1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
|
newPackage(
"SpaceCurves",
Version => "1.0",
Date => "May 26th 2018",
Authors => {{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "https://www.math.uni-sb.de/ag/schreyer/"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike/"},
{Name => "Mengyuan Zhang",
Email => "myzhang@berkeley.edu",
HomePage => "https://math.berkeley.edu/~myzhang/"}
},
Headline => "space curves",
Keywords => {"Examples and Random Objects"},
DebuggingMode => false,
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "http://j-sag.org/",
"article title" => "The SpaceCurves package in Macaulay2",
"acceptance date" => "18 May 2018",
"published article URI" => "https://msp.org/jsag/2018/8-1/p04.xhtml",
"published article DOI" => "10.2140/jsag.2018.8.31",
"published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x04-SpaceCurves.m2",
"repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SpaceCurves.m2",
"release at publication" => "7853d911a8a484766a7828dc8e17aed701ce9fd6", -- git commit number in hex
"version at publication" => "1.0",
"volume number" => "8",
"volume URI" => "https://msp.org/jsag/2018/8-1/"
}
)
export {
--Surface
"QuadricSurface",
"IntersectionPairing",
"CanonicalClass",
"HyperplaneClass",
"quadricSurface",
"CubicSurface",
"BlowUpPoints",
"MapToP3",
"cubicSurface",
"QuarticSurfaceRational",
"quarticSurfaceRational",
--Divisor
"Divisor",
"Coordinate",
"Surface",
"divisor",
"surface",
"smoothDivisors",
--Curves
"Curve",
"curve",
"isSmooth",
--ACM curves
"positiveChars",
"isACMBetti",
"isSmoothACMBetti",
"generalACMBetti",
"specializeACMBetti",
"allACMBetti",
"degreeMatrix",
"randomDeterminantalIdeal",
--Minimal curves
"minimalCurve",
"raoModule",
"minimalCurveBetti",
--Plotting
"dgTable"
}
--I. Surfaces
QuadricSurface = new Type of HashTable
net QuadricSurface := X -> net X.Ideal
ideal QuadricSurface := X -> X.Ideal
quadricSurface = method()
quadricSurface Ring := R -> (
X := gens R;
assert(isField coefficientRing R and #X == 4);
new QuadricSurface from {
symbol Ideal => ideal(X_0*X_3-X_1*X_2),
symbol IntersectionPairing => matrix{{0,1},{1,0}},
symbol CanonicalClass => {-2,-2},
symbol HyperplaneClass => {1,1}
}
)
CubicSurface = new Type of HashTable
net CubicSurface := X -> net X.Ideal
ideal CubicSurface := X -> X.Ideal
cubicSurface = method()
cubicSurface Ring := R -> (
kk := coefficientRing R;
X := gens R;
assert(isField kk and #X == 4);
y := getSymbol "y";
S := kk(monoid[y_0..y_2]);
RS := R ** S;
while (
M := diagonalMatrix({1,1,1}) | matrix{{1},{1},{1}} | random(S^3,S^2);
points := apply(6,i-> ideal (vars S * syz transpose M_{i}));
I := intersect points;
fI := res I;
if numgens R =!= numColumns fI.dd_1 then
error "randomization produced an error: try again, and/or increase the size of your base field";
phi := map(S,R,fI.dd_1);
matS := sub(diff(transpose sub(vars S,RS),sub(vars R,RS) * sub(fI.dd_2,RS)),R);
f := ideal det matS;
dim (f + ideal jacobian f) != 0
) do (); --passes a smoothness check
new CubicSurface from {
symbol IntersectionPairing => diagonalMatrix splice{1,6:-1},
symbol CanonicalClass => -splice{3,6:1},
symbol HyperplaneClass => splice{3,6:1},
symbol Ideal => f,
symbol BlowUpPoints => points,
symbol MapToP3 => phi
}
)
linesOnCubic := () -> (
--Produces the coordinates of the 27 lines
Ds := entries diagonalMatrix(splice{7:1});
Es := drop(entries diagonalMatrix(splice{0,6:-1}),1);
Fs := for p in subsets(splice {1..6}, 2) list (
first Ds + Ds#(p#1) + Ds#(p#0)
);
Gs := for i from 0 to 5 list (
2*(first Ds) - sum drop(Es, {i,i})
);
join(Es,Fs,Gs)
)
QuarticSurfaceRational = new Type of HashTable
net QuarticSurfaceRational := X -> net X.Ideal
ideal QuarticSurfaceRational := X -> X.Ideal
quarticSurfaceRational = method()
quarticSurfaceRational Ring := R -> (
kk := coefficientRing R;
X := gens R;
assert(isField kk and #X == 4);
y := getSymbol "y";
S := kk(monoid[y_0..y_2]);
while (
M := diagonalMatrix({1,1,1}) | matrix{{1},{1},{1}} | random(S^3,S^5);
points := apply(entries transpose M, p->minors(2,matrix{gens S,p}));
G := gens trim intersect points;
C := ideal (G*random(source G,S^{-3}));
(numcols basis(3,intersect points) != 1) or
dim (C+ideal jacobian C) != 0
--passes a check that a unique elliptic passes through the 9 points
) do ();
H := trim intersect ({(first points)^2} | drop(points,1));
phi := map(S,R,gens H);
Q := kernel phi;
new QuarticSurfaceRational from {
symbol IntersectionPairing => diagonalMatrix splice{1,9:-1},
symbol CanonicalClass => -splice{3,9:1},
symbol HyperplaneClass => splice{4,2,8:1},
symbol Ideal => Q,
symbol BlowUpPoints => points,
symbol MapToP3 => phi
}
)
--II.Divisors
Divisor = new Type of HashTable
net Divisor := X -> net X.Coordinate
divisor = method()
divisor(List, QuadricSurface) := (C, X) -> (
new Divisor from {
symbol Coordinate => C,
symbol Surface => X
}
)
divisor(List, CubicSurface) := (C, X) -> (
new Divisor from {
symbol Coordinate => C,
symbol Surface => X
}
)
divisor(List, QuarticSurfaceRational) := (C,X) -> (
new Divisor from {
symbol Coordinate => C,
symbol Surface => X
}
)
surface = method()
surface Divisor := D -> D.Surface
ZZ * Divisor := (n,D) -> divisor(n * D.Coordinate, D.Surface)
Divisor + Divisor := (C,D) -> (
assert(C.Surface === D.Surface);
divisor(C.Coordinate + D.Coordinate, D.Surface)
)
Divisor - Divisor := (C,D) -> (
assert(C.Surface === D.Surface);
divisor(C.Coordinate - D.Coordinate, D.Surface)
)
Divisor * Divisor := (C,D) -> (
X := C.Surface;
assert(X === D.Surface);
assert(X.IntersectionPairing =!= null);
(matrix{C.Coordinate} * X.IntersectionPairing *
transpose matrix{D.Coordinate})_(0,0)
)
degree Divisor := C -> (
X := C.Surface;
(matrix{C.Coordinate} * X.IntersectionPairing *
transpose matrix{X.HyperplaneClass})_(0,0)
)
genus Divisor := C -> (
X := C.Surface;
K := divisor(X.CanonicalClass,X);
1/2*((K+C)*C)+1
)
--III.Curves
Curve = new Type of HashTable
net Curve := C -> net C.Ideal
ideal Curve := C -> C.Ideal
divisor Curve := C -> C.Divisor
surface Curve := C -> C.Divisor.Surface
curve = method()
curve Divisor := D -> (
X := D.Surface;
R := ring X.Ideal;
kk := coefficientRing R;
I := ideal(0);
if class X === QuadricSurface then (
z := getSymbol "z";
cox := kk(monoid[z_0..z_3,Degrees=>{{0,1},{0,1},{1,0},{1,0}}]);
segre := {cox_0*cox_2,cox_0*cox_3,cox_1*cox_2,cox_1*cox_3};
I = ideal random(D.Coordinate,cox);
if I == 0 then return null;
segre = apply(segre, p -> sub(p,cox/I));
I = kernel map(cox/I,R,segre);
);
n := 0;
if class X === CubicSurface then n = 6;
if class X === QuarticSurfaceRational then n = 9;
if class X === CubicSurface or class X === QuarticSurfaceRational then (
attempt := 0;
while (
--Find a plane curve with given multiplicities at points and its image
phi := X.MapToP3;
pts := X.BlowUpPoints;
S := target phi;
R = source phi;
ab := D.Coordinate;
a := ab_0;
ipts := trim intersect (for i from 1 to n list (pts_(i-1))^(ab_i));
gipts := gens ipts;
cplane := ideal (gipts*random(source gipts,S^{-a}));
SC := S/cplane;
I = ker map(SC,R,phi.matrix);
(degree I != degree D) or (genus I != genus D) and attempt<3
) do (attempt = attempt+1;);
);
return new Curve from {
symbol Divisor => D,
symbol Ideal => I
};
)
degree Curve := C -> degree ideal C
genus Curve := C -> genus ideal C
isSmooth = method()
isSmooth Ideal := I -> (
c := codim I;
dim(I + minors(c, jacobian I)) == 0
)
isSmooth Curve := C -> isSmooth ideal C
isPrime Curve := {} >> o -> C -> isPrime ideal C
--V.Minimal Curves
raoModule = method()
raoModule Ideal := I -> (
assert( dim I == 2);
coker (dual res Ext^3(comodule I,ring I)).dd_(-3)
)
raoModule Curve := C -> raoModule ideal C
minimalCurve = method()
alphaBeta = M -> (
--takes a matrix M
--returns (numcols M, rank M, inf_D rank M ** R/D) where D is a ht 1 prime
kk := coefficientRing ring M;
t := getSymbol "t";
S := kk[t];
L := apply(4,i->random(1,S)+random(0,S));
(A,B,C) := smithNormalForm sub(M,matrix{L});
D := apply(min(numrows A,numcols A), i-> A_(i,i));
(numcols M,#select(D,d->d!=0),#select(D,d->d==1))
)
selectColumns = (d,M) -> (
--selects the columns of a matrix of degree <= d
L := select(flatten last degrees M,D->D<= d);
M_(splice{0..#L-1})
)
minimalCurve Module := M -> (
--Take a finite length module
--returns a minimal curve
R := ring M;
if M == 0 then return ideal(R_0,R_1);
assert(dim M == 0);
Q := res M;
r := rank Q_2 - rank Q_3 + rank Q_4 - 1;
degs := flatten last degrees Q.dd_2;
ok := 1;
L := {};
degloop := unique degs;
deg := first degloop;
while #L < r do (
--This algorithm computes the correct columns to select
(s,a,b) := alphaBeta selectColumns(deg,Q.dd_2);
if (s != a or s != b) then (
L = L | splice{(min(a-1,b)-#L):deg};
ok = 0;
) else (
if ok == 1 then L = L | select(degs,d -> d == deg);
);
degloop = drop(degloop,1);
if degloop != {} then deg = first degloop;
);
cols := for i from 0 to #degs-1 list (
j := position(L, l -> l == degs#i);
if j === null then (
i
) else (
L = drop(L,{j,j});
continue
)
);
ideal gens kernel transpose (random(Q_2,Q_2)*(Q.dd_3))^cols
)
minimalCurve Ideal := I -> minimalCurve raoModule I
minimalCurve Curve := C -> minimalCurve raoModule ideal C
minimalCurveBetti = method()
minimalCurveBetti Module := M -> (
--Take a finite length module
--returns the Betti table of a minimal curve
R := ring M;
if M == 0 then return ideal(R_0,R_1);
assert(dim M == 0);
Q := res M;
r := rank Q_2 - rank Q_3 + rank Q_4 - 1;
degs := flatten last degrees Q.dd_2;
ok := 1;
L := {};
degloop := unique degs;
deg := first degloop;
while #L < r do (
--This algorithm computes the correct columns to select
(s,a,b) := alphaBeta selectColumns(deg,Q.dd_2);
if (s != a or s != b) then (
L = L | splice{(min(a-1,b)-#L):deg};
ok = 0;
) else (
if ok == 1 then L = L | select(degs,d -> d == deg);
);
degloop = drop(degloop,1);
if degloop != {} then deg = first degloop;
);
h := sum L - sum flatten degrees Q_2 + sum flatten degrees Q_3 - sum flatten degrees Q_4;
cols := for i from 0 to #degs-1 list (
j := position(L, l -> l == degs#i);
if j === null then (
i
) else (
L = drop(L,{j,j});
continue
)
);
betti chainComplex {random(R^1,(target (Q.dd_3)^cols)**R^{-h}),(Q.dd_3)^cols**R^{-h},
Q.dd_4**R^{-h}, Q.dd_5**R^{-h}}
)
minimalCurveBetti Ideal := I -> minimalCurveBetti raoModule I
minimalCurveBetti Curve := C -> minimalCurveBetti raoModule ideal C
--VI.ACM Curves
Delta := L-> (
--numerical differentiation, auxiliary
M := for i from 1 to #L-1 list L#i-L#(i-1);
{L#0} | M
)
reduce := L -> (
while last L == 0 do L = drop(L,-1);
L
)
positiveChars = method()
positiveChars (ZZ,ZZ) := List => (d,s) -> (
--Generates all positive characters of degree d and least degree surface s
a := getSymbol "a";
deg := apply(splice{s..(d-1)},i->{1,i});
R := (ZZ/2)(monoid[a_s..a_(d-1),Degrees=> deg]);
normalize := {s,d-sum apply(s,k-> -k)};
L := flatten entries basis(normalize,R);
apply(L,p-> toList(s:-1) | flatten exponents p) / reduce
)
positiveChars ZZ := List => d -> (
--Generates all positive characters of degree d
flatten apply(splice{1..d-1},s-> positiveChars(d,s))
)
bettiToList := B -> (
--turns a BettiTally into a list of degrees in the free resolution
--auxiliary
n := max apply(keys B, k -> first k);
for i from 0 to n list (
b := select(keys B, k -> first k == i);
flatten apply(b, j -> splice{B#j: last j})
)
)
listToBetti := L -> (
--turns a list of degrees in the free resolution into a BettiTally
--auxiliary
L = L / tally;
new BettiTally from
flatten apply(#L, i -> flatten apply(keys L#i, j -> (i, {j},j) => L#i#j))
)
degreeMatrix = method()
degreeMatrix BettiTally := Matrix => B -> (
--turns the BettiTally of an ACM curve into a degree matrix
L := drop(bettiToList B,1);
if #L != 2 or #(L#0) != #(L#1)+1 then return matrix {{0}};
matrix apply(reverse sort L#0, l ->
apply(reverse sort L#1, m -> if m < l then 0 else m-l))
)
isACMBetti = method()
isACMBetti BettiTally := Boolean => B -> (
--checks if there is an ACM curve having Betti table B
L := sort (bettiToList B)#1;
mat := degreeMatrix B;
diag := apply(#L-1, i -> mat_(i,i));
if any(diag, j -> j <= 0) then return false;
x := getSymbol "x";
R := (ZZ/101)(monoid[x_0,x_1]);
newL := sort flatten degrees randomDeterminantalIdeal(R,mat);
if newL != L then return false else return true
)
isSmoothACMBetti = method()
isSmoothACMBetti BettiTally := Boolean => B -> (
--checks if there is a smooth ACM curve having Betti table B
if not isACMBetti B then return false;
mat := degreeMatrix B;
if any(apply(numcols mat -1, i -> mat_(i,i+1)), j-> j <= 0) then return false else return true
)
generalACMBetti = method()
generalACMBetti List := gamma -> (
--takes a postulation character and returns the Betti table of
--the general ACM curve having this character
alt := reduce Delta(-gamma | {0});
alt = {0} | drop(alt,1);
T := {(0,{0},0) => 1} | apply(#alt, i -> (
if alt#i < 0 then (1,{i},i) => -alt#i
else if alt#i > 0 then (2,{i},i) => alt#i));
new BettiTally from delete(null,T)
)
specializeACMBetti = method()
specializeACMBetti BettiTally := List => B -> (
--takes Betti table of an ACM curves
--returns all valid Betti tables of 1-specializations
L := bettiToList B;
if #(L#1) >= min(L#1)+1 then return {};
deg := splice{min(L#1)+1..max(L#2)-1};
Sp := unique apply(deg , d -> {L#0, L#1 | {d}, L#2 | {d}});
select(Sp / listToBetti, b -> isACMBetti b)
)
allACMBetti = method()
allACMBetti List := gamma ->(
--takes a postulation character and returns all Betti tables
--of ACM curves having that character
B := generalACMBetti gamma;
final := {B};
current := {B};
while (
L := bettiToList first current;
#(L#1) < min(L#1)+1
) do (
current = flatten apply(current, b -> specializeACMBetti(b));
final = unique (final | current);
);
return final
)
randomDeterminantalIdeal = method()
randomDeterminantalIdeal (Ring,Matrix) := (R,M) -> (
--produces a random determinantal ideal in the ring R
--with forms of degrees specified by the matrix M
--nonpositive degrees entries are set to be 0
if M != matrix{{}} then (
N := matrix apply(entries M, row -> apply(row, a-> if a <= 0 then 0 else random(a,R)))
) else return ideal(0);
minors(numcols N,N)
)
--VII.Generation and plotting
smoothDivisors = method()
smoothDivisors (ZZ,QuadricSurface) := (d,X) -> (
--generates all smooth divisors on the QuadricSurface of degree d
maxdeg := floor(1/2*d);
for a from 1 to maxdeg list divisor({a,d - a},X)
)
smoothDivisors (ZZ,CubicSurface) := (d,X) -> (
--generates all smooth divisors of degree d on the CubicSurface
--unique up to monodromy
flatten for a from ceiling(d/3) to d list (
degreeList := apply(select(partitions(3*a-d),p->#p<=6),q ->
{a} | toList q | splice{(6-#q):0}); --gives all divisors of degree d with given a and b_1 >= .. >= b_6 >= 0
degreeList = select(degreeList, L -> L#0 >= L#1+L#2+L#3); --normalized
apply(degreeList, L-> divisor(L,X))
)
)
smoothDivisors (ZZ,QuarticSurfaceRational) := (d,X) -> (
--generates some smooth divisors on the QuarticSurfaceRational
--not uniquely represented
flatten for a from max(d-2,ceiling(d/4)) to d+2 list (
degreeList := apply(select(partitions(2*a+d-4),p->#p<=8),q ->
{a,a-d+2} | toList q | splice{(8-#q):0});
degreeList = select(degreeList, L -> (L#0 >= L#1+L#2+L#3)
and binomial(L#0+2,2) > sum drop(L,1));
--We need unique representation criterion
Ld := apply(degreeList, L-> divisor(L,X));
select(Ld, D -> genus D >= 0 and D.Coordinate != X.HyperplaneClass)
--We need numerical criterion of smoothness
)
)
smoothDivisors (ZZ,ZZ,Ring) := (d,g,R) -> (
--generates smooth divisors of degree d and genus g
L := {};
if g > floor(1/4*d^2-d+1) then return {};
--By Castelnuovo's theorem
--check on quadric surface
deg := select(splice{1..d},a-> (a-1)*(d-a-1) == g);
if deg != {} then (
L = L | {divisor({first deg,d-first deg},quadricSurface(R))};
);
if g > 1/6*d*(d-3)+1 then return L;
--by Halphen's theorem
L = L | smoothDivisors(d,cubicSurface(R)) |
smoothDivisors(d,quarticSurfaceRational(R));
select(L,D -> genus D == g)
)
smoothDivisors (ZZ,ZZ) := (d,g) -> (
--generates smooth divisors of degree d and genus g
x := getSymbol "x";
R := (ZZ/32003)(monoid[x_0..x_3]);
smoothDivisors(d,g,R)
)
curve (ZZ,ZZ,Ring) := (d,g,R) -> (
--generates a random curve of degree d and genus g in a given ring
if 2*g == (d-1)*(d-2) then return ideal(random(1,R),random(d,R));
L := smoothDivisors(d,g,R);
if L != {} then return curve first random L
else print "No smooth curve with this degree and genus exists!";
)
curve (ZZ,ZZ) := (d,g) -> (
x := getSymbol "x";
R := (ZZ/32003)(monoid[x_0..x_3]);
if 2*g == (d-1)*(d-2) then return ideal(random(1,R),random(d,R));
curve(d,g,R)
)
dgTable = method()
dgTable List := L ->(
--Takes a list of AbstractDivisors or RealizedDivisors
--returns a (degree, genus) occurrence matrix
Ldg := apply(L, C -> (lift(degree C,ZZ), lift(genus C,ZZ)));
dmax := max apply(Ldg,dg->first dg);
dmin := min apply(Ldg,dg->first dg);
gmax := max apply(Ldg,dg->last dg);
gmin := min apply(Ldg,dg->last dg);
M := mutableMatrix map(ZZ^(gmax-gmin+1),ZZ^(dmax-dmin+1),0);
for dg in Ldg do (
j := first dg - dmin;
i := gmax - last dg;
M_(i,j) = M_(i,j)+1;
);
yaxis := reverse splice{gmin..gmax};
xaxis := toString splice{dmin..dmax};
xaxis = replace(" ([0-9]),", " \\1", replace("\\{", "g/d| ", replace("\\}", "", xaxis)));
S := toString(transpose matrix{yaxis} | matrix M) | "\n";
S = replace("matrix ", "", replace("\\{\\{", "{", replace("\\}\\}", "", S)));
S = replace("\\}, ","\n", S);
S = replace("\\{([0-9]+)", "\\1 |", S);
S = replace(" ([0-9]),", " \\1,", S);
S = replace(",","",S);
S = replace("\n([0-9]) ", "\n \\1 ", S);
S = replace(" ([0-9])\n", " \\1\n", S);
S = replace(" 0", " .", S);
S = net substring(S, 0, #S-1);
xaxisbar := "---+";
for i from 4 to width S do xaxisbar = xaxisbar | "-";
S || xaxisbar || replace(",", "", xaxis)
--transpose matrix{yaxis} | (matrix M || matrix{xaxis})
)
--VIII.Documentations
beginDocumentation()
--Headline
document {
Key => SpaceCurves,
Headline => "generation of space curves",
PARA{
EM "SpaceCurves", " is a package dedicated to generation of curves in P3.
The 1.0 version of the package generates smooth curves of a given degree and genus,
ACM curves of a given Hilbert function as well as
minimal curves in biliaison class with a given Rao-module."
},
PARA {
"The method ", TO "smoothDivisors", " produces a list of ",
TO "Divisor", " of a given degree on a given surface.
The method ", TO (curve,Divisor),
" produces a random
curve in a given divisor class.
For a given degree, as one varies the input surface from a smooth quadric, a smooth cubic
and a rational quartic surface with a double line,
all obtainable genus of a smooth curve will occur (save that of a plane curve).
The methods to create the said surfaces are: ", TO (quadricSurface,Ring), ", ",
TO (cubicSurface,Ring), " and ", TO (quarticSurfaceRational,Ring),
"."
},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"X = quadricSurface(R);",
"Y = cubicSurface(R);",
"Z = quarticSurfaceRational(R);",
"LD = smoothDivisors(4,X) | smoothDivisors(4,Y) | smoothDivisors(4,Z)",
"LC = apply(LD,D->curve D);"
},
PARA {
" The method ", TO (curve,ZZ,ZZ),
" generates a random curve with the specified degree and genus."
},
EXAMPLE {
"C = curve(5,2);",
"degree C, genus C, isPrime C, isSmooth C"
},
PARA {
"The postulation character of a curve is defined to be the negative of the
third numerical difference of its Hilbert function, and gives equivalent
information as the Hilbert function. The method function ", TO (positiveChars,ZZ),
" generates all possible postulation characters of an ACM curve of a given degree. The method ",
TO (allACMBetti,List), " generates all Betti tables of ACM curves with a given
postulation character. The method function ", TO (degreeMatrix, BettiTally), " converts the
Betti table of an ACM curve to its Hilbert-Burch degree matrix. Finally ",
TO (randomDeterminantalIdeal,Ring,Matrix), " generates a random determinantal ideal
in a given ring with specified degree format. Combining all three methods we can generate
ACM curves of any degree d, exhausting all possibilities of Betti tables."
},
EXAMPLE {
"G = positiveChars(8);",
"L = G / allACMBetti;",
"netList L",
"apply(L, g
-> apply(g, B -> randomDeterminantalIdeal(ZZ/101[x,y,z,w], degreeMatrix B)));"
},
PARA {
"The method ", TO (minimalCurve,Module), " produces
a minimal curve in the biliaison class specified by the finite length module.
The method ", TO (minimalCurve,Ideal), " produces a random minimal curve in the biliaison
class of a given curve."
},
EXAMPLE {
"I = monomialCurveIdeal(R,{1,3,4})",
"M = raoModule(I)",
"J = minimalCurve M;",
"betti res J"
},
PARA{},
SUBSECTION "Surfaces",
UL{ TO "QuadricSurface",
TO "IntersectionPairing",
TO "CanonicalClass",
TO "HyperplaneClass",
TO "quadricSurface",
TO "CubicSurface",
TO "BlowUpPoints",
TO "MapToP3",
TO "cubicSurface",
TO "QuarticSurfaceRational",
TO "quarticSurfaceRational"
},
PARA{},
SUBSECTION "Divisors",
UL{ TO "Divisor",
TO "Coordinate",
TO "Surface",
TO "divisor",
TO "surface"
},
PARA{},
SUBSECTION "Curves",
UL{
TO "Curve",
TO "curve",
TO "isSmooth"
},
PARA{},
SUBSECTION "Minimal curves",
UL{ TO "minimalCurve",
TO "raoModule"
},
PARA{},
SUBSECTION "ACM Curves",
UL{
TO "positiveChars",
TO "generalACMBetti",
TO "specializeACMBetti",
TO "allACMBetti",
TO "isACMBetti",
TO "isSmoothACMBetti",
TO "degreeMatrix",
TO "randomDeterminantalIdeal"
}
}
--Surfaces
document{
Key => QuadricSurface,
Headline => "type of HashTable",
"QuadricSurface is a type of HashTable storing information about a smooth quadric
surface in P^3. The keys of a QuadricSurface are:
IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal."
}
document{
Key => {quadricSurface,(quadricSurface,Ring)},
Headline => "creates a QuadricSurface",
{"This function takes a polynomial ring in 4 variables over a field as the
coordinate ring of P3 and creates a ", TO "QuadricSurface", " in this ring."},
SYNOPSIS (
Usage => "Q = quadricSurface(R)",
Inputs => { "R" => Ring},
Outputs => {"Q" => QuadricSurface},
EXAMPLE {
"quadricSurface(ZZ/32003[x,y,z,w])"
}
),
SeeAlso => {"cubicSurface","quarticSurfaceRational"}
}
document{
Key => CubicSurface,
Headline => "type of HashTable",
"CubicSurface is a type of HashTable storing information about a smooth cubic
surface in P^3. The keys of a QuadricSurface are:
IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal, BlowUpPoints, MapToP3."
}
document{
Key => {cubicSurface,(cubicSurface,Ring)},
Headline => "creates a cubicSurface",
{"This function takes a polynomial ring in 4 variables over a field as the coordinate
ring of P3 and creates a ", TO "CubicSurface", " in this ring.
The equation of the cubic surface is computed from the blowup of 6 points in P2,
listed in the key BlowUpPoints, along with a rational map P2 -> P3 whose base loci
is the 6 given points."},
SYNOPSIS (
Usage => "X = quadricSurface(R)",
Inputs => {"R" => Ring},
Outputs => {"X" => CubicSurface},
EXAMPLE {
"cubicSurface(ZZ/32003[x,y,z,w])"
}
),
SeeAlso => {"quadricSurface","quarticSurfaceRational"}
}
document{
Key => QuarticSurfaceRational,
Headline => "type of HashTable",
"QuarticSurfaceRational is a type of HashTable storing information about a rational quartic surface
with a double line in P^3. The keys of a QuadricSurface are:
IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal, BlowUpPoints, MapToP3."
}
document{
Key => {quarticSurfaceRational,(quarticSurfaceRational,Ring)},
Headline => "creates a QuarticSurfaceRational",
{"This function takes a polynomial ring in 4 variables over a field as the coordinate
ring of P3 and creates a rational quartic surface with a double line as a ",
TO "QuarticSurfaceRational", " in this ring.
To do this We blow up P2 at 10 points, listed in BlowUpPoints,
and map the blownup surface to P3.
The map is specified as a rational map P2->P3 given in MapToP3."
},
SYNOPSIS (
Usage => "X = quadricSurface(R)",
Inputs => {"R" => Ring},
Outputs => {"X" => QuarticSurfaceRational},
EXAMPLE {
"X = quarticSurfaceRational(ZZ/32003[x,y,z,w])"
}
),
SeeAlso => {"quadricSurface","cubicSurface"}
}
document {
Key => HyperplaneClass,
Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
{"The symbol ", TT "HyperplaneClass", " is a key for ", TO "QuadricSurface",
", ", TO "CubicSurface",
" and ", TO "QuarticSurfaceRational", ". It stores a ",
TT "List", " encoding the coordinates of a globally generated divisor used to
map the surface to P^3."
},
SeeAlso => {"CanonicalClass","IntersectionPairing","BlowUpPoints","MapToP3"}
}
document {
Key => CanonicalClass,
Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
{"The symbol ", TT "CanonicalClass", " is a key for ", TO "QuadricSurface",
", ", TO "CubicSurface",
" and ", TO "QuarticSurfaceRational", ". It stores a ",
TT "List", " encoding the coordinates of the canonical divisor."
},
SeeAlso => {"HyperplaneClass","IntersectionPairing","BlowUpPoints","MapToP3"}
}
document {
Key => IntersectionPairing,
Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
{"The symbol ", TT "IntersectionPairing", " is a key for ", TO "QuadricSurface",
", ", TO "CubicSurface",
" and ", TO "QuarticSurfaceRational", ". It stores a ",
TT "Matrix", " encoding the intersection pairing of the surface."
},
SeeAlso => {"CanonicalClass","HyperplaneClass","BlowUpPoints","MapToP3"}
}
document {
Key => BlowUpPoints,
Headline => "key for CubicSurface and QuarticSurfaceRational",
{"The symbol ", TT "BlowUpPoints", " is a key for ", TO "CubicSurface",
" and ", TO "QuarticSurfaceRational", ". It stores a
list of ideals encoding the points on P2 whose blowup
produces the surface."
},
SeeAlso => {"MapToP3"}
}
document {
Key => MapToP3,
Headline => "key for CubicSurface and QuarticSurfaceRational",
{"The symbol ", TT "MapToP3", " is a key for ", TO "CubicSurface",
" and ", TO "QuarticSurfaceRational", ". It stores a ",
TT "map", " specifying a rational map from P^2 to P^3 obtained
by the restriction of the embedding of the blown-up surface to P^3."
},
SeeAlso => {"BlowUpPoints"}
}
--Divisors
document {
Key => Divisor,
Headline => "type of HashTable",
{TO "Divisor", " is a type of ", TT "HashTable",
" that specifies a divisor class
on a surface. The keys are ", TO "Coordinate", " and ",
TO "Surface", "."
},
SeeAlso => {"Curve"}
}
document {
Key => Coordinate,
Headline => "key of Divisor",
{
TO "Coordinate", " is a key of ", TO "Divisor", " storing a ",
TT "List", " encoding the coordinates of the divisor class."
}
}
document {
Key => Surface,
Headline => "key of Divisor",
{
TO "Surface", " is a key of ", TO "Divisor", " storing a ",
TT "HashTable", " which can be ", TO "QuadricSurface", ", ",
TO "CubicSurface", " or ", TO "QuarticSurfaceRational", "."
}
}
document {
Key => {divisor,(divisor,List,QuadricSurface),
(divisor,List,CubicSurface),(divisor,List,QuarticSurfaceRational)},
Headline => "creates a Divisor",
{"Creates a ", TO "Divisor", " from a given ", TT "List",
" of coordinates and a surface."
},
SYNOPSIS (
Usage => "D = divisor(L,X)",
Inputs => {"L" => List => " of coordinate",
"X" => QuadricSurface
},
Outputs => {"D" => Divisor},
EXAMPLE {
"X = quadricSurface(ZZ/101[x,y,z,w]);",
"D = divisor({3,2},X)"
}
),
SYNOPSIS (
Usage => "D = divisor(L,X)",
Inputs => {"L" => List => " of coordinate",
"X" => CubicSurface
},
Outputs => {"D" => Divisor},
EXAMPLE {
"X = cubicSurface(ZZ/101[x,y,z,w]);",
"D = divisor({3,1,1,1,1,1,1},X)"
}
),
SYNOPSIS (
Usage => "D = divisor(L,X)",
Inputs => {"L" => List => " of coordinate",
"X" => QuarticSurfaceRational
},
Outputs => {"D" => Divisor},
EXAMPLE {
"X = quarticSurfaceRational(ZZ/101[x,y,z,w]);",
"D = divisor(splice{3,9:1},X)"
}
)
}
document {
Key => (divisor,Curve),
Headline => "extracts the Divisor of a Curve",
{
"Outputs the key ", TT "Divisor", " of a ", TT "Curve"
},
EXAMPLE {
"C = curve(5,2);",
"D = divisor C"
}
}
document {
Key => {surface,(surface,Divisor),(surface,Curve)},
Headline => "the surface key of a Divisor or a Curve",
{
"Returns the key ", TO "Surface", " of a ", TO "Divisor", "."
},
EXAMPLE {
"C = curve(5,2);",
"D = divisor C",
"Q = surface D"
}
}
document {
Key => Curve,
Headline => "type of HashTable",
{
TT "Curve", " is a type of ", TT "HashTable", " that
stores information about a curve. It has keys ",
TT "Divisor", " and ", TT "Ideal", "."
}
}
document {
Key => {curve,(curve,Divisor),(curve,ZZ,ZZ),(curve,ZZ,ZZ,Ring)},
Headline => "generates a random curve",
{
"The method ", TT "curve", " generates a random curve with given input."
},
SYNOPSIS (
Usage => "C = curve(D)",
Inputs => {"D" => Divisor},
Outputs => {"C" => Curve},
EXAMPLE {
"X = quadricSurface(ZZ/101[x_0..x_3]);",
"D = divisor({1,2},X);",
"C = curve D"
}
),
SYNOPSIS (
Usage => "C = curve(d,g)",
Inputs => {"d" => ZZ => "degree", "g" => ZZ => "genus"},
Outputs => {"C" => Curve},
EXAMPLE {
"I = curve(5,2);",
"degree I, genus I"
}
),
SYNOPSIS (
Usage => "C = curve(d,g,R)",
Inputs => {"d" => ZZ => "degree",
"g" => ZZ => "genus",
"R" => Ring => "ambient ring of P^3"},
Outputs => {"C" => Curve}
)
}
document {
Key => {isSmooth,(isSmooth,Ideal),(isSmooth, Curve)},
Headline => "checks smoothness of an ideal or of a Curve",
{
"The method ", TT "isSmooth", " uses Jacobian criterion to check the smoothness of
an ideal or a Curve."
},
SYNOPSIS (
Usage => "B = isSmooth(I)",
Inputs => {"I"=>Ideal},
Outputs => {"B" => Boolean}
),
SYNOPSIS (
Usage => "B = isSmooth(C)",
Inputs => {"C"=>Curve},
Outputs => {"B"=>Boolean},
EXAMPLE {
"C = curve(5,2);",
"isSmooth C"
}
)
}
document {
Key => (degree, Curve),
Headline => "computes the degree of a Curve",
{"Computes the degree of a ", TT "Curve", "."},
EXAMPLE {
"C = curve(5,2);",
"degree C"
}
}
document {
Key => (genus, Curve),
Headline => "computes the genus of a Curve",
{"Computes the genus of a ", TT "Curve", "."},
EXAMPLE {
"C = curve(5,2);",
"genus C"
}
}
document {
Key => (degree, Divisor),
Headline => "computes the degree of a Divisor",
{"Computes the degree of a ", TT "Divisor", " using ",
TT "IntersectionPairing", "."},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"Q = quadricSurface(R);",
"D = divisor({3,4},Q);",
"degree D"
}
}
document {
Key => (genus, Divisor),
Headline => "computes the genus of a Divisor",
{"Computes the genus of a ", TT "Divisor", " using the adjunction formula."},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"Q = quadricSurface(R);",
"D = divisor({3,4},Q);",
"genus D"
}
}
document {
Key => (symbol *,Divisor,Divisor),
Headline => "intersection number of two Divisors",
{
"Returns the intersection number of two ", TT "Divisors", "."
},
EXAMPLE {
"Q = quadricSurface(ZZ/101[x,y,z,w]);",
"C = divisor({1,0},Q);",
"D = divisor({0,1},Q);",
"C*D"
}
}
document {
Key => (symbol +,Divisor,Divisor),
Headline => "sum of two Divisors",
{
"Returns the sum of two ", TT "Divisors", "."
} ,
EXAMPLE {
"Q = quadricSurface(ZZ/101[x,y,z,w]);",
"C = divisor({1,0},Q);",
"D = divisor({0,1},Q);",
"C+D"
}
}
document {
Key => (symbol -,Divisor,Divisor),
Headline => "difference of two Divisors",
{
"Returns the difference of two ", TT "Divisors", "."
},
EXAMPLE {
"Q = quadricSurface(ZZ/101[x,y,z,w]);",
"C = divisor({1,0},Q);",
"D = divisor({0,1},Q);",
"C-D"
}
}
document {
Key => (symbol *,ZZ,Divisor),
Headline => "multiply a Divisor by an integer",
{
"Multiplies a ", TT "Divisors", " by an integer."
},
EXAMPLE {
"Q = quadricSurface(ZZ/101[x,y,z,w]);",
"C = divisor({1,0},Q);",
"3*C"
}
}
document {
Key => {(ideal,QuadricSurface),(ideal,CubicSurface),(ideal,QuarticSurfaceRational)},
Headline => "extracts the ideal of a surface",
{
"Extracts the key ", TT "Ideal", " of a ", TO "QuadricSurface", ", a ",
TO "CubicSurface", " or a ", TO "QuarticSurfaceRational", "."
},
EXAMPLE {
"X = quadricSurface(ZZ/101[x,y,z,w]);",
"ideal X"
}
}
document {
Key => {smoothDivisors,(smoothDivisors,ZZ,CubicSurface),
(smoothDivisors,ZZ,QuadricSurface), (smoothDivisors,ZZ,QuarticSurfaceRational)},
Headline => "produces a list of smooth divisors of a given degree on a surface",
{
"Produces a ", TT "List", " of ", TO "Divisor", " of a given degree on a
given surface. On the ", TO "CubicSurface", " and the ", TO "QuarticSurfaceRational",
" the list is not exhaustive, but will include a divisor for each possible genus
that a smooth curve can obtain."
},
SYNOPSIS (
Usage => "L = smoothDiviors(d,X)",
Inputs => {"d" => ZZ => "degree", "X"=>QuadricSurface},
Outputs => {"L"=> List => "of Divisors"},
EXAMPLE {
"X = quadricSurface(ZZ/101[x,y,z,w]);",
"L = smoothDivisors(5,X)"
}
),
SYNOPSIS (
Usage => "L = smoothDiviors(d,X)",
Inputs => {"d" => ZZ =>"degree", "X"=>CubicSurface},
Outputs => {"L"=>List => "of Divisors"},
EXAMPLE {
"X = cubicSurface(ZZ/101[x,y,z,w]);",
"L = smoothDivisors(5,X)"
}
),
SYNOPSIS (
Usage => "L = smoothDiviors(d,X)",
Inputs => {"d" => ZZ =>"degree", "X"=>QuarticSurfaceRational},
Outputs => {"L"=>List => "of Divisors"},
EXAMPLE {
"X = quarticSurfaceRational(ZZ/101[x,y,z,w]);",
"L = smoothDivisors(5,X)"
}
)
}
document {
Key => {(smoothDivisors,ZZ,ZZ),(smoothDivisors,ZZ,ZZ,Ring)},
Headline => "produces a list of smooth divisors of given degree and genus",
{"This method produces a list of Divisors of a given degree and genus,
one may also pass Ring as the ambient ring of P3."},
Usage => "L = smoothdivisors(d,g)",
Inputs => {"d" => ZZ => "degree", "g" => ZZ => "genus"},
EXAMPLE {
"smoothDivisors(5,2)",
"smoothDivisors(5,2,ZZ/101[x,y,z,w])"
}
}
document {
Key => (isPrime,Curve),
Headline => "checks if the ideal of a Curve is prime",
Usage => "B = isPrime(C)",
Inputs => {"C" => Curve},
Outputs => {"B" => Boolean},
EXAMPLE {
"C = curve(5,2);",
"isPrime C"
}
}
document {
Key => (ideal,Curve),
Headline => "extracts the ideal of a Curve",
{
"Extracts the key ", TT "Ideal", " of a ", TO "Curve", "."
},
EXAMPLE {
"C = curve(5,2);",
"ideal C"
}
}
document {
Key => {dgTable,(dgTable,List)},
Headline => "prints the table of (degree,genus) pairs",
{
TT "dgTable", " prints the table of (degree,genus) pairs, where the horizontal
axis is the degree and the vertical is the genus. The input can be a ", TO "List",
" of ", TO "Divisor", ", ", TO "Curve", ", ", TT "PostulationChar", " or ",
TO "Ideal", "."
}
}
document {
Key => {raoModule,(raoModule,Ideal),(raoModule, Curve)},
Headline => "computes the Rao module of a curve",
{"Given I the homogeneous ideal of a pure dimension one subscheme
in P^3, the function computes its Rao module."
},
Usage => "M = raoModule I",
Inputs => {"I" => Ideal => "of a pure dimension one subscheme"},
Outputs => {"M" => Module},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"I = monomialCurveIdeal(R,{1,3,4});",
"M = raoModule I"
}
}
document {
Key => {positiveChars,(positiveChars,ZZ),(positiveChars,ZZ,ZZ)},
Headline => "generates all positive characters of a given degree",
{"produces all positive characters of a given degree, equivalently, these are exactly
all the possible postulation characters of an ACM curve in P3 of that degree"
},
SYNOPSIS (
Usage => "L = positiveChars(d)",
Inputs => {"d" => ZZ => "degree"},
Outputs => {"L" => List},
EXAMPLE {
"positiveChars(5)"
}
),
SYNOPSIS (
Usage => "L = positiveChars(d,s)",
Inputs => {"d" => ZZ => "degree", "s" => ZZ => "least degree surface"},
Outputs => {"L" => List},
EXAMPLE {
"positiveChars(5)"
}
)
}
document {
Key => {isACMBetti, (isACMBetti, BettiTally)},
Headline => "checks whether a Betti table is that of an ACM curve",
{
"Given a BettiTally, returns true or false depending on whether there
exists an ACM curve in P3 having that Betti table."
},
Usage => "b = isACMBetti B",
Inputs => {"B" => BettiTally},
Outputs => {"b" => Boolean},
EXAMPLE {
"B = generalACMBetti {-1,-1,2}",
"isACMBetti B"
}
}
document {
Key => {isSmoothACMBetti, (isSmoothACMBetti, BettiTally)},
Headline => "checks whether a Betti table is that of a smooth ACM curve",
{
"Given a BettiTally, returns true or false depending on whether there
exists a smooth ACM curve in P3 having that Betti table."
},
Usage => "b = isSmoothACMBetti B",
Inputs => {"B" => BettiTally},
Outputs => {"b" => Boolean},
EXAMPLE {
"B = generalACMBetti {-1,-1,2}",
"isSmoothACMBetti B"
}
}
document {
Key => {generalACMBetti, (generalACMBetti,List)},
Headline => "the most general Betti table of an ACM curve with a given Hilbert function",
{ "Given a positive character, it outputs the Betti table of a general ACM curve that
has this character as its postulation character."
},
Usage => "B = generalACMBetti gamma",
Inputs => {"gamma" => List => "positive character"},
Outputs => {"B" => BettiTally},
EXAMPLE {
"generalACMBetti {-1,-1,2}"
}
}
document {
Key => {specializeACMBetti, (specializeACMBetti,BettiTally)},
Headline => "lists all 1-specialization of a Betti table of an ACM curve",
{
"Given a Betti table of an ACM curve, produces all possible Betti tables of
ACM curves with one more generator and syzygy of equal degree than the given one."
},
Usage => "L = specializeACM B",
Inputs => {"B" => BettiTally},
Outputs => {"L" => List => "of BettiTally"},
EXAMPLE {
"B = generalACMBetti {-1,-1,-1,2,1}",
"specializeACMBetti B"
}
}
document {
Key => {allACMBetti, (allACMBetti,List)},
Headline => "lists all Betti tables of ACM curves with a given Hilbert function",
{ "Given a positive character, it outputs all possible Betti tables of
ACM curves that have this character as its postulation character."
},
Usage => "L = allACMBetti gamma",
Inputs => {"gamma" => List => "positive character"},
Outputs => {"L" => List => "of BettiTally"},
EXAMPLE {
"allACMBetti {-1,-1,-1,2,1}"
}
}
document {
Key => {degreeMatrix, (degreeMatrix,BettiTally)},
Headline => "computes the Hilbert-Burch degree matrix from a Betti table of ACM curves",
{
"Given the Betti table of an ACM curve, this function returns the
Hilbert-Burch degree matrix."
},
Usage => "M = degreeMatrix B",
Inputs => {"B" => BettiTally => "of an ACM curve"},
Outputs => {"M" => Matrix},
EXAMPLE {
"B = generalACMBetti {-1,-1,2}",
"degreeMatrix B"
}
}
document {
Key => {randomDeterminantalIdeal, (randomDeterminantalIdeal,Ring,Matrix)},
Headline => "produces a random determinantal ideal",
{
"Given a ring and a degree matrix, we produce a random determinantal ideal
with forms in prescribed degree. Forms of non-positive degrees are taken as
0 to ensure minimality of presentation."
},
Usage => "I = randomDeterminantalIdeal(R,M)",
Inputs => {"R" => Ring, "M" => Matrix => "of integers"},
Outputs => {"I" => Ideal => "in the ring R"},
EXAMPLE {
"randomDeterminantalIdeal(ZZ/101[x,y,z],matrix{{1,1},{1,1},{1,1}})"
}
}
document {
Key => {minimalCurve, (minimalCurve, Module),
(minimalCurve, Ideal),(minimalCurve,Curve)},
Headline => "generates a minimal curve in the biliaison class",
"A finite length module M determines a unique
biliaison class. Curves of minimal degrees in this class are called minimal curves.
Given the ideal of a curve J,
this function generates a random minimal curve
in the biliaison class of J.
Given a finite length module M,
this function generates a random minimal curve
in the biliaison class specified by M.",
SYNOPSIS (
Usage => "I = minimalCurve(M)",
Inputs => {"M" => Module},
Outputs => {"I" => Ideal},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"M = coker vars R;",
"I = minimalCurve M"
}
),
SYNOPSIS (
Usage => "I = minimalCurve(J) ",
Inputs => {"J" => Ideal => "of a pure dimension one subscheme"},
Outputs => {"I" => Ideal => "of a minimal curve in the biliaison class"},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"J = monomialCurveIdeal(R,{1,3,4});",
"I = minimalCurve J"
}
),
SeeAlso => {"minimalCurveBetti"}
}
document {
Key => {minimalCurveBetti, (minimalCurveBetti, Module),
(minimalCurveBetti, Ideal),(minimalCurveBetti,Curve)},
Headline => "computes the Betti diagram of the minimal curve",
"A finite length module M determines a unique
biliaison class. Curves of minimal degrees in this class are called minimal curves.
Given the ideal of a curve J,
this function returns the Betti tally of any minimal curve of J.
Given a finite length module M,
this function returns the Betti tally of any minimal curve
in the biliaison class specified by M.",
SYNOPSIS (
Usage => "T = minimalCurveBetti(M)",
Inputs => {"M" => Module},
Outputs => {"T" => BettiTally},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"M = coker vars R;",
"I = minimalCurveBetti M"
}
),
SYNOPSIS (
Usage => "T = minimalCurve(J) ",
Inputs => {"J" => Ideal => "of a pure dimension one subscheme"},
Outputs => {"T" => BettiTally => "of a minimal curve in the biliaison class"},
EXAMPLE {
"R = ZZ/101[x,y,z,w];",
"J = monomialCurveIdeal(R,{1,3,4});",
"I = minimalCurveBetti J"
}
),
SeeAlso => {"degree(BettiTally)"}
}
document {
Key => (net,Curve),
Headline => "displays the ideal of the curve"
}
document {
Key => (net,CubicSurface),
Headline => "displays the ideal of the CubicSurface"
}
document {
Key => (net,QuadricSurface),
Headline => "displays the ideal of the QuadricSurface"
}
document {
Key => (net, QuarticSurfaceRational),
Headline => "displays the ideal of the QuarticSurfaceRational"
}
document {
Key => (net, Divisor),
Headline => "displays the coordinates of the Divisor"
}
end
-------------------------------------------------------------------------------------
restart
uninstallPackage "SpaceCurves"
installPackage "SpaceCurves"
viewHelp "SpaceCurves"
restart
needsPackage "SpaceCurves"
|