1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
|
-*
Copyright 2020 Lars Winther Christensen, Luigi Ferraro, Francesca
Gandini, Frank Moore, and Oana Veliche.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
newPackage ( "ResLengthThree",
Version => "1.0",
Date => "3 December 2020",
Authors => {
{ Name => "Lars Winther Christensen",
Email => "lars.w.christensen@ttu.edu",
HomePage => "http://www.math.ttu.edu/~lchriste/index.html" },
{ Name => "Luigi Ferraro",
Email => "lferraro@ttu.edu",
HomePage => "http://www.math.ttu.edu/~lferraro" },
{ Name => "Francesca Gandini",
Email => "fra.gandi.phd@gmail.com",
HomePage => "https://github.com/fragandi" },
{ Name => "Frank Moore",
Email => "moorewf@wfu.edu",
HomePage => "http://users.wfu.edu/moorewf/" },
{ Name => "Oana Veliche",
Email => "o.veliche@northeastern.edu",
HomePage => "https://web.northeastern.edu/oveliche/index.html" }
},
Headline => "Multiplication in free resolutions of length three",
Reload => false,
DebuggingMode => false,
Keywords => { "Homological Algebra" }
)
export { "resLengthThreeAlg", "resLengthThreeTorAlg", "multTableOneOne", "multTableOneTwo",
"resLengthThreeTorAlgClass", "makeRes", "Labels", "Compact" }
--==========================================================================
-- EXPORTED FUNCTIONS
--==========================================================================
resLengthThreeAlg = method()
resLengthThreeAlg(ChainComplex, List) := (F, sym) -> (
if F.cache#?"Algebra Structure" then return F.cache#"Algebra Structure";
if length F != 3 then
error "Expected a chain complex of length three which is free of rank one in degree zero.";
if #sym != 3 or any(sym, s -> (class baseName s =!= Symbol)) then
error "Expected a list of three symbols.";
mult := multTables(F);
Q := ring F;
m := numcols F.dd_1;
l := numcols F.dd_2;
n := numcols F.dd_3;
degreesP := if isHomogeneous F then
flatten apply(3, j -> apply(degrees source F.dd_(j+1), d -> {j+1} | d))
else
flatten apply(3, j -> apply(degrees source F.dd_(j+1), d -> {0} | d));
skewList := toList((0..(m-1)) | ((m+l)..(m+l+n-1)));
e := baseName (sym#0);
f := baseName (sym#1);
g := baseName (sym#2);
-- use this line if you want to ensure that 'basis' works properly on the returned ring.
--P := first flattenRing (Q[e_1..e_m,f_1..f_l,g_1..g_n,SkewCommutative=>skewList, Degrees => degreesP, Join => false]);
P := Q[e_1..e_m,f_1..f_l,g_1..g_n,SkewCommutative=>skewList, Degrees => degreesP, Join => false];
eVector := matrix {apply(m, i -> P_(i))};
fVector := matrix {apply(l, i -> P_(m+i))};
gVector := matrix {apply(n, i -> P_(m+l+i))};
eeGens := flatten entries (matrix {flatten entries (-((transpose eVector) * eVector))} - fVector*(mult#0));
efGens := flatten entries (matrix {flatten entries (((transpose eVector) * fVector))} - gVector*(mult#1));
I := (ideal eeGens) +
(ideal efGens) +
(ideal apply(m..(m+l-1), i -> P_i))^2 +
(ideal apply(0..(m-1), i -> P_i))*(ideal apply((m+l)..(m+l+n-1), i -> P_i)) +
(ideal apply(m..(m+l-1), i -> P_i))*(ideal apply((m+l)..(m+l+n-1), i -> P_i)) +
(ideal apply((m+l)..(m+l+n-1), i -> P_i))^2;
I = ideal mingens I;
A := P/I;
A.cache#"l" = l;
A.cache#"m" = m;
A.cache#"n" = n;
F.cache#"Algebra Structure" = A;
A
)
resLengthThreeAlg( ChainComplex ) := (F) -> (
resLengthThreeAlg(F, {getSymbol "e", getSymbol "f", getSymbol "g" })
)
resLengthThreeTorAlg = method()
resLengthThreeTorAlg(ChainComplex,List) := (F,sym) -> (
if F.cache#?"Tor Algebra Structure" then return F.cache#"Tor Algebra Structure";
A := resLengthThreeAlg(F,sym);
P := ambient A;
Q := ring F;
kk := coefficientRing first flattenRing Q;
PP := kk monoid P;
I := ideal mingens sub(ideal A, PP);
B := PP/I;
B.cache#"l" = A.cache#"l";
B.cache#"m" = A.cache#"m";
B.cache#"n" = A.cache#"n";
F.cache#"Tor Algebra Structure" = B;
B
)
resLengthThreeTorAlg( ChainComplex ) := (F) -> (
resLengthThreeTorAlg(F, {getSymbol "e", getSymbol "f", getSymbol "g" })
)
makeRes = (d1,d2,d3) -> (
-- first check that the differentials are ok
if ( (image matrix entries gens ker d1) != image matrix entries gens image d2 or
(image matrix entries gens ker d2) != image matrix entries gens image d3 or
ker d3 !=0) then error "Expected differentials of resolution of length three";
-- to build the maps correctly, what you should do is:
-- map(R^{degrees} (target), R^{degrees} (source),
F := new ChainComplex;
F.ring = ring d1;
F#0 = target d1;
F#1 = source d1; F.dd#1 = d1;
F#2 = source d2; F.dd#2 = d2;
F#3 = source d3; F.dd#3 = d3;
F#4 = (F.ring)^{}; F.dd#4 = map(F#3,F#4,0);
F
)
multTableOneOne = method(Options => {Labels => true, Compact => false})
multTableOneOne(Ring) := opts -> A -> (
if not (A.cache#?"l" and A.cache#?"m" and A.cache#?"n") then
error "Expected an algebra created with a resLengthThree routine.";
l := A.cache#"l";
m := A.cache#"m";
n := A.cache#"n";
eVector := matrix {apply(m, i -> A_i)};
oneTimesOneA := table(m,m, (i,j) -> if i <= j then (A_i)*(A_j) else if opts.Compact then "." else (A_i)*(A_j));
topLine := {{" "} | flatten entries eVector};
sideLine := entries transpose eVector;
result := (topLine | apply(sideLine,oneTimesOneA, (i,j) -> i | j));
if (opts.Labels) then result else oneTimesOneA
)
multTableOneTwo = method(Options => { Labels => true} )
multTableOneTwo(Ring) := opts -> A -> (
if not (A.cache#?"l" and A.cache#?"m" and A.cache#?"n") then
error "Expected an algebra created with a resLengthThree routine.";
l := A.cache#"l";
m := A.cache#"m";
n := A.cache#"n";
eVector := matrix {apply(m, i -> A_i)};
fVector := matrix {apply(l, i -> A_(m+i))};
oneTimesTwoA := matrix table(m,l,(i,j) -> (A_i)*(A_(m+j)));
-- put on the row and column labels for fun
result := matrix entries ((matrix {{0}} | fVector) || ((transpose eVector) | oneTimesTwoA));
if (opts.Labels) then entries result else entries oneTimesTwoA
)
resLengthThreeTorAlgClass = method()
resLengthThreeTorAlgClass ChainComplex := F -> (
A := resLengthThreeTorAlg(F);
p := rank multMap(A,1,1);
q := rank multMap(A,1,2);
r := rank homothetyMap(A,2,1);
tau := first tauMaps(A,1,1,1);
if (p >= 4 or p == 2) then
return ("H(" | p | "," | q | ")")
else if (p == 3) then
(
if (q > 1) then return ("H(" | p | "," | q | ")")
else if (q == 1 and r != 1) then return "C(3)"
else if (q == 0 and tau == 0) then return ("H(" | p | "," | q | ")")
else return "T";
)
else if (p == 1) then
(
if (q != r) then return "B"
else return ("H(" | p | "," | q | ")");
)
else if (p == 0) then
(
if (q != r) then return ("G(" | r | ")")
else return ("H(" | p | "," | q | ")");
);
)
resLengthThreeTorAlgClass Ideal := I -> (
resLengthThreeTorAlgClass res I
)
--======================================================================
-- INTERNAL FUNCTIONS
--======================================================================
multTables = F -> (
Q := ring F;
d1:= matrix entries F.dd_1;
d2:= matrix entries F.dd_2;
d3:= matrix entries F.dd_3;
m := numcols d1;
l := numcols d2;
n := numcols d3;
multEE := (matrix entries (d1**(id_(source d1)) - (id_(source d1))**d1)) // d2;
multEF := (matrix entries (d1**(id_(source d2)) - multEE * (id_(source d1)**d2))) // d3;
{multEE,multEF}
)
multMap = method()
multMap(Ring, ZZ, ZZ) := (A,m,n) -> (
Abasism := basis(m,A);
Abasisn := basis(n,A);
AbasismPlusn := basis(m+n,A);
AmTimesAn := matrix {flatten entries ((transpose Abasism) * Abasisn)};
sub(last coefficients(AmTimesAn, Monomials=>AbasismPlusn), coefficientRing A)
)
multMap(RingElement,ZZ) := (f,m) -> (
-- returns the matrix of left multiplication by f
A := ring f;
n := first degree f;
Abasism := basis(m,A);
AbasismPlusn := basis(m+n,A);
fTimesAbasism := f*Abasism;
sub(last coefficients(fTimesAbasism, Monomials=>AbasismPlusn), coefficientRing A)
)
homothetyMap = method()
homothetyMap(Ring,ZZ,ZZ) := (A,m,n) -> (
Abasism := basis(m,A);
homothetyList := apply(flatten entries Abasism, f -> transpose matrix {flatten entries multMap(f,n)});
matrix {homothetyList}
)
tauMaps = method()
tauMaps(Ring,ZZ,ZZ,ZZ) := (A,l,m,n) -> (
kk := coefficientRing A;
multMaplm := multMap(A,l,m);
multMapmn := multMap(A,m,n);
Al := kk^(numcols basis(l,A));
An := kk^(numcols basis(n,A));
lTensmn := (id_Al) ** multMapmn;
lmTensn := multMaplm ** (id_An);
psi := matrix {{lTensmn},{lmTensn}};
{rank lTensmn + rank lmTensn - rank psi,lTensmn, lmTensn, psi}
)
--===================================================================================================
-- TESTS
--===================================================================================================
TEST ///
Q = QQ[x,y,z];
F = res ideal (x*y, y*z, x^3, y^3-x*z^2,x^2*z,z^3);
G = resLengthThreeAlg F;
assert ( e_1*e_2 == y*f_1 )
assert ( e_1*f_4 == -x*g_1 )
///
TEST ///
Q = QQ[x,y,z];
F = res ideal (x*y, y*z, x^3, y^3-x*z^2,x^2*z,z^3);
G = resLengthThreeAlg F
assert ( e_1*e_2 == y*f_1 )
assert ( e_1*f_4 == -x*g_1 )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^2,x*y,z^2,y*z,z^2)
assert( resLengthThreeTorAlgClass I === "B" )
///
TEST ///
Q = QQ[u,v,w,x,y,z]
I = ideal (u*v,w*x,y*z)
assert( resLengthThreeTorAlgClass I === "C(3)" )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^3,x^2*z,x*(z^2+x*y),z^3-2*x*y*z,y*(z^2+x*y),y^2*z,y^3)
assert( resLengthThreeTorAlgClass I === "G(7)" )
///
TEST ///
Q = QQ[u,v,w,x,y,z]
I = ideal(x*y^2,x*y*z,y*z^2,x^4-y^3*z,x*z^3-y^4)
assert( resLengthThreeTorAlgClass I === "G(2)" )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^2,x*y^2)*ideal(y*z,x*z,z^2)
assert( resLengthThreeTorAlgClass res I === "H(0,0)" )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^2,x*y^2)*ideal(y*z,x*z,z^2)
assert( resLengthThreeTorAlgClass I === "H(0,0)" )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^3,y^3,z^3,x*y*z)
assert( resLengthThreeTorAlgClass I === "T" )
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x^5,y^5,x*y^4,x^2*y^3,x^3*y^2,x^4*y,z^3)
assert( resLengthThreeTorAlgClass I === "H(6,5)" )
///
TEST ///
Q = QQ[x,y,z]
d1 = matrix{{-x^2,z^2-x*y,-y^2,-x*z,-y*z}}
d2 = matrix{{0,0,z,0,-y},{0,0,0,-y,x},{-z,0,0,x,0},{0,y,-x,0,z},{y,-x,0,-z,0}}
d3 = transpose d1
F = makeRes(d1,d2,d3)
A = resLengthThreeAlg F
assert(e_2*e_4===y*f_3+z*f_5)
assert(e_1*e_2===-z*f_3-x*f_5)
assert(e_3*e_5===-y*f_1)
T = resLengthThreeTorAlg F
assert(e_2*e_4===sub(0,T))
assert(e_1*e_2===sub(0,T))
assert(e_3*e_5===sub(0,T))
///
TEST ///
Q = QQ[x,y,z]
I = ideal(x*y, y*z, x^3, y^3-x*z^2,x^2*z, z^3)
G = resLengthThreeAlg res I
assert( e_1*e_2 == y*f_1 )
assert( e_1*e_3 == x*f_2 )
assert( e_1*e_4 == -x*z*f_1 + y*f_3 - z*f_5 )
assert( e_1*e_5 == x^2*f_1 + x*f_5 )
assert( e_1*e_6 == z^2*f_1 + x*f_7 )
assert( e_1*f_1 == 0 )
assert( e_1*f_2 == 0 )
assert( e_1*f_3 == 0 )
assert( e_1*f_4 == -x*g_1 )
assert( e_1*f_5 == 0 )
assert( e_1*f_6 == g_2 )
assert( e_1*f_7 == 0 )
///
--==========================================================================
-- DOCUMENTATION
--==========================================================================
beginDocumentation()
document{
Key => {ResLengthThree},
Headline => "Computation of multiplicative structures on free resolutions of length three",
PARA { "Let ", EM "I ", " be a homogeneous ideal contained in the
irrelevant maximal ideal of a graded ring ", EM "Q ", "
(obtained as a quotient of a polynomial ring). If the length of
the minimal free resolution ", EM "F ", " of ", TEX /// $R=Q/I$
///, " is 3, then the resolution admits the structure of a differential
graded algebra. The induced algebra structure on ", TEX /// $A =
Tor^Q(R,k)$ ///, " is unique and provides for a classification
of such quotient rings. The package determines a multiplicative
structure on the free resolution ", EM "F ", " as well as the
unique induced structure on ", EM "A ", "and the class of the
quotient ", EM "R ", "according to the classification scheme
of ", HREF{"https://doi.org/10.1016/0021-8693(88)90056-7","Avramov, Kustin, and Miller"},"." }
}
document{
Key => {
resLengthThreeAlg, (resLengthThreeAlg, ChainComplex ), (resLengthThreeAlg, ChainComplex, List )
},
Headline => "the minimal free resolution presented as a graded-commutative ring",
Usage => "resLengthThreeAlg F, resLengthThreeAlg(F,L)",
Inputs =>{
"F" => ChainComplex => "a length three free resolution of a cyclic module",
"L" => List => "of three symbols"
},
Outputs => {
QuotientRing => "the resolution presented as a quotient of a graded-commutative free algebra
over the ambient ring"},
PARA { "For a free resolution ", TT "F", " over a ring ", TT "Q", ", the function returns
the resolution ", TT "F", " as a quotient of a graded-commutative free algebra
over ", TT "Q", ". The basis vectors in degrees 1, 2, and 3 are named with the
symbols from the list ", TT "L", ". The default symbols are ", TT "e", ", ", TT "f", ", and ", TT "g", "." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"describe A",
"e_1*e_2",
"e_1*f_2",
"e_1*f_3",
"f_1*f_2",
},
PARA { "The ambient ring ", TT "Q", " does not need to be a polynomial algebra." },
EXAMPLE {
"P = QQ[u,v,x,y,z];",
"Q = P/ideal(u^2,u*v);",
"F = resLengthThreeAlg ( res ideal (x^2,x*y,y^2,z^2), {a,b,c} )",
"describe F",
},
PARA { },
EXAMPLE {
"P = QQ[u,v];",
"Q = (P/ideal(u^2,u*v))[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,x*y,y^2,z^2)",
"describe A",
},
PARA { },
EXAMPLE {
"P = ZZ[x,y,z];",
"Q = P/ideal(4_P);",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"describe A"
},
Caveat => { "The ambient ring ", TT "Q ", "must be homogeneous." }
}
document{
Key => {
resLengthThreeTorAlg, (resLengthThreeTorAlg, ChainComplex ), (resLengthThreeTorAlg, ChainComplex, List )
},
Headline => "the Tor algebra presented as a graded-commutative ring",
Usage => "resLengthThreeTorAlg F, resLengthThreeTorAlg(F,L)",
Inputs =>{
"F" => ChainComplex => "a length three free resolution of a cyclic module",
"L" => List => "of three symbols"
},
Outputs => {
QuotientRing => "the Tor algebra presented as a quotient of a graded-commutative free algebra
over the residue field of the ambient ring"},
PARA { "For a free resolution ", TT "F", " over a ring ", TT "Q", ", the function returns
the algebra ", TEX /// $Tor^Q(R,k)$ ///, " as a quotient of a graded-commutative free algebra
over the residue field of ", TT "Q", ". The basis vectors in degrees 1, 2, and 3 are named with the
symbols from the list ", TT "L", ". The default symbols are ", TT "e", ", ", TT "f", ", and ", TT "g", "." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeTorAlg res ideal (x^2,y^2,z^2)",
"describe A",
"e_1*e_2",
"e_1*f_2",
"e_1*f_3",
"f_1*f_2",
},
PARA { "The ambient ring ", TT "Q", " does not need to be a polynomial algebra." },
EXAMPLE {
"P = QQ[u,v,x,y,z];",
"Q = P/ideal(u^2,u*v);",
"A = resLengthThreeTorAlg ( res ideal (x^2,x*y,y^2,z^2), {a,b,c} )",
"describe A",
},
PARA { },
EXAMPLE {
"P = QQ[u,v];",
"Q = (P/ideal(u^2,u*v))[x,y,z];",
"A = resLengthThreeTorAlg ( res ideal (x^2,x*y,y^2,z^2), {a,b,c} )",
"describe A",
},
Caveat => { "For the function to return an algebra over the residue
field of the ambient ring ", TT "Q ", "that ring must a homogeneous
quotient of a polynomial algebra over a field."},
}
document{
Key => {
multTableOneOne, (multTableOneOne, Ring)
},
Headline => "the multiplication table for products of elements in degree one",
Usage => "multTableOneOne A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table; use ", TO netList, " to display it as a table" }
},
PARA { "For a free resolution of length three described as a
graded-commutative ring ", TT "A", ", the function returns a list of
the rows of the multiplication table of elements in degree one. It also computes
the multiplication table for products of elements in degree one in the
graded-commutative homology algebra obtained from
", TT "A", "." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"multTableOneOne A",
"netList multTableOneOne A"
},
}
document{
Key => {
[multTableOneOne, Labels],
},
Headline => "an optional argument for multTableOneOne determining whether to label rows and columns",
Usage => "multTableOneOne A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table; use ", TO netList, " to display it as a table" }
},
PARA { "The default value of ", TO Labels, " is ", TO true, ". Changing the value to ", TO false, " removes the row and column labels." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"netList multTableOneOne (A, Labels => false)",
},
}
document{
Key => {
[multTableOneOne, Compact], Compact
},
Headline => "an optional argument for multTableOneOne that prints dots below the diagonal" ,
Usage => "multTableOneOne A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table; use ", TO netList, " to display it as a table" }
},
PARA { "The default value of ", TO Compact, " is ", TO false, ". Changing the value to ", TO true, " saves space by printing dots for the products ", TEX /// $e_ie_j$ ///, " for ", TEX /// $i>j$ /// },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"multTableOneOne (A, Compact => true)",
"netList multTableOneOne(A, Compact => true)",
},
}
document{
Key => {
multTableOneTwo, (multTableOneTwo, Ring)
},
Headline => "the multiplication table for products of elements in degree one with elements in degree two",
Usage => "multTableOneTwo A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table; use ", TO netList, " to display it as a table" }
},
PARA { "For a free resolution of length three described as a
graded-commutative ring ", TT "A", ", the function returns a list of
the rows of the multiplication table of elements in degree one with elements in degree two.
It also computes
the multiplication table for products of elements in degree one with elements in degree two
in the graded-commutative homology algebra obtained from
", TT "A", "." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"multTableOneTwo A",
"netList multTableOneTwo A"
},
}
document{
Key => {
Labels
},
Headline => "an optional argument for multTableOneOne and MultTableOneTwo determining whether to label rows and columns",
Usage => "multTableOneOne A", "multTableOneTwo A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table, use ", TO netList, " to display it as a table" }
},
PARA { "The default value of ", TO Labels, " is ", TO true, ". Changing the value to ", TO false, " removes the row and column labels." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"netList multTableOneOne (A, Labels => false)",
"netList multTableOneTwo (A, Labels => false)",
},
}
document{
Key => {
[multTableOneTwo, Labels],
},
Headline => "an optional argument for multTableOneTwo determining whether to label rows and columns",
Usage => "multTableOneTwo A",
Inputs =>{
"A" => Ring => { "created with ", TO resLengthThreeAlg, " or ", TO resLengthThreeTorAlg }
},
Outputs => {
List => { "of the rows in the multiplication table. Use ", TO netList, " to display it as a table" }
},
PARA { "The default value of ", TO Labels, " is ", TO true, ". Changing the value to ", TO false, " removes the row and column labels." },
EXAMPLE {
"Q = QQ[x,y,z];",
"A = resLengthThreeAlg res ideal (x^2,y^2,z^2)",
"netList multTableOneTwo (A, Labels => false)",
},
}
document{
Key => {
resLengthThreeTorAlgClass, (resLengthThreeTorAlgClass, ChainComplex),(resLengthThreeTorAlgClass, Ideal),
},
Headline => "the class (w.r.t. multiplication in homology) of an ideal",
Usage => "resLengthThreeTorAlgClass F",
Inputs =>{
"F" => ChainComplex => { "a length three free resolution of a cyclic module" } ,
"I" => Ideal => {"an ideal of codepth 3"},
},
Outputs => {
String => { "the (parametrized) class of the ideal I"}
},
PARA { "Classifies the ideal ", TEX /// $I$ ///, " as belonging to one of the (parametrized) classes ", BOLD /// B ///,", ",BOLD /// C///,"(c), ",BOLD /// G///,"(r), ",BOLD ///H///,"(p,q) ,
", BOLD ///T///,", provided that it is codepth 3." },
EXAMPLE {
"Q = QQ[x,y,z];",
"resLengthThreeTorAlgClass ideal (x*y,x^2,y*z,z^2)",
"resLengthThreeTorAlgClass ideal (x^2,y^2,z^2)",
"resLengthThreeTorAlgClass ideal (x*y,y*z,x^3,x^2*z,x*z^2-y^3,z^3)",
"resLengthThreeTorAlgClass ideal (x*z+y*z,x*y+y*z,x^2-y*z,y*z^2+z^3,y^3-z^3)",
"resLengthThreeTorAlgClass ideal (x^2,y^2,z^2,x*z)",
"resLengthThreeTorAlgClass ideal (x^2,y^2,z^2,x*y*z)",
},
Caveat => { "The codepth of the ideal ", TEX///I///," must be exactly 3, and the length of the complex ",TEX///F///,
" must be exactly 3."},
}
document{
Key => {
makeRes,
},
Headline => "creates a resolution starting from three matrices",
Usage => "makeRes(d1,d2,d3)",
Inputs =>{
"d1" => Matrix => {"of the differential in degree 1"} ,
"d2" => Matrix => {"of the differential in degree 2"},
"d3" => Matrix => {"of the differential in degree 3"},
},
Outputs => {
ChainComplex => { "the resolution with differentials d1, d2, d3."}
},
PARA { "Creates a resolution of length 3 that has the given three matrices as differentials." },
EXAMPLE {
"Q = QQ[x,y,z];",
"d1=matrix{{-x^2,z^2-x*y,-y^2,-x*z,-y*z}}",
"d2=matrix{{0,0,z,0,-y},{0,0,0,-y,x},{-z,0,0,x,0},{0,y,-x,0,z},{y,-x,0,-z,0}}",
"d3=transpose d1",
"makeRes(d1,d2,d3)",
},
}
end
--==========================================================================
-- end of package code
--===============================d===========================================
uninstallPackage "ResLengthThree"
restart
installPackage "ResLengthThree"
debug loadPackage "ResLengthThree"
check "ResLengthThree"
viewHelp "ResLengthThree"
|