1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
|
-- Copyright 2017-2018: Paolo Lella.
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2
-- of the License, or any later version.
newPackage("SLnEquivariantMatrices",
Version => "1.0",
Date => "April 10, 2018",
Authors => {
{Name => "Ada Boralevi",
Email => "ada.boralevi@polito.it",
HomePage => "http://www.adaboralevi.com"},
{Name => "Daniele Faenzi",
Email => "daniele.faenzi@u-bourgogne.fr",
HomePage => "http://dfaenzi.perso.math.cnrs.fr"},
{Name => "Paolo Lella",
Email => "paolo.lella@polimi.it",
HomePage => "http://www.paololella.it"}
},
Keywords => {"Representation Theory"},
Headline => "file ancillary to the paper \"A construction of equivariant bundles on the space of symmetric forms\""
)
export {
"slIrreducibleRepresentationsTensorProduct",
"slEquivariantConstantRankMatrix",
"slEquivariantVectorBundle",
"sl2EquivariantConstantRankMatrix",
"sl2EquivariantVectorBundle"
}
--------------------------------------------------------------------------------
--
-- FUNCTIONS
--
--------------------------------------------------------------------------------
slIrreducibleRepresentationsTensorProduct = method(TypicalValue=>List)
slIrreducibleRepresentationsTensorProduct (ZZ,ZZ,ZZ) := (n,a,b) -> (
if n <= 0 then error "\targument 1 : expected a positive integer";
if a <= 0 then error "\targument 2 : expected a positive integer";
if b <= 0 then error "\targument 3 : expected a positive integer";
v := getSymbol "v";
w := getSymbol "w";
R := QQ(monoid[v_0..v_n]);
return slIrreducibleRepresentationsTensorProduct (R,a,b);
)
slIrreducibleRepresentationsTensorProduct (PolynomialRing,ZZ,ZZ) := (R,a,b) -> (
n := numgens R - 1;
if n <= 0 then error "\targument 1 : expected a ring with at least 2 variables";
if a <= 0 then error "\targument 2 : expected a positive integer";
if b <= 0 then error "\targument 3 : expected a positive integer";
RotimesR := R**R;
L := getSymbol "L";
C := QQ(monoid[L_0..L_n]);
S := C[gens RotimesR];
fromStoRotimesR := map(RotimesR,S,gens RotimesR);
fromRotimesRtoS := map(S,RotimesR,gens S);
firstFactor := map(S,R,for i from 0 to n list S_i);
secondFactor := map(S,R,for i from 0 to n list S_(n+i+1));
Va := rsort flatten entries basis(a,R);
Vb := rsort flatten entries basis(b,R);
eigenValues := {};
eigenSpaces := new MutableList from {};
for f in Va do
(
for g in Vb do
(
fg := (firstFactor f)*(secondFactor g);
e := leadCoefficient((slActionH fg)//fg);
p := position(eigenValues, x -> x == e);
if p === null then
(
eigenValues = append(eigenValues,e);
eigenSpaces = append(eigenSpaces,{fromStoRotimesR fg});
)
else
(
eigenSpaces#p = append(eigenSpaces#p,fromStoRotimesR fg);
);
);
);
l := weightOrder (C,eigenValues);
(eigenValues,eigenSpaces) = sortEigenspaces(eigenValues, eigenSpaces, l);
dimensions := new MutableList from for e in eigenSpaces list #e;
irreducible := {};
maxWeightPos := 0;
while maxWeightPos < #eigenSpaces do
(
maxWeightVector := {};
currentEigenSpace := eigenSpaces#maxWeightPos;
if (d := #currentEigenSpace) > 1 then
(
A := QQ[Variables=>d];
ARotimesR := A[gens RotimesR];
fromAtoARotimesR := map(ARotimesR,A);
fromRotimesRtoARotimesR := map(ARotimesR,RotimesR, gens ARotimesR);
fromARotimesRtoRotimesR := map(RotimesR,ARotimesR, gens RotimesR);
genericElement := sum(for i from 0 to d-1 list A_i*fromRotimesRtoARotimesR(currentEigenSpace#i));
toVanish := {};
for i from 0 to n-1 do
(
for j from i+1 to n do
(
toVanish = toVanish | for t in terms slActionE(n,i,j,genericElement) list leadCoefficient t;
);
);
toVanish = rsort (trim ideal toVanish)_*;
parameters := gens A;
eliminable := {};
for eq in toVanish do
(
parameters = delete(leadMonomial eq, parameters);
eliminable = append(eliminable, leadMonomial eq => (leadTerm eq-eq)/(leadCoefficient eq));
);
genericElement = sub(genericElement,eliminable);
for par in parameters do
(
specializationMap := map(RotimesR,ARotimesR,gens RotimesR | (for a in gens A list if a == par then 1 else 0));
maxWeightVector = append(maxWeightVector, (eigenValues#maxWeightPos,specializationMap genericElement));
);
)
else
(
maxWeightVector = append(maxWeightVector, (eigenValues#maxWeightPos, currentEigenSpace#0));
);
for highestWeightVector in maxWeightVector do
(
newRepresentationWeights := {};
newRepresentationBases := new MutableList from {};
queue := {highestWeightVector};
control := 0;
while #queue > 0 do
(
head := first queue;
queue = delete(head,queue);
vect := head#1;
weight := head#0;
j := position(newRepresentationWeights, x -> x == weight);
pos := position(eigenValues, x -> x == weight);
if j === null then
(
newRepresentationWeights = append(newRepresentationWeights,weight);
newRepresentationBases = append(newRepresentationBases,{vect});
dimensions#pos = dimensions#pos-1;
)
else
(
currentDim := numgens trim ideal (newRepresentationBases#j);
newDim := numgens trim (ideal (newRepresentationBases#j) + ideal(vect));
if newDim > currentDim then
(
newRepresentationBases#j = append(newRepresentationBases#j,vect);
dimensions#pos = dimensions#pos-1;
);
);
for i from 0 to n-1 do
(
for j from i+1 to n do
(
newWeight := weight + C_j - C_i;
if (newV := slActionE(n,j,i,vect)) != 0 then
(
newPair := (newWeight,(trim ideal newV)_0);
if not member(newPair,queue) then queue = append(queue, newPair);
);
);
);
);
(newRepresentationWeights,newRepresentationBases) = sortEigenspaces(newRepresentationWeights,newRepresentationBases,l);
irreducible = append(irreducible,flatten for i from 0 to #newRepresentationBases-1 list rsort flatten entries gens trim ideal newRepresentationBases#i);
);
while maxWeightPos < #eigenSpaces and dimensions#maxWeightPos == 0 do maxWeightPos=maxWeightPos+1;
);
return irreducible;
)
slEquivariantConstantRankMatrix = method(TypicalValue => Matrix, Options => {CoefficientRing => QQ})
slEquivariantConstantRankMatrix (ZZ,ZZ,ZZ) := opts -> (n,d,m) -> (
if n <= 0 then error "\targument 1 : expected a positive integer";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
v := getSymbol "v";
R := QQ(monoid[v_0..v_n]);
return slEquivariantConstantRankMatrix(R,d,m,CoefficientRing=>opts.CoefficientRing);
)
slEquivariantConstantRankMatrix (PolynomialRing,ZZ,ZZ) := opts -> (R,d,m) -> (
n := numgens R - 1;
if n <= 0 then error "\targument 1 : expected a ring with at least 2 variables";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
RotimesR := QQ(monoid[gens (R**R)]);
firstFactor := map(RotimesR,R, for i from 0 to n list RotimesR_i);
projFirstFactor := map(R,RotimesR, gens R | toList(n+1:0));
secondFactor := map(RotimesR,R, for i from 0 to n list RotimesR_(n+i+1));
V := rsort flatten entries basis(d,R);
W := rsort flatten entries basis((m-1)*d,R);
L := getSymbol "L";
C := QQ(monoid[L_0..L_n]);
highestWeight := (m*d-1)*C_0 + C_1;
highestWeightVector := (firstFactor V#0)*(secondFactor W#1) - (firstFactor V#1)*(secondFactor W#0);
irreducibleRepresentationWeights := {};
irreducibleRepresentationVectors := new MutableList from {};
queue := {(highestWeight,highestWeightVector)};
while #queue > 0 do
(
head := first queue;
queue = delete(head,queue);
vect := head#1;
weight := head#0;
j := position(irreducibleRepresentationWeights, x -> x == weight);
if j === null then
(
irreducibleRepresentationWeights = append(irreducibleRepresentationWeights,weight);
irreducibleRepresentationVectors = append(irreducibleRepresentationVectors,{vect});
)
else
(
currentDim := numgens trim ideal (irreducibleRepresentationVectors#j);
newDim := numgens trim (ideal (irreducibleRepresentationVectors#j) + ideal(vect));
if newDim > currentDim then
(
irreducibleRepresentationVectors#j = append(irreducibleRepresentationVectors#j,vect);
);
);
for i from 0 to n-1 do
(
for j from i+1 to n do
(
newWeight := weight + C_j - C_i;
if (newV := slActionE(n,j,i,vect)) != 0 then
(
newPair := (newWeight,(trim ideal newV)_0);
if not member(newPair,queue) then queue = append(queue, newPair);
);
);
);
);
(irreducibleRepresentationWeights,irreducibleRepresentationVectors) = sortEigenspaces(irreducibleRepresentationWeights,irreducibleRepresentationVectors,weightOrder (C,irreducibleRepresentationWeights));
irreducibleRepresentationBasis := flatten for i from 0 to #irreducibleRepresentationVectors-1 list irreducibleRepresentationVectors#i;
N := #V-1;
x := getSymbol "x";
X := QQ(monoid[x_0..x_N]);
M := {};
for vw in irreducibleRepresentationBasis do
(
column := {};
for w in W do
(
c := vw//(secondFactor w);
if c == 0 then
(
column = column | {0_X};
)
else
(
column = column | {(leadCoefficient c)*X_(position(V, x-> x == (projFirstFactor leadMonomial c)))};
);
);
M = M | {column};
);
M = transpose matrix M;
if opts.CoefficientRing =!= QQ then
(
newX := opts.CoefficientRing(monoid[gens X]);
phi := map(newX,X);
M = matrix for i in entries M list for j in i list phi j;
M = M**newX^{1};
);
return M;
)
slEquivariantConstantRankMatrix (ZZ,ZZ,ZZ,PolynomialRing) := opts -> (n,d,m,X) -> (
if n <= 0 then error "\targument 1 : expected a positive integer";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
if numgens X != (N := binomial(n+d,n)) then error ("\targument 4 : expected a polynomial ring with " | toString(N) | " variables");
M := slEquivariantConstantRankMatrix (n,d,m);
phi := map(X,ring M,gens X);
return (matrix for r in entries M list for c in r list phi c)**X^{1};
)
slEquivariantConstantRankMatrix (PolynomialRing,ZZ,ZZ,PolynomialRing) := opts -> (R,d,m,X) -> (
n := numgens R - 1;
if n <= 0 then error "\targument 1 : expected a ring with at least 2 variables";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
if numgens X != (N := binomial(n+d,n)) then error ("\targument 4 : expected a polynomial ring with " | toString(N) | " variables");
M := slEquivariantConstantRankMatrix (R,d,m);
phi := map(X,ring M,gens X);
return (matrix for r in entries M list for c in r list phi c)**X^{1};
)
slEquivariantVectorBundle = method(TypicalValue => CoherentSheaf, Options => {CoefficientRing => QQ})
slEquivariantVectorBundle (ZZ,ZZ,ZZ) := opts -> (n,d,m) -> (
if n <= 0 then error "\targument 1 : expected a positive integer";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
return sheaf minimalPresentation ker slEquivariantConstantRankMatrix(n,d,m,CoefficientRing=>opts.CoefficientRing);
)
slEquivariantVectorBundle (PolynomialRing,ZZ,ZZ) := opts -> (R,d,m) -> (
n := numgens R - 1;
if n <= 0 then error "\targument 1 : expected a ring with at least 2 variables";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected a integer greater than 1";
return sheaf minimalPresentation ker slEquivariantConstantRankMatrix(R,d,m,CoefficientRing=>opts.CoefficientRing);
)
slEquivariantVectorBundle (ZZ,ZZ,ZZ,PolynomialRing) := opts -> (n,d,m,X) -> (
if n <= 0 then error "\targument 1 : expected a positive integer";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected an integer greater than 1";
if numgens X != (N := binomial(n+d,n)) then error ("\targument 4 : expected a polynomial ring with " | toString(N) | " variables");
return sheaf minimalPresentation ker slEquivariantConstantRankMatrix(n,d,m,X);
)
slEquivariantVectorBundle (PolynomialRing,ZZ,ZZ,PolynomialRing) := opts -> (R,d,m,X) -> (
n := numgens R - 1;
if n <= 0 then error "\targument 1 : expected a ring with at least 2 variables";
if d <= 0 then error "\targument 2 : expected a positive integer";
if m <= 1 then error "\targument 3 : expected an integer greater than 1";
if numgens X != (N := binomial(n+d,n)) then error ("\targument 4 : expected a polynomial ring with " | toString(N) | " variables");
return sheaf minimalPresentation ker slEquivariantConstantRankMatrix(R,d,m,X);
)
sl2EquivariantConstantRankMatrix = method(TypicalValue => Matrix, Options => {CoefficientRing => QQ})
sl2EquivariantConstantRankMatrix (ZZ,ZZ) := opts -> (d,m) -> (
if d <= 0 then error "\targument 1 : expected a positive integer";
if m <= 1 then error "\targument 2 : expected a integer greater than 1";
x := getSymbol "x";
R := opts.CoefficientRing(monoid[x_0..x_d]);
return sl2EquivariantConstantRankMatrix(R,m);
)
sl2EquivariantConstantRankMatrix (PolynomialRing,ZZ) := opts -> (R,m) -> (
if m <= 1 then error "\targument 2 : expected a integer greater than 1";
d := numgens R - 1;
mutableM := mutableMatrix(R,(m-1)*d+1,m*d-1);
for j from 0 to m*d-2 do
(
coeff := for i from max(0,j+1-d) to min(j+1,(m-1)*d) list matrixCoefficient(i+1,j+1,d,m);
gcdCoeff := gcd coeff;
h := 0;
for i from max(0,j+1-d) to min(j+1,(m-1)*d) do
(
mutableM_(i,j) = (coeff#h//gcdCoeff)*R_(j-i+1);
h = h+1;
);
);
return (matrix mutableM)**R^{-1};
)
sl2EquivariantVectorBundle = method(TypicalValue => CoherentSheaf, Options => {CoefficientRing => QQ})
sl2EquivariantVectorBundle (ZZ,ZZ) := opts -> (d,m) -> (
if d <= 0 then error "\targument 1 : expected a positive integer";
if m <= 1 then error "\targument 2 : expected a integer greater than 1";
return sheaf minimalPresentation ker sl2EquivariantConstantRankMatrix (d,m,CoefficientRing => opts.CoefficientRing);
)
sl2EquivariantVectorBundle (PolynomialRing,ZZ) := opts -> (R,m) -> (
if m <= 1 then error "\targument 2 : expected a integer greater than 1";
return sheaf minimalPresentation ker sl2EquivariantConstantRankMatrix(R,m);
)
--------------------------------------------------------------------------------
--
-- AUXILIARY FUNCTIONS (unexported)
--
--------------------------------------------------------------------------------
slActionE = method(TypicalValue=>RingElement)
slActionE (ZZ,ZZ,ZZ,RingElement) := (n,i,j,v) -> (
R := ring v;
if first degree v == 0 then
(
return 1_R;
)
else
(
return sum(for t in terms v list R_i*(diff_(R_j) t) + R_(n+i+1)*(diff_(R_(n+j+1)) t) );
);
)
slActionH = method(TypicalValue=>RingElement)
slActionH (ZZ,ZZ,ZZ,RingElement) := (n,i,j,v) -> (
return slActionE(n,j,i,slActionE(n,i,j,v)) - slActionE(n,i,j,slActionE(n,j,i,v));
)
slActionH RingElement := v -> (
R := ring v;
C := coefficientRing R;
n := numgens C - 1;
if first degree v == 0 then
(
return 1_R;
)
else
(
return sum (for t in terms v list (sum (for i from 0 to n list (degree(R_i,t)+degree(R_(i+n+1),t))*C_i))*t);
);
)
weightOrder = method(TypicalValue => RingMap, Options => {Height=>8})
weightOrder (PolynomialRing,List) := opts -> (C,L) -> (
n := numgens C;
if n == 2 then return map(QQ,C,{1,-1});
W := rsort for i from 1 to n-1 list random(QQ,Height=>opts.Height);
if #(unique W) < #W then return weightOrder(C,L,Height=>opts.Height);
wn := -sum W;
W = W | {wn};
eval := map(QQ,C,W);
evalL := unique for l in L list eval l;
if #evalL < #L then return weightOrder(C,L,Height=>2*opts.Height);
return eval;
)
sortEigenspaces = method(TypicalValue => Sequence)
sortEigenspaces (List, MutableList, RingMap) := (eigenValues,eigenSpaces,eval) -> (
orderedEigenValues := {};
orderedEigenSpaces := {};
for i from 0 to #eigenValues-1 do
(
pos := 0;
while pos < #orderedEigenValues and eval eigenValues#i < eval orderedEigenValues#pos do pos = pos+1;
orderedEigenValues = insert(pos,eigenValues#i,orderedEigenValues);
orderedEigenSpaces = insert(pos,eigenSpaces#i,orderedEigenSpaces);
);
return (orderedEigenValues,orderedEigenSpaces);
)
sortEigenspaces (List, List, RingMap) := (eigenValues,eigenSpaces,eval) -> (
orderedEigenValues := {};
orderedEigenSpaces := {};
for i from 0 to #eigenValues-1 do
(
pos := 0;
while pos < #orderedEigenValues and eval eigenValues#i < eval orderedEigenValues#pos do pos = pos+1;
orderedEigenValues = insert(pos,eigenValues#i,orderedEigenValues);
orderedEigenSpaces = insert(pos,eigenSpaces#i,orderedEigenSpaces);
);
return (orderedEigenValues,orderedEigenSpaces);
)
matrixCoefficient = method(TypicalValue => ZZ)
matrixCoefficient(ZZ,ZZ,ZZ,ZZ) := (i,j,d,m) -> (
if i == 1 then return -product(for k from 2 to j list d-k+1);
if j > ceiling((m*d-1)/2) then return -matrixCoefficient((m-1)*d+2-i,m*d-j,d,m);
output := -product(for k from max(1,j-d) to i-2 list (m-1)*d-k);
output = output*product(for k from 1 to j-i+1 list d-k+1);
output = output*(binomial(j-1,i-1)*m - binomial(j,i-1));
return output;
)
--****************************************************************************--
-- DOCUMENTATION FOR PACKAGE
--****************************************************************************--
beginDocumentation()
doc ///
Key
SLnEquivariantMatrices
Headline
Ancillary file to the paper "A construction of equivariant bundles on the space of symmetric forms"
Description
Text
In the paper "A construction of equivariant bundles on the space of symmetric forms" (@HREF "https://arxiv.org"@),
the authors construct stable vector bundles on the space $\PP(S^d\CC^{n+1})$ of symmetric forms of degree $d$
in $n + 1$ variables which are equivariant for the action of $SL_{n+1}(\CC)$ ,and admit an equivariant free
resolution of length 2.
Take two integers $d \ge 1$ and $m \ge 2$ and a vector spave $V = \CC^{n+1}$. For $n=2$, we have
$S^dV \otimes S^{(m-1)d}V = S^{md}V \oplus S^{md-2}V \oplus S^{md-4}V \oplus \dots$,
while for $n > 1$,
$S^dV \otimes S^{(m-1)d}V = S^{md}V \oplus V_{(md-2)\lambda_1+\lambda_2} \oplus V_{(md-4)\lambda_1+2\lambda_2} \oplus \dots$,
where $\lambda_1$ and $\lambda_2$ are the two greatest fundamental weights of the Lie group $SL_{n+1}(\bf C)$ and $V_{i\lambda_1+j\lambda_2}$ is the irreducible representation of highest weight $i\lambda_1+j\lambda_2$.
The projection of the tensor product onto the second summand induces a $SL_{2}(\CC)$-equivariant morphism
$\Phi: S^{md-2}V \otimes O_{\PP(S^dV)} \to S^{(m-1)d}V \otimes O_{\PP(S^dV)}(1)$
or a $SL_{n+1}(\CC)$-equivariant morphism
$\Phi: V_{(md-2)\lambda_1 + \lambda_2} \otimes O_{\PP(S^dV)} \to S^{(m-1)d}V \otimes O_{\PP(S^dV)}(1)$
with constant co-rank 1, and thus gives an exact sequence of vector bundles on $\PP(S^dV)$:
$0 \to W_{2,d,m} \to S^{md-2}V \otimes \mathcal{O}_{\PP(S^dV)} \to S^{(m-1)d}V \otimes \mathcal{O}_{\PP(S^dV)}(1) \to \mathcal{O}_{\PP(S^dV)}(m) \to 0$,
$0 \to W_{n,d,m} \to V_{(md-2)\lambda_1 + \lambda_2} \otimes \mathcal{O}_{\PP(S^dV)} \to S^{(m-1)d}V \otimes \mathcal{O}_{\PP(S^dV)}(1) \to \mathcal{O}_{\PP(S^dV)}(m) \to 0$.
The package allows to compute
(1) the decomposition into irreducible $SL_{n+1}(\bf C)$-representations of the
tensor product of two symmetric powers $S^a\CC^{n+1}$ and $S^b\CC^{n+1}$;
(2) the matrix representing the morphism $\Phi$;
(3) the vector bundle $W_{n,d,m}$.
///
doc ///
Key
slIrreducibleRepresentationsTensorProduct
(slIrreducibleRepresentationsTensorProduct, ZZ, ZZ, ZZ)
(slIrreducibleRepresentationsTensorProduct, PolynomialRing, ZZ, ZZ)
Headline
computes the irreducible SL-subrepresentations of the tensor product of two symmetric products
Usage
D = slIrreducibleRepresentationsTensorProduct(n,a,b)
D = slIrreducibleRepresentationsTensorProduct(R,a,b)
Inputs
n:ZZ
positive
R:PolynomialRing
a:ZZ
positive
b:ZZ
positive
Outputs
D:List
of irreducible representations
Description
Text
This function computes the decomposition in irreducible $SL(n+1)$-representations of the tensor product $S^aV \otimes S^bV$, where $V = <v_0,\ldots,v_n>$ and $a \leq b$.
If $n = 1$, the decomposition is
$S^aV \otimes S^bV = S^{a+b}V \oplus S^{a+b-2}V \oplus S^{a+b-4}V \oplus \dots \oplus S^{b-a}V$,
while if $n > 1$, the decomposition is
$S^aV \otimes S^bV = S^{a+b}V \oplus V_{(a+b-2)\lambda_1 + \lambda_2} \oplus V_{(a+b-4)\lambda_1 + 2\lambda_2} \oplus \dots \oplus V_{(b-a)\lambda_1 + a\lambda_2}$,
where $\lambda_1$ and $\lambda_2$ are the two greatest fundamental weights of the Lie group $SL(n+1)$ and $V_{i\lambda_1+j\lambda_2}$ is the irreducible representation of highest weight $i\lambda_1+j\lambda_2$.
Example
n = 2
a = 1, b = 2
D = slIrreducibleRepresentationsTensorProduct(n,a,b);
#D
D#0
D#1
Text
If a polynomial ring {\tt R} is given, then {\tt n = numgens R - 1} and $V = <R_0,\ldots,R_n>$.
Example
R = QQ[x_0,x_1,x_2];
a = 2, b = 3
D = slIrreducibleRepresentationsTensorProduct(R,a,b);
#D
D#0
D#1
D#2
///
doc ///
Key
slEquivariantConstantRankMatrix
(slEquivariantConstantRankMatrix, ZZ, ZZ, ZZ)
(slEquivariantConstantRankMatrix, PolynomialRing, ZZ, ZZ)
(slEquivariantConstantRankMatrix, ZZ, ZZ, ZZ, PolynomialRing)
(slEquivariantConstantRankMatrix, PolynomialRing, ZZ, ZZ, PolynomialRing)
Headline
computes a SL-equivariant constant rank matrix
Usage
M = slEquivariantConstantRankMatrix(n,d,m)
M = slEquivariantConstantRankMatrix(n,d,m,CoefficientRing=>C)
M = slEquivariantConstantRankMatrix(R,d,m)
M = slEquivariantConstantRankMatrix(n,d,m,X)
M = slEquivariantConstantRankMatrix(R,d,m,X)
Inputs
n:ZZ
positive
R:PolynomialRing
with at least two variables
d:ZZ
positive
m:ZZ
at least 2
X:PolynomialRing
with {\tt binomial(n+d,n)} or {\tt binomial(numgens R-1+d,numgens R-1)} variables
C:Ring
Outputs
M:Matrix
Description
Text
This function returns a constant rank matrix of linear forms. For $n=1$, the matrix describes the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$.
For $n>1$, the matrix describes the morphism
$\Phi: V_{(md-2)\lambda_1 + \lambda_2} \otimes O_{\PP(S^dV)} \to S^{(m-1)d}V \otimes O_{\PP(S^dV)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to V_{(md-2)\lambda_1 + \lambda_2}$
of the irreducible $SL(n+1)$-subrepresentation $V_{(md-2)\lambda_1 + \lambda_2}$ of highest weight
$(md-2)\lambda_1 + \lambda_2 = (md-1)L_1 + L_2$ in the tensor product $S^dV \otimes S^{(m-1)d}V$, where $V = \CC^{n+1}$ and
$\lambda_1$ and $\lambda_2$ are the two greatest fundamental weights of the Lie group $SL(n+1)$.
Example
n = 1, d = 3, m = 3
M = slEquivariantConstantRankMatrix(n,d,m)
Text
By default, @TO slEquivariantConstantRankMatrix@ defines the matrix over a polynomial ring with rational coefficients.
The optional argument @TO CoefficientRing@ allows one to change the coefficient ring.
Example
n = 1, d = 3, m = 3
M = slEquivariantConstantRankMatrix(n,d,m,CoefficientRing=>ZZ/10007)
Text
If the first argument is a polynomial ring {\tt R}, then {\tt n = numgens R-1}.
Example
R = QQ[y_0,y_1];
d = 2, m = 3
M = slEquivariantConstantRankMatrix(R,d,m)
Text
If the last argument is polynomial ring {\tt X} (and {\tt X} has the same number of variables of the coordinate ring of $\PP(S^d\CC^{n+1})$),
then the matrix is defined over the polynomial ring {\tt X}.
Example
n = 1, d = 3, m = 3
X = ZZ/7[z_0,z_1,z_2,z_3];
M = slEquivariantConstantRankMatrix(n,d,m,X)
R = QQ[y_0,y_1];
d = 3, m = 2
M = slEquivariantConstantRankMatrix(R,d,m,X)
///
doc ///
Key
slEquivariantVectorBundle
(slEquivariantVectorBundle, ZZ, ZZ, ZZ)
(slEquivariantVectorBundle, ZZ, ZZ, ZZ, PolynomialRing)
(slEquivariantVectorBundle, PolynomialRing, ZZ, ZZ)
(slEquivariantVectorBundle, PolynomialRing, ZZ, ZZ, PolynomialRing)
Headline
computes a SL-equivariant vector bundle over some projective space
Usage
W = slEquivariantVectorBundle(n,d,m)
W = slEquivariantVectorBundle(n,d,m,CoefficientRing=>C)
W = slEquivariantVectorBundle(R,d,m)
W = slEquivariantVectorBundle(n,d,m,X)
W = slEquivariantVectorBundle(R,d,m,X)
Inputs
n:ZZ
positive
R:PolynomialRing
with at least two variables
d:ZZ
positive
m:ZZ
at least 2
X:PolynomialRing
with {\tt binomial(n+d,n)} or {\tt binomial(numgens R-1+d,numgens R-1)} variables
C:Ring
Outputs
W:CoherentSheaf
vector bundle
Description
Text
For $n=1$, this function returns the kernel of the matrix describing the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$,
while for $n>1$, the function returns the kernel of the matrix describing the morphism
$\Phi: V_{(md-2)\lambda_1 + \lambda_2} \otimes O_{\PP(S^dV)} \to S^{(m-1)d}V \otimes O_{\PP(S^dV)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to V_{(md-2)\lambda_1 + \lambda_2}$
of the irreducible $SL(n+1)$-subrepresentation $V_{(md-2)\lambda_1 + \lambda_2}$ of highest weight
$(md-2)\lambda_1 + \lambda_2 = (md-1)L_1 + L_2$ in the tensor product $S^dV \otimes S^{(m-1)d}V$, where $V = \CC^{n+1}$ and
$\lambda_1$ and $\lambda_2$ are the two greatest fundamental weights of the Lie group $SL(n+1)$.
In the paper {\em A construction of equivariant bundles on the space of symmetric forms}, it is proved that the matrix $\Phi$ has constant co-rank 1,
so that the kernel $W = ker \Phi$ turns out to be a vector bundle.
Example
n = 1, d = 3, m = 3
W = slEquivariantVectorBundle(n,d,m)
Text
By default, @TO slEquivariantVectorBundle@ defines the vector bundle over a projective space whose coordinate ring has rational coefficients.
The optional argument @TO CoefficientRing@ allows one to change the coefficient ring.
Example
n = 1, d = 3, m = 3
W = slEquivariantVectorBundle(n,d,m,CoefficientRing=>ZZ/10007)
Text
If the first argument is a polynomial ring {\tt R}, then {\tt n = numgens R-1}.
Example
R = QQ[y_0,y_1];
d = 2, m = 3
W = slEquivariantVectorBundle(R,d,m)
Text
If the last argument is polynomial ring {\tt X} (and {\tt X} has the same number of variables of the coordinate ring of $\PP(S^d\CC^{n+1})$),
then the vector bundle is defined over the projective space {\tt Proj(X)}.
Example
n = 1, d = 3, m = 3
X = ZZ/7[z_0,z_1,z_2,z_3];
W = slEquivariantVectorBundle(n,d,m,X)
R = QQ[y_0,y_1];
d = 3, m = 2
W = slEquivariantVectorBundle(R,d,m,X)
///
doc ///
Key
sl2EquivariantConstantRankMatrix
(sl2EquivariantConstantRankMatrix, ZZ, ZZ)
(sl2EquivariantConstantRankMatrix, PolynomialRing, ZZ)
Headline
computes a SL(2)-equivariant constant rank matrix
Usage
M = sl2EquivariantConstantRankMatrix(d,m)
M = sl2EquivariantConstantRankMatrix(d,m,CoefficientRing=>C)
M = sl2EquivariantConstantRankMatrix(R,m)
Inputs
R:PolynomialRing
with at least two variables
d:ZZ
positive
m:ZZ
at least 2
C:Ring
Outputs
M:Matrix
Description
Text
This function returns a constant rank matrix of linear forms. The matrix describes the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$.
In the paper {\em A construction of equivariant bundles on the space of symmetric forms}, the entries of the matrix $\Phi$
are explicitly described.
Example
d = 4, m = 3
M = sl2EquivariantConstantRankMatrix(d,m)
Text
By default, @TO sl2EquivariantConstantRankMatrix@ defines the matrix over a polynomial ring with rational coefficients.
The optional argument @TO CoefficientRing@ allows one to change the coefficient ring.
Example
d = 4, m = 3
M = sl2EquivariantConstantRankMatrix(d,m,CoefficientRing=>ZZ/10007)
Text
If the first argument is a polynomial ring {\tt R}, then {\tt d = numgens R-1}.
Example
R = QQ[y_0..y_4];
m = 3
M = sl2EquivariantConstantRankMatrix(R,m)
///
doc ///
Key
sl2EquivariantVectorBundle
(sl2EquivariantVectorBundle, ZZ, ZZ)
(sl2EquivariantVectorBundle, PolynomialRing, ZZ)
Headline
computes a SL(2)-equivariant vector bundle over some projective space
Usage
W = sl2EquivariantVectorBundle(d,m)
W = sl2EquivariantVectorBundle(d,m,CoefficientRing=>C)
W = sl2EquivariantVectorBundle(R,m)
Inputs
R:PolynomialRing
with at least two variables
d:ZZ
positive
m:ZZ
at least 2
C:Ring
Outputs
W:CoherentSheaf
vector bundle
Description
Text
This function returns the kernel of the matrix describing the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$.
In the paper {\em A construction of equivariant bundles on the space of symmetric forms}, it is proved that the matrix $\Phi$ has constant co-rank 1,
so that the kernel $W = ker \Phi$ turns out to be a vector bundle, and the entries of the matrix $\Phi$ are explicitly described.
Example
d = 3, m = 2
W = sl2EquivariantVectorBundle(d,m)
Text
By default, @TO slEquivariantVectorBundle@ defines the vector bundle over a projective space whose coordinate ring has rational coefficients.
The optional argument @TO CoefficientRing@ allows one to change the coefficient ring.
Example
d = 3, m = 2
W = sl2EquivariantVectorBundle(d,m,CoefficientRing=>ZZ/10007)
Text
If the first argument is a polynomial ring {\tt R}, then {\tt d = numgens R-1}.
Example
R = QQ[y_0..y_3];
m = 2
W = sl2EquivariantVectorBundle(R,m)
///
doc ///
Key
[slEquivariantConstantRankMatrix,CoefficientRing]
Headline
name for optional argument
Usage
M = slEquivariantConstantRankMatrix(n,m,d,CoefficientRing=>C)
Description
Text
This is an option to tell @TO slEquivariantConstantRankMatrix@ to define the matrix
over a polynomial ring with coefficients in the ring {\tt C}.
///
doc ///
Key
[slEquivariantVectorBundle,CoefficientRing]
Headline
name for optional argument
Usage
W = slEquivariantVectorBundle(n,m,d,CoefficientRing=>C)
Description
Text
This is an option to tell @TO slEquivariantVectorBundle@ to define the vector bundle
over a projective space whose coordinate ring has coefficients in the ring {\tt C}.
///
doc ///
Key
[sl2EquivariantConstantRankMatrix,CoefficientRing]
Headline
name for optional argument
Usage
M = sl2EquivariantConstantRankMatrix(m,d,CoefficientRing=>C)
Description
Text
This is an option to tell @TO slEquivariantConstantRankMatrix@ to define the matrix
over a polynomial ring with coefficients in the ring {\tt C}.
///
doc ///
Key
[sl2EquivariantVectorBundle,CoefficientRing]
Headline
name for optional argument
Usage
W = sl2EquivariantVectorBundle(m,d,CoefficientRing=>C)
Description
Text
This is an option to tell @TO slEquivariantVectorBundle@ to define the vector bundle
over a projective space whose coordinate ring has coefficients in the ring {\tt C}.
///
--****************************************************************************--
-- TESTS FOR PACKAGE
--****************************************************************************--
TEST ///
n = 1, a = 3, b = 6
D = slIrreducibleRepresentationsTensorProduct(n,a,b);
assert(#D == a+1)
///
TEST ///
n = 1, a = 2, b = 4
D = slIrreducibleRepresentationsTensorProduct(n,a,b);
assert(#(D#0) == a+b+1)
assert(#(D#1) == a+b-1)
///
TEST ///
n = 2, d = 3, m = 2
M = slEquivariantConstantRankMatrix(n,d,m);
assert(rank M == numRows M - 1)
///
TEST ///
n = 1, d = 3, m = 3
W = slEquivariantVectorBundle(n,d,m);
assert(rank W == d-1)
///
TEST ///
d = 4, m = 3
M = sl2EquivariantConstantRankMatrix(d,m);
assert(rank M == numRows M - 1)
///
TEST ///
d = 4, m = 3
W = sl2EquivariantVectorBundle(d,m);
assert(rank W == d-1)
///
--restart
--installPackage "SLnEquivariantMatrices"
--loadPackage "SLnEquivariantMatrices"
--viewHelp
|