1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
--this file is in the public domain
newPackage( "SectionRing",
Version => "0.2", Date => "September 21 2016", Authors => {
{Name=> "Andrew Bydlon",
Email=> "thelongdivider@gmail.com",
HomePage => "http://www.math.utah.edu/~bydlon/"
}
},
PackageImports => {"Divisor"},
Keywords => {"Commutative Algebra"},
Headline => "the section ring of a Weil Divisor"
)
export{
"globallyGenerated",
"isMRegular",
"mRegular",
"sectionRing",
"isVectScalar",
"convertScalarVect"
}
-----------------------------------------------------------------------
dualToIdeal = method();
dualToIdeal(Ideal) := (I) -> (
--Produces an ideal module isomorphic to the dual of the given ideal I.
R := ring(I);
M := module(I);
embedAsIdeal(Hom(M,R),IsGraded=>true,ReturnMap=>true)
);
-----------------------------------------------------------------------
globallyGenerated = method();
globallyGenerated(WeilDivisor) := (D) -> (
--Finds the smallest positive number (using a binary search) such that O_X(a*D) is globally generated, D ample.
a:=1;
while ((1%(baseLocus(a*D)) == 0) != true) do (
a =2*a;
);
upperbound := a;
lowerbound := ceiling(a/2);
while (lowerbound < upperbound-1) do (
a = ceiling((lowerbound + upperbound)/2);
if ((1%(baseLocus(a*D)) == 0) != true) then (
lowerbound = a;
)
else if ((1%(baseLocus(a*D)) == 0) == true) then (
upperbound = a;
);
);
upperbound
);
globallyGenerated(Ideal) := (I) -> (
--Finds when I^* is globally generated.
globallyGenerated(divisor(I))
);
globallyGenerated(Module) := (M) -> (
globallyGenerated(divisor(M))
);
-----------------------------------------------------------------------
isMRegular = method();
isMRegular(CoherentSheaf,CoherentSheaf,ZZ) := (F,G,m) ->(
--Outputs whether a sheaf F is m-regular in the sense of Castelnuovo relative to G
V := variety(F);
dV := dim(V);
j:=1;
bool := true;
while(j<(dV+1)) do (
if (bool == true) then(
if(m!=j) then(
bool = (HH^j((F**(G^**(m-j)))) == 0);
)
else if (m==j) then (
bool = (HH^j(F) == 0);
);
);
j = j+1;
);
bool
);
isMRegular(CoherentSheaf,ZZ) := (F,m) ->(
--Outputs whether F is m-regular (rel O_X(1))
local V;
local G;
local mRegularParticular;
V = variety(F);
G = OO_V(1);
mRegularParticular(F,G,m)
);
-----------------------------------------------------------------------
mRegular = method();
mRegular(CoherentSheaf,CoherentSheaf) := (F,G) -> (
--Computes the regularity of the sheaf F relative to G, in the sense of Castelnuovo-Mumford, using a binary search
bool0 := isMRegular(F,G,0);
m:=0;
lowerbound:=0;
upperbound:=0;
a:=0;
if (bool0 == true) then (
--Tests for a negative-regularity in the case that F is 0-regular relative to G
m=-1;
while (isMRegular(F,G,m)) do (
m=2*m;
);
lowerbound = m;
upperbound = ceiling(m/2);
while (lowerbound < upperbound-1) do (
a = ceiling((lowerbound + upperbound)/2);
if (isMRegular(F,G,a) != true) then (
lowerbound = a;
)
else if (isMRegular(F,G,a) == true) then (
upperbound = a;
);
);
)
else if (bool0==false) then (
--Tests for positive-regularity in the case that F is NOT 0-regular relative to G
m=1;
while (isMRegular(F,G,m) != true) do (
m=2*m;
);
upperbound = m;
lowerbound = ceiling(m/2);
while (lowerbound < upperbound-1) do (
a = ceiling((lowerbound + upperbound)/2);
if (isMRegular(F,G,a) != true) then (
lowerbound = a;
)
else if (isMRegular(F,G,a) == true) then (
upperbound = a;
);
);
);
upperbound
);
mRegular(CoherentSheaf) := (F) -> (
--Computes the regularity of a sheaf F (relative OO_V(1))
V := variety(F);
mRegular(F,(OO_V(1)))
);
mRegular(Ideal) := (I) -> (
--Returns the number m for which O_X(D) is m-regular, where I is an ideal, and D is the corresponding divisor to I.
R := ring(I);
F := sheaf(Hom(module(I),R));
mRegular(F)
);
-----------------------------------------------------------------------
sectionRing = method();
sectionRing(Ideal) := (I) -> (
--Computes the section ring of a semi-ample divisor associated to I
local L;
local Rel;
local KerT;
local Part;
local LengP;
local LengPa;
local numDegs;
local AdmPart;
local NumCols;
local b;
local e;
R := ring(I);
--To Apply the Regularity Theorem of Mumford, the sheaf needs to be Globally Generated Sheaf. Thus in the case O_X(D) is not globally generated, we consider F=O_X(D),O_X(2D), ... , O_X((l-1)D) (which correspond to J#1, J#2,...) and F being relatively G-m-regular, where G = O_X(lD) is globally generated. This produces bound, where all generators are found in lower degrees than bound.
l := globallyGenerated(I);
bound := l;
G := first entries gens I;
J :={0};
j:=1;
while(j<l+1) do (
J = J|{Hom(ideal(apply(G, z->z^j)),R)};
j=j+1;
);
j=1;
while(j<(l+1)) do (
bound = max(bound,l*(mRegular(sheaf(J#j),sheaf(J#l)))+j);
j = j+1;
);
bound = bound + 1;
--The next block of code produces a polynomial ring S with generators in degrees 1,2,3,...,bound which will then be quotiented to produce the section ring. Here Map_i Represents the map H^0(O_X(iD)) -> J^(i) and n_i is the rank of H^0(O_X(iD)).
KK:= coefficientRing(R);
Z := dualToIdeal(I);
Shift := (Z#1)#0;
J = {0,reflexify((Z#0))};
FF := {0,basis(Shift,J#1)};
n := {0,numColumns(FF#1)};
F := {0,map(R^(numRows(FF#1)),R^(n#1),FF#1)};
Map := {0,(gens J#1)*(F#1)};
Y := local Y;
myVars := {toList(Y_{1,1}..Y_{1,n#1})};
DegreeList :={};
l=0;
while(l<n#1) do(
DegreeList = DegreeList | toList({1});
l = l+1;
);
i:=2;
while (i < bound) do(
J = J | {reflexivePower(i,J#1)};
FF = FF | {basis((Shift*i),J#i)};
n = n | {numColumns((FF#i))};
F = F | {map(R^(numRows((FF#i))),R^(n#i),FF#i)};
Map = Map | {(gens J#i)*(F#i)};
myVars = myVars | {toList(Y_{i,1}..Y_{i,n#i})};
l=0;
while(l<n#i) do(
DegreeList = DegreeList | toList({i});
l = l+1;
);
i=i+1;
);
Vars := flatten myVars;
numVars:= #Vars;
S := KK [Vars,Degrees=>DegreeList];
myVars = apply(myVars, z->apply(z,x->value(x)));
numDegs = #myVars;
--The following block of code is used to compute the relations on S which define the section ring SR. It does so by going degree by degree (starting at degree 2), and considering the morphisms \oplus_{i=0,\ldots,[j/2]} H^0((j-i)D) \otimes H^0(iD) --> H^0(jD), computing its kernel, and multiplying the matrix representing the kernel with the corresponding vector of variables of S, Vect_{j-i} \otimes Vect_i. This gives relations, then inserted into RelIdeal.
RelIdeal := ideal(0);
Spar := S;
Vect := {0};
c:=1;
while((c<bound) and (n#c>0)) do (
Vect = Vect | {transpose matrix{myVars#(c-1)}};
c=c+1;
);
j=2;
while ( (dim(Spar) > dim(R)) or (isDomain(Spar) != true)) do (
--Relations are achieved by finding the kernels of the direct sums of tensor products of global sections. However, some efficiency improvements can be achieve by considering a minimal number of such sums/tensors. To do this, I consider partitions of the given degree of interest and throw out any partitions which are either above the bound in which our generators are considered, or can be factored through another partition. For example, O_V(D)^{\otimes 3} -> O_V(2D)\otimes O_V(D) -> O_V(3D), so if bound>1, then the partition (1,1,1) of 3 is excluded. Throughout, a is an index for which partition is chosen, and b is an index for an element of a given partition. Additionally, MapTot is the total map of lower degree tensors into the degree in which relations are being considered, VectTot the corresponding vector of variables.
Part = partitions(j);
LengP = #(Part);
a:=0;
AdmPart = {};
while (a<LengP) do(
if((Part#a#0 < bound) and ((Part#a)#(#(Part#a)-1) + (Part#a)#(#(Part#a)-2) > min(bound,j)-1)) then (
AdmPart = AdmPart | {(Part)#a};
);
a=a+1;
);
LengP = #(AdmPart);
a=0;
TotMapTemp := Map#(AdmPart#a#0);
TotVectTemp := Vect#(AdmPart#a#0);
b=1;
LengPa = #((AdmPart)#a);
while (b<LengPa) do (
TotMapTemp = TotMapTemp ** Map#(AdmPart#a#b);
TotVectTemp = TotVectTemp ** Vect#(AdmPart#a#b);
b = b+1;
);
MapTot := TotMapTemp;
VectTot := TotVectTemp;
a=1;
while(a<LengP) do (
TotMapTemp = Map#(AdmPart#a#0);
TotVectTemp = Vect#(AdmPart#a#0);
b=1;
LengPa = #(AdmPart#a);
while (b<LengPa) do (
TotMapTemp = TotMapTemp ** Map#(AdmPart#a#b);
TotVectTemp = TotVectTemp ** Vect#(AdmPart#a#b);
b = b+1;
);
MapTot = MapTot | TotMapTemp;
VectTot = VectTot || TotVectTemp;
a = a+1;
);
KerT = generators ker(MapTot);
NumCols = numColumns(KerT);
e = 0;
while (e < NumCols) do (
L = flatten entries KerT_{e};
if ((isVectScalar L) == true) then (
L = convertScalarVect(S,L);
Rel = sub((entries (matrix{L}*VectTot))#0#0,S);
RelIdeal = trim(RelIdeal + ideal(Rel));
Spar = S/RelIdeal;
);
e=e+1;
);
j=j+1;
);
--Some code to improve the presentation of the ring, both in terms of having a more standard list of generators A_1...A_N, and eliminating redundant generators
A := local A;
BetterS := KK[A_1..A_numVars,Degrees=>DegreeList];
BetterMap := map(BetterS,S,toList(A_1..A_numVars));
BetterRelIdeal := BetterMap(sub(RelIdeal,S));
minimalPresentation(BetterS/BetterRelIdeal)
);
-----------------------------------------------------------------------
sectionRing(WeilDivisor) := D -> (
sectionRing(ideal(D))
);
-----------------------------------------------------------------------
isVectScalar = L -> (
Ramb := ring (L#0);
all(L, z -> (degree(z) <= degree (sub(1, Ramb))) )
);
convertScalarVect = (newS, L) -> (apply(L, z->sub(z, newS)));
-----------------------------------------------------------------------
beginDocumentation();
doc ///
Key
SectionRing
Headline
computing the section ring of a Weil Divisor
///
doc ///
Key
dualToIdeal
Headline
dual ideal
Usage
dualToIdeal(I)
Inputs
I:Ideal
Outputs
:Ideal
the dual of I
Description
Text
Takes an ideal I as input, dualizes the ideal, and maps it back into the ring, producing Hom_R(I,R) ~ J < R. Used to produce the global sections H^0(mD), where D is an integral divisor defined by I.
///
doc ///
Key
globallyGenerated
Headline
globallyGenerated(D) produces a smallest integer a such that O_X(aD) is globally generated.
Usage
globallyGenerated(D)
globallyGenerated(I)
globallyGenerated(M)
Inputs
D:WeilDivisor
I:Ideal
M:Module
Outputs
:Number
Description
Text
Takes a divisor as input. It then uses a binary search to check for the smallest integer a with the property that |aD| is a basepoint-free linear series. In this case, the corresponding line bundle is globally generated.
///
doc ///
Key
isMRegular
Headline
isMRegular(F,G,m) tests where F is m-regular with respect to G (globally generated) in the sense of Castelnuovo-Mumford. Omitting G assumes G=O_X(1).
Usage
isMRegular(F,G,m)
isMRegular(F,m)
Inputs
F:CoherentSheaf
G:CoherentSheaf
m:ZZ
Outputs
:Boolean
Description
Text
isMRegular(F,G,m) tests definition 1.8.4 of Lazarsfeld's Positivity in Algebraic Geometry I, which is to say whether H^i(F \otimes G^(m-i)) = 0 for every i>0. It tests (in this order) H^1, H^2, \ldots, H^dim(X), and stops as soon as a non-zero cohomology is found. If none is found, F is m-G-regular, and it outputs true.
///
doc ///
Key
mRegular
Headline
mRegular(F,G) computes the regularity of F with respect to G (globally generated), in the sense of Castelnuovo-Mumford. Omitting G assumes G=O_X(1).
Usage
mRegular(F,G)
mRegular(F)
Inputs
F:CoherentSheaf
G:CoherentSheaf
Outputs
:ZZ
Description
Text
mRegular(F,G) utilizes a binary search to compute the smallest m such that F is m-regular with respect to G, utilizing the function isMRegular. mRegular(I) computes the regularity of O_X(D), where D is the associated divisor to I.
///
doc ///
Key
sectionRing
Headline
sectionRing(I) produces the section ring of an ample divisor. If I is an ideal, one can input I to get the section ring of the corresponding divisor.
Usage
sectionRing(I)
sectionRing(D)
Inputs
I:Ideal
D:WeilDivisor
Outputs
:Ring
Description
Text
sectionRing(I) begins by computing the regularity m of O_X, O_X(D), O_X(2D), ..., O_X((l-1)D) with respect to O_X(lD), where l is the output of globallyGenerated(D). By Mumford's Thm (1.8.5 in Positivity) yields that each of the maps O_X(iD)\otimes O_X(lD)^\otimes m -> O_X((i+ml)D) is surjective. Thus, all generators for the section ring can be assumed in lower degree than bound. Thus it forms a polynomial ring S over the base field with h^0(iD)-many generators in degree i, for i=1,2,...,bound-1. Next, relations in degree d are computing by considering the total maps \oplus_{partitions P of d} \otimes_{i\in P} O_X(i D) -> O_X(dD). Each of these relations is then quotiented, until the point that a domain of the correct dimension is produced. Some steps are then performed to make the output more readable and standard.
///
TEST ///
R = QQ[x,y,z]/ideal(x^3+y^3-z^3);
I = ideal(x,y-z);
assert( globallyGenerated(I) == 2)
///
TEST ///
R = QQ[x,y,z]/ideal(x^4+y^4-z^4);
I = ideal(x,y-z);
assert( globallyGenerated(I) == 3)
///
TEST ///
R = QQ[x,y,z]/ideal(x^5+y^5-z^5);
I = ideal(x,y-z);
assert( globallyGenerated(I) == 4)
///
TEST ///
X = Proj(QQ[x,y,z,w,f]);
F = OO_X(4);
G = OO_X(-2);
assert( (mRegular(F) == -4) and (mRegular(G) == 2))
///
TEST ///
R = QQ[x,y,z,w,f];
I = ideal(x-y+w);
S = sectionRing I;
assert( (#(vars S)) == dim S)
///
TEST ///
R = QQ[x,y,z]/(x^3+y^3-z^3)
I = ideal(x,y-z);
S = sectionRing I;
J = ideal(S);
L = first entries gens J;
assert((#L==1) and ((degree(L#0))#0 == 6))
///
end
|