1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
newPackage(
"SchurComplexes",
Version => "1.1",
Date => "June 1, 2019",
Authors => {
{Name => "Michael K. Brown",
Email => "mkbrown5@wisc.edu",
HomePage => "https://www.math.wisc.edu/~mkbrown5/"},
{Name => "Amy Huang",
Email => "hhuang235@math.wisc.edu",
HomePage => "https://www.math.wisc.edu/~hhuang235/"},
{Name => "Robert Laudone",
Email => "robert.laudone@gmail.com",
HomePage => "https://www.math.wisc.edu/~laudone/"},
{Name => "Michael Perlman",
Email => "mperlman@nd.edu",
HomePage => "https://www3.nd.edu/~mperlman/"},
{Name => "Claudiu Raicu",
Email => "craicu@nd.edu",
HomePage => "https://www3.nd.edu/~craicu/"},
{Name => "Steven V Sam",
Email => "ssam@sd.edu",
HomePage => "http://math.ucsd.edu/~ssam/"},
{Name => "Joao Pedro Santos",
Email => "jsantos3@nd.edu",
HomePage => "http://math.nd.edu/people/graduate-students/graduate-directory-with-photos/"}
},
Headline => "Schur functors of complexes",
Keywords => {"Representation Theory", "Homological Algebra"},
Certification => {
"journal name" => "Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "Computing Schur complexes",
"acceptance date" => "21 August 2019",
"published article URI" => "https://msp.org/jsag/2019/9-2/p02.xhtml",
"published article DOI" => "10.2140/jsag.2019.9.111",
"published code URI" => "https://msp.org/jsag/2019/9-2/jsag-v9-n2-x02-SchurComplexes.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SchurComplexes.m2",
"release at publication" => "61384b8d76f8bfef42010911dae401d24bcc6ebe", -- git commit number in hex
"version at publication" => "1.1",
"volume number" => "9",
"volume URI" => "https://msp.org/jsag/2019/9-2/"
}
)
export {"straightenTableau", "schurComplex"}
-- Input:
-- A Partition lambda and integers m and n, the admissible entries in tableaux of shape lambda.
-- Output:
-- A List of all the standard Z/2-graded tableaux with shape lambda and possible "odd"
-- (resp. "even") entries {1, ..., m} (resp. {1, ..., n}). The tableaux
-- are encoded as HashTables. See Section 1.1 of Weyman's "Cohomology of Vector Bundles
-- and Syzygies" for background on Z/2-graded tableaux.
standardZ2Tableaux = method();
standardZ2Tableaux(Partition, ZZ, ZZ) := (lambda,m,n) ->
(
L :=new MutableList from {};
addBox:= method();
--addBox recursively populates L with all standard Z/2 tableaux.
addBox(ZZ, ZZ, HashTable) := (x,y,T) ->
(
if y == #lambda and x == last lambda then L#(#L)=T
else
(
i := local i;
j := local j;
if lambda#(y-1) == x then (i = 1; j = y + 1) else(i = x + 1; j = y);
a := if i > 1 then T#(i - 1,j) else -infinity;
b := if j > 1 then T#(i,j-1) else -infinity;
for c from -m to -1 do
if c > a and c >= b then
(T':= new MutableHashTable from T;
T'#(i,j) = c;
addBox(i,j,new HashTable from T');
);
for c from 1 to n do
if c >= a and c > b then
(T':= new MutableHashTable from T;
T'#(i,j) = c;
addBox(i,j,new HashTable from T');
);
);
);
addBox(0, 1, new HashTable from {});
L
)
-- Input:
-- integers m and n encoding the admissible entries in the tableau.
--
-- a List lT = {lambda, T}, where T is a HashTable representing a Z/2-graded tableau
-- (with possible entries governed by the integers m and n, as described in the description
-- of the method standardZ2Tableaux), and lambda is a Partition encoding the shape of T;
--
-- a Hashtable D encoding the differential of a bounded complex F of finite rank free
-- modules. The keys of D are positive (resp. negative) integers representing labels of even
-- (resp. odd) degree basis elements of the complex F, and the values of D
-- are lists of pairs of the form {integer, ring element}, where the integer indicates a
-- basis element of F, and the ring element is the coefficient on that basis element.
--
-- Output: A HashTable whose keys are standard Z/2-graded tableaux, represented by HashTables, and whose values are elements
-- of a ring. This is the result of applying the differential in the Schur complex S_{lambda}(F) to the tableau T.
-- The result is written in terms of the basis of the Schur complex given by standard tableaux. The keys of the HashTable
-- are the basis elements which appear in the linear combination, and the values are the coefficients.
--
-- Note: to compute the differential in a Schur complex, we embed it in a tensor complex and use the usual
-- formula for the differential on a tensor product of complexes. In particular, this involves embedding a divided
-- power in a tensor power, and this makes computing the value of a tableau under the differential slightly subtle.
-- For instance, this is the reason we must keep track of the number of "odd elements"
-- in each column of the tableau T and multiply by a certain extra "divided power coefficient" when applying
-- the differential in the method below. Example 2.3 in the companion paper to this package illustrates this subtlety.
tableauxDiff = method()
tableauxDiff(ZZ, ZZ, List, HashTable) := (m,n,lT,D) -> (
lambda := lT#0;
T := lT#1;
repetitions := for j from 1 to lengthrow(T,1) list (
tally for i from 1 to lengthcolumn(T,j) list T#(j,i)
);
T':=new MutableHashTable from T;
resH := new MutableHashTable from {};
sgn:=1;
for j from 1 to lengthrow(T,1) do (
negNumbersSeen := {};
for i from 1 to lengthcolumn(T,j) do (
x:=T#(j,i);
if not (x < 0 and member(x,negNumbersSeen)) then (
negNumbersSeen = append(negNumbersSeen, x);
if D#?x then for p in D#x do (
-- The "if D#?x then" is required because we want to allow our complexes to end with a nonzero component
-- (in which case the differential will not be defined on basis elements of the lowest-degree component)
T'#(j,i)=p#0;
dividedCoefficient := if p#0 > 0 then 1 else (repetitions_(j-1))_(p#0)+1;
T'' := new HashTable from T';
--This is one tableau in the linear combination which forms the image of T under the differential.
--But, it isn't necessarily standard, so we need to apply the straightening algorithm to it:
str := straightenTableau(T'',lambda);
for strT in keys str do
if resH#?strT then (
-- The keys of resH will be the standard tableaux which appear in the linear combination which forms
-- the image of T under the differential. The value of each key is its coefficient in the linear combination.
resH#strT = resH#strT + sgn*p#1*str#(strT)*dividedCoefficient;
)
else (
resH#strT = sgn*p#1*str#(strT)*dividedCoefficient;
);
);
T'#(j,i)=x;
);
sgn=sgn*(if x>0 then 1 else -1);
);
);
new HashTable from resH
)
--Input:
--a List Lambda which encodes a partition;
--
--a bounded complex F of finite rank free modules over some commutative ring.
--
--Output:
--a ChainComplex, the Schur Complex of F associated to the given partition. When F = 0, the output is a
--new ChainComplex.
schurComplex= (Lambda,F) ->
(
lambda:=new Partition from Lambda;
Size:=sum Lambda;
Min:=min{min(F),0};
F=F[2*Min];----moves F into non-negative homological degree
R := ring(F);
l := max(F);
evengen := flatten for i from 0 to l//2 list (
d := numgens F_(2*i);
for j from 1 to d list (2*i,j)
);
n := #evengen; --number of even variables
oddgen := flatten for i from 0 to (l-1)//2 list (
d := numgens F_(2*i+1);
for j from 1 to d list(2*i+1,j)
);
m := #oddgen; --number of odd variables
inversehash := new HashTable from --computes the map that associates a label to a generator of F
(for i from 1 to n list evengen#(i-1) => i) |
(for i from 1 to m list oddgen#(i-1) => -i);
D := new HashTable from flatten for i from 1 to l list --encodes the differentials of F
for j from 1 to numgens F_i list
inversehash#(i,j) => for r from 1 to numgens F_(i-1) list
(inversehash#(i-1,r),(F.dd_i)_(r-1,j-1));
tabs := standardZ2Tableaux(lambda,m,n); --computes tableaux indexing the generators in S_lambda(F)
if #tabs > 0 then--checks if F is the zero complex.
(
degreeList := for T in tabs list homologicalDegree(T, evengen, oddgen);
shift := min(degreeList);--keeps track of first nonzero homological degree of the Schur complex
differential := new HashTable from for T in tabs list T => tableauxDiff(m,n,{lambda,T},D);--the differential in the Schur complex
mutG := new MutableHashTable from {};
for T in tabs do
(
deg := homologicalDegree(T,evengen,oddgen);
if mutG#?deg then
(
l := #(mutG#deg);
(mutG#deg)#l = T;
)
else mutG#deg = new MutableList from {T};
);
tabsByDegree := for i in sort(keys mutG) list toList(mutG#i);
--tabsByDegree is a List of Lists: the i-th entry is a List of standard tableaux of
--homological degree i.
tabsInEachDegree := for l in tabsByDegree list #l;
--the i-th entry in the list tabsInEachDegree is the number of tableaux in the Schur complex of
--homological degree i.
componentList := for i in tabsInEachDegree list R^i;
r := #componentList-1;
matrixList := for i from 0 to r-1 list(
transpose matrix for u in tabsByDegree#(i+1) list
for v in tabsByDegree#i list try((differential#u)#v) else 0
);
--The i-th entry of matrixList is the matrix giving the map between the (i+1)-st and i-th components
--of the Schur complex.
C:= chainComplex for i from 0 to (#matrixList - 1) list map(componentList_i, componentList_(i + 1), matrixList_i);
C.ring = R;
C[-shift-2*Min*Size]---moves the Schur complex based on the shift of F at the beginning
)
else new ChainComplex
)
--Input:
--a HashTable T encoding a Z/2-graded tableau. We are thinking of T as an element of a Schur complex S_lambda(F)
--of some complex F with respect to some partition lambda.
--
--Lists evengen and oddgen of pairs of integers (i, j). Here, we've chosen a basis of each component F_i of our
--complex F, and the pair (i, j) corresponds to the j-th basis element of F_i.
--
--Output:
--an integer, the homological degree of T in the Schur complex S_lambda(F).
homologicalDegree = method();
homologicalDegree(HashTable,List,List) := (T,evengen,oddgen) -> sum for b in keys T list (
x := T#b;
if x>0 then (evengen#(x-1))_0 else (oddgen#(-x-1))_0
)
------Straightening algorithm
--Inputs: U= List, V= permutation represented as a list. Outputs: sign of the induced permutation on the unmarked elements of U.
sign = (U,V)-> (
n:=#U;
answer:=1;
for i from 0 to n-2 do (
for j from i+1 to n-1 do (
if U_(V_i)<0 and U_(V_j)<0 then answer=answer
else if U_(V_i) > U_(V_j) then answer = -answer;
);
);
answer
)
--Inputs: T=Tableau, X=pair of subsets that we use to permute entries in col1 and col2, row1 is cutoff for computing places to permute in first column i.e. we permute down from row 1, we permute up from row2 in the second column.
--Output: Permuted tableau.
permutedTableau= (T,X,row1, row2, col1,lengthcol1,L)-> (
T1:=new MutableHashTable from T;
for i from row1 to lengthcol1 do T1#(col1,i)=L_((X_0)_(i-row1));
for i from 1 to row2 do T1#(col1+1,i)=L_((X_1)_(i-1));
new HashTable from T1
)
-- Inputs: T=Tableau, vio = pair (column, row) where violation occurs, downCol2 is the number of times the entry in the second column repeats.
---Outputs: Linear combination represented as a hashtable with tableau keys.
shuffle = (T, vio, downCol2, lambdaprime) -> (
lengthcol1 := lambdaprime#(vio_0-1);
truncatedcol1:=apply(toList (vio_1..lengthcol1),i -> T#(vio_0,i));
truncatedcol2:=apply(toList(1..vio_1+downCol2), i-> T#(vio_0 + 1,i));
L:=join(truncatedcol1,truncatedcol2);
indicesofL:=toList (0..(#L-1));
subsetsofLofsizetruncatedcol1:=subsets(indicesofL,#truncatedcol1);
pairs1:=apply(subsetsofLofsizetruncatedcol1, x-> (x, indicesofL-(set x)));
signs:=apply(pairs1, x-> sign(L,join(x)));
outputlist:={};
dividedContributions := for i from 0 to (#pairs1-1) list (
dividedContribution := 1; --contribution from divided power multiplication
T':= permutedTableau(T,pairs1_i,vio_1, vio_1+downCol2, vio_0,lengthcol1,L);
newtruncatedcol1 := for j from vio_1 to lengthcol1 list T'#(vio_0,j);
newuntruncatedcol1 := for j from 1 to vio_1-1 list T'#(vio_0,j);
newtruncatedcol2 := for j from 1 to vio_1+downCol2 list T'#(vio_0+1,j);
newuntruncatedcol2 := for j from vio_1+downCol2+1 to lambdaprime#(vio_0) list T'#(vio_0+1,j);
talnewtruncatedcol1 := tally newtruncatedcol1;
talnewuntruncatedcol1 := tally newuntruncatedcol1;
talnewtruncatedcol2 := tally newtruncatedcol2;
talnewuntruncatedcol2 := tally newuntruncatedcol2;
neglist1 := unique select(newtruncatedcol1, i -> i < 0);
neglist2 := unique select(newtruncatedcol2, i -> i < 0);
for n in neglist1 do (
dividedContribution = dividedContribution*binomial(talnewtruncatedcol1_n+talnewuntruncatedcol1_n,talnewuntruncatedcol1_n);
);
for n in neglist2 do (
dividedContribution = dividedContribution*binomial(talnewtruncatedcol2_n+talnewuntruncatedcol2_n,talnewuntruncatedcol2_n);
);
dividedContribution
);
for i from 1 to (#pairs1-1) do (
T':= permutedTableau(T,pairs1_i,vio_1,vio_1+downCol2,vio_0,lengthcol1,L);
C1:= columnStandardize(T',vio_0,lambdaprime#(vio_0-1));
C2:= columnStandardize(C1_0,vio_0+1,lambdaprime#(vio_0));
outputlist = append(outputlist, C2_0 => -signs_i * signs_0 * C2_1 * C1_1 * dividedContributions_i);--I removed the division because dividedContributions_0 will always be 1 now.
);
--the shuffling relation has multiplicities when dealing with repeated odd elements; the T=>0 takes care of the multiplicity of T when rewriting it.
new HashTable from append(outputlist,T=>0)
)
--Inputs: lis=List of integers
--Outputs: a new list obtained from lis by putting the elements in weakly increasing order, along with sgn, the sign of the permutation required to sort lis. The sign rule is the same as the sign rule for columns of a tableau.
colsign := lis ->
(
len := #lis;
sgn := 1;
for i from 0 to len-2 do
for j from i+1 to len-1 do(
if lis#j < 0 and lis#i < 0 then sgn = sgn else(
if lis#i == lis#j and lis#j > 0 then sgn = 0 else if lis#i>lis#j then sgn = sgn * (-1));
);
(sgn,sort lis)
)
--Inputs T=tableau, col=column number, len=length of col.
--Output: T1 with the columns of indices col and col+1 put in order together with correct sign.
columnStandardize = (T,col,len) -> (
colelts := for j from 1 to len list T#(col,j);
p := colsign(colelts);
T' := new MutableHashTable from T;
for j from 1 to len do T'#(col,j) = (p_1)#(j-1);
(new HashTable from T',p_0)
)
--Inputs T=tableau, i=integer.
--Output: The length of row i of T.
lengthrow = (T,i) -> (
answer :=0;
while T#?(answer+1,i) do answer = answer+1;
answer
)
--Inputs: T=tableau, j=integer.
--Output: The length of column j of T.
lengthcolumn = (T,j) -> (
answer :=0;
while T#?(j,answer+1) do answer = answer+1;
answer
)
--Input: H=linear combination of column standard Tableau represented by a hashtable.
--Output: linear combination of standard tableaux.
recursiveStraighten = (H,lambda) -> (
lambdaprime:=conjugate lambda;
repeat:= false;
hashlist:= new HashTable from {};
for T in keys(H) do (
if H#T!=0 then (
stopSearching := false;
isZero := false;
vio := null;
downCol2 := 0; --This keeps track of potential repeated negative entries in the second column
for i from 2 to lambda#0 do
for j from 1 to lambdaprime#(i-1) do
if T#(i-1,j) == T#(i,j) and T#(i,j)<0 and not (stopSearching) then (
vio = (i-1,j);
stopSearching = true;
for k from j+1 to lambdaprime#(i-1) do(
if T#(i,j) == T#(i,k) then(
downCol2 = downCol2+1;)
)
)
else if T#(i-1,j) > T#(i,j) and not (stopSearching) then (
vio = (i-1,j);
stopSearching = true;
for k from j+1 to lambdaprime#(i-1) do(
if T#(i,j) == T#(i,k) then(
downCol2 = downCol2+1;)
)
);
if not isZero then (
if vio === null then hashlist = merge(hashlist,new HashTable from {T => H#T},plus)
else (
repeat = true;
hashlist = merge(hashlist,scalarMultiply(H#T,shuffle(T,vio,downCol2,lambdaprime)),plus);
);
);
);
);
if repeat then recursiveStraighten(hashlist,lambda)
else hashlist
)
--Inputs: T=tableau in the form of a HashTable, Lambda is the partition of shape T in List form.
--Output: linear combination of standard tableaux.
straightenTableau= (T,Lambda) ->
(
lambda:= new Partition from Lambda;
lambdaprime := conjugate lambda;
coe := 1;
auxT := T;
for i from 1 to #lambdaprime do
(
CS := columnStandardize(auxT,i,lambdaprime#(i-1));
coe = coe * CS_1;
auxT = CS_0;
);
if coe == 0 then new HashTable from {} else
recursiveStraighten(new HashTable from {auxT=>coe},lambda)
)
--Inputs: s=integer, H=HashTable.
--Output: a new HashTable obtained from H by multiplying the entries by s
scalarMultiply = (s,H) -> (
L := keys H;
new HashTable from apply(L, i -> (i=>H#i*s))
)
beginDocumentation()
doc ///
Key
SchurComplexes
Headline
Schur functors of chain complexes
Description
Text
This package computes the Schur complex $S_{\lambda}F_{\bullet}$ associated to a bounded chain complex $F_{\bullet}$ of finitely-generated free modules, and a partition $\lambda$. Our conventions are the transpose of the convention in "Cohomology of Vector Bundles and Syzygies", by Jerzy Weyman, Chapter 2.4.
///
doc///
Key
straightenTableau
Headline
Straightening law for Z/2Z-graded tableau
Usage
S=straightenTableau(T,lambda)
Inputs
T: HashTable
with keys $(i,j)$ representing the box of the Young diagram in column $i$ and row $j$. The values of {\tt T} are the entries of the boxes.
lambda: List
Outputs
S: HashTable
with keys representing standard tableaux and values representing the coefficients.
Description
Text
This function takes a $\mathbb{Z}/2\mathbb{Z}$-graded Young tableau and expresses it as a linear combination of standard tableau. Positive entries in the tableaux correspond to even elements, and negative entries correspond to odd elements.
The user inputs the Young tableau {\tt T} in the form of a hash table, and a partition of the same shape as {\tt T}, in the form of a list. The key $(i,j)$ in the hash table of {\tt T} corresponds to the box of {\tt T} in column $i$ and row $j$. The values are the entries of the boxes of {\tt T}.
The output is a hash table with keys representing standard tableaux and values representing the coefficients in the linear combination.
Example
T = new HashTable from {(1,1) => -3, (1,2) => -2, (1,3) => -2, (2,1) => 1, (2,2) => 2, (2,3) => 3, (3,1) => -1, (3,2) => -1};
lambda = {3,3,2};
straightenTableau(T,lambda)
Text
We compute a second example.
Example
T = new HashTable from {(1,1) => -1, (1,2) => -2, (1,3) => 3, (2,1) => 2, (2,2) => 1, (2,3) => -3};
lambda = {2,2,2};
straightenTableau(T,lambda)
SeeAlso
schurComplex
///
doc ///
Key
schurComplex
Headline
Schur functors of chain complexes
Usage
G=schurComplex(lambda,F)
Inputs
lambda: List
F: ChainComplex
Outputs
G: ChainComplex
Description
Text
This function computes the Schur complex associated to a partition $\lambda$ and a bounded complex $F_{\bullet}$ of finitely-generated free modules over a commutative ring.
The user inputs the partition $\lambda$ as a list and the chain complex $F_{\bullet}$.
In the following example, the complex {\tt F} is the free resolution of the ideal $(x,y,z)\subset \mathbb{Z}[x,y,z]$, and {\tt lambda} is the partition $(1,1)$ in the form of a {\tt List}. In this case, the Schur complex {\tt G} is the second exterior power of {\tt F}.
Example
R=ZZ[x,y,z];
I=ideal(x,y,z);
F=res I;
lambda={1,1};
G=schurComplex(lambda,F)
G.dd
Text
As a second example, we consider the ring of polynomial functions $R=\mathbb{Q}[x_{i,j}]$ on the space of 2 x 4 generic matrices. We set the complex {\tt F} to be the map $R^4\to R^2$ given by the generic matrix $(x_{i,j})$. We compute the third symmetric power {\tt G} of {\tt F}, in which case {\tt lambda} is the partition $(3)$. By Weyman "Cohomology of Vector Bundles and Syzygies", Exercise 6.34(d), the Schur complex {\tt G} is exact except in degree zero. We verify this by computing the Hilbert series of each homology module of {\tt G}.
Example
R=QQ[x11,x21,x12,x22,x13,x23,x14,x24];
M=genericMatrix(R,x11,2,4);
F = new ChainComplex; F.ring = R; F#0=target M; F#1=source M; F.dd#1=M;
lambda={3};
G=schurComplex(lambda,F)
G.dd
apply((length G)+1,i->reduceHilbert hilbertSeries HH_(i)(G))
Text
We compute a third example.
Example
R=ZZ/7[x,y,z,w];
I=ideal(x*z-y^2,x*w-y*z, y*w-z^2);
F=res I;
lambda={2,1};
G=schurComplex(lambda,F)
G.dd
SeeAlso
straightenTableau
///
TEST ///
R=QQ[x11,x21,x12,x22,x13,x23,x14,x24]
M=genericMatrix(R,x11,2,4)
F = new ChainComplex; F.ring = R; F#0=target M; F#1=source M; F.dd#1=M;
lambda={3}
G=schurComplex(lambda,F)
H=reduceHilbert hilbertSeries HH_(1)(G)
H1=lift(numerator(H),ZZ)
assert (H1 === 0)
///
TEST ///-------this Schur complex is exact by Proposition 2.4.7(a) Weyman "Cohomology of Vector Bundles and Syzygies"
R=ZZ[x,y,z]
M=id_(R^3)
F= new ChainComplex; F.ring = R; F#-7=target M; F#-6=source M; F.dd#-6=M;
lambda={3,1}
G=schurComplex(lambda,F)
H={}
for i from -28 to -24 do H=H|{reduceHilbert hilbertSeries HH_i(G)}
H1=unique H
H2=lift(numerator(H1_0),ZZ)
assert (#H1 === 1 and H2 === 0)
///
TEST ///
R=ZZ[x,y]
F=res ideal (x,y)
lambda={1,1}
S=schurComplex(lambda,F)
N2=S.dd_2
M2=matrix{{y,x,0,x},{0,y,x,-y}}
assert((N2-M2==0))
///
TEST ///
T = new HashTable from {(1,1) => 2, (1,2) => 1}
lambda = {1,1}
S=straightenTableau(T,lambda)
T2=new HashTable from{(1,1)=> 1, (1,2)=>2}
output=new HashTable from{T2=> -1}
assert (S===output)
///
TEST ///
T = new HashTable from {(1,1) => -3, (1,2) => -2, (1,3) => -2, (2,1) => 1, (2,2) => 2, (2,3) => 3, (3,1) => -1, (3,2) => -1}
lambda = new Partition from {3,3,2}
S=straightenTableau(T,lambda)
T1= new HashTable from {(1,1)=> -3, (1,2)=>-2, (1,3)=> -2, (2,1)=> -1, (2,2)=> -1, (2,3)=> 1, (3,1)=> 2, (3,2)=> 3}
T2= new HashTable from {(1,1)=> -3, (1,2)=>-2, (1,3)=> -2, (2,1)=> -1, (2,2)=> -1, (2,3)=> 2, (3,1)=> 1, (3,2)=> 3}
T3= new HashTable from {(1,1)=> -3, (1,2)=>-2, (1,3)=> -2, (2,1)=> -1, (2,2)=> -1, (2,3)=> 3, (3,1)=> 1, (3,2)=> 2}
Output= new HashTable from {T1=> 1, T2=> -1, T3=> 1}
assert(S===Output)
///
end
|