1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
|
-- -*- coding: utf-8 -*-
newPackage(
"TSpreadIdeals",
Version => "1.0",
Date => "February 01, 2021",
Authors => {{Name => "Luca Amata", Email => "lamata@unime.it", HomePage => "http://mat521.unime.it/amata"}
},
Headline => "A Macaulay2 package to deal with t-spread ideals of a polynomial ring",
DebuggingMode => false
)
export{
"tNextMon", "tLastMon", "tLexSeg", "isTLexSeg", "tLexMon", "countTLexMon", "tVeroneseSet", "tVeroneseIdeal", "tPascalIdeal", "tSpreadList", "tSpreadIdeal", "isTSpread", "tShadow", "fTVector", "isFTVector", "tLexIdeal", "isTLexIdeal", "tStronglyStableSeg", "isTStronglyStableSeg", "tStronglyStableMon", "countTStronglyStableMon", "tStronglyStableIdeal", "isTStronglyStableIdeal", "tExtremalBettiCorners", "tExtremalBettiMonomials",
--service
"tMacaulayExpansion", "solveBinomialExpansion", "initialDegree", "initialIdeal", "minimalBettiNumbers", "minimalBettiNumbersIdeal",
--option
"FixedMax", "MaxInd", "Shift"
}
-------------------------------------------------------------------------------------------
-- Compute the next monomial (optionally with max index fixed) respect to mon
-------------------------------------------------------------------------------------------
tNextMon = method(TypicalValue=>RingElement, Options=>{FixedMax=>false})
tNextMon (RingElement,ZZ) := opts -> (mon,t) -> (
if isTSpread(mon,t) then (
S:=ring mon;
n:=numgens S;
oldmon:=support mon;
mu:=max(index\oldmon);
j:=#oldmon-1;
g:=n-1;
if opts.FixedMax then g=mu;
while ((index oldmon#j)+1>g) do (
g=g-t;
j=j-1;
if j<0 then error "no t-spread monomial exists";
);
newmon:=take(oldmon,j);
g=(index oldmon#j)+1;
k:=#oldmon-j;
if opts.FixedMax then (
k=#oldmon-j-1;
newmon=newmon|{S_mu};
);
while k>0 do (
if g<n then newmon=newmon|{S_g} else error "no t-spread monomial exists";
k=k-1;
g=g+t;
);
) else error "expected a t-spread monomial";
product newmon
)
-------------------------------------------------------------------------------------------
-- Compute the last monomial (optionally with max index fixed) of the shadow of mon
-------------------------------------------------------------------------------------------
tLastMon = method(TypicalValue=>RingElement, Options=>{MaxInd=>-1})
tLastMon (RingElement,ZZ,ZZ) := opts -> (mon,gap,t) -> (
if isTSpread(mon,t) then (
S:=ring mon;
n:=numgens S;
oldmon:=support mon;
mu:=n-1;
if opts.MaxInd>-1 then mu=opts.MaxInd-1;
g:=mu;
ind:=#select(index\oldmon,x->x<=mu);
j:=0;
while mu-index oldmon#(ind-1)<t*(gap+j) do (
ind=ind-1;
if ind<0 then error "no t-spread monomial exists";
j=j+1;
);
oldmon=take(oldmon,ind)|{S_g};
k:=gap+#(support mon)-ind-1;
while k>0 do (
if not isSubset({g},index\oldmon) then (
if g>-1 then (
oldmon=oldmon|{S_g};
) else error "no t-spread monomial exists";
k=k-1;
);
g=g-t;
);
) else error "expected a t-spread monomial";
product oldmon
)
------------------------------------------------------------------------
-- return the t-spread segment of S between ini and fin
------------------------------------------------------------------------
tLexSeg = method(TypicalValue => List)
tLexSeg(RingElement,RingElement,ZZ) := List => (ini,fin,t) -> (
S:=ring ini;
R:=newRing(S,MonomialOrder=>GLex);
RM:=map(R,S);
IRM:=map(S,R);
n:=numgens R;
l:={};
mon:=RM ini;
if isTSpread(ini,t) and isTSpread(fin,t) and (degree ini)#0 == (degree fin)#0 and ring fin===S then (
if mon>=RM fin then (
l={mon}|while mon!=RM fin list mon=tNextMon(mon,t);
) else error "expected the first monomial greater than the second one with respect to lex order";
) else error "expected t-spread monomials of the same degree";
IRM\l
)
---------------------------------------------------------------------
-- whether a t-spread set is a t-spread segment
---------------------------------------------------------------------
isTLexSeg = method(TypicalValue=>Boolean)
isTLexSeg (List,ZZ) := (l,t) -> (
S:=ring l#0;
SL:=newRing(S, MonomialOrder=>Lex);
RM:=map(SL,S);
l=RM\l;
deg:=sort flatten degree l#0;
if unique(l/(x->isTSpread(x,t)))=={true} then (
if tLexSeg(max l, min l,t)!= rsort l then return false;
) else error "expected t-spread monomials";
true
)
-------------------------------------------------------------------------------------------
-- Compute the Borel monomials generated by mon
-------------------------------------------------------------------------------------------
tLexMon = method(TypicalValue=>List)
tLexMon (RingElement,ZZ) := (mon,t) -> (
S:=ring mon;
l:={};
if isTSpread(mon,t) then (
ini:=product for i to ((degree mon)#0-1) list S_(i*t);
l=tLexSeg(ini,mon,t);
) else error "expected a t-spread monomial";
l
)
-------------------------------------------------------------------------------------------
-- count the number of monomials of the initial lex segment with assigned minimum
----------------------------------------------------------------------------------------------
countTLexMon = method(TypicalValue=>ZZ, Options=>{FixedMax=>false})
countTLexMon (RingElement,ZZ) := opts -> (mon,t) -> (
if isTSpread(mon,t) then (
n:=numgens ring mon;
supp:=index \ support mon;
d:=#supp;
dd:=0;
if opts.FixedMax then (
n=max supp+1;
dd=1;
);
l:=for i from 1 to n-(d-1)*t list {n-(d-1)*(t-1)-i-dd,d-1-dd};
c:=0;
sub:=0;
for j to d-1-dd do (
s:=0;
if j>0 then sub=supp#(j-1)+t;
while s < supp#j-sub do (
c=c+binomial(l#s#0,l#s#1);
s=s+1;
);
l=for i to l#s#0-l#s#1 list {l#s#0-i-1,l#s#1-1};
);
) else error "expected a t-spread monomial";
c+1
)
------------------------------------------------------------------------
-- return all the t-spread monomials of S of degree d
------------------------------------------------------------------------
tVeroneseSet = method(TypicalValue => List)
tVeroneseSet(Ring,ZZ,ZZ) := List => (S,d,t) -> (
n:=numgens S-1;
l:={};
if 1+t*(d-1)<=n+1 then (
ini:=product for i to (d-1) list S_(i*t);
fin:=product for i to (d-1) list S_(n-i*t);
if ini!=1 and fin!=1 then
l=tLexSeg(ini,fin,t)
else l={};
);
l
)
------------------------------------------------------------------------
-- return the t-spread Veronese ideal of S of degree d
------------------------------------------------------------------------
tVeroneseIdeal = method(TypicalValue => Ideal)
tVeroneseIdeal(Ring,ZZ,ZZ) := Ideal => (S,d,t) -> (
l:=tVeroneseSet(S,d,t);
if l=={} then l={0_S};
ideal l
)
------------------------------------------------------------------------
-- return the t-spread Pascal Ideal
------------------------------------------------------------------------
tPascalIdeal = method(TypicalValue => Ideal)
tPascalIdeal(Ring,ZZ) := Ideal => (S,t) -> (
if t>numgens S then error "expected value of t less than the number of variables";
ideal for j to t-1 list product((k->S_k)\select(numgens S,i->i%t==j))
)
------------------------------------------------------------------------
-- return all the t-spread monomials of a list
------------------------------------------------------------------------
tSpreadList = method(TypicalValue => List)
tSpreadList(List,ZZ) := List => (l,t) -> (
if #l>0 then (
S:=ring l#0;
n:=numgens S;
lt:=flatten for i to n-t+1 list for j from i to min(i+t-1,n-1) list product {S_i,S_j};
K:=ideal lt;
l=select(l/(x->x%K),y->y!=0);
);
l
)
------------------------------------------------------------------------
-- return all the t-spread generators of a monomial ideal
------------------------------------------------------------------------
tSpreadIdeal = method(TypicalValue => Ideal)
tSpreadIdeal(Ideal,ZZ) := Ideal => (I,t) -> ideal tSpreadList(flatten entries compress gens I,t)
------------------------------------------------------------------------
-- whether a monomial is a t-spread monomial of S
------------------------------------------------------------------------
isTSpread = method(TypicalValue => Boolean)
isTSpread(RingElement,ZZ) := Boolean => (mon,t) -> (
sup:=index\ support mon;
if (degree mon)#0 != #sup or #(flatten entries monomials mon)!=1 then return false;
sup=for i to #sup-2 list sup#(i+1)-sup#i;
if min sup < t then return false;
true
)
------------------------------------------------------------------------
-- whether a list of monomials is a t-spread
------------------------------------------------------------------------
isTSpread(List,ZZ) := Boolean => (l,t) -> (
if isSubset({false},l/(x->isTSpread(x,t))) then return false;
true
)
------------------------------------------------------------------------
-- whether an ideal is a t-spread ideal of S
------------------------------------------------------------------------
isTSpread(Ideal,ZZ) := Boolean => (I,t) -> (
S:=ring I;
if isMonomialIdeal I then ( -- or I==ideal(0_S)
gen:=flatten entries mingens I;
if isSubset({false},gen/(x->isTSpread(x,t))) then return false;
) else error "expected a monomial ideal";
true
)
------------------------------------------------------------------------
-- return the t-shadow of a t-spread monomial
------------------------------------------------------------------------
tShadow = method(TypicalValue=>List)
tShadow (RingElement,ZZ) := (mon,t) -> (
S:=ring mon;
n:=numgens S;
l:={};
if isTSpread(mon,t) then (
supp:=index\support mon;
supp={0}|flatten(supp/(i->{i-t,i+t}))|{n-1};
ind:=0;
l=flatten while ind<#supp list (
for i from supp#ind to supp#(ind+1) list mon*S_i
) do ind=ind+2;
);
l
)
------------------------------------------------------------------------
-- return the t-shadow of a set of t-sprea monomials
------------------------------------------------------------------------
tShadow (List,ZZ) := (l,t) -> (
if l=={} then return {};
S:=ring l#0;
n:=numgens S;
SL:=newRing(S, MonomialOrder=>{GLex});
RM:=map(SL,S);
IRM:=map(S,SL);
l=RM\l;
IRM\(rsort unique flatten apply(l,x->tShadow(x,t)))
)
------------------------------------------------------------------------
-- return the ft-vector of a t-spread ideal
------------------------------------------------------------------------
fTVector = method(TypicalValue=>List)
fTVector (Ideal,ZZ) := (I,t) -> (
S:=ring I;
n:=numgens S;
f:={};
if isTSpread(I,t) then (
indeg:=initialDegree I;
f=for i to indeg-1 list binomial(n-(t-1)*(i-1),i);
sh:={};
for i from indeg to (n+t-1)//t do (
sh=join(tShadow(sh,t),select(flatten entries mingens I,x->(degree x)#0==i));
f=join(f,{binomial(n-(t-1)*(i-1),i)-#sh});
);
) else error "expected a t-spread ideal";
f
)
------------------------------------------------------------------------
-- Compute the i-th Macaulay expansion of a (Shift=>false)
-- Compute the i-th shifted Macaulay expansion of a (Shift=>true)
------------------------------------------------------------------------
tMacaulayExpansion = method(TypicalValue=>List, Options=>{Shift=>false})
tMacaulayExpansion(ZZ,ZZ,ZZ,ZZ) := opts -> (a,n,d,t) -> (
macexp:={};
as:={};
dw:=d;
up:=dw;
if opts.Shift and a==0 then macexp={{0,2}};
while a>0 and d>0 do (
while binomial(up,dw)<a do up=up+1;
if binomial(up,dw)!=a then up=up-1;
macexp=macexp|{{up,dw}};
as={up}|as;
a=a-binomial(up,dw);
dw=dw-1;
up=dw;
);
r:=dw+1;
as={r-2}|as;
as=as|{n-(d-1)*(t-1)};
as=as|{n-d*(t-1)+2*t};
k:=d-r+1;
while as#(d-k+1-dw)-as#(d-k-dw)<t+1 do k=k-1;
tmacexp:={};
if k==-1 then tmacexp={{n-d*(t-1),d+1}}
else (
-- for j in r..(d-k) do tmacexp={{as#(j-dw),j}}|tmacexp;
-- tmacexp={{as#(d-k-dw)-2*t+1,d-k+1}}|tmacexp;
-- for j in (d+1-k)..d do tmacexp={{as#(j-dw)-t+1,j+1}}|tmacexp;
tmacexp=reverse(for j in (d+1-k)..d list {as#(j-dw)-t+1,j+1})|{{as#(d-k-dw)-2*t+1,d-k+1}}|reverse(for j in r..(d-k) list {as#(j-dw),j});
);
if not opts.Shift then select(macexp,x->x#0>=0)
else select(tmacexp,x->x#0>=0)
)
------------------------------------------------------------------------
-- whether the given sequence is a ft-vector
------------------------------------------------------------------------
isFTVector = method(TypicalValue=>Boolean)
isFTVector(Ring,List,ZZ) := (S,f,t) -> (
n:=numgens S;
f=join(f,((n+t-1)//t-#f+1):0);
if f#0>1 or f#1>n or #f-2>(n+t-1)//t then return false
else (
for k from 1 to #f-2 do (
val:=solveBinomialExpansion tMacaulayExpansion(f#k,n,k,t,Shift=>true);
if f#(k+1)<0 or f#(k+1)>val then return false
);
);
true
)
----------------------------------------------------------------------------------
-- return the t-lex ideal with the ft-vector
----------------------------------------------------------------------------------
tLexIdeal = method(TypicalValue=>Ideal)
tLexIdeal (Ring, List, ZZ) := (S,f,t) -> (
n:=numgens S;
ind:=0;
l:={};
ltempold:={};
if isFTVector(S,f,t) then (
f=join(f,((n+t-1)//t-#f+1):0);
for d from 0 to #f-1 do (
completeLex:=tVeroneseSet(S,d,t);
shad:=tShadow(ltempold,t);
if shad=={} then shad={0_S};
ind=binomial(n-(t-1)*(d-1),d)-f#d;
ltemp:=take(completeLex,ind);
ltemp=rsort toList(set ltemp - set shad);
l=join(l,ltemp);
ltempold=unique select(join(ltemp,shad),x->x!=0);
);
if #l==0 then l={0_S};
) else error "expected a valid ft-vector";
ideal l
)
----------------------------------------------------------------------------------
-- return the t-lex ideal sharing the same ft-vector of I
----------------------------------------------------------------------------------
tLexIdeal (Ideal,ZZ) := (I,t) -> if isTStronglyStableIdeal(I,t) then tLexIdeal(ring I, fTVector(I,t), t) else error "expected a t-strongly stable ideal"
---------------------------------------------------------------------
-- whether a t-spread ideal is t-spread lex
---------------------------------------------------------------------
isTLexIdeal = method(TypicalValue=>Boolean)
isTLexIdeal (Ideal,ZZ) := (I,t) -> (
S:=ring I;
SL:=newRing(S, MonomialOrder=>Lex);
RM:=map(SL,S);
I=RM ideal mingens I;
degs:=sort flatten degrees I;
if isTSpread(I,t) then -- or I==ideal(0_SL)
for d from degs#0 to last degs do (
monI:=select(rsort flatten entries compress (super basis(d,I)),x->isTSpread(x,t));
monLex:=take(tVeroneseSet(SL,d,t),#monI);
if monI!=monLex then return false;
)
else error "expected a t-spread ideal";
true
)
-------------------------------------------------------------------------------------------
-- Compute the Borel-segment of monomials between ini and fin
-------------------------------------------------------------------------------------------
tStronglyStableSeg = method(TypicalValue=>List)
tStronglyStableSeg (RingElement,RingElement,ZZ) := (ini,fin,t) -> (
S:=ring fin;
n:=numgens S;
l:={};
sup:=index\support fin;
inf:=index\support ini;
if isTSpread(ini,t) and isTSpread(fin,t) and (degree ini)#0 == (degree fin)#0 and ring ini===S then (
if min(sup-inf)>=0 then (
l={product(inf/(x->S_x))};
while inf!=sup do(
j:=#sup-1;
while j>=0 and (inf#j)+1>sup#j do (
j=j-1;
);
g:=(inf#j)+1;
inf=take(inf,j);
k:=#sup-j;
while k>0 do (
inf=inf|{g};
k=k-1;
g=g+t;
);
l=join(l,{product(inf/(x->S_x))});
);
) else error "expected the first monomial greater than the second one with respect to Borel order";
) else error "expected t-spread monomials of the same degree";
l
)
---------------------------------------------------------------------
-- whether a t-spread set is a t-spread strongly stable segment
---------------------------------------------------------------------
isTStronglyStableSeg = method(TypicalValue=>Boolean)
isTStronglyStableSeg (List,ZZ) := (l,t) -> (
S:=ring l#0;
SL:=newRing(S, MonomialOrder=>Lex);
RM:=map(SL,S);
l=RM\l;
deg:=sort flatten degree l#0;
if unique(l/(x->isTSpread(x,t)))=={true} then (
if tStronglyStableSeg(max l, min l,t)!= rsort l then return false;
) else error "expected t-spread monomials";
true
)
-------------------------------------------------------------------------------------------
-- Compute the Borel monomials generated by mon
-------------------------------------------------------------------------------------------
tStronglyStableMon = method(TypicalValue=>List)
tStronglyStableMon (RingElement,ZZ) := (mon,t) -> (
S:=ring mon;
l:={};
if isTSpread(mon,t) then (
ini:=product for i to ((degree mon)#0-1) list S_(i*t);
l=tStronglyStableSeg(ini,mon,t);
) else error "expected a t-spread monomial";
l
)
-------------------------------------------------------------------------------------------
-- Count the number of t-strongly stable monomials generated by mon
-------------------------------------------------------------------------------------------
countTStronglyStableMon = method(TypicalValue=>ZZ)
countTStronglyStableMon (RingElement,ZZ) := (mon,t) -> (
if isTSpread(mon,t) then (
supp:=index \ support mon;
m:=max supp;
d:=#supp;
p:=d-2;
c:=0;
ind:=new MutableList from toList(d-1:1);
while ind#0<=supp#0+1 do (
c=c+m+1-(d-1)*(t-1)- sum toList ind;
ind#p=ind#p+1;
while p>0 and ind#p > (supp#p+1)-(sum take(toList ind,p)+p*t-p+1)+1 do (
ind#p=1;
p=p-1;
ind#p=ind#p+1;
);
p=d-2;
);
) else error "expected a t-spread monomial";
c
)
-------------------------------------------------------------------------------------------
-- Compute the Borel ideal generated by I
-------------------------------------------------------------------------------------------
tStronglyStableIdeal = method(TypicalValue=>Ideal)
tStronglyStableIdeal (Ideal,ZZ) := (I,t) -> (
S:=ring I;
n:=numgens S;
SL:=newRing(S, MonomialOrder=>{Weights=>toList(1..n)});
RM:=map(SL,S);
IRM:=map(S,SL);
if isTSpread(I,t) then (
gen:=flatten entries mingens RM I;
l:=unique flatten for x in gen list tStronglyStableMon(x,t);
) else error "expected a t-spread ideal";
IRM trim ideal l
)
-------------------------------------------------------------------------------------------
-- whether a t-spread ideal is Borel
-------------------------------------------------------------------------------------------
isTStronglyStableIdeal = method(TypicalValue=>Boolean)
isTStronglyStableIdeal (Ideal,ZZ) := (I,t) -> (
S:=ring I;
n:=numgens S;
if isTSpread(I,t) then (
gen:=flatten entries mingens I;
l:={};
for x in gen do (
l=unique join(l,tStronglyStableMon(x,t));
if #select(l/(x->x%I),x->x!=0)>0 then return false;
);
) else error "expected a t-spread ideal";
true
)
-------------------------------------------------------------------------------------------
-- returns the corners of the extremal Betti numbers of I
----------------------------------------------------------------------------------------------
tExtremalBettiCorners = method(TypicalValue=>List)
tExtremalBettiCorners (Ideal,ZZ) := (I,t) -> (
gr:=unique flatten degrees I;
dseq:={};
corners:={};
if isTStronglyStableIdeal(I,t) then (
for d in gr do (
l:=select(flatten entries gens I,x->(degree x)#0==d);
m:=max apply( l,x->support x / index //max+1);
dseq=join(dseq,{(m-t*(d-1)-1,d)});
);
while #dseq>1 do (
if dseq#0#0 > max (take(dseq,{1,#dseq}) / (y->y#0)) then
corners=join(corners,{dseq#0});
dseq=take(dseq,{1,#dseq});
);
) else error "expected a t-strongly stable ideal";
join(corners,{dseq#0})
)
-------------------------------------------------------------------------------------------
-- returns the basic t-spread monomials with extremal Betti numbers assigned as positions as values
----------------------------------------------------------------------------------------------
tExtremalBettiMonomials = method(TypicalValue=>List)
tExtremalBettiMonomials (Ring,List,List,ZZ) := (S,corners,a,t) -> (
n:=numgens S;
SL:=newRing(S, MonomialOrder=>Lex);
vrs:=flatten entries vars SL;
RM:=map(SL,S);
IRM:=map(S,SL);
r:=#corners;
cond:=r<n and #corners==r and #a==r;
cond=cond and rsort unique (corners / (x->x#0))== corners / (x->x#0);
cond=cond and sort unique (corners / (x->x#1))== corners / (x->x#1);
cond= cond and max(corners / (x->x#0+x#1))<=n;
if cond then (
mu:=corners#0#0+t*(corners#0#1-1)+1;
g:=mu-1;
bound:=binomial(corners#0#0+corners#0#1-1,corners#0#1-1);
if a#0>bound then error "Ideal does not exists";
mon:=product((t*toList(0..corners#0#1-2)/(i->SL_i))|{SL_g});
l:={mon};
for j from 2 to a#0 do (
try mon=tNextMon(mon,t,FixedMax=>true) then
l=join(l,{mon})
else error "no t-strongly stable ideal exists";
);
for i from 1 to r-1 do (
mu=corners#i#0+t*(corners#i#1-1)+1;
g=mu-1;
--last monomial of the shadow
try mon=tLastMon(mon,corners#i#1-corners#(i-1)#1,t,MaxInd=>g+1)
else error "no t-strongly stable ideal exists";
--first monomial over the shadow
for j from 1 to a#i do (
try mon=tNextMon(mon,t,FixedMax=>true) then
l=join(l,{mon})
else error "no t-strongly stable ideal exists";
);
);
) else error "the hypotheses do not hold";
IRM\l
)
------------------------------------------------------------------------
-- Compute the sum of a binomial expansion.
------------------------------------------------------------------------
solveBinomialExpansion = method(TypicalValue=>ZZ)
solveBinomialExpansion List := l -> sum apply(l,x->binomial(toSequence x))
------------------------------------------------------------------------
-- returns the initial degree of a graded ideal
------------------------------------------------------------------------
initialDegree = method(TypicalValue=>ZZ)
initialDegree Ideal := I -> (
if isHomogeneous I then return min flatten degrees ideal mingens I
else error "expected a graded ideal";
)
-------------------------------------------------------------------------------------------
-- returns the initial ideal of an ideal
----------------------------------------------------------------------------------------------
initialIdeal = method(TypicalValue=>Ideal)
initialIdeal Ideal := I -> ideal rsort leadTerm I
-------------------------------------------------------------------------------------------
-- returns the minimal Betti numbers of the quotient S/I
----------------------------------------------------------------------------------------------
minimalBettiNumbers = method(TypicalValue=>BettiTally)
minimalBettiNumbers Ideal := I -> betti res ideal flatten entries mingens I
-------------------------------------------------------------------------------------------
-- Computes the minimal Betti numbers of I
----------------------------------------------------------------------------------------------
minimalBettiNumbersIdeal = method(TypicalValue=>BettiTally)
minimalBettiNumbersIdeal Ideal := I -> betti res pushForward(map(ring I,ring I), image mingens I)
beginDocumentation()
-------------------------------------------------------
--DOCUMENTATION ExteriorIdeals
-------------------------------------------------------
document {
Key => {TSpreadIdeals},
Headline => "A package for working with t-spread ideals of polynomial rings",
"TSpreadIdeals is a package for creating and manipulating t-spread ideals of polynomial rings. Let ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " a monomial of ", TEX///$S=K[x_1,\ldots,x_n]$///, ", with ", TEX///$1\le i_1\le i_2\le\dots\le i_d\le n$///, ". The monomial ", TT "u", " is called ", TEX///$t$///, "-spread if ", TEX///$i_{j+1}-i_j\ge t$///, " for all ", TEX///$j\in [d-1].$///, BR{},
"A list of monomials is ", TT "t", "-spread if all the monomials of the list are ", TT "t", "-spread. A monomial ideal is called ", TT "t", "-spread if it is generated by ", TT "t", "-spread monomials.",BR{},
"Some references can be found in the papers ", HREF("https://arxiv.org/abs/2110.11801","Computational methods for t-spread monomial ideals"), " and ", HREF("https://arxiv.org/abs/2105.11944","A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals"), ".",
Subnodes => {
"T-spread managing",
TO "tLastMon",
TO "tPascalIdeal",
TO "tSpreadList",
TO "tSpreadIdeal",
TO "isTSpread",
TO "tShadow",
"T-lex structures",
TO "tNextMon",
TO "tLexSeg",
TO "isTLexSeg",
TO "tLexMon",
TO "countTLexMon",
TO "tVeroneseSet",
TO "tVeroneseIdeal",
TO "isTLexIdeal",
"T-strongly stable structures",
TO "tStronglyStableSeg",
TO "isTStronglyStableSeg",
TO "tStronglyStableMon",
TO "countTStronglyStableMon",
TO "tStronglyStableIdeal",
TO "isTStronglyStableIdeal",
"Kruskal-Katona's Theorem",
TO "tMacaulayExpansion",
TO "fTVector",
TO "isFTVector",
TO "tLexIdeal",
"Extremal Betti numbers",
TO "tExtremalBettiCorners",
TO "tExtremalBettiMonomials",
"Services",
TO "solveBinomialExpansion",
TO "initialDegree",
TO "initialIdeal",
TO "minimalBettiNumbers",
TO "minimalBettiNumbersIdeal",
"Options",
TO "Shift",
TO "FixedMax",
TO "MaxInd"
},
}
document {
Key => {tNextMon,(tNextMon,RingElement,ZZ)},
Headline => "give the t-lex successor of a given t-spread monomial",
Usage => "tNextMon(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {RingElement => {"the greatest ", TT "t", "-spread monomial less than ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "tNextMon(u,t)", " gives the ", TT "t" , "-lex successor of ", TT "t", ", that is, the greatest ", TT "t" , "-spread monomial less than ", , TT "u", " with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"If ", TT "FixedMax", " is ",TT "true", " the function ", TT "tNextMon(u,t,FixedMax=>true)", " gives the ", TT "t" , "-lex successor for which the maximum of the support is ", TEX///$\max\textrm{supp}(\texttt{u}).$///,BR{},
"Given a ", TEX///$t$///, "-spread monomial ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///,", we define ", TEX///$\textrm{supp}(u)=\{i_1,i_2,\ldots, i_d\}$///, ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_16]
tNextMon(x_2*x_6*x_10*x_13,3)
tNextMon(x_2*x_6*x_10*x_13,3,FixedMax=>true)
///,
SeeAlso =>{FixedMax, tLexSeg, tLexIdeal},
}
document {
Key => {tLastMon,(tLastMon,RingElement,ZZ,ZZ)},
Headline => "give the last t-spread monomial of the Borel shadow a given t-spread monomial",
Usage => "tLastMon(u,gap,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"gap" => {"a positive integer representing the difference between the degrees"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {RingElement => {"the smallest ", TT "t", "-spread monomial of the Borel shadow of ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "tLastMon(u,gap,t)", " gives the smallest ", TT "t" , "-spread monomials of the Borel shadow iterated ", TT "gap", "times of ", TT "u", ", that is, the smallest monomial of ", TEX///$B_\texttt{t}\{\texttt{u}\}$///, ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"If ", TT "MaxInd", " is greater than -1 the function ", TT "tLastMon(u,gap,t,MaxInd=>m)", " gives the smallest ", TT "t" , "-spread monomial for which the maximum of the support is ", TT "m", BR{},
"The Borel shadow of a ", TT "t", "-spread monomial ", TT "u", ", is defined as the shadow of the strongly stable set generated by ", TT "u", ". To work in a ", TT "t", "-spread contest, the Borel shadow of ", TT "u", " is the ", TT "t", "-shadow of ", TEX///$B_\texttt{t}\{u\}$///, ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_16]
tLastMon(x_2*x_6*x_10*x_13,1,3)
tLastMon(x_2*x_6*x_10*x_13,1,3,MaxInd=>14)
///,
SeeAlso =>{FixedMax, tShadow},
}
document {
Key => {tLexSeg,(tLexSeg,RingElement,RingElement,ZZ)},
Headline => "give the t-lex segment with given extremes",
Usage => "tLexSeg(v,u,t)",
Inputs => {"v" => {"a t-spread monomial of a polynomial ring"},
"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the set of all the ", TT "t", "-spread monomials smaller than ", TT "v", " and greater than ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "tLexSeg(v,u,t)", " gives the ", TT "t" , "-lex segment defined by ", TT "v", " and ", TT "u", ", that is, the set of all the ", TT "t" , "-spread monomials smaller than ", , TT "v", " and greater than ", TT "u", ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"This function iteratively uses the method ", TT "tNextMon(u,t)", " until the returned monomial is ",TT "u", ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
tLexSeg(x_2*x_5*x_10*x_13,x_2*x_6*x_9*x_12,2)
tLexSeg(x_2*x_5*x_10*x_13,x_2*x_6*x_9*x_12,3)
///,
SeeAlso =>{tNextMon, tLexIdeal},
}
document {
Key => {isTLexSeg,(isTLexSeg,List,ZZ)},
Headline => "whether a set of t-spread monomials is a t-lex segment",
Usage => "isTLexSeg(l,t)",
Inputs => {"l" => {"a list of t-spread monomials of a polynomial ring"}
},
Outputs => {Boolean => {"whether the list ", TT "l", " of monomials is a t-lex segment"}},
"the function ", TT "isTLexSeg(l,t)", " is ", TT "true", " whether the list of monomials ", TT "l" , " is a ", TT "t", "-lex segment, that is, the set of all the ", TT "t" , "-spread monomials smaller than the maximum of ", TT "l", " and greater than the minimum of ", TT "l", ", with respect to ", TEX///$>_\mathrm{slex}.$///,
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_7]
isTLexSeg({x_1*x_4*x_7,x_1*x_5*x_7,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7},2)
isTLexSeg({x_1*x_4*x_7,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7},2)
///,
SeeAlso =>{tLexSeg, tNextMon},
}
document {
Key => {tLexMon,(tLexMon,RingElement,ZZ)},
Headline => "give the smallest initial t-lex segment containing a given monomial",
Usage => "tLexMon(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the set of all the ", TT "t", "-spread monomials greater than ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "tLexMon(u,t)", " gives the initial ", TT "t" , "-lex segment defined by ", TT "u", ", that is, the set of all the ", TT "t" , "-spread monomials greater than ", TT "u", ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"This function calls the method ", TT "tLexSeg(v,u,t)", ", where ",TT "v", " is the greatest ", TT "t" , "-spread monomial of the polynomial ring.", " Let ", TEX///$S=K[x_1,\ldots,x_n]$///, " and ", TEX///$u\in M_{n,d,t}$///, ", then ", TEX///$v=x_1x_{1+t}\cdots x_{1+(d-1)t}$///, ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
tLexMon(x_2*x_5*x_8,2)
tLexMon(x_2*x_5*x_8,3)
///,
SeeAlso =>{tNextMon, tLexSeg, isTLexSeg},
}
document {
Key => {countTLexMon,(countTLexMon,RingElement,ZZ)},
Headline => "give the cardinality of the smallest initial t-lex segment containing a given monomial",
Usage => "countTLexMon(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {ZZ => {"the number of all the ", TT "t", "-spread monomials greater than ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "countTLexMon(u,t)", " gives the cardinality of ", TEX///$L_t\{u\}$///, ", the initial ", TT "t" , "-lex segment defined by ", TT "u", ", that is, the number of all the ", TT "t" , "-spread monomials greater than ", TT "u", ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"If ", TT "FixedMax", " is ",TT "true", " the function ", TT "countTLexMon(u,t,FixedMax=>true)", " gives the number of all the ", TT "t" , "-spread monomials having maximum of the support equal to ", TEX///$\max\textrm{supp}(u)$///, " and greater than ", TT "u", ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"Given a ", TEX///$t$///, "-spread monomial ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///,", we define ", TEX///$\textrm{supp}(u)=\{i_1,i_2,\ldots, i_d\}$///, ".", BR{},
"This method is not constructive. It uses a theoretical result to obtain the cardinality as the sum of suitable binomial coefficients. The procedure only concerns ", TEX///$\textrm{supp}(\texttt{u}),$///, " that is, the set ", TEX///$\{i_1,i_2,\ldots, i_d\}$///, ", when ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " is a ", TEX///$t$///, "-spread monomial.",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
countTLexMon(x_2*x_5*x_8,2)
countTLexMon(x_2*x_5*x_8,3)
///,
SeeAlso =>{tLexMon},
}
document {
Key => {tVeroneseSet,(tVeroneseSet,Ring,ZZ,ZZ)},
Headline => "give the Veronese set of t-spread monomials of a given degree",
Usage => "tVeroneseSet(S,d,t)",
Inputs => {"S" => {"a polynomial ring"},
"d" => {"a nonnegative integer that identifies the degree of the monomials"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the set of all the ", TT "t", "-spread monomials of ", TT "S", " of degree ", TT "d"}},
"the function ", TT "tVeroneseSet(S,d,t)", " gives the Veronese set of ", TT "t" , "-spread monomials of degree ", TT "d", ", that is, the set of all the ", TT "t" , "-spread monomials of ", TT "S", " of degree ", TT "d",
"This function calls the method ", TT "tLexSeg(v,u,t)", ", where ",TT "v", " is the greatest ", TT "t" , "-spread monomial of the polynomial ring and ", TT "u", " the smallest one. If ", TEX///$S=K[x_1,\ldots,x_n]$///, " then ", TEX///$v=x_1x_{1+t}\cdots x_{1+(d-1)t}$///, " and ", TEX///$u=x_{n-(d-1)t}\cdots x_{n-t} x_{n}$///, ". This set is also denoted by ", TEX///$M_{n,d,t}$///, ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_8]
tVeroneseSet(S,3,2)
tVeroneseSet(S,3,3)
///,
SeeAlso =>{tNextMon, tLexSeg, isTLexSeg, tLexMon, tVeroneseIdeal},
}
document {
Key => {tVeroneseIdeal,(tVeroneseIdeal,Ring,ZZ,ZZ)},
Headline => "give the Veronese ideal of t-spread monomials of a given degree",
Usage => "tVeroneseIdeal(S,d,t)",
Inputs => {"S" => {"a polynomial ring"},
"d" => {"a nonnegative integer that identifies the degree of the monomials"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Ideal => {"the ideal generated by all the ", TT "t", "-spread monomials of ", TT "S", " of degree ", TT "d"}},
"the function ", TT "tVeroneseIdeal(S,d,t)", " returns the Veronese ideal of ", TT "t" , "-spread monomials of degree ", TT "d", ", that is, the ideal generated by all the ", TT "t" , "-spread monomials of ", TT "S", " of degree ", TT "d",
"This function calls the method ", TT "tVeroneseSet(S,d,t)", ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_8]
tVeroneseIdeal(S,3,2)
tVeroneseIdeal(S,3,4)
///,
SeeAlso =>{tNextMon, tLexSeg, isTLexSeg, tLexMon, tVeroneseSet},
}
document {
Key => {tPascalIdeal,(tPascalIdeal,Ring,ZZ)},
Headline => "give the Pascal ideal of t-spread monomials of a given polynomial ring",
Usage => "tPascalIdeal(S,t)",
Inputs => {"S" => {"a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Ideal => {"the Pascal ideal of ", TT "t", "-spread monomials of ", TT "S"}},
"the function ", TT "tPascalIdeal(S,t)", " returns the Pascal ideal of ", TT "t" , "-spread monomials of ", TT "S", ", that is, the ideal generated by the minimum number of ", TT "t" , "-spread monomials of ", TT "S", " with the greatest possible degrees and such that the supports of the generators are pairwise disjoint.",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_10]
tPascalIdeal(S,3)
tPascalIdeal(S,4)
///,
}
document {
Key => {tSpreadList,(tSpreadList,List,ZZ)},
Headline => "give the set of all t-spread monomials of a given list",
Usage => "tSpreadList(l,t)",
Inputs => {"l" => {"a list of t-spread monomials of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the set of all the ", TT "t", "-spread monomials belonging to ", TT "l"}},
"the function ", TT "tSpreadList(l,t)", " gives the list of all the ", TT "t" , "-spread monomials ", TT "l", ".",BR{},
"This function calls the method ", TT "isTSpread(u,t)", " to check whether the monomial ", TT "u", " is ", TT "t" , "-spread, for all the monomials that belong to the list ", TT "l", ".", BR{},
"Let ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " a monomial of ", TEX///$S=K[x_1,\ldots,x_n]$///, ", with ", TEX///$1\le i_1\le i_2\le\dots\le i_d\le n$///, ". The monomial ", TT "u", " is called ", TEX///$t$///, "-spread if ", TEX///$i_{j+1}-i_j\ge t$///, " for all ", TEX///$j\in [d-1]$///, ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
l={x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
tSpreadList(l,4)
tSpreadList(l,5)
///,
SeeAlso =>{tSpreadIdeal, isTSpread},
}
document {
Key => {tSpreadIdeal,(tSpreadIdeal,Ideal,ZZ)},
Headline => "give the ideal generated by the t-spread monomials which are among the generators of a given ideal",
Usage => "tSpreadIdeal(I,t)",
Inputs => {"I" => {"a graded ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Ideal => {"the ideal generated by all the ", TT "t", "-spread monomials belonging to the generator set of the ideal ", TT "I"}},
"the function ", TT "tSpreadIdeal(I,t)", " gives the ideal generated by all the ", TT "t" , "-spread monomials which are among the generators of the ideal ", TT "I", ".",BR{},
"This function calls the method ", TT "tSpreadList(l,t)", " to sieve the ", TT "t" , "-spread monomials from the list ", TT "l", ", of the generators of the ideal ", TT "I", ".", BR{},
"Let ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " a monomial of ", TEX///$S=K[x_1,\ldots,x_n]$///, ", with ", TEX///$1\le i_1\le i_2\le\dots\le i_d\le n$///, ". The monomial ", TT "u", " is called ", TEX///$t$///, "-spread if ", TEX///$i_{j+1}-i_j\ge t$///, " for all ", TEX///$j\in [d-1]$///, ". A monomial ideal is called ", TT "t", "-spread if it is generated by ", TT "t", "-spread monomials.",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
I=ideal {x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
tSpreadIdeal(I,3)
tSpreadIdeal(I,4)
///,
SeeAlso =>{tSpreadList, isTSpread},
}
document {
Key => {isTSpread,(isTSpread,RingElement,ZZ),(isTSpread,List,ZZ),(isTSpread,Ideal,ZZ)},
Headline => "whether a monomial, a list of monomials or a monomial ideal is t-spread",
Usage => "isTSpread(u,t), isTSpread(l,t) or isTSpread(I,t)",
Inputs => {"u" => {"a monomial of a polynomial ring"},
"l" => {"a list of monomials of a polynomial ring"},
"I" => {"a monomial ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Boolean => {"whether a given monomial ", TT "u", ", a list of monomials " , TT "l", " or a monomial ideal ", TT "I", " is ", TT "t", "-spread"}},
"the function ", TT "isTSpread(-,t)", " has three overloading changing for the first parameter. It checks whether a given monomial ", TT "u", ", a list of monomials ", TT "l", " or a monomial ideal ", TT "I", " is ", TT "t" , "-spread.",BR{},
"Let ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " a monomial of ", TEX///$S=K[x_1,\ldots,x_n]$///, ", with ", TEX///$1\le i_1\le i_2\le\dots\le i_d\le n$///, ". The monomial ", TT "u", " is called ", TEX///$t$///, "-spread if ", TEX///$i_{j+1}-i_j\ge t$///, " for all ", TEX///$j\in [d-1].$///, BR{},
"A list of monomials is ", TT "t", "-spread if all the monomials of the list are ", TT "t", "-spread. A monomial ideal is called ", TT "t", "-spread if it is generated by ", TT "t", "-spread monomials.",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
l={x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
isTSpread(l#0,3)
isTSpread(l,3)
isTSpread(ideal l,3)
isTSpread(ideal l,4)
///
}
document {
Key => {tShadow,(tShadow,RingElement,ZZ),(tShadow,List,ZZ)},
Headline => "give the t-spread shadow of a given t-spread monomial or a given list of t-spread monomials",
Usage => "tShadow(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"l" => {"a list of t-spread monomials of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the list of all the ", TT "t", "-spread monomial of the shadow of the ", TT "t", "-spread monomial ", TT "u", " or of the list ", TT "l"}},
"the function ", TT "tShadow(u,t)", " gives the ", TT "t" , "-spread shadow of ", TT "u", ", that is, the set of all the ", TT "t" , "-spread monomials of the shadow of ", TT "u", ". The overloading function ", TT "tShadow(l,t)", " gives the ", TT "t" , "-spread shadow of ", TT "l", ", that is, the set of all the ", TT "t" , "-spread monomials of the shadow of each ", TT "t", "-spread monomial belonging to ", TT "l", ".",BR{},
"Let ", TEX///$S=K[x_1,\ldots,x_n]$///, " and ", TEX///$u\in M_{n,d,t}$///, ", that is, ", TT "u", " is a ", TEX///$t$///, "-spread monomial of degree ", TEX///$d$///, ". The ", TT "t", "-spread shadow of ", TT "u", ", is defined as ", TEX///$\mathrm{Shad}_t(u)=\{ux_i\ :\ i\in [n]\}\cap M_{n,d+1,t}$///, ". The algorithm is optimized for the ", TEX///$t$///, "-spread environment.",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
u=x_2*x_6*x_10
tShadow(u,3)
tShadow(u,4)
l={x_3*x_6*x_10, x_1*x_5*x_9}
tShadow(l,3)
tShadow(l,4)
///,
SeeAlso =>{isTSpread},
}
document {
Key => {tMacaulayExpansion,(tMacaulayExpansion,ZZ,ZZ,ZZ,ZZ)},
Headline => "compute the t-Macaulay expansion of a positive integer",
Usage => "tMacaulayExpansion(a,n,d,t)",
Inputs => {"a" => {"a positive integer to be expanded"},
"n" => {"a positive integer that identifies the number of indeterminates"},
"d" => {"a positive integer that identifies the degree"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"pairs of positive integers representing the ", TT "d", "-th (shifted) t-Macaulay expansion of ", TT "a", " with a given ", TT "n"}},
"Given four positive integers ", TT "(a,n,d,t)", " there is a unique expression of ", TT "a", " as a sum of binomials ", TEX///$a=\binom{a_d}{d} + \binom{a_{d-1}}{d-1} + \cdots + \binom{a_j}{j}.$///, " where ", TEX///$a_i > a_{i-1} > \cdots > a_j > j >= 1.$///,BR{},
"If the optional parameter ", TT "Shift", " is ", TT "true", ", then the method ", TT "tMacaulayExpansion(a,n,d,t,Shift=>true)", " returns the shifted t-Macaulay expansion of ", TT "a", ", that is, ", TEX///$a^{(d)}=\binom{a_d}{d+1} + \binom{a_{d-1}}{d} + \cdots + \binom{a_j}{j+1}.$///,
"To obtain the sum of the binomial coefficients represented in the output list, one can use the method ", TT "solveBinomialExpansion.",
PARA {"Examples:"},
EXAMPLE lines ///
tMacaulayExpansion(50,12,2,1)
tMacaulayExpansion(50,12,2,1,Shift=>true)
tMacaulayExpansion(50,12,2,2,Shift=>true)
///,
SeeAlso =>{solveBinomialExpansion, isFTVector, Shift}
}
document {
Key => {fTVector,(fTVector,Ideal,ZZ)},
Headline => "compute the ft-vector of a given t-spread ideal of a polynomial ring",
Usage => "fTVector(I,t)",
Inputs => {"I" => {"a t-spread ideal of polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"a list of nonnegative integers representing the ft-vector of the t-spread ideal ", TT "I"}},
"Let ", TT "I", " be a ", TT "t", "-spread ideal of the polynomial ring ", TEX///$S=K[x_1,\ldots,x_n]$///, " One can define the ", TEX///$f_\texttt{t}$///, "-vector of ", TT "I", " as ", TEX///$f_\texttt{t}(\texttt{I})=\left( f_{\texttt{t},-1}(\texttt{I}), f_{\texttt{t},0}(\texttt{I}), \ldots, f_{\texttt{t},j}(\texttt{I}), \ldots \right),$///, BR{},
"where ", TEX///$f_{\texttt{t},j-1}(\texttt{I})=|[S_j]_t|-|[I_j]_t|$///, " and ", TEX///$[I_j]_t$///, " is the ", TT "t", "-spread part of the ", TEX///$j$///, "-th graded component of ", TT "I", ".",BR{},
"In an equivalent way, let ", TEX///$\Delta$///, " be the associated simplicial complex of ", TT "I", ". So, ", TEX///$f_{\texttt{t},j}(\texttt{I})$///, " is the cardinality of the set ", TEX///$\left\{F\ :\ F \text{ is a } j \text{-dimensional face in } \Delta \text{ and } x_F=\prod_{i\in F}{x_i} \text{ is a } t \text{-spread monomial}\right\}.$///,
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_8]
fTVector(ideal {x_1*x_3,x_2*x_5*x_7},1)
fTVector(ideal {x_1*x_3,x_2*x_5*x_7},2)
///,
SeeAlso =>{isFTVector}
}
document {
Key => {isFTVector,(isFTVector,Ring,List,ZZ)},
Headline => "whether a given list of nonnegative integers is the ft-vector of a t-strongly stable ideal of a given polynomial ring",
Usage => "isFTVector(S,f,t)",
Inputs => {"S" => {"a polynomial ring"},
"f" => {"a list of nonnegative integers"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Boolean => {"whether the list ", TT "f", " represents the ft-vector of a t-strongly stable ideal of ", TT "S"}},
"Let ", TEX///$\texttt{S}=K[x_1,\ldots,x_n]$///, ", ", TEX///$\texttt{t}\geq 1$///, " and let ", TEX///$\texttt{f}=(f(0),f(1),\ldots,f(d),\ldots)$///, " be a sequence of nonnegative integers. The sequence ", TT "f", " is the ", TEX///$\texttt{f}_\texttt{t}$///, "-vector of a ", TT "t", "-spread ideal of ", TT "S", " if the following conditions hold:",BR{},
TEX///$f(0)\leq 1,\ f(1)\leq n \text{ and } f(d+1)\leq \texttt{tMacaulayExpansion(f(d),n,d,t,Shift=>true)}$///, " for all ", TEX///$d>1.$///, BR{},
"Let ", TT "I", " be a ", TT "t", "-spread ideal of the polynomial ring ", TEX///$S=K[x_1,\ldots,x_n]$///, " One can define the ", TEX///$f_\texttt{t}$///, "-vector of ", TT "I", " as ", TEX///$f_\texttt{t}(\texttt{I})=\left( f_{\texttt{t},-1}(\texttt{I}), f_{\texttt{t},0}(\texttt{I}), \ldots, f_{\texttt{t},j}(\texttt{I}), \ldots \right),$///, BR{},
"where ", TEX///$f_{\texttt{t},j-1}(\texttt{I})=|[S_j]_t|-|[I_j]_t|$///, " and ", TEX///$[I_j]_t$///, " is the ", TT "t", "-spread part of the ", TEX///$j$///, "-th graded component of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_8]
f={1,8,20,10,0}
isFTVector(S,f,2)
S=QQ[x_1..x_7]
isFTVector(S,f,2)
///,
SeeAlso =>{fTVector, tMacaulayExpansion, solveBinomialExpansion}
}
document {
Key => {tLexIdeal,(tLexIdeal,Ring,List,ZZ),(tLexIdeal,Ideal,ZZ)},
Headline => "returns the t-spread lex ideal with a given ft-vector or with the same ft-vector of a given t-strongly stable ideal",
Usage => "tLexIdeal(S,f,t) or tLexIdeal(I,t)",
Inputs => {"S" => {"a polynomial ring"},
"f" => {"a sequence of nonnegative integers"},
"I" => {"a t-strongly stable ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Ideal => {"the t-spread lex ideal with ft-vector ", TT "f", " or the t-spread lex ideal with the same ft-vector of ", TT "I"}},
"It has been proved that if ", TT "I", " is a ", TT "t", "-strongly stable ideal then a unique ", TT "t", "-lex ideal with the same ", TEX///$f_\texttt{t}$///, "-vector of ", TT "I", " exists.", BR{},
"Let ", TEX///$\texttt{S}=K[x_1,\ldots,x_n]$///, ", ", TEX///$\texttt{t}\geq 1$///,". The method ", TT"tLexIdeal(S,f,t)", " gives the ", TT "t", "-lex ideal of ", TT "S", " with ", TT "f", " as ", TEX///$f_\texttt{t}$///, "-vector, if exists. The overloading method ", TT"tLexIdeal(I,t)", " gives the ", TT "t", "-lex ideal with the same ", TEX///$f_\texttt{t}$///, "-vector of the ", TT "t", "-strongly stable ideal ", TT "I", ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_8]
f={1,8,2,0,0}
I=tLexIdeal(S,f,2)
fTVector(I,2)==f
isTLexIdeal(I,2)
J=tStronglyStableIdeal(ideal {x_1*x_4*x_6},2)
K=tLexIdeal(J,2)
fTVector(J,2)==fTVector(K,2)
///,
SeeAlso =>{isTLexIdeal, fTVector, isFTVector, isTStronglyStableIdeal}
}
document {
Key => {isTLexIdeal,(isTLexIdeal,Ideal,ZZ)},
Headline => "whether a given t-spread ideal is t-spread lex",
Usage => "isTLexIdeal(I,t)",
Inputs => {"I" => {"a t-spread ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Boolean => {"whether the ideal ", TT "I", " is t-spread lex"}},
"Let ", TEX///$\texttt{S}=K[x_1,\ldots,x_n]$///, ", ", TEX///$\texttt{t}\geq 1$///, " and a ", TT "t", "-spread ideal ", TT "I", ". Then ", TT "I", " is called a ", TT "t", "-lex ideal, if ", TEX///$[I_j]_t$///, " is a ", TT "t", "-spread lex set for all ", TEX///$j$///, ".",BR{},
"We recall that ", TEX///$[I_j]_t$///, " is the ", TT "t", "-spread part of the ", TEX///$j$///, "-th graded component of ", TT "I", ". Moreover, a subset ", TEX///$L\subset M_{n,d,t}$///, " is called a ", TT "t", "-lex set if for all ", TEX///$u\in L$///, " and for all ", TEX///$v\in M_{n,d,t}$///, " with ", TEX///$v>_\mathrm{slex} u$///, ", it follows that ", TEX///$u\in L$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_6]
isTLexIdeal(ideal {x_1*x_3,x_1*x_5},2)
isTLexIdeal(ideal {x_1*x_3,x_1*x_4,x_1*x_5,x_1*x_6,x_2*x_4,x_2*x_5},2)
///,
SeeAlso =>{tLexIdeal},
}
document {
Key => {tStronglyStableSeg,(tStronglyStableSeg,RingElement,RingElement,ZZ)},
Headline => "give the t-strongly stable segment with the given extremes",
Usage => "tStronglyStableSeg(v,u,t)",
Inputs => {"v" => {"a t-spread monomial of a polynomial ring"},
"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the set of all the ", TT "t", "-spread monomials of the t-stromgly stable set generated by ", TT "u", " and smaller than ", TT "u", ", with respect to lexcografic order"}},
"the function ", TT "tStronglyStableSeg(v,u,t)", " gives the set of ", TT "t" , "-spread monomials belonging to the strongly stable set generated by ", TT "u", " and smaller than ", TT "v", ", that is, ", TEX///$B_t[v,u]=\{w\in B_t\{u\}\ :\ v\geq_\mathrm{slex} w\}.$///,BR{},
"We recall that if ", TEX///$u\in M_{n,d,t}\subset S=K[x_1,\ldots,x_n]$///, " then ", TEX///$B_t\{u\}$///, " is the smallest ",TT "t", "-strongly stable set of monomials of ", TEX///$M_{n,d,t}$///, " containing ", TEX///$u.$///, BR{},
"Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_14]
tStronglyStableSeg(x_2*x_5*x_9*x_12,x_2*x_6*x_10*x_13,2)
tStronglyStableSeg(x_2*x_5*x_9*x_12,x_2*x_6*x_10*x_13,3)
///,
SeeAlso =>{isTStronglyStableSeg, tStronglyStableMon},
}
document {
Key => {isTStronglyStableSeg,(isTStronglyStableSeg,List,ZZ)},
Headline => "whether the given list of t-spread monomials is a t-strongly stable segment",
Usage => "isTStronglyStableSeg(l,t)",
Inputs => {"l" => {"a list of t-spread monomials of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Boolean => {"whether the list ", TT "l", " of ", TT "t", "-spread monomials is a ", TT "t", "-strongly stable segment"}},
"the function ", TT "isTStronglyStableSeg(l,t)", " is ", TT "true", " whether the list of monomials ", TT "l" , " is a ", TT "t", "-strongly stable segment, that is, the set of all the ", TT "t" , "-spread monomials belonging to the strongly stable set generated by the smallest monomial of ", TT "l", " and smaller than the greatest monomial of ", TT "l", ", with respect to ", TEX///$>_\mathrm{slex}.$///,BR{},
"In other words, whether ", TEX///$l=B_t[\max l,\min l]=\{w\in B_t\{\min l\}\ :\ \max l\geq_\mathrm{slex} w\}.$///,BR{},
"We recall that if ", TEX///$u\in M_{n,d,t}\subset S=K[x_1,\ldots,x_n]$///, " then ", TEX///$B_t\{u\}$///, " is the smallest ",TT "t", "-strongly stable set of monomials of ", TEX///$M_{n,d,t}$///, " containing ", TEX///$u.$///, BR{},
"Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
isTStronglyStableSeg({x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8},3)
isTStronglyStableSeg({x_1*x_4*x_7,x_1*x_4*x_8,x_2*x_5*x_8},3)
///,
SeeAlso =>{tStronglyStableSeg, tStronglyStableMon},
}
document {
Key => {tStronglyStableMon,(tStronglyStableMon,RingElement,ZZ)},
Headline => "give the t-strongly stable set generated by a given monomial",
Usage => "tStronglyStableMon(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the list of all the ", TT "t", "-spread monomials of the ", TT "t", "-strongly stable set generated by ", TT "u"}},
"the function ", TT "tStronglyStableMon(u,t)", " gives the list of all the monomials belonging to the ", TT "t" , "-strongly stable set generated by ", TT "u", ", that is, ", TEX///$B_t\{u\}.$///,BR{},
"We recall that if ", TEX///$u\in M_{n,d,t}\subset S=K[x_1,\ldots,x_n]$///, " then ", TEX///$B_t\{u\}$///, " is the smallest ",TT "t", "-strongly stable set of monomials of ", TEX///$M_{n,d,t}$///, " containing ", TEX///$u.$///, BR{},
"Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
tStronglyStableMon(x_2*x_5*x_8,2)
tStronglyStableMon(x_2*x_5*x_8,3)
///,
SeeAlso =>{isTStronglyStableSeg, tStronglyStableMon},
}
document {
Key => {countTStronglyStableMon,(countTStronglyStableMon,RingElement,ZZ)},
Headline => "give the cardinality of the t-strongly stable set generated by a given monomial",
Usage => "countTStronglyStableMon(u,t)",
Inputs => {"u" => {"a t-spread monomial of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {ZZ => {"the number of all the ", TT "t", "-spread monomials of the ", TT "t", "-strongly stable set generated by ", TT "u"}},
"the function ", TT "countTStronglyStableMon(u,t)", " gives the cardinality of ", TEX///$B_t\{u\}$///, ", the ", TT "t" , "-strongly stable set generated by ", TT "u", ", that is, the number of all the ", TT "t" , "-spread monomials belonging to the smallest ", TT "t", "-strongly stable set containing ", TT "u",BR{},
"This method is not constructive. It uses a theoretical result to obtain the cardinality as the sum of suitable binomial coefficients. The procedure only concerns ", TEX///$\textrm{supp}(\texttt{u}),$///, " that is, the set ", TEX///$\{i_1,i_2,\ldots, i_d\}$///, ", when ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///, " is a ", TEX///$t$///, "-spread monomial.", BR{},
"Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
countTStronglyStableMon(x_2*x_5*x_8,2)
countTStronglyStableMon(x_2*x_5*x_8,3)
///,
SeeAlso =>{tStronglyStableMon},
}
document {
Key => {tStronglyStableIdeal,(tStronglyStableIdeal,Ideal,ZZ)},
Headline => "give the smallest t-strongly stable ideal containing a given t-spread ideal",
Usage => "tStronglyStableIdeal(I,t)",
Inputs => {"I" => {"a t-spread ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the smallest ", TT "t", "-strongly stable ideal containing the ", TT "t", "-spread ideal ", TT "I"}},
"the function ", TT "tStronglyStableIdeal(I,t)", " gives the smallest ", TT "t" , "-strongly stable ideal containing ", TT "I", ", that is, ", TEX///$B_t(G(I))$///, " where ", TEX///$G(I)$///, " is the minimal set of generators of ", TEX///$I$///, BR{},
"We recall that if ", TEX///$u\in M_{n,d,t}\subset S=K[x_1,\ldots,x_n]$///, " then ", TEX///$B_t(u)$///, " is the smallest ",TT "t", "-strongly stable ideal of ", TEX///$S$///, " containing ", TEX///$u.$///, BR{},
"Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".", BR{},
"A ", TT "t", "-spread monomial ideal ", TT "I", " is ", TT "t", "-strongly stable if ", TEX///$[I_j]_t$///, " is a ", TT "t", "-strongly stable set for all ", TEX///$j$///, ", where ", TEX///$[I_j]_t$///, " is the ", TT "t", "-spread part of the ", TEX///$j$///, "-th graded component of ", TT "I", ".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_9]
tStronglyStableIdeal(ideal {x_2*x_5*x_8},2)
tStronglyStableIdeal(ideal {x_2*x_5*x_8},3)
///,
SeeAlso =>{isTStronglyStableSeg, tStronglyStableMon},
}
document {
Key => {isTStronglyStableIdeal,(isTStronglyStableIdeal,Ideal,ZZ)},
Headline => "whether a given t-spread ideal is t-strongly stable",
Usage => "isTStronglyStableIdeal(I,t)",
Inputs => {"I" => {"a t-spread ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {Boolean => {"whether the ideal ", TT "I", " is t-spread lex"}},
"Let ", TEX///$\texttt{S}=K[x_1,\ldots,x_n]$///, ", ", TEX///$\texttt{t}\geq 1$///, " and a ", TT "t", "-spread ideal ", TT "I", ". Then ", TT "I", " is called a ", TT "t", "-strongly stable ideal, if ", TEX///$[I_j]_t$///, " is a ", TT "t", "-strongly stable set for all ", TEX///$j$///, ".",BR{},
"We recall that ", TEX///$[I_j]_t$///, " is the ", TT "t", "-spread part of the ", TEX///$j$///, "-th graded component of ", TT "I", "Moreover, a subset ", TEX///$N\subset M_{n,d,t}$///, " is called a ", TT "t", "-strongly stable set if taking a ", TT "t", "-spread monomial ",TEX///$u\in N$///, ", for all ", TEX///$j\in \mathrm{supp}(u)$///, " and all ", TEX///$i,\ 1\leq i\leq j$///, ", such that ", TEX///$x_i(u/x_j)$///," is a ", TT"t", "-spread monomial, then it follows that ", TEX///$x_i(u/x_j)\in N$///,".",
PARA {"Examples:"},
EXAMPLE lines ///
S=QQ[x_1..x_6]
isTStronglyStableIdeal(ideal {x_1*x_3,x_1*x_5},2)
isTStronglyStableIdeal(ideal {x_1*x_3,x_1*x_4,x_1*x_5,x_2*x_4,x_2*x_5},2)
///,
SeeAlso =>{tStronglyStableIdeal},
}
document {
Key => {tExtremalBettiCorners,(tExtremalBettiCorners,Ideal,ZZ)},
Headline => "give the corners of the extremal Betti numbers of a given t-strongly stable ideal",
Usage => "tExtremalBettiCorners(I,t)",
Inputs => {"I" => {"a t-strongly stable graded ideal of a polynomial ring"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the corners of the extremal Betti numbers of the ideal ", TT "I"}},
"let ", TEX///$S=K[x_1,\ldots,x_n]$///, " be a polynomial ring over a field ", TEX///$K$///," and let ", TT "I", " a graded ideal of ", TEX///$S$///,". A graded Betti number of the ideal ", TEX///$\beta_{k,k+\ell}(I)\ne 0$///, " is called extremal if ", TEX///$\beta_{i,i+j}(I)=0$///, " for all ", TEX///$i\ge k,j\ge\ell,(i,j)\ne(k,\ell).$///,BR{},
"Let ", TEX///$\beta_{k,k+\ell}(I)$///, " be an extremal Betti number of ", TT "I", ", the pair ", TEX///$(k,\ell)$///, " is called a corner of ", TT "I", ". If ", TEX///$(k_1,\ell_1),\dots,(k_r,\ell_r)$///, ", with ", TEX///$n-1\ge k_1>k_2>\dots>k_r\ge1 \text{ and } 1\le \ell_1<\ell_2<\dots<\ell_r$///, ", are all the corners of a graded ideal ", TT"I", " of ", TEX///$S$///, ", the set ", TEX///$\mathrm{Corn}(I)=\Big\{(k_1,\ell_1),(k_2,\ell_2),\dots,(k_r,\ell_r)\Big\}$///, " is called the corner sequence of ", TT"I", ".",BR{},
"We recall that ", TT "I", " has a minimal graded free ", TEX///$S$///," resolution:", TEX///$ F_{\scriptscriptstyle\bullet}:0\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{r,j}}\rightarrow \cdots\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{1,j}}\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{0,j}}\rightarrow I\rightarrow 0.$///,BR{},
"The integer ", TEX///$\beta_{i,j}$///, " is a graded Betti number of ", TT "I", " and it represents the dimension as a ", TEX///$K$///, "-vector space of the ", TEX///$j$///, "-th graded component of the ", TEX///$i$///, "-th free module of the resolution. Each of the numbers ", TEX///$\beta_i=\sum_{j\in\mathbb{Z}}\beta_{i,j}$///, " is called the ", TEX///$i$///, "-th Betti number of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_10]
I=ideal(x_1*x_3,x_1*x_4,x_1*x_5,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7*x_9,x_3*x_5*x_7*x_9)
tExtremalBettiCorners(I,2)
minimalBettiNumbersIdeal I
///
}
document {
Key => {tExtremalBettiMonomials,(tExtremalBettiMonomials,Ring,List,List,ZZ)},
Headline => "give the list of the t-spread basic monomials related to the given extremal Betti numbers configuration",
Usage => "tExtremalBettiMonomials(S,corners,a,t)",
Inputs => {"S" => {"a polynomial ring"},
"corners" => {"a list of pairs of positive integers"},
"a" => {"a list of positive integers"},
"t" => {"a positive integer that idenfies the t-spread contest"}
},
Outputs => {List => {"the t-spread basic monomials to obtain the extremal Betti numbers positioned in ", TT "cornes", " and with values ", TT "a"}},
"let ", TEX///$S=K[x_1,\ldots,x_n]$///, " be a polynomial ring over a field ", TEX///$K$///," and let ", TT "I", " a graded ideal of ", TEX///$S$///,". A graded Betti number of the ideal ", TEX///$\beta_{k,k+\ell}(I)\ne 0$///, " is called extremal if ", TEX///$\beta_{i,i+j}(I)=0$///, " for all ", TEX///$i\ge k,j\ge\ell,(i,j)\ne(k,\ell).$///,BR{},
"The basic monomials related to an extremal Betti number configuration (values as well as positions) are defined by the following characterization. Let ", TEX///$I$///, " be a ", TEX///$t$///, "-spread strongly stable ideal of ", TT "S", " and let ", TEX///$\beta_{k,k+\ell}(I)$///, " be an extremal Betti number of ", TEX///$I$///, ". Then ", TEX///$\beta_{k,k+\ell}(I)=\Big|\Big\{ u\in G(I)_\ell:\max(u)=k+t(\ell-1)+1 \Big\}\Big|.$///, BR{},
"Let ", TEX///$\beta_{k,k+\ell}(I)$///, " be an extremal Betti number of ", TT "I", ", the pair ", TEX///$(k,\ell)$///, " is called a corner of ", TT "I", ". If ", TEX///$(k_1,\ell_1),\dots,(k_r,\ell_r)$///, ", with ", TEX///$n-1\ge k_1>k_2>\dots>k_r\ge1 \text{ and } 1\le \ell_1<\ell_2<\dots<\ell_r$///, ", are all the corners of a graded ideal ", TT"I", " of ", TEX///$S$///, ", the set ", TEX///$\mathrm{Corn}(I)=\Big\{(k_1,\ell_1),(k_2,\ell_2),\dots,(k_r,\ell_r)\Big\}$///, " is called the corner sequence of ", TT"I", ".",BR{},
"We recall that ", TT "I", " has a minimal graded free ", TEX///$S$///," resolution:", TEX///$ F_{\scriptscriptstyle\bullet}:0\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{r,j}}\rightarrow \cdots\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{1,j}}\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{0,j}}\rightarrow I\rightarrow 0.$///,BR{},
"The integer ", TEX///$\beta_{i,j}$///, " is a graded Betti number of ", TT "I", " and it represents the dimension as a ", TEX///$K$///, "-vector space of the ", TEX///$j$///, "-th graded component of the ", TEX///$i$///, "-th free module of the resolution. Each of the numbers ", TEX///$\beta_i=\sum_{j\in\mathbb{Z}}\beta_{i,j}$///, " is called the ", TEX///$i$///, "-th Betti number of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_12]
corners={{4,2},{3,4},{2,5}}
a={1,2,1}
l=tExtremalBettiMonomials(S,corners,a,2)
I=tStronglyStableIdeal(ideal l,2)
minimalBettiNumbersIdeal I
///
}
document {
Key => {solveBinomialExpansion,(solveBinomialExpansion,List)},
Headline => "compute the sum of a binomial expansion",
Usage => "solveBinomialExpansion l",
Inputs => {"l" => {"a list of pairs of integers representing a binomial expansion"}
},
Outputs => {ZZ => {"the sum of binomials in the list", TT "l"}},
"Given a list of pairs ", TEX///$\{\{a_1,b_1\}, ... ,\{a_k,b_k\}\}$///, " this method yields the sum of binomials ", TEX///$\binom{a_1,b_1} + \cdots + \binom{a_k,b_k}.$///,
PARA {"Example:"},
EXAMPLE lines ///
solveBinomialExpansion({{4,2},{3,1}})
solveBinomialExpansion tMacaulayExpansion(50,12,2,1)
///,
SeeAlso =>{tMacaulayExpansion}
}
document {
Key => {initialDegree,(initialDegree,Ideal)},
Headline => "return the initial degree of a given graded ideal",
Usage => "initialDegree I",
Inputs => {"I" => {"a graded ideal of a polynomial ring"}
},
Outputs => {ZZ => {"the initial degree of the ideal ", TT "I"}},
"The initial degree of a graded ideal ", TT "I", " is the least degree of a homogeneous generator of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_4]
initialDegree ideal {x_1*x_2,x_2*x_3*x_4}
initialDegree ideal {x_1*x_3*x_4}
///
}
document {
Key => {initialIdeal,(initialIdeal,Ideal)},
Headline => "return the initial ideal of a given ideal",
Usage => "initialIdeal I",
Inputs => {"I" => {"a graded ideal of a polynomial ring"}
},
Outputs => {Ideal => {"the initial ideal of the ideal ", TT "I", " with default monomial order"}},
"let ", TEX///$S=K[x_1,\ldots,x_n]$///, " be a polynomial ring over a field ", TEX///$K$///, ". Let > be a monomial order on ", TEX///$S$///, ". The largest monomial of a polynomial ", TEX///$f\in S$///, " is called the initial monomial of ", TEX///$f$///, " and it is denoted by ", TEX///$\mathrm{In}(f).$///,BR{},
"If ", TT "I", " is a graded ideal of ", TEX///$S$///, " then the initial ideal of ", TT "I", ", denoted by ", TEX///$\mathrm{In}(I)$///, ", is the ideal of ", TEX///$S$///, " generated by the initial terms of elements of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_5]
I=ideal {x_1*x_2+x_3*x_4*x_5,x_1*x_3+x_4*x_5,x_2*x_3*x_4}
initialIdeal I
///
}
document {
Key => {minimalBettiNumbers,(minimalBettiNumbers,Ideal)},
Headline => "return the minimal Betti numbers of the quotient ring corresponding to a given graded ideal",
Usage => "minimalBettiNumbers I",
Inputs => {"I" => {"a graded ideal of a polynomial ring"}
},
Outputs => {BettiTally => {"the Betti table of the quotient ", TT "S/I", " computed using its minimal generators"}},
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_4]
I=ideal(x_1*x_2,x_1*x_3,x_2*x_3)
J=ideal(join(flatten entries gens I,{x_1*x_2*x_3}))
I==J
betti I==betti J
minimalBettiNumbers I==minimalBettiNumbers J
///
}
document {
Key => {minimalBettiNumbersIdeal,(minimalBettiNumbersIdeal,Ideal)},
Headline => "return the minimal Betti numbers of a given graded ideal",
Usage => "minimalBettiNumbersIdeal I",
Inputs => {"I" => {"a graded ideal of a polynomial ring"}
},
Outputs => {BettiTally => {"the Betti table of the ideal ", TT "I", " computed using its minimal generators"}},
"let ", TEX///$S=K[x_1,\ldots,x_n]$///, " be a polynomial ring over a field ", TEX///$K$///," and let ", TT "I", " a graded ideal of ", TEX///$S$///,". Then ", TT "I", " has a minimal graded free ", TEX///$S$///," resolution:", TEX///$ F_{\scriptscriptstyle\bullet}:0\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{r,j}}\rightarrow \cdots\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{1,j}}\rightarrow \bigoplus_{j\in\mathbb{Z}}S(-j)^{\beta_{0,j}}\rightarrow I\rightarrow 0.$///,BR{},
"The integer ", TEX///$\beta_{i,j}$///, " is a graded Betti number of ", TT "I", " and it represents the dimension as a ", TEX///$K$///, "-vector space of the ", TEX///$j$///, "-th graded component of the ", TEX///$i$///, "-th free module of the resolution. Each of the numbers ", TEX///$\beta_i=\sum_{j\in\mathbb{Z}}\beta_{i,j}$///, " is called the ", TEX///$i$///, "-th Betti number of ", TT "I", ".",
PARA {"Example:"},
EXAMPLE lines ///
S=QQ[x_1..x_4]
I=ideal(x_1*x_2,x_1*x_3,x_2*x_3)
J=ideal(join(flatten entries gens I,{x_1*x_2*x_3}))
I==J
betti I==betti J
minimalBettiNumbersIdeal I==minimalBettiNumbersIdeal J
///
}
------------------------------------------------------------
-- DOCUMENTATION FOR OPTIONS
------------------------------------------------------------
----------------------------------
-- Shift (for tMacaulayExpansion)
----------------------------------
document {
Key => {Shift,[tMacaulayExpansion,Shift]},
Headline => "optional boolean argument for tMacaulayExpansion",
"whether it is true the function tMacaulayExpansion gives the ", TEX///$i$///, "-th shifted Macaulay expansion of ", TEX///$a$///, ". Given four positive integers ", TEX///$(a,n,d,t)$///, " the ", TEX///$d$///,"-th shifted t-Macaulay expansion is a sum of binomials: ", TEX///$\binom{a_d}{d+1} + \binom{a_{d-1}}{d} + \cdots + \binom{a_j}{j+1}.$///,
SeeAlso =>{tMacaulayExpansion}
}
----------------------------------
-- FixedMax (for tNextMon and countTLexMon)
----------------------------------
document {
Key => {FixedMax,[tNextMon,FixedMax],[countTLexMon,FixedMax]},
Headline => "optional boolean argument for tNextMon",
"whether it is ", TT "true", " the function ", TT "tNextMon(u,t,FixedMax=>true)", " gives the ", TT "t" , "-lex successor for which the maximum of the support is ", TEX///$\max\textrm{supp}(\texttt{u})$///, ". Given a ", TEX///$t$///, "-spread monomial ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///,", we define ", TEX///$\textrm{supp}(u)=\{i_1,i_2,\ldots, i_d\}$///, ".",
SeeAlso =>{tNextMon, countTLexMon}
}
----------------------------------
-- MaxInd (for tLastMon and countTLexMon)
----------------------------------
document {
Key => {MaxInd,[tLastMon,MaxInd]},
Headline => "optional integer argument for tLastMon",
"whether it is greater than -1 the function ", TT "tLastMon(u,t,MaxInd=>m)", " gives the smallest ", TT "t", "-spread monomial for which the maximum of the support is ", TEX///$\max\textrm{supp}(\texttt{u})$///, " of the Borel shadow of ", TEX///$B_\texttt{t}\{\texttt{u}\}$///, ". Given a ", TEX///$t$///, "-spread monomial ", TEX///$u=x_{i_1}x_{i_2}\cdots x_{i_d}$///,", we define ", TEX///$\textrm{supp}(u)=\{i_1,i_2,\ldots, i_d\}$///, ".",
SeeAlso =>{tLastMon, tShadow}
}
------------------------------------------------------------
-- TESTS
------------------------------------------------------------
----------------------------
-- Test 0 tNextMon
----------------------------
TEST ///
S=QQ[x_1..x_16]
assert(tNextMon(x_2*x_6*x_10*x_13,3)==x_2*x_6*x_10*x_14)
assert(tNextMon(x_2*x_6*x_10*x_13,3,FixedMax=>true)==x_2*x_7*x_10*x_13)
///
----------------------------
-- Test 1 tLastMon
----------------------------
TEST ///
S=QQ[x_1..x_16]
assert(tLastMon(x_2*x_6*x_10*x_13,1,3)==x_2*x_6*x_10*x_13*x_16)
assert(tLastMon(x_2*x_6*x_10*x_13,1,3,MaxInd=>14)==x_2*x_5*x_8*x_11*x_14)
///
----------------------------
-- Test 2 tLexSeg
----------------------------
TEST ///
S=QQ[x_1..x_14]
assert(tLexSeg(x_2*x_5*x_10*x_13,x_2*x_6*x_9*x_12,3)=={x_2*x_5*x_10*x_13,x_2*x_5*x_10*x_14,x_2*x_5*x_11*x_14,x_2*x_6*x_9*x_12})
///
----------------------------
-- Test 3 isTLexSeg
----------------------------
TEST ///
S=QQ[x_1..x_7]
assert(isTLexSeg({x_1*x_4*x_7,x_1*x_5*x_7,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7},2))
assert(not isTLexSeg({x_1*x_4*x_7,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7},2))
///
----------------------------
-- Test 4 tLexMon
----------------------------
TEST ///
S=QQ[x_1..x_9]
assert(tLexMon(x_2*x_5*x_8,3)=={x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_4*x_9,x_1*x_5*x_8,x_1*x_5*x_9,x_1*x_6*x_9,x_2*x_5*x_8})
///
----------------------------
-- Test 5 countTLexMon
----------------------------
TEST ///
S=QQ[x_1..x_11]
assert(countTLexMon(x_2*x_6*x_10,2)==42)
assert(countTLexMon(x_2*x_6*x_10,3)==21)
///
----------------------------
-- Test 6 tVeroneseSet
----------------------------
TEST ///
S=QQ[x_1..x_8]
assert(tVeroneseSet(S,3,3)=={x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8})
///
----------------------------
-- Test 7 tVeroneseIdeal
----------------------------
TEST ///
S=QQ[x_1..x_8]
assert(tVeroneseIdeal(S,3,3)==ideal {x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8})
assert(tVeroneseIdeal(S,3,4)==ideal {0_S})
///
----------------------------
-- Test 8 tPascalIdeal
----------------------------
TEST ///
S=QQ[x_1..x_10]
assert(tPascalIdeal(S,3)==ideal {x_1*x_4*x_7*x_10,x_2*x_5*x_8,x_3*x_6*x_9})
assert(tPascalIdeal(S,4)==ideal {x_1*x_5*x_9,x_2*x_6*x_10,x_3*x_7,x_4*x_8})
///
----------------------------
-- Test 9 tSpreadList
----------------------------
TEST ///
S=QQ[x_1..x_14]
l={x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
assert(tSpreadList(l,4)== {x_1*x_5*x_9*x_13})
assert(tSpreadList(l,5)== {})
///
----------------------------
-- Test 10 tSpreadIdeal
----------------------------
TEST ///
S=QQ[x_1..x_14]
I=ideal {x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
assert(tSpreadIdeal(I,3)== I)
assert(tSpreadIdeal(I,4)== ideal {x_1*x_5*x_9*x_13})
///
----------------------------
-- Test 11 isTSpread
----------------------------
TEST ///
S=QQ[x_1..x_14]
l={x_3*x_7*x_10*x_14, x_1*x_5*x_9*x_13}
assert(isTSpread(l#0,3))
assert(isTSpread(l,3))
assert(isTSpread(ideal l,3))
assert(not isTSpread(ideal l,4))
///
----------------------------
-- Test 12 tShadow
----------------------------
TEST ///
S=QQ[x_1..x_14]
u=x_2*x_6*x_10
assert(tShadow(u,3)=={x_2*x_6*x_10*x_13, x_2*x_6*x_10*x_14})
assert(tShadow(u,4)=={x_2*x_6*x_10*x_14})
l={x_3*x_6*x_10, x_1*x_5*x_9}
assert(tShadow(l,3)=={x_1*x_5*x_9*x_12,x_1*x_5*x_9*x_13,x_1*x_5*x_9*x_14,x_3*x_6*x_10*x_13, x_3*x_6*x_10*x_14})
assert(tShadow(l,4)=={x_1*x_5*x_9*x_13,x_1*x_5*x_9*x_14})
///
----------------------------
-- Test 13 tMacaulayExpansion
----------------------------
TEST ///
assert(tMacaulayExpansion(50,12,2,1)=={{10,2},{5,1}})
assert(tMacaulayExpansion(50,12,2,1,Shift=>true)=={{10,3},{5,2}})
assert(tMacaulayExpansion(50,12,2,2,Shift=>true)=={{9,3},{4,2}})
///
----------------------------
-- Test 14 fTVector
----------------------------
TEST ///
S=QQ[x_1..x_8]
assert(fTVector(ideal {x_1*x_3,x_2*x_5*x_7},1)=={1,8,27,49,50,27,6,0,0})
assert(fTVector(ideal {x_1*x_3,x_2*x_5*x_7},2)=={1,8,20,15,2})
///
----------------------------
-- Test 15 isFTVector
----------------------------
TEST ///
S=QQ[x_1..x_8]
f={1,8,20,10,0}
assert(isFTVector(S,f,2)==true)
S=QQ[x_1..x_7]
assert(isFTVector(S,f,2)==false)
///
----------------------------
-- Test 16 tLexIdeal
----------------------------
TEST ///
S=QQ[x_1..x_8]
f={1,8,2,0,0}
I=tLexIdeal(S,f,2)
assert(fTVector(I,2)==f)
assert(isTLexIdeal(I,2)==true)
J=tStronglyStableIdeal(ideal {x_1*x_4*x_6},2)
K=tLexIdeal(J,2)
assert(fTVector(J,2)==fTVector(K,2))
///
----------------------------
-- Test 17 isTLexIdeal
----------------------------
TEST ///
S=QQ[x_1..x_6]
assert(not isTLexIdeal(ideal {x_1*x_3,x_1*x_5},2))
assert(isTLexIdeal(ideal {x_1*x_3,x_1*x_4,x_1*x_5,x_1*x_6,x_2*x_4,x_2*x_5},2))
///
----------------------------
-- Test 18 tStronglyStableSeg
----------------------------
TEST ///
S=QQ[x_1..x_14]
assert(#tStronglyStableSeg(x_2*x_5*x_9*x_12,x_2*x_6*x_10*x_13,2)==13)
assert(tStronglyStableSeg(x_2*x_5*x_9*x_12,x_2*x_6*x_10*x_13,3)=={x_2*x_5*x_9*x_12,x_2*x_5*x_9*x_13,x_2*x_5*x_10*x_13,x_2*x_6*x_9*x_12,x_2*x_6*x_9*x_13,x_2*x_6*x_10*x_13})
///
----------------------------
-- Test 19 isTStronglyStableSeg
----------------------------
TEST ///
S=QQ[x_1..x_9]
assert(isTStronglyStableSeg({x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8},3))
assert(not isTStronglyStableSeg({x_1*x_4*x_7,x_1*x_4*x_8,x_2*x_5*x_8},3))
///
----------------------------
-- Test 20 tStronglyStableMon
----------------------------
TEST ///
S=QQ[x_1..x_9]
assert(#tStronglyStableMon(x_2*x_5*x_8,2)==14)
assert(tStronglyStableMon(x_2*x_5*x_8,3)=={x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8})
///
----------------------------
-- Test 21 countTStronglyStableMon
----------------------------
TEST ///
S=QQ[x_1..x_9]
assert(countTStronglyStableMon(x_2*x_5*x_8,2)==14)
assert(countTStronglyStableMon(x_2*x_5*x_8,3)==4)
///
----------------------------
-- Test 22 tStronglyStableIdeal
----------------------------
TEST ///
S=QQ[x_1..x_9]
assert(numgens tStronglyStableIdeal(ideal {x_2*x_5*x_8},2)==14)
assert(tStronglyStableIdeal(ideal {x_2*x_5*x_8},3)==ideal {x_1*x_4*x_7,x_1*x_4*x_8,x_1*x_5*x_8,x_2*x_5*x_8})
///
----------------------------
-- Test 23 isTStronglyStableIdeal
----------------------------
TEST ///
S=QQ[x_1..x_6]
assert(not isTStronglyStableIdeal(ideal {x_1*x_3,x_1*x_5},2))
assert(isTStronglyStableIdeal(ideal {x_1*x_3,x_1*x_4,x_1*x_5,x_2*x_4,x_2*x_5},2))
///
----------------------------
-- Test 24 tExtremalBettiCorners
----------------------------
TEST ///
S=QQ[x_1..x_10]
I=ideal(x_1*x_3,x_1*x_4,x_1*x_5,x_2*x_4*x_6,x_2*x_4*x_7,x_2*x_5*x_7*x_9,x_3*x_5*x_7*x_9)
assert(tExtremalBettiCorners(I,2)=={(2,4)})
J=tStronglyStableIdeal(I,1)
assert(tExtremalBettiCorners(J,1)=={(5,4)})
///
----------------------------
-- Test 25 tExtremalBettiMonomials
----------------------------
TEST ///
S=QQ[x_1..x_12]
corners={{4,2},{3,4},{2,5}}
a={1,2,1}
assert(tExtremalBettiMonomials(S,corners,a,2)=={x_1*x_7,x_2*x_4*x_6*x_10,x_2*x_4*x_7*x_10,x_2*x_5*x_7*x_9*x_11})
///
----------------------------
-- Test 26 solveBinomialExpansion
----------------------------
TEST ///
assert(solveBinomialExpansion({{5,5},{3,4},{2,3},{1,2}})==1)
assert(solveBinomialExpansion({{6,6},{5,5},{4,4},{3,3},{2,2}})==5)
assert(solveBinomialExpansion tMacaulayExpansion(50,12,2,1)==50)
///
----------------------------
-- Test 27 initialDegree
----------------------------
TEST ///
S=QQ[x_1..x_4]
assert(initialDegree ideal {x_1*x_2,x_1*x_2*x_3}==2)
assert(initialDegree ideal {x_1*x_2*x_3}==3)
///
----------------------------
-- Test 28 initialIdeal
----------------------------
TEST ///
S=QQ[x_1..x_5]
I=ideal {x_1*x_2+x_3*x_4*x_5,x_1*x_3+x_4*x_5}
J=ideal {x_1*x_3,x_3*x_4*x_5,x_4^2*x_5^2}
assert(initialIdeal I==J)
///
----------------------------
-- Test 29 minimalBettiNumbers
----------------------------
TEST ///
S=QQ[x_1..x_4]
I=ideal {x_1*x_2,x_1*x_3,x_2*x_3}
J=ideal(join(flatten entries gens I,{x_1*x_2*x_3}))
assert(I==J)
assert(minimalBettiNumbers I==minimalBettiNumbers J)
///
----------------------------
-- Test 30 minimalBettiNumbersIdeal
----------------------------
TEST ///
S=QQ[x_1..x_4]
I=ideal {x_1*x_2,x_1*x_3,x_2*x_3}
J=ideal(join(flatten entries gens I,{x_1*x_2*x_3}))
assert(I==J)
assert(minimalBettiNumbersIdeal I==minimalBettiNumbersIdeal J)
///
end
restart
installPackage ("TSpreadIdeals", UserMode=>true, RerunExamples=>true)
loadPackage "TSpreadIdeals"
viewHelp
|