1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
newPackage(
"SuperLinearAlgebra",
Version => "0.1",
Date => "29 January 2021",
Authors => {
{Name => "Fereshteh Bahadorykhalily",
Email => "f.bahadori.khalili@gmail.com",
HomePage => "https://www.researchgate.net/profile/Fereshte_Bahadorykhalily"
},
{Name => "Fatemeh Tarashi Kashani",
Email => "tarashikashanifatemeh@gmail.com",
HomePage => "https://www.linkedin.com/in/fatemehtarashi/"
}
},
Headline => "computations related to supermatrices",
DebuggingMode => false
)
--------------------
-- Exports
--------------------
export {
-- Types
"SuperMatrix",
-- Methods
"berezinian",
"inverseSuperMatrix",
"parity",
"superMatrixGenerator",
"superMatrixParity",
"superRing",
"superTrace",
-- Symbols
"supermatrix"
}
--------------------
-- SuperRing (Super commutative ring)
--------------------
superRing = method();
superRing (PolynomialRing, PolynomialRing) := (R1, R2) -> (
inverseVariable := symbol inverseVariable;
R11 := (coefficientRing R1)[R1_0..R1_(#gens R1-1), inverseVariable_0..inverseVariable_(#gens R1-1)];
R11 = R11/apply(0..(#gens R1-1), i -> sub(R1_i, R11)*inverseVariable_i-1);
w := (for i to (#gens R2)-1 list (0))|toList(0..(#gens R2-1));
R22 := (coefficientRing R2)[R2_0..R2_(#gens R2-1), MonomialOrder=>{Weights => w, Lex}, SkewCommutative=>true];
R11**R22
)
--------------------
-- SuperMatrix
--------------------
SuperMatrix = new Type of MutableHashTable;
superMatrixGenerator = method();
superMatrixGenerator (Matrix, Matrix, Matrix, Matrix) := (M00,M01,M10,M11)-> (
new SuperMatrix from {
supermatrix => matrix{{M00,M01},{M10,M11}}
}
)
TEST ///
M1 = matrix {{1, 2}, {5, 6}, {9, 10}};
M2 = matrix {{3, 4}, {7, 8}, {11, 12}};
M3 = matrix {{13, 14}, {17, 18}};
M4 = matrix {{15, 16}, {19, 20}};
G = superMatrixGenerator(M1,M2,M3,M4)
assert(G.supermatrix == matrix {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}, {17, 18, 19, 20}})
///
--------------------
-- parity
--------------------
parity = method();
parity (RingElement, Ring, List) := (f, R, oddNumberList) -> (
e := exponents f;
l := {};
for i from 0 to (#gens R-1) do (
for j from 0 to #oddNumberList-1 do (
if R_(i) == oddNumberList_(j) then (
l = join(l,{i})
)
)
);
d := 0;
countEvenNumber := 0;
for i from 0 to (#e-1) do (
if (d%2) == 0 then
countEvenNumber = countEvenNumber+1;
d = 0;
for j from 0 to #l-1 do (
if (e_i)_(l_j) == 1 then (
d = d+1
)
)
);
d = 0;
for j from 0 to #l-1 do (
if (e_(#e-1))_(l_j) == 1 then (
d = d+1
)
);
if (d%2) == 0 then countEvenNumber = countEvenNumber+1;
if countEvenNumber == #e+1 then 0
else if countEvenNumber == 1 then 1
else -1
)
parity (Number, Ring, List) := (f, R, oddNumberList) -> (
0
)
TEST ///
R1 = QQ[x_0..x_3];
R2 = QQ[z_0, z_1];
R = superRing(R1, R2);
a = {z_0, z_1} ;
g = x_1*x_2*x_3+4;
f = x_1*x_2*x_3+x_1*z_0+z_1*z_0-4*x_2*z_1*z_0+4;
h = z_0+z_0*x_0+z_1;
assert(parity(f, R, a) == -1)
assert(parity(g, R, a) == 0)
assert(parity(h, R, a) == 1)
assert(parity(1+2.5*ii, R, a) == 0)
///
--------------------
-- superMatrixParity
--------------------
superMatrixParity = method();
superMatrixParity(SuperMatrix, Ring, List) := (SM, R1, a) -> (
m1 := 0;
m2 := 0;
m3 := 0;
m4 := 0;
Minor00 := SM.supermatrix^[0]_[0];
Minor01 := SM.supermatrix^[0]_[1];
Minor10 := SM.supermatrix^[1]_[0];
Minor11 := SM.supermatrix^[1]_[1];
r1 := numgens target Minor00;
r2 := numgens target Minor10;
c1 := numgens source Minor00;
c2 := numgens source Minor01;
fij := symbol fij;
if isSkewCommutative(R1) == true then (
count1 := 0;
count11 := 0;
for i from 0 to (r1-1) do
for j from 0 to (c1-1) do (
fij = Minor00_(i, j);
if fij == 0 then count1 = count1
else if (parity(fij, R1, a) == -1) then (count11 = count11+1)
else if (parity(fij, R1, a) == 1) then count1 = count1+1
else if (parity(fij, R1, a) == 0) then count1 = count1
);
if count11=!=0 then (return-1)
else if count1 == 0 then m1= 0
else m1=1;
count2 := 0;
count22 := 0;
for i from 0 to (r1-1) do
for j from 0 to (c2-1) do (
fij = Minor01_(i, j);
if fij == 0 then count2 = count2
else if (parity(fij, R1, a) == -1) then (count22 = count22+1)
else if (parity(fij, R1, a) == 1)then count2 = count2+1
else if (parity(fij, R1, a) == 0) then count2 = count2
);
if count22=!=0 then (return-1)
else if count2 == 0 then m2=0
else m2=1;
count3 := 0;
count33 := 0;
for i from 0 to (r2-1) do
for j from 0 to (c1-1) do (
fij = Minor10_(i, j);
if fij == 0 then count3 = count3
else if (parity(fij, R1, a) == -1) then (cout33 := count33+1)
else if (parity(fij, R1, a) == 1)then count3 = count3+1
else if (parity(fij, R1, a) == 0) then count3 = count3
);
if count33=!=0 then (return-1)
else if count3 == 0 then m3=0
else m3=1;
count4 := 0;
count44 := 0;
for i from 0 to (r2-1) do
for j from 0 to (c2-1) do (
fij = Minor11_(i, j);
if fij == 0 then count4 = count4
else if (parity(fij, R1, a) == -1) then (cout44 := count44+1)
else if (parity(fij, R1, a) == 1)then count4 = count4+1
else if (parity(fij, R1, a) == 0) then count4 = count4
);
if count44=!=0 then (return-1)
else if count4 == 0 then m4=0
else m4=1;
R2 := coefficientRing R1;
if (isSkewCommutative(R2) == true) then (
if (m1 == 0 and m4 == 0 and m2 == 1 and m3 == 1) then (return 0)
else if (m1 == 1 and m4 == 1 and m2 == 0 and m3 == 0) then (return 1)
else (return-1)
)
else (
if (m1 == 0 and m4 == 0 and Minor01 == 0 and Minor10 == 0) then (return 0)
else if (Minor00 == 0 and Minor11 == 0 and m2 == 0 and m3 == 0) then (return 1)
else (return-1)
)
)
else (error "Ring should be a superRing")
)
TEST///
-- no-check-flag #1984
R1 = QQ[x_0..x_3];
R2 = QQ[z_0..z_2];
R = superRing(R1, R2);
D1 = matrix{{x_0, x_1}, {x_2, x_3}};
D2 = matrix{{z_0, z_1}, {x_0*z_0, x_1*z_1}};
D3 = matrix{{z_2*x_3, z_1}, {z_0, z_2*x_2}};
D4 = matrix{{x_1, x_3}, {x_0, x_2+x_3}};
SD = superMatrixGenerator(D1, D2, D3, D4);
assert(superMatrixParity(SD, R, {z_0, z_1, z_2}) == -1)
P1 = matrix{{0, 0}, {0, 0}};
P2 = matrix{{x_0, x_1}, {x_2, x_3}};
P3 = matrix{{x_1, x_2}, {x_0, x_1}};
P4 = matrix{{0, 0}, {0, 0}};
SP = superMatrixGenerator(P1, P2, P3, P4);
SS = SP.supermatrix;
assert(superMatrixParity(SP, R, {z_0, z_1, z_2}) == 1)
T1 = R[n_0..n_3];
T2 = R[e_0..e_3];
T = superRing(T1, T2);
M1 = matrix{{n_0, n_1}, {n_2, n_3}};
M2 = matrix{{e_0, e_1}, {n_0*e_0, n_1*e_1}};
M3 = matrix{{e_3*n_3, e_1}, {e_0, e_2*n_2}};
M4 = matrix{{n_1, n_3}, {n_0, n_2+n_3}};
SM = superMatrixGenerator(M1, M2, M3, M4);
assert(superMatrixParity(SM, T, {e_0, e_1, e_2, e_3}) == 0)
E1 = matrix{{e_0, n_1}, {n_2, n_3}};
E2 = matrix{{e_0, e_1}, {n_0+e_0, n_1*e_1}};
E3 = matrix{{e_3*n_3, e_1}, {e_0, e_2*n_2}};
E4 = matrix{{n_1, n_3}, {n_0, n_2+n_3}};
G = superMatrixGenerator(E1, E2, E3, E4);
assert(superMatrixParity(G, T, {e_0, e_1, e_2, e_3}) == -1)
///
--------------------
-- Supertrace
--------------------
superTrace = method ();
superTrace (SuperMatrix, Ring, List) := (SM, R1, a) -> (
Minor00 := SM.supermatrix^[0]_[0];
Minor11 := SM.supermatrix^[1]_[1];
if (superMatrixParity(SM, R1, a)=!=-1) then (
par := superMatrixParity(SM, R1, a);
trace Minor00-(-1)^par*trace Minor11
)
else error "SuperMatrix is not superhomogeneous"
)
TEST ///
-- no-check-flag #1984
R1 = QQ[x_0..x_3];
R2 = QQ[z_0..z_2];
R = superRing(R1, R2);
P1 = matrix{{x_0, x_1}, {x_2, x_3}};
P2 = matrix{{0, 0}, {0, 0}};
P3 = matrix{{0, 0}, {0, 0}};
P4 = matrix{{x_1, x_2}, {x_0, x_1}};
SP = superMatrixGenerator(P1, P2, P3, P4);
assert(superTrace(SP, R, {z_0, z_1}) == x_0-2*x_1+x_3)
R1 = QQ[x_0..x_3]
R2 = QQ[z_0..z_2]
R = superRing(R1, R2)
T1 = R[n_0..n_3];
T2 = R[e_0..e_3];
T = superRing(T1, T2);
M1 = matrix{{n_0, n_1}, {n_2, n_3}};
M2 = matrix{{e_0, e_1}, {n_0*e_0, n_1*e_1}};
M3 = matrix{{e_3*n_3, e_1}, {e_0, e_2*n_2}};
M4 = matrix{{n_1, n_3}, {n_0, n_2+n_3}};
SM = superMatrixGenerator(M1, M2, M3, M4);
a = {e_0, e_1, e_2, e_3};
assert(superTrace(SM, T, a) == n_0-n_1-n_2)
///
--------------------
--berezinian
--------------------
berezinian = method();
berezinian (SuperMatrix, Ring) := (SM, R1) -> (
Minor00 := SM.supermatrix^[0]_[0];
Minor01 := SM.supermatrix^[0]_[1];
Minor10 := SM.supermatrix^[1]_[0];
Minor11 := SM.supermatrix^[1]_[1];
SM1 := sub(Minor00, R1);
SM2 := sub(Minor11, R1);
Prod1 := Minor11-Minor10*inverse(SM1)*Minor01;
Prod2 := sub(Prod1, R1);
if numRows Minor00 =!= numColumns Minor00 then error "expected a square matrix";
if numRows Minor11 =!= numColumns Minor11 then error "expected a square matrix";
if det(Minor11) =!= 0 then det(inverse(SM2))*det(Minor00-Minor01*inverse(SM2)*Minor10)
else if (det(Minor00) =!= 0 and det(Minor11-Minor01*inverse(SM1)*Minor10) =!= 0) then det(Minor00)*det(inverse(Prod2))
else error "At least one of the diagonal blocks should be invertible"
)
TEST///
M1 = matrix{{5, 7}, {1, 2}};
M2 = matrix{{1, 2, 3}, {4, 5, 6}};
M3 = matrix{{3, 4}, {5, 6}, {7, 8}};
M4 = matrix{{2, 3, 11}, {4, 5, 6}, {7, 8, 9}};
M5 = sub(M4, QQ);
G = superMatrixGenerator(M1, M2, M3, M4);
assert(berezinian(G, QQ) == det(inverse(M5))*det(M1-M2*inverse(M5)*M3))
S1 = matrix{{1, 2}, {3, 4}};
S2 = matrix{{5, 6}, {7, 8}};
S3 = matrix{{9, 10}, {11, 12}};
S4 = matrix{{0, 0}, {0, 0}};
S5 = sub(S1, QQ);
S6 = S4-S3*inverse(S5)*S2;
F = superMatrixGenerator(S1, S2, S3, S4);
assert(berezinian(F, QQ) == det(S1)*det(inverse(S6)))
///
--------------------
--inversesupermatrix
--------------------
inverseSuperMatrix = method();
inverseSuperMatrix (SuperMatrix, Ring) := (SM, R1) -> (
Minor00 := SM.supermatrix^[0]_[0];
Minor01 := SM.supermatrix^[0]_[1];
Minor10 := SM.supermatrix^[1]_[0];
Minor11 := SM.supermatrix^[1]_[1];
if numRows Minor00 =!= numColumns Minor00 then error "expected a square matrix";
if numRows Minor11 =!= numColumns Minor11 then error "expected a square matrix";
SM00 := sub(Minor00, R1);
SM11 := sub(Minor11, R1);
SM01 := sub(Minor01, R1);
SM10 := sub(Minor10, R1);
Prod1 := SM11-SM10*inverse(SM00)*SM01;
Prod2 := SM00-SM01*inverse(SM11)*SM10;
Nminor00 := inverse(Prod2);
Nminor01 :=-inverse(SM11)*SM10*inverse(Prod2);
Nminor10 :=-inverse(SM00)*SM01*inverse(Prod1);
Nminor11 := inverse(Prod1);
if (det(SM00) =!= 0 and det (SM11) =!= 0) then matrix{{Nminor00,Nminor10},{Nminor01,Nminor11}} else error "The SuperMatrix is not invertible"
)
TEST///
M1 = matrix{{5, 7}, {1, 2}};
M2 = matrix{{1, 2, 3}, {4, 5, 6}};
M3 = matrix{{3, 4}, {5, 6}, {7, 8}};
M4 = matrix{{2, 3, 11}, {4, 5, 6}, {7, 8, 9}};
M44 = sub(M4, QQ);
M11 = sub(M1, QQ);
M22 = sub(M2, QQ);
M33 = sub(M3, QQ);
P2 = M44-M33*inverse(M11)*M22;
P1 = M11-M22*inverse(M44)*M33;
N11 = inverse(P1);
N12 = -inverse(M44)*M33*inverse(P1);
N21 = -inverse(M11)*M22*inverse(P2);
N22 = inverse(P2);
G = superMatrixGenerator(M1, M2, M3, M4);
assert(inverseSuperMatrix(G, QQ) == matrix{{N11,N21},{N12,N22}})
///
--------------------
beginDocumentation()
doc ///
Key
SuperLinearAlgebra
Headline
Package for super algebra
Description
Text
This Package is to do the computation in superalgebras, or super vector spaces.
The computations are taken in a superRing, which is a ring with both symmetric and antisymmetric variables.
To see the definitions and theorems, see Varadarajan, V. S. (2004). "Supersymmetry for Mathematicians:
An Introduction" (Vol. 11). American Mathematical Soc.
Caveat
SeeAlso
///
doc ///
Key
superRing
(superRing, PolynomialRing, PolynomialRing)
Headline
Makes a super ring from two polynomial rings.
Usage
R = superRing(R1, R2)
Inputs
R1:PolynomialRing
R2:PolynomialRing
Outputs
R:QuotientRing
which has both invertible and skew symmetric variables, superRing
Description
Text
Let $R_1$ and $R_2$ be Two Polynomial rings on different set of variables
A superRing is a new polynomial ring with three sets of variables.
One set comes from $R_1$ and the second one is the inverse of it.
For example, if we have x as a variable in $R_1$,
then there is a new variable, say $inverseVariable_0$ which is the inverse of $x$.
The third set of variables comes from $R_2$.
We redefine this set to be a set of skew-symmetric variables.
So superRing of $R_1$ and $R_2$ is a quotient ring,
which has both invertible and skew symmetric variables.
If the coefficient ring is a field, then we get a super algebra.
Example
R1=QQ[x_1..x_5]
R2=QQ[z_1..z_3]
superRing(R1, R2)
Caveat
SeeAlso
///
doc ///
Key
SuperMatrix
supermatrix
superMatrixGenerator
(superMatrixGenerator , Matrix, Matrix, Matrix, Matrix)
Headline
Makes a super matrix from its four blocks.
Usage
G = superMatrixGenerator(M1, M2, M3, M4)
Inputs
M1:Matrix
M2:Matrix
M3:Matrix
M4:Matrix
Outputs
G:SuperMatrix
Description
Text
Let $M_1, M_2, M_3, M_4$ be four matrices.
The number of rows in $M_1$ and $M_2$,
and those of $M_3$ and $M_4$ should be equal.
Also, the number of columns of $M_1$ and $M_3$,
and those of M_2 and M_4 must be equal.
The idea is to define a (super) Matrix,
which can be considered as $p|q\times r|s$ matrix.
This super Matrix can be a morphism between super
modules $A^{p|q}$ and $A^{r|s}$ over super algebra $A$.
The function uses four matrices M_1 and M_2, and also M_3 and M_4
as four blocks of a new matrix, say $\begin{pmatrix}
M1&M2\\
M3&M4\end{pmatrix}$.
The key supermatrix shows the result matrix created as above.
Example
M1 = matrix {{1, 2}, {5, 6}, {9, 10}}
M2 = matrix {{3, 4}, {7, 8}, {11, 12}}
M3 = matrix {{13, 14}, {17, 18}}
M4 = matrix {{15, 16}, {19, 20}}
G = superMatrixGenerator(M1, M2, M3, M4)
G.supermatrix
Caveat
SeeAlso
///
doc ///
Key
superTrace
(superTrace, SuperMatrix, Ring, List)
Headline
Super trace of a homogeneous super matrix.
Usage
P = superTrace(SM, R, L)
Inputs
SM:SuperMatrix
R:Ring
superRing
L:List
Outputs
P:QuotientRing
Description
Text
Let $A^{p|q}=Ax_1 \oplus \cdots \oplus Ax_p \oplus Ae_1\oplus \cdots \oplus Ae_q$ be a free module over $A$,
where $x_i$s are even and $e_j$s are odd generators. A (homogeneous) morphism $T:A^{p|q}\rightarrow A^{r|s}$ has a matrix representation.
Denote the matrix by $T$ then we have $T=\begin{pmatrix}
T1&T2\\
T3&T4\end{pmatrix}$.
The super trace of $T$ is defined by $superTrace(T)= Trace(T_1)-(-1)^{p(T)} Trace(T_4)$.
The inputs of this function are a SuperMatrix, a ring, which should have skew-symmetric variables, and a list,
which is the list of skew-symmetric variables that are used in the superMatrixGenerator.
In case that the superMatrix is homogeneous, the output is the super trace of the superMatrix.
Example
R1 = QQ[x_0..x_3];
R2 = QQ[z_0..z_2];
R = superRing(R1, R2);
P1 = matrix{{x_0, x_1}, {x_2, x_3}};
P2 = matrix{{0, 0}, {0, 0}};
P3 = matrix{{0, 0}, {0, 0}};
P4 = matrix{{x_1, x_2}, {x_0, x_1}};
SP = superMatrixGenerator(P1, P2, P3, P4);
superTrace(SP, R, {z_0, z_1})
Caveat
SeeAlso
///
doc ///
Key
berezinian
(berezinian, SuperMatrix, Ring)
Headline
Computes the berezinian of a supermatrix.
Usage
N = berezinian(G, R)
Inputs
G:SuperMatrix
R:Ring
Outputs
N:Number
Description
Text
This function works only when the entries of the even blocks are numbers, and those of odd blocks are formed by odd generators.
If in a super Matrix, one of the first or the second diagonal blocks is invertible,
then we can define the berezinian (as a kind of super Determinant).
The formula for the berezinian is different base on which block is invertible.
But it is shown that the two formulas are equivalent if two blocks are invertible.
If $M=\begin{pmatrix}
M1&M2\\
M3&M4\end{pmatrix}$. is a super Matrix, and
$M_4$ is invertible, then
$Ber(M)= det(M_1-M_2M^{-1}_4M_3) det(M_4)^{-1}$.
If $M_1$ is invertible, then
$Ber(M) = det(M_4-M_3M_1^{-1}M_2)^{-1} det(M_1)$.
Example
M1 = matrix{{5, 7}, {1, 2}}
M2 = matrix{{1, 2, 3}, {4, 5, 6}}
M3 = matrix{{3, 4}, {5, 6}, {7, 8}}
M4 = matrix{{2, 3, 11}, {4, 5, 6}, {7, 8, 9}}
M5 = sub(M4, QQ)
G = superMatrixGenerator(M1, M2, M3, M4)
berezinian(G, QQ)
Caveat
SeeAlso
///
doc ///
Key
parity
(parity, RingElement, Ring, List)
Headline
parity of an element of a super ring.
Usage
N = parity(f, R, L)
Inputs
f:RingElement
R:Ring
superRing
L:List
Outputs
N:Number
0 for even, 1 for odd and-1 for Nonhomogeneous
Description
Text
Let we have a super algebra (ring), $R=R_0 \oplus R_1$.
A homogeneous element of $R$ is an element belongs to $R_0$ or $R_1$.
This function has three outputs,-1 for non-homogeneous, 0 for homogeneous and even, and 1 for homogeneous and odd elements.
Example
R1=QQ[x_0..x_4];
R2=QQ[e_0, e_1];
R= superRing(R1, R2)
L={e_0, e_1}
f=x_1*x_2*x_3+x_1*e_0+e_1*e_0-4*x_2*e_1*e_0+4
parity(f, R, L)
g=x_1*x_2*x_3+e_0*e_1+4;
parity(g, R, L)
Caveat
SeeAlso
superMatrixParity
///
doc ///
Key
inverseSuperMatrix
(inverseSuperMatrix, SuperMatrix, Ring)
Headline
The inverse of a super matrix.
Usage
N = inverseSuperMatrix(G, R)
Inputs
G:SuperMatrix
R:Ring
Outputs
M:Matrix
Description
Text
A super Matrix $M={{M1, M2}, {M3, M4}}$
is invertible, if both the diagonal blocks, $M_1$ and $M_4$ are invertible.
In this case, the inverse is given by a blocked matrix,
$T=\begin{pmatrix}
T1&T2\\
T3&T4\end{pmatrix}$, where
$T_1=(M_1 − M_2M^{-1}_4 M_3)^{-1}$,
$T_2=−M^{-1}_1 M_2(M_4 − M_3M^{-1}_1 M_2)^{-1}$,
$T_3=−M^{-1}_4 M_3(M_1 − M_2M^{-1}_4 M_3)^{-1}$, and
$T_4=(M_4 − M_3M^{-1}_1 M_2)^{-1}$.
Example
M1 = matrix{{5, 7}, {1, 2}};
M2 = matrix{{1, 2, 3}, {4, 5, 6}};
M3 = matrix{{3, 4}, {5, 6}, {7, 8}};
M4 = matrix{{2, 3, 11}, {4, 5, 6}, {7, 8, 9}};
G = superMatrixGenerator(M1, M2, M3, M4);
inverseSuperMatrix(G, QQ)
Caveat
SeeAlso
///
doc ///
Key
superMatrixParity
(superMatrixParity, SuperMatrix, Ring, List)
Headline
parity of a super Matrix.
Usage
N = superMatrixParity(SM, R, L)
Inputs
SM:SuperMatrix
R:Ring
superRing
L:List
Outputs
N:Number
0 for even, 1 for odd and-1 for Nonhomogeneous
Description
Text
This function works only when the entries of the even blocks are numbers, and those of odd blocks are formed by odd generators.
Let $A^{p|q}=Ax_1\oplus \cdots \oplus Ax_p \oplus Ae_1\oplus\cdots\oplus Ae_q$
be a free module over $A$, where $x_i$s are even and $e_j$s are odd generators.
A morphism $T:A^{p|q}\rightarrow A^{r|s}$ has a matrix representation.
Denote the matrix by $T$ then we have
$T=\begin{pmatrix}
T1&T2\\
T3&T4\end{pmatrix}$.
The matrix (morphism) $T$ is said to be even (odd) if the blocks $T_1$ and $T_4$
are even, and $T_2$ and $T_3$ are odd ($T_1$ and $T_4$ are odd, and $T_2$ and $T_3$ are even).
Note that if $A$ is an algebra, i.e., it doesn't have odd involution, then to
have an even (odd) matrix $T$, we should have $T_3=0$ and $T_2=0$ ($T_1=0$ and $T_4=0$).
Example
R1 = QQ[x_0..x_3];
R2 = QQ[z_0..z_2];
R = superRing(R1, R2);
D1 = matrix{{x_0, x_1}, {x_2, x_3}};
D2 = matrix{{z_0, z_1}, {x_0*z_0, x_1*z_1}};
D3 = matrix{{z_2*x_3, z_1}, {z_0, z_2*x_2}};
D4 = matrix{{x_1, x_3}, {x_0, x_2+x_3}};
SM = superMatrixGenerator(D1, D2, D3, D4);
superMatrixParity(SM, R, {z_0, z_1, z_2})
Caveat
SeeAlso
parity
///
end
|