1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
|
-------------------
-- Package Header
-------------------
-- Copyright 2010 David W. Cook II
-- You may redistribute this file under the terms of the GNU General Public
-- License as published by the Free Software Foundation, either version 2
-- of the License, or any later version.
newPackage (
"SimplicialDecomposability",
Version => "1.0.6",
Date => "20. June 2011",
Authors => {{Name => "David Cook II",
Email => "dwcook@eiu.edu",
HomePage => "http://ux1.eiu.edu/~dwcook/"}},
Headline => "various decomposability routines for simplicial complexes",
Keywords => {"Combinatorial Commutative Algebra"},
DebuggingMode => false,
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
"journal URI" => "http://j-sag.org/",
"article title" => "Simplicial Decomposability",
"acceptance date" => "2010-08-03",
"published article URI" => "http://www.j-sag.org/Volume2/jsag-5-2010.pdf",
"published code URI" => "http://www.j-sag.org/Volume2/SimplicialDecomposability.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SimplicialDecomposability.m2",
"release at publication" => "d230ee4205bab933be32f3de7ae0ae0f52115c84",
"version at publication" => "1.0.5",
"volume number" => "2",
"volume URI" => "http://www.j-sag.org/volume2.html"
},
PackageExports => {"SimplicialComplexes", "Posets"}
)
-------------------
-- Exports
-------------------
export {
-- Methods
"allFaces",
"faceDelete",
"fTriangle",
"hTriangle",
"hVector",
"isDecomposable",
"isSheddingFace",
"isSheddingVertex",
"isShellable",
"isShelling",
"isSimplex",
"isVertexDecomposable",
"shellingOrder",
-- Options
"Flag",
"Permutation"
}
-------------------
-- Exported Code
-------------------
-- Returns all faces of a simplicial complex (except {}, the (-1)-face) up to a
-- given dimension
allFaces = method(TypicalValue => List)
allFaces SimplicialComplex := S -> (
allFaces(dim S, S)
)
allFaces (ZZ, SimplicialComplex) := (k, S) -> (
flatten for i from 0 to min(k, dim S) list faces(i, S)
)
-- Face Deletion: Remove all faces of a complex containing the given face.
faceDelete = method(TypicalValue => SimplicialComplex)
faceDelete (RingElement, SimplicialComplex) := (F, S) -> (
simplicialComplex (monomialIdeal S + monomialIdeal F)
)
-- fTriangle is a generalisation of the fVector and is introduced
-- in Definition 3.1 in [BW-1].
fTriangle = method(TypicalValue => Tally)
fTriangle SimplicialComplex := S -> (
-- (reverse) sort the facets by dimension
F := rsort facets S;
-- tally up (face degree, dimension) pairs and join the empty face)
tally join({(dim S + 1, 0)}, for f in allFaces S list (faceDeg(f, F), first degree f))
)
-- hTriangle is a generalisation of the hVector and is introduced
-- in Definition 3.1 in [BW-1].
hTriangle = method(TypicalValue => Tally)
hTriangle SimplicialComplex := S -> (
fT := fTriangle S;
new Tally from new HashTable from flatten for i from 0 to dim S + 1 list for j from 0 to i list (
si := sum(j+1, k -> (-1)^(j-k)*binomial(i-k,j-k)*(if fT#?(i,k) then fT#(i,k) else 0));
if si != 0 then (i,j) => si else continue
)
)
protect isVD
-- Determines whether or not a simplicial complex is k-decomposable, as
-- in Definition 3.6 in [Wo].
isDecomposable = method(TypicalValue => Boolean)
isDecomposable (ZZ, SimplicialComplex) := (k, S) -> (
-- k must be nonnegative
if k < 0 then return false;
-- check the cache (vertex-decomposable => k-decomposable)
if S.cache.?isVD and S.cache.isVD then return true;
iskd := false;
done := false;
-- base case: simplices are k-decomposable for all nonnegative k
if isSimplex S then ( iskd = done = true; );
-- short-circuit via the h-Vector or h-Triangle, depending on purity
if not done then (
if isPure S then (
if any(values hVector S, i -> i<0) then ( iskd = false; done = true; )
)
else (
if any(values hTriangle S, i -> i < 0) then ( iskd = false; done = true; );
);
);
-- Check for shedding faces which are also happy faces
if not done then (
iskd = any(allFaces(k, S), F ->
isSheddingFace(F, S)
and isDecomposable(k, link(S, F))
and isDecomposable(k, faceDelete(F, S))
);
);
-- update the cache (if necessary)
-- 0-decomposable == vertex-decomposable, and a complex which is
-- not k-decomposable is not j-decomposable for j <= k.
if k == 0 or iskd == false then S.cache.isVD = iskd;
iskd
)
-- Determines whether or not a face is a shedding face of a simplicial
-- complex, as introduced in Definition 3.1 in [Wo].
-- Uses Remark 3.2 in [Wo] for a simplification.
isSheddingFace = method(TypicalValue => Boolean)
isSheddingFace (RingElement, SimplicialComplex) := (F, S) -> (
-- star is the simplicial complex generated by the faces containing F
star := simplicialComplex (facets S)_(positions(first entries (matrix{facets S} % F), zero));
DS := faceDelete(F, star);
D := faceDelete(F, S);
#((set facets DS) * (set facets D)) == 0
)
-- Determines whether or not a vertex is a shedding vertex of a simplicial
-- complex using Definition 11.1 in [BW-2].
isSheddingVertex = method(TypicalValue => Boolean)
isSheddingVertex (RingElement, SimplicialComplex) := (x, S) -> (
L := link(S, x);
D := faceDelete(x, S);
#((set facets L) * (set facets D)) == 0 and isVertexDecomposable(D) and isVertexDecomposable(L)
)
-- Determines whether or not a simplicial complex is shellable by checking
-- for the existence of a shelling order.
isShellable = method(TypicalValue => Boolean)
isShellable SimplicialComplex := S -> (
-- Vertex-decomposability implies shellability for the pure case (Theorem
-- 2.8 in [PB]) and the non-pure case (Theorem 11.3 in [BW-2]).
if S.cache.?isVD and S.cache.isVD then return S.cache.isVD;
-- otherwise, look for a shelling order
shellingOrder(S) != {}
)
-- Determines whether or not a list of faces is a shelling.
isShelling = method(TypicalValue => Boolean)
isShelling List := L -> (
-- Check for squarefree monic monomials
if any(L, f -> (size f != 1) or (max first exponents f > 1) or (leadCoefficient f != 1)) then return false;
-- Sets with zero or one face are always shellings as they are simplices!
if #L <= 1 then return true;
-- Use Definition 2.1 in [BW-1] for non-pure shellability.
if #unique apply(L, degree) > 1 then (
-- Lemma 2.2 in [BW-1] shows dim L_0 == dim L, if L is a shelling
if (max flatten apply(L, degree)) != first degree L_0 then return false;
-- prime the loop
S := fi := I := null;
fa := set apply(drop(subsets support L_0, {0,0}), product);
-- for each face in the list
for i from 1 to #L - 1 do (
-- get the next set of faces
fi = set apply(drop(subsets support L_i, {0,0}), product);
-- find the simplicial complex of the intersection
I = toList(fa * fi);
-- handle the empty intersection case separately
if #I == 0 then (
if first degree L_i != 1 then return false;
)
else (
S = simplicialComplex I;
-- check it is pure and properly dimensional
if not isPure S or dim S != (first degree L_i - 2) then return false;
);
-- update the union new step
fa = fa + fi;
);
)
-- Use Definition III.2.1. in [St] for pure shellability.
else (
-- prime the loop
f0 := T := null;
f1 := set apply(subsets support L_0, product);
-- for each face in the list
for i from 1 to #L - 1 do (
-- copy the last step
f0 = f1;
-- update with the new step
f1 = f1 + set apply(subsets support L_i, product);
-- make sure the minimal face is unique
T = sort toList(f1 - f0);
if any(drop(T, 1), m -> m // T_0 == 0) then return false;
);
);
true
)
-- Determines whether or not a simplicial complex is a simplex.
isSimplex = method(TypicalValue => Boolean)
isSimplex SimplicialComplex := S -> (
# facets S <= 1
)
-- Determines whether or not a simplicial complex is vertex (0-) decomposable.
-- Uses Definition 2.1 in [PB] for pure complexes.
-- Uses Definition 11.1 in [BW-2] for non-pure complexes.
isVertexDecomposable = method(TypicalValue => Boolean)
isVertexDecomposable SimplicialComplex := (cacheValue isVD) (S -> (
-- base case: simplices are vertex-decomposable
if isSimplex S then return true;
-- pure case: vertex-decomposable => shellable => nonnegative h-Vector
if isPure S then (
if any(values hVector S, i -> i < 0) then return false;
)
-- non-pure case: Theorem 11.3 in [BW-2] shows vertex-decomposable implies
-- shellable, hence nonnegative h-Triangle by Theorem 3.4 in [BW-1].
else if any(values hTriangle S, i -> i < 0) then return false;
-- Check for shedding vertices
any(faces(0, S), x -> isSheddingVertex(x, S))
))
-- Attempts to find a shelling order of a simplicial complex.
shellingOrder = method(TypicalValue => List, Options => {Random => false, Permutation => {}})
shellingOrder SimplicialComplex := opts -> S -> (
-- check the cache, if not trying to do it in an alternate manner
if opts.Random == false and #opts.Permutation == 0 and S.cache.?shellingOrder then return S.cache.shellingOrder;
if opts.Random == true and #opts.Permutation > 0 then error("shellingOrder: Options Random and Permutation are mutually exclusive.");
-- Build the facet list, applying options if necessary.
F := facets S;
if #opts.Permutation > 0 then (
tmp := sort unique opts.Permutation;
if tmp != toList(0..#F-1) then error("shellingOrder: Option Permutation must be the same length as the number of facets and must be increasing consecutive integers.");
F = F_(opts.Permutation);
)
else if opts.Random then F = random F;
O := {};
-- The pure case is easier, so separate it
if isPure S then (
-- Negatives in the h-Vector imply not shellable for pure complexes
if any(values hVector S, i -> i < 0) then return {};
-- Start the recursion
O = recursivePureShell({}, F);
)
else (
-- Negatives in the h-Triangle imply not shellable for all complexes,
-- use Theorem 3.4 in [BW-1].
if any(values hTriangle S, i -> i < 0) then return {};
-- Lemma 2.6 in [BW-1] shows that if S is shellable, then
-- there is a shelling with the facets in dimension order.
-- Note: This sort preserves the order on F within a given dimension.
F = F_(apply(sort apply(#F, i -> (-first degree F_i, i)), last));
-- Start the recursion
O = recursiveNonpureShell({}, rsort facets S);
);
-- cache & return
S.cache.shellingOrder = O
)
-- Check if the grading on the ring defines a proper (dim(D)+1)-coloring on D. Used by fVector and hVector. Not exported.
isBalanced = (D) -> (
d := dim D +1;
m := true;
if not d == #(degree first gens ring D) then (
m = false;
);
apply(faces(1,D), f -> if max(degree f) > 1 then m = false);
return m;
);
-------------------
-- 27/12/2018 Lorenzo: some changes
-------------------
-- Modified hVector with the Flag option
hVector = method(TypicalValue => List, Options => {Flag => false})
hVector SimplicialComplex := opts -> D -> (
I := ideal D;
if not opts.Flag then (
S := newRing(ring D, Degrees => {#(gens ring D):1});
maptoS := map(S, ring D);
I = maptoS(I);
);
N := poincare cokernel generators I;
if opts.Flag then (
if not isBalanced(D) then (
stderr << "-- the grading does not correspond to a proper d-coloring." << endl;
return new HashTable from {}
);
R := newRing(ring N, Degrees => apply(gens ring N, g -> apply(gens ring N, f -> if index(f) == index(g) then 1 else 0)));
maptoR := map(R, ring N);
N = maptoR(N);
);
if N == 0 then (
new HashTable from {-1 => 0}
)
else (
d := dim D + 1;
apply(gens ring N, t -> while 0 == substitute(N, t => 1) do N = N // (1-t));
supp := apply(flatten entries monomials(N), m -> degree m);
allsubsets := apply(subsets(#(gens ring N)), s -> apply(toList(0..#(gens ring N)-1), l -> if member(l,s) then 1 else 0));
flagh := L -> coefficient((flatten entries monomials part(L, N))#0, part(L, N));
flagf := M -> sum(supp, m -> if all(m,M, (i,j) -> j >= i) then flagh(m) else 0);
h := j -> sum(supp, s -> if sum(s)==j then flagh(s) else 0);
f := j -> sum(0..j+1, i -> binomial(d-i, d-j-1)*h(i));
if opts.Flag then (
new HashTable from apply(supp, j -> j => flagh(j))
)
else new HashTable from apply(toList(0..d), j -> j => h(j))
)
)
-------------------
-- Local-Only Code
-------------------
-- Returns the cardinality of the largest face containing in the list F containing f.
-- The code assumes F is sorted in reverse order by dimension.
faceDeg = method(TypicalValue => ZZ)
faceDeg (RingElement, List) := (f, F) -> (
s := support f;
for i from 0 to #F-1 do if isSubset(s, support F_i) then return(first degree F_i);
-- If it's not contained in any face, then give a reasonable number.
infinity
)
-- Build up an non-pure shelling recursively.
-- Uses Definition 2.1 in [BW-1].
-- !! Assumes P is reverse sorted by dimension.
recursiveNonpureShell = method(TypicalValue => List)
recursiveNonpureShell (List, List) := (O, P) -> (
-- if it's "obvious", then keep going
OisShelling := true;
if #O > 1 then (
-- the previous step is a shelling, but is the newest step?
fa := set allFaces simplicialComplex drop(O, -1);
Oi := O_-1;
fi := set apply(subsets support Oi, product);
I := toList(fa * fi);
-- handle the empty intersection case separately
if #I == 0 then (
OisShelling = (first degree Oi == 1);
)
else (
S := simplicialComplex toList(fa * fi);
-- check it is pure and properly dimensional
OisShelling = (isPure S and dim S == (first degree Oi - 2));
);
);
if OisShelling then (
-- Nothing else to add: we're done
if P == {} then return O;
-- Recurse until success, if possible
Q := {};
d := degree P_0;
for i from 0 to #P - 1 do (
-- if the dimension of the face drops, then we can bail; see
-- Lemma 2.6 in [BW-1],
if degree P_i != d then return {};
Q = recursiveNonpureShell(append(O, P_i), drop(P, {i,i}));
if Q != {} then return Q;
);
);
{}
)
-- Build up a pure shelling recursively.
-- Uses Definition III.2.1 in [St].
recursivePureShell = method(TypicalValue => List)
recursivePureShell (List, List) := (O, P) -> (
-- if it's "obvious", then keep going
OisShelling := true;
if #O > 1 then (
-- the previous step is a shelling, but is the newest step?
f0 := set allFaces simplicialComplex drop(O, -1) + set {1};
f1 := f0 + set apply(subsets support last O, product);
T := sort toList(f1 - f0);
OisShelling = all(drop(T, 1), m -> m // T_0 != 0);
);
if OisShelling then (
-- Nothing else to add: we're done
if P == {} then return O;
-- Recurse until success, if possible
Q := {};
for i from 0 to #P - 1 do (
Q = recursivePureShell(append(O, P_i), drop(P, {i,i}));
if Q != {} then return Q;
);
);
{}
)
-------------------
-- Documentation
-------------------
beginDocumentation()
doc ///
Key
SimplicialDecomposability
Headline
various decomposability routines for simplicial complexes.
Description
Text
This package includes routines for vertex decomposability and
shellability for arbitrary simplicial complexes as well as routines
for k-decomposability. Moreover, it can find a shelling order for
a shellable simplicial complex.
References:
[BW-1] A. Bjoerner and M. Wachs, "Shellable nonpure complexes and
posets, I," Trans. of the AMS 348 (1996), 1299--1327.
[BW-2] A. Bjoerner and M. Wachs, "Shellable nonpure complexes and
posets, II," Trans. of the AMS 349 (1997), 3945--3975.
[MT] S. Moriyama and F. Takeuchi, "Incremental construction
properties in dimension two: shellability, extendable shellability
and vertex decomposability," Discrete Math. 263 (2003), 295--296.
[PB] J. S. Provan and L. J. Billera, "Decompositions of Simplicial
Complexes Related to Diameters of Convex Polyhedra," Math. of
Operations Research 5 (1980), 576--594.
[St] R. Stanley, "Combinatorics and Commutative Algebra," 2nd
edition. Progress in Mathematics, 41. Birkhaeuser Boston, Inc.
Boston, MA, 1996.
[Wo] R. Woodroofe, "Chordal and sequentially Cohen-Macaulay clutters,"
arXiv:0911.4697v1.
///
doc ///
Key
allFaces
(allFaces, SimplicialComplex)
(allFaces, ZZ, SimplicialComplex)
Headline
returns all faces of a simplicial complex, up to a given dimension
Usage
allFaces S
allFaces(k, S)
Inputs
k:ZZ
the highest dimension to return ($dim S$ by default)
S:SimplicialComplex
Outputs
L:List
the list of all faces of $S$ (excluding the $(-1)$-dimensional face \{\})
up to dimension $k$
Description
Example
R = QQ[a..e];
S = simplicialComplex {a*b*c*d*e};
allFaces S
allFaces(2, S)
SeeAlso
faces
facets
///
doc ///
Key
faceDelete
(faceDelete, RingElement, SimplicialComplex)
Headline
computes the face deletion for a simplicial complex
Usage
faceDelete(F, S)
Inputs
F:RingElement
a face of $S$
S:SimplicialComplex
Outputs
T:SimplicialComplex
the simplicial complex of all faces in $S$ not containing the
face $F$
Description
Example
R = QQ[a..e];
S = simplicialComplex {a*b*c*d*e};
faceDelete(a, S)
faceDelete(a*b*c, S)
faceDelete(a*b*c*d*e, S) === skeleton(3, S)
Caveat
Do not confuse face deletion with normal deletion wherein the vertices
of the given face are entirely removed.
SeeAlso
link
///
doc ///
Key
fTriangle
(fTriangle, SimplicialComplex)
Headline
determines the f-Triangle of a simplicial complex
Usage
fTriangle S
Inputs
S:SimplicialComplex
Outputs
f:Tally
the f-Triangle of $S$
Description
Text
Definition 3.1 in [BW-1] defines the f-Triangle, a generalisation
of the f-Vector, to have entries $f#(i,j)$ equal to the number of
faces of $S$ with degree $i$ and dimension $j-1$.
The degree of a face is the dimension of the largest face of $S$
containing it, plus one.
If $S$ is pure, then the last row is the traditional f-Vector
and the remainder is zeros.
Example
R = QQ[a..e];
fTriangle simplicialComplex {a*b*c, c*d*e, a*d, a*e, b*d, b*e}
fTriangle simplicialComplex {a*b*c*d*e}
SeeAlso
fVector
hTriangle
///
doc ///
Key
hTriangle
(hTriangle, SimplicialComplex)
Headline
determines the h-Triangle of a simplicial complex
Usage
hTriangle S
Inputs
S:SimplicialComplex
Outputs
h:Tally
the h-Triangle of $S$
Description
Text
Definition 3.1 in [BW-1] defines the h-Triangle, a generalisation
of the h-Vector.
If $S$ is pure, then the last row is the traditional h-Vector
and the remainder is zeros.
Example
R = QQ[a..e];
hTriangle simplicialComplex {a*b*c, c*d*e, a*d, a*e, b*d, b*e}
hTriangle simplicialComplex {a*b*c*d*e}
SeeAlso
fTriangle
hVector
///
doc ///
Key
isDecomposable
(isDecomposable, ZZ, SimplicialComplex)
Headline
determines whether a simplicial complex is k-decomposable
Usage
isDecomposable(k, S)
Inputs
k:ZZ
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $S$ is $k$-decomposable
Description
Text
Definition 3.6 of [Wo] states that a simplicial complex $S$
is $k$-decomposable if $S$ is either a simplex or there
exists a shedding face $F$ of $S$ of dimension at most
$k$ such that both the face deletion and link of $S$ by
$F$ are again $k$-decomposable.
Example
R = QQ[a..f];
isDecomposable(0, simplicialComplex {a*b*c*d*e*f})
isDecomposable(2, simplicialComplex {a*b*c, b*c*d, c*d*e})
Text
The method checks the cache, if possible, to see if the complex is
vertex-decomposable.
SeeAlso
faceDelete
isSheddingFace
isShellable
isVertexDecomposable
link
///
doc ///
Key
isSheddingFace
(isSheddingFace, RingElement, SimplicialComplex)
Headline
determines whether a face of a simplicial complex is a shedding face
Usage
isSheddingFace(F, S)
Inputs
F:RingElement
a face of $S$
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $F$ is a shedding face of $S$
Description
Text
Definition 3.1 in [Wo] states that a face $F$ of a simplicial
complex $S$ is a shedding face if every face $G$ of the star
of $S$ by $F$ satisfies the exchange property, that is,
for every vertex $v$ of $F$ there is a vertex $w$ of
the face deletion of $S$ by $G$ such that
$(G \cup w) \setminus v$ is a face of $S$.
Example
R = QQ[a..e];
T = simplicialComplex {a*b*c, b*c*d, c*d*e};
isSheddingFace(b*d, T)
isSheddingFace(b*c*d, T)
SeeAlso
faceDelete
isDecomposable
isShellable
isVertexDecomposable
link
///
doc ///
Key
isSheddingVertex
(isSheddingVertex, RingElement, SimplicialComplex)
Headline
determines whether a vertex of a simplicial complex is a shedding vertex
Usage
isSheddingVertex(x, S)
Inputs
x:RingElement
a vertex of $S$
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $x$ is a shedding vertex of $S$
Description
Text
Definition 11.1 of [BW-2] states that a shedding vertex $x$
of a simplicial complex $S$ is a vertex such that the link and
face deletion of $x$ from $S$ are vertex decomposable and
share no common facets.
Example
R = QQ[a..f];
S = simplicialComplex {a*b*c, c*d, d*e, e*f, d*f};
isSheddingVertex(a, S)
isSheddingVertex(f, S)
SeeAlso
faceDelete
isVertexDecomposable
link
///
doc ///
Key
isShellable
(isShellable, SimplicialComplex)
Headline
determines whether a simplicial complex is shellable
Usage
isShellable S
Inputs
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $S$ is shellable
Description
Text
The pure and non-pure cases are handled separately. If $S$ is
pure, then definition III.2.1 in [St] is used. That is, $S$ is
shellable if its facets can be ordered $F_1, ..., F_n$ so that
the difference in the $j$-th and $j-1$-th subcomplex has a
unique minimal face, for $2 \leq j \leq n$.
If $S$ is non-pure, then definition 2.1 in [BW-1] is used. That is,
a simplicial complex $S$ is shellable if the facets of $S$
can be ordered $F_1, .., F_n$ such that the intersection of the
faces of the first $j-1$ with the faces of the $F_j$ is
pure and $dim F_j - 1$-dimensional.
Example
R = QQ[a..f];
isShellable simplicialComplex {a*b*c*d*e}
isShellable simplicialComplex {a*b*c, c*d*e}
isShellable simplicialComplex {a*b*c, b*c*d, c*d*e}
isShellable simplicialComplex {a*b*c, c*d, d*e, e*f, d*f}
isShellable simplicialComplex {a*b*c, c*d, d*e*f}
SeeAlso
facets
isDecomposable
isShelling
shellingOrder
///
doc ///
Key
isShelling
(isShelling, List)
Headline
determines whether a list of faces is a shelling
Usage
isShelling L
Inputs
L:List
a list of faces (i.e., squarefree monic monomials)
Outputs
B:Boolean
true if and only if $L$ is shelling
Description
Text
Determines if a list of faces is a shelling order of the
simplicial complex generated by the list.
Let $S$ be the simplicial complex generated by the list of facets
$L$. If $S$ is pure, then definition III.2.1 in [St] is used.
That is, $L_1, .., L_n$ is a shelling order of $S$ if
the difference in the $j$-th and $j-1$-th subcomplex has a
unique minimal face, for $2 \leq j \leq n$.
If $S$ is non-pure, then definition 2.1 in [BW-1] is used. That is,
$L_1, .., L_n$ is a shelling order if the intersection of the
faces of the first $j-1$ facets with the faces of the $L_j$ is
pure and $dim L_j - 1$-dimensional.
Example
R = QQ[a..e];
isShelling {a*b*c, b*c*d, c*d*e}
isShelling {a*b*c, c*d*e, b*c*d}
SeeAlso
isShellable
shellingOrder
///
doc ///
Key
isSimplex
(isSimplex, SimplicialComplex)
Headline
determines whether a simplicial complex is simplex
Usage
isSimplex S
Inputs
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $S$ is simplex
Description
Example
R = QQ[a..d];
isSimplex simplicialComplex {a*b*c*d}
isSimplex simplicialComplex {a*b}
isSimplex simplicialComplex {a*b, c*d}
SeeAlso
facets
///
doc ///
Key
isVertexDecomposable
(isVertexDecomposable, SimplicialComplex)
Headline
determines whether a simplicial complex is vertex-decomposable
Usage
isVertexDecomposable S
Inputs
S:SimplicialComplex
Outputs
B:Boolean
true if and only if $S$ is vertex-decomposable
Description
Text
Vertex-decomposability is just zero-decomposability when $S$ is
pure, see [PB]. When $S$ is non-pure, [BW-2] gives a generalisation:
A complex $S$ is vertex decomposable if it is either a simplex or
there exists a shedding vertex.
Example
R = QQ[a..f];
isVertexDecomposable simplicialComplex {a*b*c*d*e}
isVertexDecomposable skeleton(3, simplicialComplex {a*b*c*d*e})
isVertexDecomposable simplicialComplex {a*b*c, c*d*e}
isVertexDecomposable simplicialComplex {a*b*c, c*d, d*e, e*f, d*f}
Text
Whether the complex is vertex-decomposable is cached.
SeeAlso
isDecomposable
isSheddingVertex
///
--The following documentation node is in a different documentation format
--to allow the nicer optional inputs styling.
document {
Key => {
shellingOrder,
(shellingOrder, SimplicialComplex),
[shellingOrder, Permutation],
[shellingOrder, Random]
},
Headline => "finds a shelling of a simplicial complex, if one exists",
Usage => "L = shellingOrder S",
Inputs => {
"S" => SimplicialComplex,
Permutation => List => { "of integers from", TEX /// $0$ ///, "to one less than the number of facets which is applied to the facets before the recursive search for a shelling is executed."},
Random => Boolean => "whether to use a random permutation to the facet list before the recursive search for a shelling is executed."
},
Outputs => { "L" => List => {"a shelling order of the facets of", TEX /// $S$///, ", if one exists"} },
PARA { TEX ///If $S$ is pure, then definition III.2.1 in [St] is used. That is,
$S$ is shellable if its facets can be ordered $F_1, .., F_n$ so that
the difference in the $j$-th and $j-1$-th subcomplex has a
unique minimal face, for $2 \leq j \leq n$. /// },
PARA { TEX ///If $S$ is non-pure, then definition 2.1 in [BW-1] is used. That is,
a simplicial complex $S$ is shellable if the facets of $S$
can be ordered $F_1, .., F_n$ such that the intersection of the
faces of the first $j-1$ with the faces of the $F_j$ is
pure and $dim F_j - 1$-dimensional./// },
PARA { TEX ///This function attempts to build up a shelling order of $S$
recursively. In particular, a depth-first search is used to
attempt to build up a shelling order from the bottom, that is,
from the first facet in the order.///},
PARA { TEX ///In the case when $S$ is non-pure, then the search is restricted
to the maximal dimension facets remaining to be added. This allows
a shelling order in reverse dimension order to be returned whenever
$S$ is indeed shellable.///},
EXAMPLE lines ///
R = QQ[a..f];
shellingOrder simplicialComplex {a*b*c*d*e}
shellingOrder simplicialComplex {a*b*c, b*c*d, c*d*e}
shellingOrder simplicialComplex {a*b*c, c*d*e}
shellingOrder simplicialComplex {a*b*c, c*d, d*e, e*f, d*f}
shellingOrder simplicialComplex {a*b*c, c*d, d*e*f}
///
,
PARA { "The options Random and Permutation can be used to try to find
alternate shelling orders. Random applies a random permutation
to the facet list and Permutation applies a supplied permutation
to the list. In the non-pure case, the facets are subsequently
ordered in reverse dimension order but retaining the ordering within
dimensions."},
PARA { "The options Random and Permutation are mutually exclusive."},
EXAMPLE lines ///
S = simplicialComplex {a*b*c, b*c*d, c*d*e, d*e*f};
shellingOrder S
shellingOrder(S, Random => true)
shellingOrder(S, Permutation => {3,2,1,0})
///,
PARA { "The shelling order is cached if it exists, however, if either option
is used, then the cache is ignored."},
SeeAlso => {
"isShellable",
"isShelling"
}
}
--These are documented in the above node.
undocumented { "Random", "Permutation" }
document {
Key => {hVector,(hVector,SimplicialComplex),[hVector,Flag]},
Headline => "the h-vector of a simplicial complex",
Usage => "h = hVector D",
Inputs => {
"D" => SimplicialComplex,
Flag => Boolean => "the flag h-vector if the simplicial complex is
properly defined over a multigraded ring."
},
Outputs => {
"h" => {"such that ", TT "h#i",
" is the ", TT "i-", "th entry of the h-vector of ", TT "D",
" for an integer ", TT "0 <= i <= dim D+1", " or a squarefree degree ", TT "i", "."}
},
"The h-vector of the 4-simplex.",
EXAMPLE {
"R = ZZ[a..e];",
"smplex = simplicialComplex{a*b*c*d*e}",
"hVector smplex",
},
"A filled triangle with two edges attached to two vertices shows
that the h-vector can have negative entries.",
EXAMPLE {
"R = ZZ[x_1..x_5];",
"delta = simplicialComplex{x_1*x_2*x_3,x_2*x_4,x_3*x_5}",
"hVector delta",
},
"The last example above can be considered in a ", TT "Z^3", "-graded
ring. Then we can compute its flag h-vector.",
EXAMPLE {
"grading = {{1,0,0},{1,0,0},{1,0,0},{0,1,0},{0,0,1}};",
"R = ZZ[x_1,x_2,x_3,y,z, Degrees => grading];",
"gamma = simplicialComplex{x_1*y*z,x_2*y,x_3*z}",
"hVector(gamma, Flag => true)",
},
Caveat => {
"The option ", TT "Flag", " checks if the multigrading corresponds to a properly d-coloring of "
, TT "D", ", where d is the dimension of ", TT "D", " plus one. If it is not the case the output
is an empty HashTable."
},
SeeAlso => {SimplicialComplexes,
faces}
}
--These are documented in the above node.
undocumented { "Flag" }
-------------------
-- Tests
-------------------
-- Tests allFaces
TEST ///
R = QQ[a,b,c];
assert(allFaces simplicialComplex {a*b*c} === {a, b, c, a*b, a*c, b*c, a*b*c});
assert(allFaces simplicialComplex {a*b} === {a, b, a*b});
assert(allFaces simplicialComplex {a, b*c} === {a, b, c, b*c});
assert(allFaces(1, simplicialComplex {a*b*c}) === {a, b, c, a*b, a*c, b*c});
///
-- Tests of faceDelete
TEST ///
R = QQ[a..e];
S = simplicialComplex {a*b*c*d*e};
assert(faceDelete(a, S) === simplicialComplex {b*c*d*e});
assert(faceDelete(a*b*c, S) === simplicialComplex {b*c*d*e, a*c*d*e, a*b*d*e});
assert(faceDelete(a*b*c*d*e, S) === skeleton(3, S))
///
-- Tests of fTriangle
TEST ///
R = QQ[a..e];
-- pure complex
S = simplicialComplex {a*b*c*d*e};
fT = fTriangle S;
-- pure complexes should have all zeros
assert(not any(5, i -> any(i+1, j -> fT#?(i,j))));
-- except in the last row, where the should be the traditional fVector;
fV = fVector S;
assert(not any(6, i -> fV#i != fT#(5, i)));
-- non-pure complex: see Example 3.2 in [BW-1].
S = simplicialComplex {a*b*c, c*d*e, a*d, a*e, b*d, b*e};
fT = fTriangle S;
assert(not fT#?(0,0));
assert(not fT#?(1,0) and not fT#?(1,1));
assert(not fT#?(2,0) and not fT#?(2,1) and fT#(2,2) == 4);
assert(fT#(3,0) == 1 and fT#(3,1) == 5 and fT#(3,2) == 6 and fT#(3,3) == 2);
///
-- Tests of hTriangle
TEST ///
R = QQ[a..e];
-- pure complex
S = simplicialComplex {a*b*c*d*e};
hT = hTriangle S;
-- pure complexes should have all zeros
assert(not any(5, i -> any(i+1, j -> hT#?(i,j))));
-- except in the last row, where the should be the traditional hVector;
assert(hT#(5,0) == 1 and all(5, i -> not hT#?(5,i+1)));
-- non-pure complex: see Example 3.2 in [BW-1].
S = simplicialComplex {a*b*c, c*d*e, a*d, a*e, b*d, b*e};
hT = hTriangle S;
assert(not hT#?(0,0));
assert(not hT#?(1,0) and not hT#?(1,1));
assert(not hT#?(2,0) and not hT#?(2,1) and hT#(2,2) == 4);
assert(hT#(3,0) == 1 and hT#(3,1) == 2 and hT#(3,2) == -1 and not hT#?(3,3));
///
-- Tests of hVector
TEST ///
R = QQ[a..e];
assert(values hVector simplicialComplex {a, b, c, d, e} === {1,4});
assert(values hVector simplicialComplex {a*b*c*d*e} === {1,0,0,0,0,0});
assert(values hVector simplicialComplex {a*b*c, b*c*d, c*d*e} === {1,2,0,0});
assert(values hVector simplicialComplex {a*b, b*c, c*d, d*e, b*d} === {1,3,1});
assert(values hVector simplicialComplex {a*b*c, c*d*e} === {1, 2, -1, 0});
assert(values hVector simplicialComplex {a, b*c, d*e} === {1, 3, -2});
///
-- Tests of isDecomposable
TEST ///
R = QQ[a..e];
S = simplicialComplex {a*b*c*d*e};
assert(isDecomposable(0, S));
assert(isDecomposable(0, skeleton(3,S))); -- prop 2.2 in [PB]
assert(isDecomposable(2, simplicialComplex {a*b*c, b*c*d, c*d*e}));
assert(not isDecomposable(2, simplicialComplex {a*b*c, c*d*e}));
///
-- Tests isDecomposable: see Examples V6F10-{1,6,7} in [MT].
TEST ///
R = QQ[a..f];
S1 = simplicialComplex {a*b*c, a*b*d, a*b*f, a*c*d, a*c*e, b*d*e, b*e*f, c*d*f, c*e*f, d*e*f};
S6 = simplicialComplex {a*b*c, a*b*d, a*b*e, a*c*d, a*c*f, b*d*e, b*e*f, c*d*f, c*e*f, d*e*f};
S7 = simplicialComplex {a*b*c, a*b*e, a*b*f, a*c*d, a*d*e, b*c*d, b*e*f, c*d*f, c*e*f, d*e*f};
assert(not isVertexDecomposable(S1));
assert(isDecomposable(1, S1));
assert(not isVertexDecomposable(S6));
assert(isDecomposable(1, S6));
assert(not isVertexDecomposable(S7));
assert(isDecomposable(1, S7));
///
-- Tests isSheddingFace
TEST ///
R = QQ[a..e];
S = skeleton(3, simplicialComplex {a*b*c*d*e});
assert(all(allFaces S, F -> isSheddingFace(F, S)));
T = simplicialComplex {a*b*c, b*c*d, c*d*e};
assert(isSheddingFace(a, T));
assert(isSheddingFace(e, T));
assert(isSheddingFace(b*d, T));
assert(not isSheddingFace(b, T));
assert(not isSheddingFace(c, T));
assert(not isSheddingFace(d, T));
assert(not isSheddingFace(b*c, T));
assert(not isSheddingFace(b*c*d, T));
///
-- Tests isSheddingVertex
TEST ///
R = QQ[a..f];
S = simplicialComplex {a*b*c, c*d, d*e, e*f, d*f};
assert(not isSheddingVertex(a, S));
assert(isSheddingVertex(f, S));
///
-- Tests of isShellable (and hence shellingOrder by invocation)
-- NB: shellingOrder can only be tested this way as a shelling order need not be unique.
TEST ///
R = QQ[a..f];
-- Extreme cases
assert(isShellable simplicialComplex {a*b*c*d*e});
assert(isShellable simplicialComplex monomialIdeal {a,b,c,d,e}); -- empty complex
-- The following are from [St], Example 2.2.
assert(isShellable simplicialComplex {a*b*c, b*c*d, c*d*e});
assert(not isShellable simplicialComplex {a*b*c, c*d*e});
-- The following are from [BW-1], Figure 1.
assert(isShellable simplicialComplex {a*b, c});
assert(not isShellable simplicialComplex {a*b, c*d});
assert(isShellable simplicialComplex {a*b*c, c*d, d*e, e*f, d*f});
assert(not isShellable simplicialComplex {a*b*c, c*d, d*e*f});
-- The following tests for the fix of a bug in version 1.0.5 found by Sam Kolins and
-- Gwyn Whieldon. In particular, RP2 is not shellable, though removing a face should be.
RP2 = {a*b*d,a*c*d,a*c*f,a*b*e,a*e*f,b*c*f,b*d*f,b*c*e,c*d*e,d*e*f};
assert(not isShellable simplicialComplex RP2);
assert(not isShellable simplicialComplex drop(RP2, 1));
///
-- Tests of isShelling
TEST ///
R = QQ[a..f];
assert(isShelling {a*b*c*d*e*f});
-- The following are from [St], Example 2.2.
assert(isShelling {a*b*c, b*c*d, c*d*e});
assert(not isShelling {a*b*c, c*d*e});
-- The following are from [BW-1], Figure 1.
assert(isShelling {a*b, c});
assert(not isShelling {a*b, c*d});
assert(isShelling {a*b*c, c*d, d*e, e*f, d*f});
assert(not isShelling {a*b*c, c*d, d*e*f});
///
-- Tests of isSimplex
TEST ///
R = QQ[a..d];
-- Simplices
assert(isSimplex simplicialComplex {a*b*c*d});
assert(isSimplex simplicialComplex {a*b*c});
assert(isSimplex simplicialComplex {a*b});
assert(isSimplex simplicialComplex {a});
assert(isSimplex simplicialComplex monomialIdeal {a,b,c,d}); -- empty complex
-- Non-simplices
assert(not isSimplex simplicialComplex {a*b, b*c, c*d});
assert(not isSimplex simplicialComplex {a*b, b*c*d});
assert(not isSimplex simplicialComplex {a*b, c});
assert(not isSimplex simplicialComplex {a, b, c, d});
///
-- Tests of isVertexDecomposable
TEST ///
R = QQ[a..f];
S = simplicialComplex {a*b*c*d*e*f};
assert(isVertexDecomposable S);
assert(isVertexDecomposable skeleton(3, S)); -- prop 2.2 in Provan-Billera
-- The following are from [BW-1], Figure 1.
assert(isVertexDecomposable simplicialComplex {a*b, c});
assert(isVertexDecomposable simplicialComplex {a*b*c, c*d, d*e, e*f, d*f});
assert(not isVertexDecomposable simplicialComplex {a*b*c, c*d, d*e*f});
///
-- New tests for hVector
----------------------------------------------
-- Boundary of the 4-Cross-Polytope
----------------------------------------------
TEST ///
S = QQ[x_{1,1}..x_{2,4}, Degrees => {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}]
I = monomialIdeal(x_{1,1}*x_{2,1},x_{1,2}*x_{2,2},x_{1,3}*x_{2,3},x_{1,4}*x_{2,4})
D = simplicialComplex(I)
assert( (hVector(D))#2 == 6)
assert( (hVector(D, Flag => true))#{1,1,0,1} == 1)
///
end
restart
uninstallPackage "SimplicialDecomposability"
installPackage "SimplicialDecomposability"
check "SimplicialDecomposability"
restart
loadPackage "SimplicialDecomposability";
R = QQ[a..g];
D = simplicialComplex {c*e*g, b*e*g, a*e*g, b*d*g, a*d*g, c*e*f, b*e*f, a*e*f};
isPure D
linearQuotients = O -> for i from 1 to #O-1 list unique flatten for j from 0 to i-1 list (
ImJ = set support O_i - set support O_j;
for k from 0 to i - 1 list (
ImK = set support O_i - set support O_k;
if #ImK == 1 and isSubset(ImK, ImJ) then
first toList ImK else continue));
O1 = shellingOrder D
linearQuotients O1
O2 = shellingOrder(D, Random => true)
linearQuotients O2
O3 = shellingOrder(D, Permutation => {3,2,1,0,4,5,6,7})
linearQuotients O3
isVertexDecomposable D
select(allFaces(0, D), v -> isSheddingVertex(v, D))
E = link(D, f);
ideal E
select(allFaces(0, E), v -> isSheddingVertex(v, E))
F = link(E, c);
ideal F
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/packages PACKAGES=SimplicialDecomposability RemakePackages=true RerunExamples=true IgnoreExampleErrors=false"
-- End:
|