rees algebra of I
Outputs
psi:Matrix
the `Jacobian Dual', which satisfies $T*phi = X*psi$
Description
Text
Let I be an ideal of R and let phi be the presentation matrix of I as a module.
The symmetric algebra of I has the form
$Sym_R(I) = R[T_0..T_m]/ideal(T*phi)$
where the T_i correspond to the generators of I. If $X = matrix\{\{x_1..x_n\}\}$,
with x_i \in{} R, and ideal X contains the entries of the matrix phi, then there is
a matrix psi defined over R[T_0..T_m], called the Jacobian Dual of phi with respect to X,
such that $T*phi = X*psi$. (the matrix psi is generally
not unique; Macaulay2 computes it using Groebner division with remainder.)
In the form {\tt psi = jacobianDual phi},
a new ring ST := S[T_0..T_m] is created, and the vector X is set to the variables
of R. The result is returned as a matrix over ST.
To do the computation in a ring previously defined computed,
use the form {\tt psi = jacobianDual(phi, X,T)};
in this case, the matrices phi, X, T should all be defined over the
same ring ST,
the matrix T should be a row of variables of ST, and
the matrix phi should have entries in a subring not involving the entries of T.
If I is an ideal of grade >=1 and ideal X contains a nonzerodivisor of R
(which will be automatic if I has finite projective dimension) then
ideal X has grade >= 1 on the Rees algebra. Since ideal(T*phi) is contained in the
defining ideal of the Rees algebra, the vector X is annihilated by the matrix
psi when regarded over the Rees algebra. If also the number of relations of I
is >= the number of generators of I, this implies that the maximal minors of
psi annihilate the x_i as elements of the Rees algebra, and thus that the maximal
minors of psi are inside the ideal of the Rees algebra. In very favorable circumstances,
one may even have the equality reesIdeal I = ideal(T*phi)+ideal minors(psi): For example:
Theorem (S. Morey and B. Ulrich, Rees Algebras of Ideals with Low Codimension, Proc. Am. Math.
Soc. 124 (1996) 3653--3661):
Let R be a local Gorenstein ring with infinite residue field, let I be a perfect ideal
of grade 2 with n generators, and let phi be the presentation matrix of I. Let
ell = ell(I) be the analytic spread. Suppose that
I satisfies the condition G_{ell} or, equivalently, that the n-p sized minors of phi
have codimension >p for 1<= p < ell. The following conditions are equivalent:
1) reesAlgebra I is Cohen-Macaulay and I_(n-ell)(phi) = I_1(phi)^{n-ell}
2) reductionNumber I < ell and I_(n+1-ell)(phi) = I_1(phi)^{n+1-ell}
3) reesIdeal I = symmetricAlgebraIdeal I + minors(n, jacobianDual phi)
We start with the presentation matrix phi of an (n+1)-generator perfect ideal
Such that the first row consists of the n
variables of the ring, and the rest of whose rows are reasonably general (in this
case random quadrics):
Example
setRandomSeed 0
n=3;
kk = ZZ/101;
S = kk[a_0..a_(n-2)];
phi' = map(S^(n),S^(n-1), (i,j) -> if i == 0 then a_j else random(2,S));
I = minors(n-1,phi');
betti (F = res I)
phi = F.dd_2;
jphi = jacobianDual phi
Text
We first compute the analytic spread ell and the reduction number r
Example
ell = analyticSpread I
r = reductionNumber(I, minimalReduction I)
Text
Now we can check the condition G_{ell}, first probabilistically
Example
whichGm I >= ell
Text
and now deterministically
Example
apply(toList(1..ell-1), p-> {p+1, codim minors(n-p, phi)})
Text
We now check the three equivalent conditions of the Morey-Ulrich Theorem.
Note that since ell = n-1 in this case, the second part of conditions
1,2 is vacuously satisfied, and since r<ell,
the conditions must all be satisfied.
We first check that reesAlgebra I is Cohen-Macaulay:
Example
reesI = reesIdeal I;
codim reesI
betti res reesI
Text
Finally, we wish to see that reesIdeal I is generated by the ideal
of the symmetric algebra together with the jacobian dual:
Example
psi = jacobianDual phi
Text
We now compute the ideal J of the symmetric algebra; the call symmetricAlgebra I
would return the ideal over a different ring, so we do it by hand:
Example
ST = ring psi
T = vars ST
J = ideal(T*promote(phi, ST))
betti res J
J1 = minors(ell, psi)
betti (G = res trim (J+J1))
betti res reesIdeal I
Text
The name Jacobian Dual comes from the case where phi is a matrix of linear forms
the x_i are the variables of R, and the generators of I are forms, all of the same degree D;
in this case Euler's formula sum(df_i/dx_j*xj) = Df can be used to express the
entries of psi in terms of the derivatives of the entries of phi, at least when
the degrees of the columns of phi are nonzero in the coefficient field.
Explicitly, let x_1,...,x_n be the variables of R, and let phi be a presentation matrix for I.
Since all the f_i have the same degree, if follows that,
for each j, the entries phi_(i,j) will all have the same degree, say D_j = deg phi_(i,j).
Let ST be the polynomial ring R[T_0..T_m], where the T_i correspond to f_i, and let
X=matrix{{x_1,...,x_n}}, and T=matrix{{T_0,...,T_m}} be row matrices over ST.
In this case, by Euler's formula, we may take
psi_{k,j}=(1/D_j)*sum_i(d phi_{i,j}/d x_k*T_i),
Caveat
The division with
remainder step is usually fast, but if this
ever becomes a bottleneck it would be possible to test for the degree condition and
use Euler's formula in the case where it applies.
SeeAlso
whichGm
expectedReesIdeal
reesAlgebra
reesAlgebraIdeal
reesIdeal
specialFiberIdeal
///
doc ///
Key
[symmetricKernel, Variable]
[reesIdeal, Variable]
[reesAlgebra, Variable]
[associatedGradedRing, Variable]
[specialFiberIdeal, Variable]
[specialFiber, Variable]
[distinguished, Variable]
[isReduction, Variable]
[jacobianDual, Variable]
Headline
Choose name for variables in the created ring
Usage
symmetricKernel(...,Variable=>w)
reesIdeal(...,Variable=>w)
reesAlgebra(...,Variable=>w)
specialFiberIdeal(...,Variable=>w)
specialFiber(...,Variable=>w)
distinguished(...,Variable=>w)
isReduction(...,Variable=>w)
jacobianDual(...,Variable=>w)
Description
Text
Each of these functions creates a new ring of the form R[w_0,\ldots, w_r]
or R[w_0,\ldots, w_r]/J, where R is the ring of the input ideal or module
(except for @TO specialFiber@, which creates a ring $K[w_0,\ldots, w_r]$,
where $K$ is the ultimate coefficient ring of the input ideal or module.)
This option allows the user to change the names of the new variables in this ring.
The default variable is w.
Example
R = QQ[x,y,z]/ideal(x*y^2-z^9)
J = ideal(x,y,z)
I = reesIdeal(J, Variable => p)
Text
To lift the result to an ideal in a flattened ring, use @TO flattenRing@:
Example
describe ring I
I1 = first flattenRing I
describe ring oo
Text
Note that the rings of I and I1 both have bigradings. Use @TO newRing@ to
make a new ring with different degrees.
Example
S = newRing(ring I1, Degrees=>{numgens ring I1:1})
describe S
I2 = sub(I1,vars S)
res I2
SeeAlso
flattenRing
newRing
substitute
///
doc ///
Key
[reesIdeal, Strategy]
[reesAlgebra,Strategy]
[isLinearType,Strategy]
[isReduction, Strategy]
[normalCone, Strategy]
[multiplicity, Strategy]
[specialFiberIdeal, Strategy]
[specialFiber, Strategy]
[analyticSpread, Strategy]
[distinguished,Strategy]
[minimalReduction, Strategy]
Headline
Choose a strategy for the saturation step
Usage
reesIdeal(...,Strategy => X)
Description
Text
where X is is one of @TO Iterate@, @TO Linear@, @TO Bayer@, @TO Eliminate@.
These are described in the documentation node for @TO saturate@.
The Rees algebra S(M) of a submodule M of a free module (most importantly,
an ideal in the ring), is equal to the symmetric algebra Sym_k(M) mod torsion.
computing this torsion is the slow link in most of the programs in this
package. The fastest way to compute it is usually by saturating the ideal
defining the symmetric algebra with respect
to an element in that ideal.
SeeAlso
reesIdeal
reesAlgebra
isLinearType
isReduction
normalCone
multiplicity
specialFiberIdeal
specialFiber
analyticSpread
distinguished
minimalReduction
saturate
///
doc ///
Key
[reesIdeal, PairLimit]
[minimalReduction, PairLimit]
[distinguished,PairLimit]
[analyticSpread, PairLimit]
[specialFiber, PairLimit]
[specialFiberIdeal, PairLimit]
[multiplicity, PairLimit]
[normalCone, PairLimit]
[isReduction, PairLimit]
[isLinearType,PairLimit]
[reesAlgebra,PairLimit]
Headline
Bound the number of s-pairs considered in the saturation step
Usage
reesIdeal(...,PairLimit => X)
Description
Text
Here X is a positive integer. Each of these functions computes the Rees
Algebra using a saturation step, and the optional argument causes the saturation
process to stop after that number of s-pairs is found.
This is described in the documentation node for @TO saturate@.
SeeAlso
reesIdeal
reesAlgebra
isLinearType
isReduction
normalCone
multiplicity
specialFiberIdeal
specialFiber
analyticSpread
distinguished
minimalReduction
saturate
///
doc ///
Key
[reesIdeal, MinimalGenerators]
[minimalReduction, MinimalGenerators]
[distinguished,MinimalGenerators]
[analyticSpread, MinimalGenerators]
[specialFiber, MinimalGenerators]
[specialFiberIdeal, MinimalGenerators]
[multiplicity, MinimalGenerators]
[normalCone, MinimalGenerators]
[isReduction, MinimalGenerators]
[isLinearType,MinimalGenerators]
[reesAlgebra,MinimalGenerators]
Headline
Whether the saturation step returns minimal generators
Usage
reesIdeal(...,MinimalGenerators => X)
Description
Text
Here X is of type boolean. Each of these functions involves the
computation of a Rees algebra, which may involve a saturation step.
This optional argument determines whether or not
the output of the saturation step will be forced to have a minimal generating set.
This is described in the documentation node for @TO saturate@.
SeeAlso
reesIdeal
reesAlgebra
isLinearType
isReduction
normalCone
multiplicity
specialFiberIdeal
specialFiber
analyticSpread
distinguished
minimalReduction
saturate
///
doc ///
Key
[minimalReduction, BasisElementLimit]
[reesIdeal, BasisElementLimit]
[distinguished,BasisElementLimit]
[analyticSpread, BasisElementLimit]
[specialFiber, BasisElementLimit]
[multiplicity, BasisElementLimit]
[normalCone, BasisElementLimit]
[isReduction, BasisElementLimit]
[isLinearType,BasisElementLimit]
[reesAlgebra,BasisElementLimit]
[specialFiberIdeal, BasisElementLimit]
Headline
Bound the number of Groebner basis elements to compute in the saturation step
Usage
reesIdeal(...,BasisElementLimit => X)
Description
Text
Here X is a positive integer. Each of these functions computes the Rees
Algebra using a saturation step, and the optional argument causes the saturation
process to stop after that number of s-pairs is found.
This is described in the documentation node for @TO saturate@.
SeeAlso
reesIdeal
reesAlgebra
isLinearType
isReduction
normalCone
multiplicity
specialFiberIdeal
specialFiber
analyticSpread
distinguished
minimalReduction
saturate
///
doc ///
Key
[reesIdeal, DegreeLimit]
[minimalReduction, DegreeLimit]
[distinguished,DegreeLimit]
[analyticSpread, DegreeLimit]
[specialFiber, DegreeLimit]
[normalCone, DegreeLimit]
[multiplicity, DegreeLimit]
[isReduction, DegreeLimit]
[isLinearType,DegreeLimit]
[reesAlgebra,DegreeLimit]
[specialFiberIdeal, DegreeLimit]
Headline
Bound the degrees considered in the saturation step. Defaults to infinity
Usage
reesIdeal(...,DegreeLimit => X)
Description
Text
where X is a non-negative integer. Stop computation at degree X.
This is described in the documentation node for @TO saturate@.
Here X is a positive integer. Each of these functions computes the Rees
Algebra using a saturation step, and the optional argument causes the saturation
process to stop after that number of s-pairs is found.
This is described in the documentation node for @TO saturate@.
SeeAlso
reesIdeal
reesAlgebra
isLinearType
isReduction
normalCone
multiplicity
specialFiberIdeal
specialFiber
analyticSpread
distinguished
minimalReduction
saturate
///
doc ///
Key
expectedReesIdeal
(expectedReesIdeal, Ideal)
(expectedReesIdeal, Module)
Headline
symmetric algebra ideal plus jacobian dual
Usage
J = expectedReesIdeal M
Inputs
M:Ideal
M:Module
Outputs
J:Ideal
Description
Text
Let M be an R-module with g generators and free presentation phi: R^h \to R^g. The symmetric algebra of M
can be written as R[T_1,\dots,T_g]/J, where J is the ideal generated by the entries of the 1 x h matrix
T*m, where T = (T_1..T_g). If the entries of m are all contained in an ideal (X_1..X_n) (for example, when
m is a minimal presentation and the X_i generate the maximal ideal, there is a matrix psi: R[Z]^h \to R[Z]^n
such that T*phi = X*psi. Under reasonable hypotheses (eg when R is a domain) the relation
X*psi = 0 in the Rees algebra implies that the n x n minors of psi are 0. Thus these minors lie in the ideal
defining the Rees algebra. The expectedReesIdeal is the sum of the ideals (T*phi) and the ideal of nxn minors of psi.
Under particularly good circumstances this sum is known to be equal to the ideal of the Rees algebra. More generally,
it may speed computations of @TO reesIdeal@ to start with this sum rather than with the ideal T*phi, as in the following
example. (This can be turned off with the Jacobian=>false option.)
The term 'Expected Rees Ideal' for the sum of
of the ideal of the symmetric algebra of I with
the ideal of maximal minors of the Jacobian dual matrix of a presentation of I
is derived from the paper
"Rees Algebras of Ideals of Low Codimension", Proc. Am. Math. Soc. 1996
of Colley and Ulrich. Building on the paper
"Ideals with Expected Reduction Number", Am. J. Math 1996,
they prove that this ideal is in fact equal to the
ideal of the Rees algebra of I when I is a codimension 2 perfect ideal whose
Hilbert-Burch matrix has a special form. See @TO jacobianDual@ for an example.
Example
setRandomSeed 0
n = 5
S = ZZ/101[x_0..x_(n-2)];
M1 = random(S^(n-1),S^{n-1:-2});
M = M1||vars S
I = minors(n-1, M);
time rI = expectedReesIdeal I; -- n= 5 case takes < 1 sec.
--time rrI = reesIdeal(I,I_0); -- n = 5 case ~20 sec
--time rrrI = reesIdeal I; -- n = 4 case > 1 minute; I didn't wait to see!
--assert(rI == (map(ring rI, ring rrI, vars ring rI)) rrI)
kk = ZZ/101;
S = kk[x,y,z];
m = random(S^3, S^{4:-2});
I = minors(3,m);
time reesIdeal (I, I_0);
time reesIdeal (I, I_0, Jacobian =>false);
SeeAlso
symmetricAlgebraIdeal
jacobianDual
///
///
///
///
uninstallPackage "ReesAlgebra"
restart
installPackage "ReesAlgebra"
check "ReesAlgebra"
viewHelp PlaneCurveSingularities
restart
loadPackage("ReesAlgebra", Reload=>true)
///
doc ///
Key
PlaneCurveSingularities
Headline
Using the Rees Algebra to resolve plane curve singularities
Description
Text
The Rees Algebra of an ideal I appeared classically as
the bihomogeneous coordinate ring of the
blow up of the ideal I, used in resolution of singularities. Though the general
case is still out of reach, we illustrate with some simple examples of plane
curve singularities.
First the cusp in the affine plane
Example
R = ZZ/32003[x,y]
cusp = ideal(x^2-y^3)
mm = radical ideal singularLocus cusp
Text
The cusp is singular at the maximal ideal (x,y), so we blow that up,
and examine the ``total transform'', that is, the ideal generated by the
x^2-y^3 in the Rees algebra.
Example
B = first flattenRing reesAlgebra(mm)
Text
Application of {\tt first flattenRing} serves to make B a quotient of the polynomial
ring T in 4 variables; otherwise it would be a quotient of R[w_0,w_1], which
Macaulay2 treats as a polynomial ring in 2 variables, and the calculation of
the singular locus later on would be wrong.
Example
vars B
proj = map(B,R,{x,y})
totalTransform = proj cusp
D = decompose totalTransform
D/codim
Text
We see that the reduced preimage consists of two codimension 1 components,
the `exceptional divisor', which is the pullback of the point we blew up, (x,y),
and the `strict transform'.
The two components meet in a double point in the 2 dimensional variety
B \subset{} A^2\times P^1. We have to saturate with respect to the irrelevant
ideal to understand what's going on.
Example
irrelB = ideal(B_0,B_1)
doublePoint = saturate(D_0+D_1, irrelB)
codim doublePoint
degree doublePoint
Text
We can see the multiplicities of these components by comparing their degrees to the
degrees of the reduced components
Example
divisors = primaryDecomposition totalTransform
strictTransform = divisors_0
exceptional = divisors_1
divisors/(i-> degree i/degree radical i)
Text
That is, the exceptional component occurs with multiplicity 2 (in general we'd
get the exceptional component with multiplicity equal to the multiplicity of the
singular point we blew up.)
We next investigate the singularity of the strict transform. We want to see
it as a curve in P^1 x A^2, that is, as an ideal of T = kk[w_0,w_1,x,y]
Example
T = ring ideal B
irrelT = ideal(w_0,w_1)
sing = saturate(ideal singularLocus strictTransform, irrelT)
Text
We see that the singular locus of the strict transform is empty; that is, the curve is smooth.
We could have made the computation in B as well:
Example
jacobianMatrix = diff(vars B, transpose gens strictTransform)
codim strictTransform
jacobianIdeal = strictTransform+ minors(1,jacobianMatrix)
sing1 = saturate(jacobianIdeal, irrelB)
Text
Next we look at the desingularization of a tacnode; it will take two blowups.
Example
R = ZZ/32003[x,y]
tacnode = ideal(x^2-y^4)
sing = ideal singularLocus tacnode
mm = radical sing
B1 = first flattenRing reesAlgebra mm
proj1 = map(B1,R,{x,y})
irrelB1 = ideal(w_0,w_1)
totalTransform1 = proj1 tacnode
netList (D1 = decompose totalTransform1)
strictTransform1 = saturate(totalTransform1,proj1 mm )
Text
Here proj1 mm is the ideal of the exceptional divisor.
The strict transform is, by definition, obtained by saturating it away,
The strict transform of the tacnode is not yet smooth: it consists of
two smooth branches, meeting transversely at a point:
Example
strictTransform1 == intersect(D1_1,D1_2)
degree (D1_1+D1_2)
Text
We compute the singular point of the strict transform:
Example
mm1 = sub(radical ideal singularLocus strictTransform1, B1)
Text
...and blow up B1, getting a variety in P^2 x P^1 x A^2
Example
B2 = first flattenRing reesAlgebra(mm1, Variable => p)
vars B2
proj2 = map(B2,B1,{w_0,w_1,x,y})
irrelB2 = ideal(p_0,p_1,p_2)
irrelTot = (proj2 irrelB1) *irrelB2
totalTransform2 = saturate(proj2 proj1 tacnode, irrelTot)
exceptional2 = saturate(proj2 proj1 mm, irrelTot)
netList(D2 = decompose totalTransform2)
netList(E2 = decompose exceptional2)
strictTransform2 = saturate(totalTransform2, exceptional2)
Text
We compute the singular locus once again:
Example
time sing2 = ideal singularLocus strictTransform2;
saturate(sing2, sub(irrelTot, ring sing2))
Text
The answer, {\tt ideal 1} shows that the second blowup desingularizes the tacnode.
Text
It is not necessary to repeatedly blow up closed points: there is always a
single ideal that can be blown up to desingularize
(Hartshorne, Algebraic Geometry,Thm II.7.17).
In this case, blowing-up (x,y^2) desingularizes the tacnode x^2-y^4 in a single step.
Example
R = ZZ/32003[x,y];
tacnode = ideal(x^2-y^4);
mm = ideal(x,y^2);
B = first flattenRing reesAlgebra mm;
irrelB = ideal(w_0,w_1);
proj = map(B,R,{x,y});
totalTransform = proj tacnode
netList (D = decompose totalTransform)
exceptional = proj mm
strictTransform = saturate(totalTransform, exceptional);
netList decompose strictTransform
sing0 = sub(ideal singularLocus strictTransform, B);
sing = saturate(sing0,irrelB)
Text
So this single blowup is already nonsingular.
///
///
uninstallPackage "ReesAlgebra"
restart
installPackage "ReesAlgebra"
check "ReesAlgebra"
viewHelp ReesAlgebra
///
-----TESTS-----
TEST///
--TEST for jacobianDual
setRandomSeed 0
d=2
S = ZZ/101[a_0..a_(d-1)]
kk = ZZ/101
mlin = transpose vars S
mquad = random(S^d, S^{-1,-4,d-2:-2})
Irand = minors(d,mlin|mquad)
X = vars S
phi = syz gens Irand;
psi = jacobianDual phi
T = symbol T
ST = kk[T_0..T_d, x_0..x_(d-1)]
X = matrix{toList(x_0..x_(d-1))}
Ts = matrix{{T_0,T_1..T_d}}
phi1 = (map(ST,S,X)) phi
psi1 = jacobianDual(phi1, X, Ts)
f = map(ST, ring psi, vars ST)
assert(f psi - psi1 == 0)
m = matrix {{-15*T_1-8*T_2, T_0*x_0^3+14*T_0*x_0*x_1^2-24*T_0*x_1^3+18*T_2},
{T_0*x_0^3-16*T_0*x_0^2*x_1+2*T_0*x_0*x_1^2+32*T_0*x_1^3+45*T_1+40*T_2,
-11*T_0*x_1^3-11*T_1+43*T_2}}
f psi - m
///
TEST///
--test for expectedReesIdeal
setRandomSeed 0
n = 3
S = ZZ/101[x_0..x_(n-2)];
M1 = random(S^(n-1),S^{n-1:-2});
M = M1||vars S
I = minors(n-1, M);
time rI = expectedReesIdeal I
time rrI = reesIdeal I;
time rrI = reesIdeal(I,I_0); -- ~20 sec
assert(betti rrI == betti rI)
///
///
restart
uninstallPackage "ReesAlgebra"
installPackage "ReesAlgebra"
check "ReesAlgebra"
///
TEST///
--TEST for versalEmbedding
p=3
S=ZZ/p[x,y,z]
R=S/((ideal(x^p,y^p))+(ideal(x,y,z))^(p+1))
i=module ideal(z)
ui=versalEmbedding i
assert(kernel ui == ideal(0_R))
inci=map(R^1,i,matrix{{z}})
assert(kernel inci == 0)
gi=map(R^2, i, matrix{{x},{y}})
assert(kernel gi == 0)
u= map(R^3,R^{-1},ui)
inc=map(R^1, R^{-1}, matrix{{z}})
g=map(R^2, R^{-1}, matrix{{x},{y}})
A=symmetricKernel u
B1=symmetricKernel inc
B=(map(ring A, ring B1)) B1
C1 = symmetricKernel g
C=(map(ring A, ring C1)) C1
assert((A==B)==true)
assert((A==C)==false)
///
--- A very basic tests of reesIdeal - a few more after this.
TEST///
S=ZZ/101[x,y]
i=ideal"x5,y5, x3y2"
V1 = reesIdeal(i)
use ring V1
assert(V1 == ideal(x^2*w_1-y^2*w_2,y*w_1^2-x*w_0*w_2,x^3*w_0-y^3*w_1,x*w_1^3-y*w_0*w_2^2,w_1^5-w_0^2*w_2^3))
V2 = reesIdeal(i,i_0)
use ring V2
assert(V2 == ideal(x^2*w_1-y^2*w_2,y*w_1^2-x*w_0*w_2,x^3*w_0-y^3*w_1,x*w_1^3-y*w_0*w_2^2,w_1^5-w_0^2*w_2^3))
///
-- 3 very simple tests. The first tests just reesIdeal, the second
-- just reesAlgebra and the third tests both.
TEST///
S = ZZ/101[x,y]
M = module ideal(x,y)
V = reesIdeal M
use ring V
assert(V == ideal (-w_0*y+w_1*x))
use S
M = module (ideal(x,y))^2
R = reesAlgebra M
assert(numgens R + numgens coefficientRing R == 5)
use ambient R
assert(ideal R == ideal (-w_1*y+w_2*x, -w_0*y + w_1*x, w_1^2 - w_0*w_2))
use S
M = module (ideal (x,y))^3
V = reesIdeal M
use ring V
assert(V == ideal (-w_2*y+w_3*x,-w_1*y+w_2*x,-w_0*y+w_1*x,w_2^2-w_1*w_3,w_1*w_2-w_0*w_3,w_1^2-w_0*w_2))
R = reesAlgebra M
assert(numgens R + numgens coefficientRing R == 6)
use ambient R
assert(ideal R == ideal (-w_2*y+w_3*x,-w_1*y+w_2*x,-w_0*y+w_1*x,w_2^2-w_1*w_3,w_1*w_2-w_0*w_3,w_1^2-w_0*w_2))
///
--- Checking that the two methods for getting a Rees Ideal yields the
--- same answer. This is now an example as well.
TEST///
x = symbol x
S=ZZ/101[x_0..x_4]
i=monomialCurveIdeal(S,{4,5,6,7})
M1 = gens gb reesIdeal i;
M2 = gens gb reesIdeal(i,i_0);
M1 = substitute(M1, ring M2);
assert(M2 == M1)
///
///
restart
loadPackage ("ReesAlgebra", Reload =>true)
S=ZZ/101[x_0..x_4]
i=monomialCurveIdeal(S,{5,8,9,11})
time M1 = gens gb reesIdeal i;
time M2 = gens gb reesIdeal(i,i_0);
time M3 = gens gb reesIdeal(i,i_0, Strategy => Bayer);
time M4 = gens gb reesIdeal(i, Strategy => Bayer);
M1 = substitute(M1, ring M2);
M4 = substitute(M4, ring M2);
assert(M2 == M1)
assert(M2 == M4)
///
--- Testing analyticSpread
TEST ///
R=QQ[a,b,c,d,e,f]
M=matrix{{a,c,e},{b,d,f}}
assert(analyticSpread image M == 3)
///
---Testing specialFiberIdeal
TEST///
R=ZZ/23[a,b,c,d]
msq=ideal(a^2, a*b, b^2,a*c,b*c, c^2,a*d, b*d, c*d, d^2)
sfi=specialFiberIdeal(msq)
S=ring sfi
T=ZZ/23[S_0,S_1,S_2,S_3,S_4,S_5,S_6,S_7,S_8,S_9]
M=matrix{{S_0,S_1,S_3,S_6},{S_1,S_2,S_4,S_7},{S_3,S_4,S_5,S_8},{S_6,S_7,S_8,S_9}}
i=minors(2,M)
assert(sfi == i)
///
---Testing minimalReduction, isReduction, reductionNumber
TEST///
S = ZZ/5[x,y]
I = ideal(x^3,x*y,y^4)
J = ideal(x*y, x^3+y^4)
assert(isReduction(I,J)==true)
assert(isReduction(J,I)==false)
K= minimalReduction I
assert(reductionNumber(I,J)==1)
assert(isReduction(I,K)==true)
assert(reductionNumber(I,K)==1)
///
--testing multiplicity
TEST///
R=ZZ/101[x,y]
I = ideal(x^3, x^2*y, y^3)
assert(multiplicity I==9)
R = ZZ/101[x,y]/ideal(x^3-y^3)
I = ideal(x^2,y^2)
assert(multiplicity I==6)
///
--Testing which Gm
TEST///
kk=ZZ/101;
S=kk[a..c];
m=ideal vars S
i=(ideal"a,b")*m+ideal"c3"
assert(whichGm i==3)
///
TEST///
--Test for isLinearType
S = ZZ/101[x,y]
M = module ideal(x,y)
E = {true, false, false, false, false}
assert({true, false, false, false, false} ==
for p from 1 to 5 list(isLinearType (ideal vars S)^p))
///
TEST///
--Associated Graded ring and Normal Cone very basic test
R=ZZ/23[x]
I=ideal(x)
A=associatedGradedRing I
S=ring ideal A
assert(dim S==2)
assert(codim A==1)
N=normalCone I
s=ring ideal N
assert(dim s==2)
assert(codim N==1)
///
TEST///
--Test for distinguished
R=ZZ/101[x,y,u,v]
I=ideal(x^2, x*y*u^2+2*x*y*u*v+x*y*v^2,y^2)
p = map(R/I,R)
assert(distinguished I == {{2, p ideal(x,y)}})
///
TEST///
kk = ZZ/101
S = kk[x,y]
I = ideal"x2y";J=ideal"xy2"
assert(intersectInP(I,J) == {{5, ideal (y, x)}, {2, ideal y}, {2, ideal x}})
I = ideal"y-x2";J=ideal y
assert(intersectInP(I,J) == {{2, ideal (y, x)}})
///
TEST///
--Test for symmetricAlgebraIdeal
R=ZZ/101[x,y,u,v]
I=ideal vars R
J = symmetricAlgebraIdeal I
S = ring J
m = promote(vars R,S)||vars S
assert(J == minors(2,m))
///
end--
restart
uninstallPackage "ReesAlgebra"
restart
installPackage "ReesAlgebra"
check "ReesAlgebra"
viewHelp ReesAlgebra
----
|