File: SpaceCurves.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (1441 lines) | stat: -rw-r--r-- 47,789 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
newPackage(
        "SpaceCurves",
        Version => "1.0", 
        Date => "May 26th 2018",
        Authors => {{Name => "Frank-Olaf Schreyer", 
                  Email => "schreyer@math.uni-sb.de", 
                  HomePage => "https://www.math.uni-sb.de/ag/schreyer/"},
	      {Name => "Mike Stillman", 
                  Email => "mike@math.cornell.edu", 
                  HomePage => "http://www.math.cornell.edu/~mike/"},
	      {Name => "Mengyuan Zhang", 
                  Email => "myzhang@berkeley.edu", 
                  HomePage => "https://math.berkeley.edu/~myzhang/"}
	      },
        Headline => "space curves",
	Keywords => {"Examples and Random Objects"},
        DebuggingMode => false,
	Certification => {
	     "journal name" => "The Journal of Software for Algebra and Geometry",
	     "journal URI" => "http://j-sag.org/",
	     "article title" => "The SpaceCurves package in Macaulay2",
	     "acceptance date" => "18 May 2018",
	     "published article URI" => "https://msp.org/jsag/2018/8-1/p04.xhtml",
	     "published article DOI" => "10.2140/jsag.2018.8.31",
	     "published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x04-SpaceCurves.m2",
	     "repository code URI" => "http://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/SpaceCurves.m2",
	     "release at publication" => "7853d911a8a484766a7828dc8e17aed701ce9fd6",	    -- git commit number in hex
	     "version at publication" => "1.0",
	     "volume number" => "8",
	     "volume URI" => "https://msp.org/jsag/2018/8-1/"
	     }
        )

export {
--Surface	
	"QuadricSurface",
	"IntersectionPairing",	      
	"CanonicalClass",
	"HyperplaneClass",
	"quadricSurface",
	"CubicSurface",
	"BlowUpPoints",
	"MapToP3",
	"cubicSurface",
	"QuarticSurfaceRational",
	"quarticSurfaceRational",
--Divisor
	"Divisor",
	"Coordinate",
	"Surface",
	"divisor",
	"surface",
	"smoothDivisors",
--Curves
    	"Curve",
	"curve",
	"isSmooth",
--ACM curves
	"positiveChars",
	"isACMBetti",
	"isSmoothACMBetti",
	"generalACMBetti",
	"specializeACMBetti",
	"allACMBetti",
	"degreeMatrix",
	"randomDeterminantalIdeal",
--Minimal curves
    	"minimalCurve",
	"raoModule",
	"minimalCurveBetti",
--Plotting
	"dgTable"	
}


--I. Surfaces

QuadricSurface = new Type of HashTable
net QuadricSurface := X -> net X.Ideal
ideal QuadricSurface := X -> X.Ideal
quadricSurface = method()
quadricSurface Ring := R -> (
    X := gens R;
    assert(isField coefficientRing R and #X == 4);
    new QuadricSurface from {
	symbol Ideal => ideal(X_0*X_3-X_1*X_2),
	symbol IntersectionPairing => matrix{{0,1},{1,0}},
	symbol CanonicalClass => {-2,-2},
	symbol HyperplaneClass => {1,1}
    }
)

CubicSurface = new Type of HashTable
net CubicSurface := X -> net X.Ideal
ideal CubicSurface := X -> X.Ideal
cubicSurface = method()
cubicSurface Ring := R -> (
    kk := coefficientRing R;
    X := gens R;
    assert(isField kk and #X == 4);
    y := getSymbol "y";
    S := kk(monoid[y_0..y_2]);
    RS := R ** S;
    while (
    	M := diagonalMatrix({1,1,1}) | matrix{{1},{1},{1}} | random(S^3,S^2);
        points := apply(6,i-> ideal (vars S * syz transpose M_{i}));
        I := intersect points;
        fI := res I;
        if numgens R =!= numColumns fI.dd_1 then
          error "randomization produced an error: try again, and/or increase the size of your base field";
        phi := map(S,R,fI.dd_1);
        matS := sub(diff(transpose sub(vars S,RS),sub(vars R,RS) * sub(fI.dd_2,RS)),R);
        f := ideal det matS;
        dim (f + ideal jacobian f) != 0
    ) do ();	--passes a smoothness check
    new CubicSurface from {
	symbol IntersectionPairing => diagonalMatrix splice{1,6:-1},
	symbol CanonicalClass => -splice{3,6:1},
        symbol HyperplaneClass => splice{3,6:1},
	symbol Ideal => f,
	symbol BlowUpPoints => points,
	symbol MapToP3 => phi
    }
)
linesOnCubic := () -> (
    --Produces the coordinates of the 27 lines
    Ds := entries diagonalMatrix(splice{7:1});
    Es := drop(entries diagonalMatrix(splice{0,6:-1}),1);
    Fs := for p in subsets(splice {1..6}, 2) list (
            first Ds + Ds#(p#1) + Ds#(p#0)
            );
    Gs := for i from 0 to 5 list (
            2*(first Ds) - sum drop(Es, {i,i})
            );
    join(Es,Fs,Gs)
)

QuarticSurfaceRational = new Type of HashTable
net QuarticSurfaceRational := X -> net X.Ideal
ideal QuarticSurfaceRational := X -> X.Ideal
quarticSurfaceRational = method()
quarticSurfaceRational Ring := R -> (
    kk := coefficientRing R;
    X := gens R;
    assert(isField kk and #X == 4);
    y := getSymbol "y";
    S := kk(monoid[y_0..y_2]);
    while (
    	M := diagonalMatrix({1,1,1}) | matrix{{1},{1},{1}} | random(S^3,S^5);
    	points := apply(entries transpose M, p->minors(2,matrix{gens S,p}));
	G := gens trim intersect points;
    	C := ideal (G*random(source G,S^{-3}));
        (numcols basis(3,intersect points) != 1) or 
	dim (C+ideal jacobian C) != 0
	--passes a check that a unique elliptic passes through the 9 points
    ) do ();
    H := trim intersect ({(first points)^2} | drop(points,1));
    phi := map(S,R,gens H);
    Q := kernel phi;    
    new QuarticSurfaceRational from {
    	symbol IntersectionPairing => diagonalMatrix splice{1,9:-1},
	symbol CanonicalClass => -splice{3,9:1},
	symbol HyperplaneClass => splice{4,2,8:1},
	symbol Ideal => Q,
	symbol BlowUpPoints => points,
	symbol MapToP3 => phi	
    }	
)

--II.Divisors

Divisor = new Type of HashTable
net Divisor := X -> net X.Coordinate
divisor = method()
divisor(List, QuadricSurface) := (C, X) -> (
    new Divisor from {
        symbol Coordinate => C,
        symbol Surface => X
        }
    )
divisor(List, CubicSurface) := (C, X) -> (
    new Divisor from {
        symbol Coordinate => C,
        symbol Surface => X
        }
    )
divisor(List, QuarticSurfaceRational) := (C,X) -> (
    new Divisor from {
        symbol Coordinate => C,
        symbol Surface => X
        } 
)
surface = method() 
surface Divisor := D -> D.Surface

ZZ * Divisor := (n,D) -> divisor(n * D.Coordinate, D.Surface)
Divisor + Divisor := (C,D) -> (
    assert(C.Surface === D.Surface);
    divisor(C.Coordinate + D.Coordinate, D.Surface)
    )
Divisor - Divisor := (C,D) -> (
    assert(C.Surface === D.Surface);
    divisor(C.Coordinate - D.Coordinate, D.Surface)
    )
Divisor * Divisor := (C,D) -> (
    X := C.Surface;
    assert(X === D.Surface);
    assert(X.IntersectionPairing =!= null);
    (matrix{C.Coordinate} * X.IntersectionPairing * 
	transpose matrix{D.Coordinate})_(0,0)
    )
degree Divisor := C -> (
    X := C.Surface;
    (matrix{C.Coordinate} * X.IntersectionPairing * 
	transpose matrix{X.HyperplaneClass})_(0,0)
    )
genus Divisor := C -> (
    X := C.Surface;
    K := divisor(X.CanonicalClass,X);
    1/2*((K+C)*C)+1
    )

 
--III.Curves

Curve = new Type of HashTable
net Curve := C -> net C.Ideal
ideal Curve := C -> C.Ideal
divisor Curve := C -> C.Divisor
surface Curve := C -> C.Divisor.Surface

curve = method()
curve Divisor := D -> (
	X := D.Surface;
	R := ring X.Ideal;
	kk := coefficientRing R;
	I := ideal(0);
	
	if class X === QuadricSurface then (
	    	z := getSymbol "z";
	    	cox := kk(monoid[z_0..z_3,Degrees=>{{0,1},{0,1},{1,0},{1,0}}]);
    	    	segre := {cox_0*cox_2,cox_0*cox_3,cox_1*cox_2,cox_1*cox_3};
	    	I = ideal random(D.Coordinate,cox);
	    	if I == 0 then return null;
	    	segre = apply(segre, p -> sub(p,cox/I));
    	    	I = kernel map(cox/I,R,segre);	    
	);
    	n := 0;
	if class X === CubicSurface then n = 6;
	if class X === QuarticSurfaceRational then n = 9;
	if class X === CubicSurface or class X === QuarticSurfaceRational then (
	    attempt := 0;
	    while (
		--Find a plane curve with given multiplicities at points and its image	    	
		phi := X.MapToP3;
	    	pts := X.BlowUpPoints;
            	S := target phi;
            	R = source phi;
            	ab := D.Coordinate;
            	a := ab_0;
            	ipts := trim intersect (for i from 1 to n list (pts_(i-1))^(ab_i));
            	gipts := gens ipts;
                cplane := ideal (gipts*random(source gipts,S^{-a}));
               	SC := S/cplane;
            	I = ker map(SC,R,phi.matrix);
		(degree I != degree D) or (genus I != genus D) and attempt<3
	    ) do (attempt = attempt+1;);
	);
        return new Curve from {
			symbol Divisor => D,
			symbol Ideal => I
	 		};
)
degree Curve := C -> degree ideal C
genus Curve := C -> genus ideal C
isSmooth = method()
isSmooth Ideal := I -> (
    c := codim I;
    dim(I + minors(c, jacobian I)) == 0
    )
isSmooth Curve := C -> isSmooth ideal C
isPrime Curve := {} >> o -> C -> isPrime ideal C

--V.Minimal Curves

raoModule = method()
raoModule Ideal := I -> (
    assert( dim I == 2);
    coker (dual res Ext^3(comodule I,ring I)).dd_(-3)
)
raoModule Curve := C -> raoModule ideal C
minimalCurve = method()
alphaBeta = M -> (
    --takes a matrix M 
    --returns (numcols M, rank M, inf_D rank M ** R/D) where D is a ht 1 prime
    kk := coefficientRing ring M;
    t := getSymbol "t";
    S := kk[t];
    L := apply(4,i->random(1,S)+random(0,S));
    (A,B,C) := smithNormalForm sub(M,matrix{L});
    D := apply(min(numrows A,numcols A), i-> A_(i,i));
    (numcols M,#select(D,d->d!=0),#select(D,d->d==1))    
)
selectColumns = (d,M) -> (
    --selects the columns of a matrix of degree <= d
    L := select(flatten last degrees M,D->D<= d);
    M_(splice{0..#L-1})
)
minimalCurve Module := M -> (
    --Take a finite length module
    --returns a minimal curve
    R := ring M;
    if M == 0 then return ideal(R_0,R_1);
    assert(dim M == 0);
    Q := res M;
    r := rank Q_2 - rank Q_3 + rank Q_4 - 1;
    degs := flatten last degrees Q.dd_2;
    ok := 1;
    L := {};
    degloop := unique degs;
    deg := first degloop;
    while #L < r do (
	--This algorithm computes the correct columns to select
    	(s,a,b) := alphaBeta selectColumns(deg,Q.dd_2);
	if (s != a or s != b) then (
	    L = L | splice{(min(a-1,b)-#L):deg};
	    ok = 0;
	) else (
	    if ok == 1 then L = L | select(degs,d -> d == deg);
	);
    	degloop = drop(degloop,1);
	if degloop != {} then deg = first degloop;
    ); 
    cols := for i from 0 to #degs-1 list (	
    	j := position(L, l -> l == degs#i);
	if j === null then (
	    i   
	) else (    	    
	    L = drop(L,{j,j});
	    continue    
	)    		
    );
    ideal gens kernel transpose (random(Q_2,Q_2)*(Q.dd_3))^cols   
)
minimalCurve Ideal := I -> minimalCurve raoModule I
minimalCurve Curve := C -> minimalCurve raoModule ideal C
minimalCurveBetti = method()
minimalCurveBetti Module := M -> (
    --Take a finite length module
    --returns the Betti table of a minimal curve
    R := ring M;
    if M == 0 then return ideal(R_0,R_1);
    assert(dim M == 0);
    Q := res M;
    r := rank Q_2 - rank Q_3 + rank Q_4 - 1;
    degs := flatten last degrees Q.dd_2;
    ok := 1;
    L := {};
    degloop := unique degs;
    deg := first degloop;
    while #L < r do (
	--This algorithm computes the correct columns to select
    	(s,a,b) := alphaBeta selectColumns(deg,Q.dd_2);
	if (s != a or s != b) then (
	    L = L | splice{(min(a-1,b)-#L):deg};
	    ok = 0;
	) else (
	    if ok == 1 then L = L | select(degs,d -> d == deg);
	);
    	degloop = drop(degloop,1);
	if degloop != {} then deg = first degloop;
    ); 
    h := sum L - sum flatten degrees Q_2 + sum flatten degrees Q_3 - sum flatten degrees Q_4;
    cols := for i from 0 to #degs-1 list (	
    	j := position(L, l -> l == degs#i);
	if j === null then (
	    i    
	) else (    	    
	    L = drop(L,{j,j});
	    continue    
	)    		
    );
    betti chainComplex {random(R^1,(target (Q.dd_3)^cols)**R^{-h}),(Q.dd_3)^cols**R^{-h},
	 Q.dd_4**R^{-h}, Q.dd_5**R^{-h}}
)
minimalCurveBetti Ideal := I -> minimalCurveBetti raoModule I
minimalCurveBetti Curve := C -> minimalCurveBetti raoModule ideal C

--VI.ACM Curves
Delta := L-> (
    --numerical differentiation, auxiliary
    M := for i from 1 to #L-1 list L#i-L#(i-1);
    {L#0} | M    
)
reduce := L -> (
    while last L == 0 do L = drop(L,-1);
    L    
)
positiveChars = method()
positiveChars (ZZ,ZZ) :=  List => (d,s) -> (
    --Generates all positive characters of degree d and least degree surface s
    a := getSymbol "a";
    deg := apply(splice{s..(d-1)},i->{1,i});
    R := (ZZ/2)(monoid[a_s..a_(d-1),Degrees=> deg]);
    normalize := {s,d-sum apply(s,k-> -k)};
    L := flatten entries basis(normalize,R);
    apply(L,p-> toList(s:-1) | flatten exponents p) / reduce
)
positiveChars ZZ := List => d -> (
    --Generates all positive characters of degree d
    flatten apply(splice{1..d-1},s-> positiveChars(d,s))
)
bettiToList := B -> (
    --turns a BettiTally into a list of degrees in the free resolution
    --auxiliary
    n := max apply(keys B, k -> first k);
    for i from 0 to n list (
    	b := select(keys B, k -> first k == i);
	flatten apply(b, j -> splice{B#j: last j})	
    )    
)
listToBetti := L -> (
    --turns a list of degrees in the free resolution into a BettiTally
    --auxiliary
    L = L / tally;
    new BettiTally from 
    flatten apply(#L, i -> flatten apply(keys L#i, j -> (i, {j},j) => L#i#j))    
)

degreeMatrix = method()
degreeMatrix BettiTally := Matrix => B -> (
    --turns the BettiTally of an ACM curve into a degree matrix
    L := drop(bettiToList B,1);
    if #L != 2 or #(L#0) != #(L#1)+1 then return matrix {{0}};
    matrix apply(reverse sort L#0, l -> 
	apply(reverse sort L#1, m -> if m < l then 0 else m-l))   
)
isACMBetti = method()
isACMBetti BettiTally := Boolean => B -> (
    --checks if there is an ACM curve having Betti table B
    L := sort (bettiToList B)#1;
    mat := degreeMatrix B;
    diag := apply(#L-1, i -> mat_(i,i));
    if any(diag, j -> j <= 0) then return false;
    
    x := getSymbol "x"; 
    R := (ZZ/101)(monoid[x_0,x_1]);
    newL := sort flatten degrees randomDeterminantalIdeal(R,mat);
    
    if newL != L then return false else return true  
)
isSmoothACMBetti = method()
isSmoothACMBetti BettiTally := Boolean => B -> (
    --checks if there is a smooth ACM curve having Betti table B
    if not isACMBetti B then return false;
    mat := degreeMatrix B; 
    if any(apply(numcols mat -1, i -> mat_(i,i+1)), j-> j <= 0) then return false else return true
)
generalACMBetti = method()
generalACMBetti List := gamma -> (
    --takes a postulation character and returns the Betti table of 
    --the general ACM curve having this character
    alt := reduce Delta(-gamma | {0});
    alt = {0} | drop(alt,1); 
    T := {(0,{0},0) => 1} | apply(#alt, i -> (
	    if alt#i < 0 then (1,{i},i) => -alt#i
	    else if alt#i > 0 then (2,{i},i) => alt#i));
    new BettiTally from delete(null,T)
)
specializeACMBetti = method()
specializeACMBetti BettiTally := List => B -> (
    --takes Betti table of an ACM curves
    --returns all valid Betti tables of 1-specializations
    L := bettiToList B;
    if #(L#1) >= min(L#1)+1 then return {};	  
    deg := splice{min(L#1)+1..max(L#2)-1};
    Sp := unique apply(deg , d -> {L#0, L#1 | {d}, L#2 | {d}});
    select(Sp / listToBetti, b -> isACMBetti b) 
    
)
allACMBetti = method()
allACMBetti List := gamma ->(
    --takes a postulation character and returns all Betti tables
    --of ACM curves having that character
    B := generalACMBetti gamma;
    final := {B};
    current := {B};
    while (
    	L := bettiToList first current;
	#(L#1) < min(L#1)+1
    ) do (
    	current = flatten apply(current, b -> specializeACMBetti(b));
	final = unique (final | current);    
    );
    return final   
)
randomDeterminantalIdeal = method()
randomDeterminantalIdeal (Ring,Matrix) := (R,M) -> (
    --produces a random determinantal ideal in the ring R
    --with forms of degrees specified by the matrix M
    --nonpositive degrees entries are set to be 0
    if M != matrix{{}} then (
    	N := matrix apply(entries M, row -> apply(row, a-> if a <= 0 then 0 else random(a,R)))
    ) else return ideal(0);
    minors(numcols N,N)    
)


--VII.Generation and plotting

smoothDivisors = method()
smoothDivisors (ZZ,QuadricSurface) := (d,X) -> (
    --generates all smooth divisors on the QuadricSurface of degree d
    maxdeg := floor(1/2*d);
    for a from 1 to maxdeg list divisor({a,d - a},X)    
)
smoothDivisors (ZZ,CubicSurface) := (d,X) -> (
    --generates all smooth divisors of degree d on the CubicSurface
    --unique up to monodromy
    flatten for a from ceiling(d/3) to d list (
	    degreeList := apply(select(partitions(3*a-d),p->#p<=6),q ->
		{a} | toList q | splice{(6-#q):0});    --gives all divisors of degree d with given a and b_1 >= .. >= b_6 >= 0
	    degreeList = select(degreeList, L -> L#0 >= L#1+L#2+L#3); --normalized
	   apply(degreeList, L-> divisor(L,X))
    )    
)
smoothDivisors (ZZ,QuarticSurfaceRational) := (d,X) -> (
    --generates some smooth divisors on the QuarticSurfaceRational
    --not uniquely represented 
    flatten for a from max(d-2,ceiling(d/4)) to d+2 list (
	    degreeList := apply(select(partitions(2*a+d-4),p->#p<=8),q ->
		{a,a-d+2} | toList q | splice{(8-#q):0});
	    degreeList = select(degreeList, L -> (L#0 >= L#1+L#2+L#3)
		and binomial(L#0+2,2) > sum drop(L,1)); 
	    --We need unique representation criterion
	    Ld := apply(degreeList, L-> divisor(L,X));
    	    select(Ld, D -> genus D >= 0 and D.Coordinate != X.HyperplaneClass) 
	    --We need numerical criterion of smoothness
    )     
)
smoothDivisors (ZZ,ZZ,Ring) := (d,g,R) -> (
    --generates smooth divisors of degree d and genus g
    L := {};
    if g > floor(1/4*d^2-d+1) then return {}; 
    --By Castelnuovo's theorem

    --check on quadric surface
    deg := select(splice{1..d},a-> (a-1)*(d-a-1) == g);
    if deg != {} then (
    	L = L | {divisor({first deg,d-first deg},quadricSurface(R))};	 
    );

    if g > 1/6*d*(d-3)+1 then return L;
    --by Halphen's theorem
    
    L = L | smoothDivisors(d,cubicSurface(R)) | 
                 smoothDivisors(d,quarticSurfaceRational(R));
    select(L,D -> genus D == g)
)
smoothDivisors (ZZ,ZZ) := (d,g) -> (
    --generates smooth divisors of degree d and genus g   
    x := getSymbol "x";
    R := (ZZ/32003)(monoid[x_0..x_3]);
    smoothDivisors(d,g,R)
)
curve (ZZ,ZZ,Ring) := (d,g,R) -> (
    --generates a random curve of degree d and genus g in a given ring
    if 2*g == (d-1)*(d-2) then return ideal(random(1,R),random(d,R));
    L := smoothDivisors(d,g,R);
    if L != {}  then return curve first random L
    else print "No smooth curve with this degree and genus exists!";   
)
curve (ZZ,ZZ) := (d,g) -> (
    x := getSymbol "x";
    R := (ZZ/32003)(monoid[x_0..x_3]);
    if 2*g == (d-1)*(d-2) then return ideal(random(1,R),random(d,R));
    curve(d,g,R)   
)
dgTable = method()
dgTable List := L ->(
    --Takes a list of AbstractDivisors or RealizedDivisors
    --returns a (degree, genus) occurrence matrix    
    Ldg := apply(L, C -> (lift(degree C,ZZ), lift(genus C,ZZ)));
    dmax := max apply(Ldg,dg->first dg);
    dmin := min apply(Ldg,dg->first dg);
    gmax := max apply(Ldg,dg->last dg);
    gmin := min apply(Ldg,dg->last dg);
    M := mutableMatrix map(ZZ^(gmax-gmin+1),ZZ^(dmax-dmin+1),0);
    for dg in Ldg do (
	j := first dg - dmin;
	i := gmax - last dg;
    	M_(i,j) = M_(i,j)+1;		
    );
    yaxis := reverse splice{gmin..gmax};
    xaxis := toString splice{dmin..dmax};
    xaxis = replace(" ([0-9]),", "  \\1", replace("\\{", "g/d| ", replace("\\}", "", xaxis)));
    S := toString(transpose matrix{yaxis} | matrix M) | "\n";
    S = replace("matrix ", "", replace("\\{\\{", "{", replace("\\}\\}", "", S)));
    S = replace("\\}, ","\n", S);
    S = replace("\\{([0-9]+)", "\\1 |", S);
    S = replace(" ([0-9]),", "  \\1,", S);
    S = replace(",","",S);
    S = replace("\n([0-9]) ", "\n \\1 ", S);
    S = replace(" ([0-9])\n", "  \\1\n", S);
    S = replace("  0", "  .", S);
    S = net substring(S, 0, #S-1);
    xaxisbar := "---+";
    for i from 4 to width S do xaxisbar = xaxisbar | "-";
    S || xaxisbar || replace(",", "", xaxis)
    --transpose matrix{yaxis} | (matrix M || matrix{xaxis})
)

--VIII.Documentations

beginDocumentation()
--Headline
document { 
Key => SpaceCurves,
Headline => "generation of space curves",
PARA{
EM "SpaceCurves", " is a package dedicated to generation of curves in P3. 
The 1.0 version of the package generates smooth curves of a given degree and genus, 
ACM curves of a given Hilbert function as well as
minimal curves in biliaison class with a given Rao-module."
},
PARA { 
"The method ", TO "smoothDivisors", " produces a list of ",
TO "Divisor", " of a given degree on a given surface.
The method ", TO (curve,Divisor),
 " produces a random 
curve in a given divisor class.
For a given degree, as one varies the input surface from  a smooth quadric, a smooth cubic 
and a rational quartic surface with a double line, 
all obtainable genus of a smooth curve will occur (save that of a plane curve). 
The methods to create the said surfaces are: ", TO (quadricSurface,Ring), ", ",
TO (cubicSurface,Ring), " and ", TO (quarticSurfaceRational,Ring), 
"."
},
EXAMPLE {
    "R = ZZ/101[x,y,z,w];",
    "X = quadricSurface(R);",
    "Y = cubicSurface(R);",
    "Z = quarticSurfaceRational(R);",
    "LD = smoothDivisors(4,X) | smoothDivisors(4,Y) | smoothDivisors(4,Z)",
    "LC = apply(LD,D->curve D);"    
},
PARA {
" The method ", TO (curve,ZZ,ZZ), 
" generates a random curve with the specified degree and genus." 
},
EXAMPLE {
    "C = curve(5,2);",
    "degree C, genus C, isPrime C, isSmooth C"    
},
PARA { 
"The postulation character of a curve is defined to be the negative of the 
third numerical difference of its Hilbert function, and gives equivalent 
information as the Hilbert function. The method function ", TO (positiveChars,ZZ), 
" generates all possible postulation characters of an ACM curve of a given degree. The method ",
TO (allACMBetti,List), " generates all Betti tables of ACM curves with a given 
postulation character. The method function ", TO (degreeMatrix, BettiTally), " converts the
Betti table of an ACM curve to its Hilbert-Burch degree matrix. Finally ", 
TO (randomDeterminantalIdeal,Ring,Matrix), " generates a random determinantal ideal
in a given ring with specified degree format. Combining all three methods we can generate 
ACM curves of any degree d, exhausting all possibilities of Betti tables." 
},
EXAMPLE {
    "G = positiveChars(8);",
    "L = G / allACMBetti;",
    "netList L",
    "apply(L, g 
    -> apply(g, B -> randomDeterminantalIdeal(ZZ/101[x,y,z,w], degreeMatrix B)));"    
},
PARA {
"The method ", TO (minimalCurve,Module), " produces
a minimal curve in the biliaison class specified by the finite length module.
The method ", TO (minimalCurve,Ideal), " produces a random minimal curve in the biliaison
class of a given curve." 
},
EXAMPLE {
    "I = monomialCurveIdeal(R,{1,3,4})",
    "M = raoModule(I)",
    "J = minimalCurve M;",
    "betti res J"    
},
PARA{},
SUBSECTION "Surfaces",  
UL{  TO    "QuadricSurface",
     TO	   "IntersectionPairing",
     TO	   "CanonicalClass",
     TO	   "HyperplaneClass",
     TO	   "quadricSurface",
     TO	   "CubicSurface",
     TO	   "BlowUpPoints",
     TO	   "MapToP3",
     TO	   "cubicSurface",
     TO	   "QuarticSurfaceRational",
     TO	   "quarticSurfaceRational"
     
},
PARA{},
SUBSECTION "Divisors",  
UL{ TO	  "Divisor",
    TO	  "Coordinate",
    TO	  "Surface",
    TO	  "divisor",
    TO	  "surface"
},
PARA{},
SUBSECTION "Curves",  
UL{ 
    TO	  "Curve",
    TO	  "curve",
    TO	  "isSmooth"
},
PARA{},
SUBSECTION "Minimal curves",  
UL{   TO "minimalCurve",
      TO "raoModule"
},
PARA{},
SUBSECTION "ACM Curves",  
UL{ 
    TO	  "positiveChars",
    TO	  "generalACMBetti",
    TO	  "specializeACMBetti",
    TO	  "allACMBetti",
    TO	  "isACMBetti",
    TO	  "isSmoothACMBetti",
    TO	  "degreeMatrix",
    TO 	  "randomDeterminantalIdeal"
}
}
--Surfaces
document{
     Key => QuadricSurface,
     Headline => "type of HashTable",
     "QuadricSurface is a type of HashTable storing information about a smooth quadric 
     surface in P^3. The keys of a QuadricSurface are:
     IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal."
}
document{
    Key => {quadricSurface,(quadricSurface,Ring)},
    Headline => "creates a QuadricSurface",
    {"This function takes a polynomial ring in 4 variables over a field as the 
	coordinate ring of P3 and creates a ", TO "QuadricSurface", " in this ring."},
    SYNOPSIS (   
    	Usage => "Q = quadricSurface(R)",
    	Inputs => { "R" => Ring},
	Outputs => {"Q" => QuadricSurface},
    	EXAMPLE {
       	    "quadricSurface(ZZ/32003[x,y,z,w])"
    	    }
    ),
    SeeAlso => {"cubicSurface","quarticSurfaceRational"}   
}
document{
     Key => CubicSurface,
     Headline => "type of HashTable",
     "CubicSurface is a type of HashTable storing information about a smooth cubic 
     surface in P^3. The keys of a QuadricSurface are:
     IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal, BlowUpPoints, MapToP3."
}
document{
    Key => {cubicSurface,(cubicSurface,Ring)},
    Headline => "creates a cubicSurface",
    {"This function takes a polynomial ring in 4 variables over a field as the coordinate
    ring of P3 and creates a ", TO "CubicSurface", " in this ring. 
    The equation of the cubic surface is computed from the blowup of 6 points in P2, 
     listed in the key BlowUpPoints, along with a rational map P2 -> P3 whose base loci
     is the 6 given points."}, 
    SYNOPSIS (
     	   Usage => "X = quadricSurface(R)",
    	   Inputs => {"R" => Ring},
    	   Outputs => {"X" => CubicSurface},
    	   EXAMPLE {
       	       "cubicSurface(ZZ/32003[x,y,z,w])"
    	       }
    ),
    SeeAlso => {"quadricSurface","quarticSurfaceRational"}   
}
document{
     Key => QuarticSurfaceRational,
     Headline => "type of HashTable",
     "QuarticSurfaceRational is a type of HashTable storing information about a rational quartic surface
     with a double line in P^3. The keys of a QuadricSurface are:
     IntersectionPairing, HyperplaneClass, CanonicalClass, Ideal, BlowUpPoints, MapToP3."
}
document{
    Key => {quarticSurfaceRational,(quarticSurfaceRational,Ring)},
    Headline => "creates a QuarticSurfaceRational", 
    {"This function takes a polynomial ring in 4 variables over a field as the coordinate
    ring of P3 and creates a rational quartic surface with a double line as a ",
     TO "QuarticSurfaceRational", " in this ring. 
    To do this We blow up P2 at 10 points, listed in BlowUpPoints, 
    and map the blownup surface to P3. 
    The map is specified as a rational map P2->P3 given in MapToP3."
     },
    SYNOPSIS (  
    	Usage => "X = quadricSurface(R)",
    	Inputs => {"R" => Ring},
    	Outputs => {"X" => QuarticSurfaceRational},
    	EXAMPLE {
       	    "X = quarticSurfaceRational(ZZ/32003[x,y,z,w])"
    	    }
    ),
    SeeAlso => {"quadricSurface","cubicSurface"}   
}
document {
    Key => HyperplaneClass,
    Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
    {"The symbol ", TT "HyperplaneClass", " is a key for ", TO "QuadricSurface", 
	", ", TO "CubicSurface",
	" and ", TO "QuarticSurfaceRational", ". It stores a ",
    TT "List", " encoding the coordinates of a globally generated divisor used to
    map the surface to P^3."
    },
    SeeAlso => {"CanonicalClass","IntersectionPairing","BlowUpPoints","MapToP3"}    
}
document {
    Key => CanonicalClass,
    Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
    {"The symbol ", TT "CanonicalClass", " is a key for ", TO "QuadricSurface", 
	", ", TO "CubicSurface",
	" and ", TO "QuarticSurfaceRational", ". It stores a ",
    TT "List", " encoding the coordinates of the canonical divisor."	
    },
    SeeAlso => {"HyperplaneClass","IntersectionPairing","BlowUpPoints","MapToP3"}    
}
document {
    Key => IntersectionPairing,
    Headline => "key for QuadricSurface, CubicSurface and QuarticSurfaceRational",
    {"The symbol ", TT "IntersectionPairing", " is a key for ", TO "QuadricSurface", 
	", ", TO "CubicSurface",
	" and ", TO "QuarticSurfaceRational", ". It stores a ",
    TT "Matrix", " encoding the intersection pairing of the surface."
    },
    SeeAlso => {"CanonicalClass","HyperplaneClass","BlowUpPoints","MapToP3"}    
}
document {
    Key => BlowUpPoints,
    Headline => "key for CubicSurface and QuarticSurfaceRational",
    {"The symbol ", TT "BlowUpPoints", " is a key for ", TO "CubicSurface",
	" and ", TO "QuarticSurfaceRational", ". It stores a 
	list of ideals encoding the points on P2 whose blowup
    produces the surface."
    },
    SeeAlso => {"MapToP3"}    
}
document {
    Key => MapToP3,
    Headline => "key for CubicSurface and QuarticSurfaceRational",
    {"The symbol ", TT "MapToP3", " is a key for ", TO "CubicSurface",
	" and ", TO "QuarticSurfaceRational", ". It stores a ",
    TT "map", " specifying a rational map from P^2 to P^3 obtained
    by the restriction of the embedding of the blown-up surface to P^3."
    },
    SeeAlso => {"BlowUpPoints"}    
}
--Divisors
document {
    Key => Divisor,
    Headline => "type of HashTable",
    {TO "Divisor", " is a type of ", TT "HashTable", 
	" that specifies a divisor class
	on a surface. The keys are ", TO "Coordinate", " and ",
	TO "Surface", "."
    },
    SeeAlso => {"Curve"}
}
document {
    Key => Coordinate,
    Headline => "key of Divisor",
    {
    TO "Coordinate", " is a key of ", TO "Divisor", " storing a ",
    TT "List", " encoding the coordinates of the divisor class."	
    }
}
document {
    Key => Surface,
    Headline => "key of Divisor",
    {
    TO "Surface", " is a key of ", TO "Divisor", " storing a ",
    TT "HashTable", " which can be ", TO "QuadricSurface", ", ",
    TO "CubicSurface", " or ", TO "QuarticSurfaceRational", "."	
    }
}
document {
    Key => {divisor,(divisor,List,QuadricSurface),
	(divisor,List,CubicSurface),(divisor,List,QuarticSurfaceRational)},
    Headline => "creates a Divisor",
    {"Creates a ", TO "Divisor", " from a given ", TT "List",
	" of coordinates and a surface."
    },
    SYNOPSIS (
    	Usage => "D = divisor(L,X)",
	Inputs => {"L" => List => " of coordinate",
	    "X" => QuadricSurface
	    },
	Outputs => {"D" => Divisor},
	EXAMPLE {
	    "X = quadricSurface(ZZ/101[x,y,z,w]);",
	    "D = divisor({3,2},X)"
	}
    ),
    SYNOPSIS (
       	Usage => "D = divisor(L,X)",
	Inputs => {"L" => List => " of coordinate",
	    "X" => CubicSurface
	    },
	Outputs => {"D" => Divisor},
	EXAMPLE {
	    "X = cubicSurface(ZZ/101[x,y,z,w]);",
	    "D = divisor({3,1,1,1,1,1,1},X)"
	}
    ),
    SYNOPSIS (
	Usage => "D = divisor(L,X)",
	Inputs => {"L" => List => " of coordinate",
	    "X" => QuarticSurfaceRational
	    },
	Outputs => {"D" => Divisor},
	EXAMPLE {
	    "X = quarticSurfaceRational(ZZ/101[x,y,z,w]);",
	    "D = divisor(splice{3,9:1},X)"
	}
    )	       
}
document {
    Key => (divisor,Curve),
    Headline => "extracts the Divisor of a Curve",
    {
    "Outputs the key ", TT "Divisor", " of a ", TT "Curve"	
    },
    EXAMPLE {
    	"C = curve(5,2);",
	"D = divisor C"
    }    
}
document {
    Key => {surface,(surface,Divisor),(surface,Curve)},
    Headline => "the surface key of a Divisor or a Curve",
    {
    "Returns the key ", TO "Surface", " of a ", TO "Divisor", "."
    },
    EXAMPLE {
	"C = curve(5,2);",
	"D = divisor C",
	"Q = surface D"
    }   
}
document {
    Key => Curve,
    Headline => "type of HashTable",
    {
    TT "Curve", " is a type of ", TT "HashTable", " that
    stores information about a curve. It has keys ",
    TT "Divisor", " and ", TT "Ideal", "."	
    }    
}
document {
    Key => {curve,(curve,Divisor),(curve,ZZ,ZZ),(curve,ZZ,ZZ,Ring)},
    Headline => "generates a random curve",
    {
    "The method ", TT "curve", " generates a random curve with given input."	
    },
    SYNOPSIS (
    	Usage => "C = curve(D)",
	Inputs => {"D" => Divisor},
	Outputs => {"C" => Curve},
	EXAMPLE {
	    "X = quadricSurface(ZZ/101[x_0..x_3]);",
	    "D = divisor({1,2},X);",
	    "C = curve D"    
	}	
    ),
    SYNOPSIS (
    	Usage => "C = curve(d,g)",
    	Inputs => {"d" => ZZ => "degree", "g" => ZZ => "genus"},
    	Outputs => {"C" =>  Curve},
    	EXAMPLE {
    	    "I = curve(5,2);",
	    "degree I, genus I"	
    	    }
    ),
    SYNOPSIS (
    	Usage => "C = curve(d,g,R)",
    	Inputs => {"d" => ZZ => "degree",
	    "g" => ZZ => "genus",
	    "R" => Ring => "ambient ring of P^3"},
    	Outputs => {"C" => Curve}	
    )     
}
document {
    Key => {isSmooth,(isSmooth,Ideal),(isSmooth, Curve)},
    Headline => "checks smoothness of an ideal or of a Curve",
    {
    "The method ", TT "isSmooth", " uses Jacobian criterion to check the smoothness of
     an ideal or a Curve." 	
    },
    SYNOPSIS (
    	Usage => "B = isSmooth(I)",
	Inputs => {"I"=>Ideal},
	Outputs => {"B" => Boolean}	
    ),
    SYNOPSIS (
    	Usage => "B = isSmooth(C)",
	Inputs => {"C"=>Curve},
	Outputs => {"B"=>Boolean},
	EXAMPLE {
	    "C = curve(5,2);",
	    "isSmooth C"    
	}	
    )  
}
document {
    Key => (degree, Curve),
    Headline => "computes the degree of a Curve",
    {"Computes the degree of a ", TT "Curve", "."},
    EXAMPLE {
    	"C = curve(5,2);",
	"degree C"	
    }    
}
document {
    Key => (genus, Curve),
    Headline => "computes the genus of a Curve",
    {"Computes the genus of a ", TT "Curve", "."},
    EXAMPLE {
    	"C = curve(5,2);",
	"genus C"	
    }    
}
document {
    Key => (degree, Divisor),
    Headline => "computes the degree of a Divisor",
    {"Computes the degree of a ", TT "Divisor", " using ",
	TT "IntersectionPairing", "."},
    EXAMPLE {
    	"R = ZZ/101[x,y,z,w];",
	"Q = quadricSurface(R);",
	"D = divisor({3,4},Q);",
	"degree D"	
    }    
}
document {
    Key => (genus, Divisor),
    Headline => "computes the genus of a Divisor",
    {"Computes the genus of a ", TT "Divisor", " using the adjunction formula."},
    EXAMPLE {
    	"R = ZZ/101[x,y,z,w];",
	"Q = quadricSurface(R);",
	"D = divisor({3,4},Q);",
	"genus D"	
    }     
}
document {
    Key => (symbol *,Divisor,Divisor),
    Headline => "intersection number of two Divisors",
    {
    "Returns the intersection number of two ", TT "Divisors", "."
    },
    EXAMPLE {
    	"Q = quadricSurface(ZZ/101[x,y,z,w]);",
    	"C = divisor({1,0},Q);",
	"D = divisor({0,1},Q);",
	"C*D"		
    }   
}
document {
    Key => (symbol +,Divisor,Divisor),
    Headline => "sum of two Divisors",
    {
    "Returns the sum of two ", TT "Divisors", "."
    } ,
    EXAMPLE {
    	"Q = quadricSurface(ZZ/101[x,y,z,w]);",
    	"C = divisor({1,0},Q);",
	"D = divisor({0,1},Q);",
	"C+D"		
    }  
}
document {
    Key => (symbol -,Divisor,Divisor),
    Headline => "difference of two Divisors",
    {
    "Returns the difference of two ", TT "Divisors", "."
    },
    EXAMPLE {
    	"Q = quadricSurface(ZZ/101[x,y,z,w]);",
    	"C = divisor({1,0},Q);",
	"D = divisor({0,1},Q);",
	"C-D"		
    }   
}
document {
    Key => (symbol *,ZZ,Divisor),
    Headline => "multiply a Divisor by an integer",
    {
    "Multiplies a ", TT "Divisors", " by an integer."
    },
    EXAMPLE {
    	"Q = quadricSurface(ZZ/101[x,y,z,w]);",
    	"C = divisor({1,0},Q);",
	"3*C"		
    }  
}
document {
    Key => {(ideal,QuadricSurface),(ideal,CubicSurface),(ideal,QuarticSurfaceRational)},
    Headline => "extracts the ideal of a surface",
    {
    "Extracts the key ", TT "Ideal", " of a ", TO "QuadricSurface", ", a ",
    TO "CubicSurface", " or a ", TO "QuarticSurfaceRational", "."
    },
    EXAMPLE {
    	"X = quadricSurface(ZZ/101[x,y,z,w]);",
	"ideal X"    
    }   
}
document {
    Key => {smoothDivisors,(smoothDivisors,ZZ,CubicSurface),
	(smoothDivisors,ZZ,QuadricSurface), (smoothDivisors,ZZ,QuarticSurfaceRational)},
    Headline => "produces a list of smooth divisors of a given degree on a surface",
    {
    "Produces a ", TT "List", " of ", TO "Divisor", " of a given degree on a 
    given surface. On the ", TO "CubicSurface", " and the ", TO "QuarticSurfaceRational",
    " the list is not exhaustive, but will include a divisor for each possible genus
    that a smooth curve can obtain."	
    },
    SYNOPSIS (
    Usage => "L = smoothDiviors(d,X)",
    Inputs => {"d" => ZZ => "degree", "X"=>QuadricSurface},
    Outputs => {"L"=> List => "of Divisors"},
    	EXAMPLE {
	    "X = quadricSurface(ZZ/101[x,y,z,w]);",
	    "L = smoothDivisors(5,X)"    
        }
    ),
    SYNOPSIS (
    Usage => "L = smoothDiviors(d,X)",
    Inputs => {"d" => ZZ =>"degree", "X"=>CubicSurface},
    Outputs => {"L"=>List => "of Divisors"},
    	EXAMPLE {
	    "X = cubicSurface(ZZ/101[x,y,z,w]);",
	    "L = smoothDivisors(5,X)"    
        }
    ),
    SYNOPSIS (
    Usage => "L = smoothDiviors(d,X)",
    Inputs => {"d" => ZZ =>"degree", "X"=>QuarticSurfaceRational},
    Outputs => {"L"=>List => "of Divisors"},
        EXAMPLE {
	    "X = quarticSurfaceRational(ZZ/101[x,y,z,w]);",
	    "L = smoothDivisors(5,X)"    
        }
    )    
}
document {
    Key => {(smoothDivisors,ZZ,ZZ),(smoothDivisors,ZZ,ZZ,Ring)},
    Headline => "produces a list of smooth divisors of given degree and genus",
    {"This method produces a list of Divisors of a given degree and genus, 
	one may also pass Ring as the ambient ring of P3."},
    Usage => "L = smoothdivisors(d,g)",
    Inputs => {"d" => ZZ => "degree", "g" => ZZ => "genus"},
    EXAMPLE {
    	"smoothDivisors(5,2)",
	"smoothDivisors(5,2,ZZ/101[x,y,z,w])"	
    }    
}
document {
    Key => (isPrime,Curve),
    Headline => "checks if the ideal of a Curve is prime",
    Usage => "B = isPrime(C)",
    Inputs => {"C" => Curve},
    Outputs => {"B" => Boolean},
    EXAMPLE {
    	"C = curve(5,2);",
	"isPrime C"       
    }    
}
document {
    Key => (ideal,Curve),
    Headline => "extracts the ideal of a Curve",
    {
    "Extracts the key ", TT "Ideal", " of a ", TO "Curve", "."	
    },
    EXAMPLE {
    	"C = curve(5,2);",
	"ideal C"	
    }    
}
document {
    Key => {dgTable,(dgTable,List)},
    Headline => "prints the table of (degree,genus) pairs",
    {
    TT "dgTable", " prints the table of (degree,genus) pairs, where the horizontal
    axis is the degree and the vertical is the genus. The input can be a ", TO "List",
    " of ", TO "Divisor", ", ", TO "Curve", ", ", TT "PostulationChar", " or ",
    TO "Ideal", "."
    } 
}
document {
  Key => {raoModule,(raoModule,Ideal),(raoModule, Curve)},
  Headline => "computes the Rao module of a curve",
  {"Given I the homogeneous ideal of a pure dimension one subscheme
       in P^3, the function computes its Rao module."
  },    
  Usage => "M = raoModule I",
  Inputs => {"I" => Ideal => "of a pure dimension one subscheme"},
  Outputs => {"M" =>  Module},
  EXAMPLE {
      "R = ZZ/101[x,y,z,w];",
      "I = monomialCurveIdeal(R,{1,3,4});",
      "M = raoModule I"    
  }
}
document {
    Key => {positiveChars,(positiveChars,ZZ),(positiveChars,ZZ,ZZ)},
    Headline => "generates all positive characters of a given degree",
    {"produces all positive characters of a given degree, equivalently, these are exactly
	 all the possible postulation characters of an ACM curve in P3 of that degree"	
    },
    SYNOPSIS (
    	Usage => "L = positiveChars(d)",
    	Inputs => {"d" => ZZ => "degree"},
    	Outputs => {"L" => List},
    	EXAMPLE {
    	"positiveChars(5)"	
    	}
    ),
    SYNOPSIS (
    	Usage => "L = positiveChars(d,s)",
    	Inputs => {"d" => ZZ => "degree", "s" => ZZ => "least degree surface"},
    	Outputs => {"L" => List},
    	EXAMPLE {
    	"positiveChars(5)"	
    	}
    )    
}
document {
    Key => {isACMBetti, (isACMBetti, BettiTally)},
    Headline => "checks whether a Betti table is that of an ACM curve",
    {
    	"Given a BettiTally, returns true or false depending on whether there 
	exists an ACM curve in P3 having that Betti table."	
    },
    Usage => "b = isACMBetti B",
    Inputs => {"B" => BettiTally},
    Outputs => {"b" => Boolean},
    EXAMPLE {
    	"B = generalACMBetti {-1,-1,2}",
	"isACMBetti B"	
    }   
}
document {
    Key => {isSmoothACMBetti, (isSmoothACMBetti, BettiTally)},
    Headline => "checks whether a Betti table is that of a smooth ACM curve",
    {
    	"Given a BettiTally, returns true or false depending on whether there 
	exists a smooth ACM curve in P3 having that Betti table."	
    },
    Usage => "b = isSmoothACMBetti B",
    Inputs => {"B" => BettiTally},
    Outputs => {"b" => Boolean},
    EXAMPLE {
    	"B = generalACMBetti {-1,-1,2}",
	"isSmoothACMBetti B"	
    }   
}
document {
    Key => {generalACMBetti, (generalACMBetti,List)},
    Headline => "the most general Betti table of an ACM curve with a given Hilbert function",
    { "Given a positive character, it outputs the Betti table of a general ACM curve that 
	has this character as its postulation character."	
    },
    Usage => "B = generalACMBetti gamma",
    Inputs => {"gamma" => List => "positive character"},
    Outputs => {"B" => BettiTally},
    EXAMPLE {
    	"generalACMBetti {-1,-1,2}"	
    }    
}
document {
    Key => {specializeACMBetti, (specializeACMBetti,BettiTally)},
    Headline => "lists all 1-specialization of a Betti table of an ACM curve",
    {
    	"Given a Betti table of an ACM curve, produces all possible Betti tables of 
	ACM curves with one more generator and syzygy of equal degree than the given one."	
    },
    Usage => "L = specializeACM B",
    Inputs => {"B" => BettiTally},
    Outputs => {"L" => List => "of BettiTally"},
    EXAMPLE {
	"B = generalACMBetti {-1,-1,-1,2,1}",
    	"specializeACMBetti B"	
    }    
}
document {
    Key => {allACMBetti, (allACMBetti,List)},
    Headline => "lists all Betti tables of ACM curves with a given Hilbert function",
    { "Given a positive character, it outputs all possible Betti tables of
	ACM curves that have this character as its postulation character."	
    },
    Usage => "L = allACMBetti gamma",
    Inputs => {"gamma" => List => "positive character"},
    Outputs => {"L" => List => "of BettiTally"},
    EXAMPLE {
    	"allACMBetti {-1,-1,-1,2,1}"	
    }    
}
document {
    Key => {degreeMatrix, (degreeMatrix,BettiTally)},
    Headline => "computes the Hilbert-Burch degree matrix from a Betti table of ACM curves",
    {
      "Given the Betti table of an ACM curve, this function returns the
       Hilbert-Burch degree matrix."	
    },
    Usage => "M = degreeMatrix B",
    Inputs => {"B" => BettiTally => "of an ACM curve"},
    Outputs => {"M" => Matrix},
    EXAMPLE {
	"B = generalACMBetti {-1,-1,2}",
	"degreeMatrix B"
    }    
}
document {
    Key => {randomDeterminantalIdeal, (randomDeterminantalIdeal,Ring,Matrix)},
    Headline => "produces a random determinantal ideal",
    {
    	"Given a ring and a degree matrix, we produce a random determinantal ideal
	with forms in prescribed degree. Forms of non-positive degrees are taken as
	0 to ensure minimality of presentation."	
    },
    Usage => "I = randomDeterminantalIdeal(R,M)",
    Inputs => {"R" => Ring, "M" => Matrix => "of integers"},
    Outputs => {"I" => Ideal => "in the ring R"},
    EXAMPLE {
	"randomDeterminantalIdeal(ZZ/101[x,y,z],matrix{{1,1},{1,1},{1,1}})"	
    }    
}
document {
    Key => {minimalCurve, (minimalCurve, Module),
      (minimalCurve, Ideal),(minimalCurve,Curve)},
    Headline => "generates a minimal curve in the biliaison class",   
    "A finite length module M determines a unique
    biliaison class. Curves of minimal degrees in this class are called minimal curves.
    Given the ideal of a curve J,
     this function generates a random minimal curve
    in the biliaison class of J. 
    Given a finite length module M,
     this function generates a random minimal curve
    in the biliaison class specified by M.",
    SYNOPSIS (
  	Usage => "I = minimalCurve(M)",
    	Inputs => {"M" => Module},
    	Outputs => {"I" => Ideal},
    	EXAMPLE {
	"R = ZZ/101[x,y,z,w];",
    	"M = coker vars R;",
	"I = minimalCurve M"	
    	}	 
    ),
    SYNOPSIS (
  	Usage => "I = minimalCurve(J) ",
    	Inputs => {"J" => Ideal => "of a pure dimension one subscheme"},
    	Outputs => {"I" => Ideal => "of a minimal curve in the biliaison class"},
    	EXAMPLE {
    	"R = ZZ/101[x,y,z,w];",
	"J = monomialCurveIdeal(R,{1,3,4});",
	"I = minimalCurve J"	
    	}	 
    ),
    SeeAlso => {"minimalCurveBetti"}
}
document {
    Key => {minimalCurveBetti, (minimalCurveBetti, Module),
      (minimalCurveBetti, Ideal),(minimalCurveBetti,Curve)},
    Headline => "computes the Betti diagram of the minimal curve",   
    "A finite length module M determines a unique
    biliaison class. Curves of minimal degrees in this class are called minimal curves.
    Given the ideal of a curve J,
     this function returns the Betti tally of any minimal curve of J. 
    Given a finite length module M,
     this function returns the Betti tally of any minimal curve 
     in the biliaison class specified by M.",
    SYNOPSIS (
  	Usage => "T = minimalCurveBetti(M)",
    	Inputs => {"M" => Module},
    	Outputs => {"T" => BettiTally},
    	EXAMPLE {
	"R = ZZ/101[x,y,z,w];",
    	"M = coker vars R;",
	"I = minimalCurveBetti M"	
    	}	 
    ),
    SYNOPSIS (
  	Usage => "T = minimalCurve(J) ",
    	Inputs => {"J" => Ideal => "of a pure dimension one subscheme"},
    	Outputs => {"T" => BettiTally => "of a minimal curve in the biliaison class"},
    	EXAMPLE {
    	"R = ZZ/101[x,y,z,w];",
	"J = monomialCurveIdeal(R,{1,3,4});",
	"I = minimalCurveBetti J"	
    	}	 
    ),
    SeeAlso => {"degree(BettiTally)"} 
}
document {
    Key => (net,Curve),
    Headline => "displays the ideal of the curve"     
}
document {
    Key => (net,CubicSurface),
    Headline => "displays the ideal of the CubicSurface"    
}
document {
    Key => (net,QuadricSurface),
    Headline => "displays the ideal of the QuadricSurface"    
}
document {
    Key => (net, QuarticSurfaceRational),
    Headline => "displays the ideal of the QuarticSurfaceRational"    
}
document {
    Key => (net, Divisor),
    Headline => "displays the coordinates of the Divisor"    
}

end



-------------------------------------------------------------------------------------
restart
uninstallPackage "SpaceCurves"
installPackage "SpaceCurves"
viewHelp "SpaceCurves"


restart
needsPackage "SpaceCurves"