1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
-*
Copyright 2020, 2020 Ashleigh Adams.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
---------------------------------------
newPackage(
"ResolutionsOfStanleyReisnerRings",
Version => "0.1",
Date => "July 15, 2020",
Authors => {{Name => "Ashleigh Adams", Email => "adams869@umn.edu", HomePage => "http://www.ashleigh-adams.com"}},
Headline => "Comparing resolutions of Stanley-Reisner rings and computing various systems of parameters",
PackageExports => {"SimplicialComplexes", "Posets", "SimplicialDecomposability"},
Keywords => { "Combinatorial Commutative Algebra" },
DebuggingMode => false
)
-------------------
-- Exports
-------------------
export {"colorfulSOP","universalSOP","colorfulPresentation","universalPresentation","sumBetti","equalBettiTally"}
-------------------
-- Exported Code
-------------------
-----------------------------------------
--Barycentric Subdivision-
-----------------------------------------
-- the 'barycentricSubdivision' method is defined in 'SimplicialComplexes'
barycentricSubdivision (SimplicialComplex) := D -> (
orderComplex(facePoset(D),CoefficientRing=>coefficientRing(ring(D)))
);
barycentricSubdivision (List) := F -> (
D := simplicialComplex(F);
orderComplex(facePoset(D),CoefficientRing=>coefficientRing(ring(D)))
);
---------------------------------------------------
--Non-exported code for Colorful Version
---------------------------------------------------
-- Used in balancedColoring function, it returns the color of a vertex
vertexColor = (a,colors) -> (
return position(toList(colors), c -> member(a,c));
);
-----------------------------------------
--Colorful System of Parameters
-----------------------------------------
colorfulSOP = method(TypicalValue => List)
colorfulSOP (SimplicialComplex,ZZ) := (B,n) -> (
R := ring(B);
colors := new MutableList from splice { dim(B)+1:{} };
H := gens R;
colors#0 = H_{1..n};
ColorsNotAllowed := {0};
AlreadyColored := splice{1..#colors#0};
NotColored := splice{#colors#0+1..#faces(0,B)};
--Gives a proper coloring to the graph of B
for i from 1 to #colors#0 do (
for c in NotColored do (
if isSubset({R_i*R_c}, faces(1,B)) then (
for a in AlreadyColored do (
if isSubset({R_c*R_a}, faces(1,B)) then (
ColorOfVertA := vertexColor(R_a,colors);
if not member(ColorOfVertA,ColorsNotAllowed) then (
ColorsNotAllowed = append(ColorsNotAllowed,ColorOfVertA);
);
);
);
);
m := max(ColorsNotAllowed) + 1;
colors#m = append(colors#m,R_c);
AlreadyColored = append(AlreadyColored,c);
NotColored = delete(c,NotColored);
);
);
colors = apply(colors, c->sum(c));
return toList(colors);
);
colorfulSOP (SimplicialComplex) := (D) -> (
B0 := barycentricSubdivision(D);
R := ring(B0);
B := faceDelete(R_0,B0);
n := #faces(0,D);
colors := new MutableList from splice { dim(B)+1:{} };
H := gens R;
colors#0 = H_{1..n};
ColorsNotAllowed := {0};
AlreadyColored := splice{1..#colors#0};
NotColored := splice{#colors#0+1..#faces(0,B)};
--Gives a proper coloring to the graph of B
for i from 1 to #colors#0 do (
for c in NotColored do (
if isSubset({R_i*R_c}, faces(1,B)) then (
for a in AlreadyColored do (
if isSubset({R_c*R_a}, faces(1,B)) then (
ColorOfVertA := vertexColor(R_a,colors);
if not member(ColorOfVertA,ColorsNotAllowed) then (
ColorsNotAllowed = append(ColorsNotAllowed,ColorOfVertA);
);
);
);
);
m := max(ColorsNotAllowed) + 1;
colors#m = append(colors#m,R_c);
AlreadyColored = append(AlreadyColored,c);
NotColored = delete(c,NotColored);
);
);
colors = apply(colors, c->sum(c));
return toList(colors);
);
-----------------------------------------
--Main Function for Colorful Version
-----------------------------------------
colorfulPresentation = method(TypicalValue => Module)
colorfulPresentation (SimplicialComplex) := D -> (
B0 := barycentricSubdivision(D);
STrivial := ring(B0);
B := faceDelete(STrivial_0,B0);
r := dim(D)+1;
R := coefficientRing(STrivial)[vars(1..r), Degrees => splice{1..r}];
-----Constructs graded balanced polynomial ring-----
seqOfDegrees := ();
for i from 1 to #gens(STrivial) do (
seqOfDegrees = join(seqOfDegrees,(#faces(i-2,D):i-1));
);
ListOfDegs := toList(seqOfDegrees);
S := newRing(STrivial, Degrees => ListOfDegs);
-----psi induces the grading on all ring related elements-----
psi := map(S,STrivial);
I := psi(ideal(B));
NonGradedKSOP := colorfulSOP(B,#faces(0,D));
KSOP := {};
for k in NonGradedKSOP do (
KSOP = append(KSOP,psi(k));
);
phi := map(S, R, matrix { KSOP });
MB := pushForward(phi, S^1/I);
return(MB);
);
colorfulPresentation (List) := F -> (
D := simplicialComplex(F);
B0 := barycentricSubdivision(D);
STrivial := ring(B0);
B := faceDelete(STrivial_0,B0);
r := dim(D)+1;
R := coefficientRing(STrivial)[vars(1..r), Degrees => splice{1..r}];
-----Constructs graded balanced polynomial ring-----
seqOfDegrees := ();
for i from 1 to #gens(STrivial) do (
seqOfDegrees = join(seqOfDegrees,(#faces(i-2,D):i-1));
);
ListOfDegs := toList(seqOfDegrees);
S := newRing(STrivial, Degrees => ListOfDegs);
-----psi induces the grading on all ring related elements-----
psi := map(S,STrivial);
I := psi(ideal(B));
NonGradedKSOP := colorfulSOP(B,#faces(0,D));
KSOP := {};
for k in NonGradedKSOP do (
KSOP = append(KSOP,psi(k));
);
phi := map(S, R, matrix { KSOP });
MB := pushForward(phi, S^1/I);
return(MB);
);
---------------------------------------
--Universal System of Parameters (USOP)
---------------------------------------
universalSOP = method(TypicalValue => List)
universalSOP (SimplicialComplex) := D -> (
Theta := new MutableList from {};
for i from 0 to dim(D) do (
Theta#i = faces(i,D)
);
Theta = apply(Theta, t->sum(t));
return toList(Theta);
);
universalSOP (List) := F -> (
D := simplicialComplex(F);
Theta := new MutableList from {};
for i from 0 to dim(D) do (
Theta#i = faces(i,D)
);
Theta = apply(Theta, t->sum(t));
return toList(Theta);
);
----------------------------------------
--Standard Main Function
----------------------------------------
universalPresentation = method(TypicalValue => Module)
universalPresentation (List) := F -> (
D := simplicialComplex(F);
S := ring(D);
r := dim(D)+1;
USOPRing := coefficientRing(ring(D))[vars(1..r), Degrees => splice{1..r}];
phi := map(S, USOPRing, matrix {universalSOP(D)});
MD := pushForward(phi,S^1/ideal(D));
return(MD);
);
universalPresentation (SimplicialComplex) := D -> (
S := ring(D);
r := dim(D)+1;
USOPRing := coefficientRing(ring(D))[vars(1..r), Degrees => splice{1..r}];
phi := map(S, USOPRing, matrix {universalSOP(D)});
MD := pushForward(phi,S^1/ideal(D));
return(MD);
);
----------------------------------------
--Sum Betti numbers of resolutions over parameter rings
----------------------------------------
sumBetti = method(TypicalValue => ZZ)
sumBetti (Module) := M -> (
return(rank(sum(res(M))));
);
----------------------------------------
--Comparison Function
----------------------------------------
equalBettiTally = method(TypicalValue => Boolean)
equalBettiTally (Module,Module) := (M,N) -> (
return betti(M) == betti(N);
);
--equalBettiTally (SimplicialComplex) := D -> (
-- return betti(universalPresentation(D)) == betti(colorfulPresentation(D));
--);
--equalBettiTally (List) := F -> (
-- return betti(universalPresentation(F)) == betti(colorfulPresentation(simplicialComplex(F)));
--);
----------------------------------------
--Documentation
----------------------------------------
beginDocumentation()
doc ///
Key
ResolutionsOfStanleyReisnerRings
Headline
Resolutions of Stanley-Reisner rings over certain parameter rings.
Description
Text
{\em ResolutionsOfStanleyReisnerRings} is a package for computing certain systems of parameters and finding the Betti numbers of the resolution of the Stanley-Reisner ring of a simplicial complex over certain parameter rings.
Given a simplicial complex {\tt D}, there is a {\em universal system of parameters} (USOP) [AR,GS,HM,S] where each parameter {\tt i} is a sum of the faces of {\tt D} of dimension {\tt i+1}. The {\em colorful system of parameters} (KSOP) is obtained by giving a proper d-vertex coloring to a balanced simplicial complex {\tt B} of dimension {\tt d-1}, and then summing over the colors so that each parameter {\tt j} is the sum of vertices of color {\tt j}. This package includes routines for computing both USOP and KSOP for simplicial complexes and for computing the graded Betti numbers of the resolutions of the Stanley-Reisner rings over the graded parameter rings.
References:
[AR] A. Adams and V. Reiner, A Colorful Hochster Formula and Universal Parameters for Face Rings. Preprint, 2020; arXiv:2007.13021.
[GS] A.M. Garsia and D. Stanton, Group actions of Stanley-Reisner rings and invariants of permutation groups. Adv. in Math. 51 (1984), 107–201.
[HM] J. Herzog and S. Moradi, Systems of parameters and the Cohen--Macaulay property. Preprint, 2020; arXiv:2006.16549.
[S] D.E. Smith, On the Cohen-Macaulay property in commutative algebra and simplicial topology. Pac. J. Math. 141 (1990), 165–196.
The goal of this work was primarily to help compute examples to provide evidence for Conjecture 6.1 [AR]. I have tried to generalize most of the functionality to make it useful in other areas. This is work in progress and many interesting pieces are still missing. All suggestions and contributions are welcome.
///
doc ///
Key
barycentricSubdivision
(barycentricSubdivision,SimplicialComplex)
(barycentricSubdivision,List)
Headline
the barycentric subdivision of a simplicial complex.
Usage
barycentricSubdivision D
barycentricSubdivision F
Inputs
D:SimplicialComplex
F:List
a list of facets defining a simplicial complex
Outputs
:SimplicialComplex
the barycentric subdivision of a simplicial complex of {\tt D}
Description
Text
The following example uses the simplicial complex on four vertices composed of two disconnected edges.
Example
S = QQ[a,b,c,d];
F = {a*b,c*d};
D = simplicialComplex F
barycentricSubdivision D
barycentricSubdivision F
SeeAlso
SimplicialComplexes
Posets
SimplicialDecomposability
///
doc ///
Key
colorfulSOP
(colorfulSOP,SimplicialComplex,ZZ)
(colorfulSOP,SimplicialComplex)
Headline
Colorful System of Parameters (KSOP)
Usage
colorfulSOP(B,n)
colorfulSOP(D)
Inputs
B:SimplicialComplex
the barycentric subdivision of a simplicial complex {\tt D}
n:ZZ
the number of vertices of {\tt D}
D:SimplicialComplex
any simplicial complex for which you want the KSOP for its barycentric subdivision
Outputs
:List
a list of sums of ring elements of the polynomial ring of {\tt B}
Description
Text
The barycentric subdivision of a simplicial complex is a balanced simplicial complex, and so in this version we require the input of the barycentric subdivision of a simplicial complex.
The examples use the simplicial complex {\tt D} on five vertices consisting of an isolated vertex and triangle of dimension 2 attached to an edge. The first example uses the barycentric subdivision of {\tt D}. When considering the barycentric subdivision of a simplicial complex it is often useful to remove the minimal element of its face poset. In the next example, we demonstrate how this can be accomplished.
Example
S = QQ[a..e];
D = simplicialComplex {a*b*c,c*d,e};
n = # vertices D
ComplexIncludingMinElt = barycentricSubdivision D;
R = ring(ComplexIncludingMinElt);
B = faceDelete(R_0,ComplexIncludingMinElt);
colorfulSOP(B,n)
Text
Also included is the option to input any simplicial complex {\tt D} in order to obtain the colorful system of parameters for the face ring of the corresponding barycentric subdivision of {\tt D}.
Example
S = QQ[a..e];
D = simplicialComplex {a*b*c,c*d,e};
colorfulSOP(D)
Caveat
This current version requires the input of the barycentric subdivision of a simplicial complex {\tt D} without the minimal element of the face poset, which corresponds to the empty set of {\tt D}. This must be accomplished by using the {\tt barycentricSubdivision} method, included in this package. It also has the option of inputting any simplicial complex. The system then takes the barycentric subdivision of {\tt D} and removes its minimal element in order to obtain the colorful system of parameters.
SeeAlso
barycentricSubdivision
SimplicialComplexes
Posets
SimplicialDecomposability
///
doc ///
Key
universalSOP
(universalSOP,SimplicialComplex)
(universalSOP,List)
Headline
Universal System of Parameters (USOP)
Usage
universalSOP D
universalSOP F
Inputs
D:SimplicialComplex
F:List
a list of facets defining a simplicial complex
Outputs
:List
a list of elements from the Stanley-Reisner ring of {\tt D}
Description
Text
The following example uses the simplicial complex consisting of a triangle of dimension 2 attached to an edge and a isolated vertex.
Example
S = ZZ/2[a..e];
F = {a*b*c,c*d,e}
D = simplicialComplex F
universalSOP D
universalSOP F
SeeAlso
SimplicialComplexes
///
doc ///
Key
sumBetti
(sumBetti,Module)
Headline
Computes the sum of Betti numbers.
Usage
sumBetti M
Inputs
M:Module
Outputs
:ZZ
sum of the Betti numbers of the resolution of {\tt M}
Description
Example
S = QQ[a..f];
m = matrix{{a,b,d,e},{b,c,e,f}}
M = coker m
sumBetti M
SeeAlso
Module
///
doc ///
Key
equalBettiTally
(equalBettiTally,Module,Module)
Headline
Computes the Betti table of two modules and compares for equality
Usage
equalBettiTally(M,N)
Inputs
M:Module
N:Module
Outputs
:Boolean
Description
Example
S = QQ[a..f];
m = matrix{{a,b,d,e},{b,c,e,f}}
M = coker m
n = matrix{{a,b},{c,d},{e,f}}
N = coker n
equalBettiTally(M,N)
SeeAlso
Module
///
doc ///
Key
universalPresentation
(universalPresentation,SimplicialComplex)
(universalPresentation,List)
Headline
A presentation of the Stanley-Reisner ring over its universal parameter ring
Usage
universalPresentation D
universalPresentation F
Inputs
D:SimplicialComplex
F:List
A list of facets defining a simplicial complex {\tt D}
Outputs
:Module
A graded presentation of the Stanley-Reisner ring over its universal parameter ring
Description
Text
Note that {\tt M} is N-graded.
Example
S = QQ[a..e];
F = {a*b*c,c*d,e}
D = simplicialComplex F
universalPresentation D
M = universalPresentation F
degrees M
SeeAlso
Module
universalSOP
///
doc ///
Key
colorfulPresentation
(colorfulPresentation,SimplicialComplex)
(colorfulPresentation,List)
Headline
A presentation of the Stanley-Reisner ring of the barycentric subdivision of a simplicial complex over its colorful parameter ring
Usage
colorfulPresentation D
colorfulPresentation F
Inputs
D:SimplicialComplex
F:List
A list of facets defining a simplicial complex {\tt D}
Outputs
:Module
A graded presentation of the Stanley-Reisner ring over its universal parameter ring
Description
Text
Since the barycentric subdivision of a simplicial complex {\tt D} is a balanced simplicial complex {\tt B}, i.e., there exists a {\tt dim(D)+1} proper vertex coloring, this {\tt colorfulPresentation} takes in the barycentric subdivision of a simplicial complex, computes a colorful system of parameters for the Stanley-Reisner ring of {\tt B} and then returns this quotient ring as an N-graded module over the colorful parameter ring.
Example
S = QQ[a..e];
F = {a*b*c,c*d,e}
D = simplicialComplex F
colorfulPresentation D
M = colorfulPresentation F
degrees M
SeeAlso
Module
colorfulSOP
///
-------------------
-- Tests
-------------------
--colorfulSOP,universalSOP,colorfulPresentation,universalPresentation,barycentricSubdivision,sumBetti,equalBettiTally
-- Tests barycentricSubdivision
TEST ///
S = QQ[a,b,c];
B = barycentricSubdivision simplicialComplex {a*b,c};
R = ring(B)
assert(B === simplicialComplex {v_0*v_2*v_4, v_0*v_1*v_4, v_0*v_3});
S = QQ[a..e];
B = barycentricSubdivision simplicialComplex {a*b*c,c*d,e};
R = ring(B)
assert(B === simplicialComplex {v_0*v_3*v_8*v_10,v_0*v_2*v_8*v_10,v_0*v_3*v_7*v_10,v_0*v_1*v_7*v_10,v_0*v_2*v_6*v_10,v_0*v_1*v_6*v_10,v_0*v_4*v_9,v_0*v_3*v_9,v_0*v_5});
///
-- Tests universalSOP
TEST ///
S = QQ[a,b,c];
assert(universalSOP simplicialComplex {a*b,c} === {a+b+c,a*b});
S = QQ[a..e];
assert(universalSOP simplicialComplex {a*b*c,c*d,e} === {a+b+c+d+e,a*b+a*c+b*c+c*d,a*b*c});
///
-- Tests colorfulSOP
TEST ///
S = QQ[a,b,c];
B0 = barycentricSubdivision(simplicialComplex {a*b,c});
STrivial = ring(B0);
B = faceDelete(STrivial_0,B0);
assert(colorfulSOP(B,3) === {v_1+v_2+v_3,v_4});
S = QQ[a..e];
B0 = barycentricSubdivision(simplicialComplex {a*b*c,c*d,e});
STrivial = ring(B0);
B = faceDelete(STrivial_0,B0);
assert(colorfulSOP(B,5) === {v_1+v_2+v_3+v_4+v_5,v_6+v_7+v_8+v_9,v_10});
///
-- Tests equalBettiTally
TEST ///
S = QQ[a..f];
m = matrix{{a,b,d,e},{b,c,e,f}}
n = matrix{{a,b},{c,d},{e,f}}
assert(equalBettiTally(coker m,coker n) === false);
n = matrix{{a,b,d,e},{b,c,e,f}}
assert(equalBettiTally(coker m,coker n));
///
end
-- Tests sumBetti
TEST ///
S = QQ[a..f];
assert(sumBetti(coker matrix{{a,b,d,e},{b,c,e,f}}) === 12);
assert(sumBetti(coker matrix{{a,b},{c,d},{e,f}} === 5);
S = QQ[a,b,c];
assert(sumBetti(coker matrix{{a},{b}}) == 3);
///
-- Tests universalPresentation
TEST ///
S = QQ[a,b,c];
D = simplicialComplex {a*b,c}
M = universalPresentation D;
f = map(target generators M, source relations M, matrix{{0},{0},{c}})
c assert(relations M === f);
///
-- Tests colorfulPresentation
TEST ///
S = QQ[a,b,c];
D = simplicialComplex {a*b,c}
M = colorfulPresentation D;
f = map(target generators M, source relations M, matrix{{0},{0},{c}})
assert(relations M === f);
///
|