1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
|
-- -*- coding: utf-8 -*-
--------------------------------------------------------------------------------
-- Copyright 2011 David Eisenbud, Daniel Erman, Gregory G. Smith and Dumitru Stamate
--
-- This program is free software: you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free Software
-- Foundation, either version 3 of the License, or (at your option) any later
-- version.
--
-- This program is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-- FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
-- details.
--
-- You should have received a copy of the GNU General Public License along with
-- this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------
-*Not needed now, but would be nice:
kk as an optional second argument
handling of rings (out put of pairs, so that ring name can be set)
facility for making tensors
exterior multiplication and contraction
Schur Functors
functoriality
a code bettiTC that would tell you the Betti table of a tensor complex w/o computing the resolution
links to arXiv papers in the documentation
cleaning up tensorComplex1. for instance, the balanced case should call the
non-balanced case, and compute w internally.
*-
newPackage(
"TensorComplexes",
AuxiliaryFiles => false,
Version => "1.0",
Date => "29 July 2011",
Authors => {
{
Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de/"},
{
Name => "Daniel Erman",
Email => "derman@math.stanford.edu",
HomePage => "http://math.stanford.edu/~derman/"},
{
Name => "Gregory G. Smith",
Email => "ggsmith@mast.queensu.ca",
HomePage => "http://www.mast.queensu.ca/~ggsmith"},
{
Name => "Dumitru Stamate",
Email => "dumitru.stamate@fmi.unibuc.ro"}},
Headline => "multilinear algebra with labeled bases",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {
"LabeledModule",
"LabeledModuleMap",
"labeledModule",
"underlyingModules",
"basisList",
"fromOrdinal",
"toOrdinal",
"multiSubsets",
"tensorProduct",
"symmetricMultiplication",
"cauchyMap",
"traceMap",
"flattenedGenericTensor",
"minorsMap",
"tensorComplex1",
"flattenedESTensor",
"MonSize",
"hyperdeterminant",
"hyperdeterminantMatrix",
"pureResTC1",
"pureResTC",
"pureResES1",
"pureResES"
}
--------------------------------------------------------------------------------
-- CODE
--------------------------------------------------------------------------------
-- constructing labeled modules
LabeledModule = new Type of HashTable
LabeledModule.synonym = "free module with labeled basis"
labeledModule = method(TypicalValue => LabeledModule)
labeledModule Module := M -> (
if not isFreeModule M then error "expected a free module";
new LabeledModule from {
symbol module => M,
symbol underlyingModules => {},
symbol basisList => apply(rank M, i -> i),
symbol cache => new CacheTable})
labeledModule Ring := S -> (
new LabeledModule from {
symbol module => S^1,
symbol underlyingModules => {},
symbol basisList => {{}},
symbol cache => new CacheTable})
net LabeledModule := E -> net module E
LabeledModule#{Standard,AfterPrint} =
LabeledModule#{Standard,AfterNoPrint} = E -> (
<< endl; -- double space
<< concatenate(interpreterDepth:"o") << lineNumber << " : free ";
<< ring E << "-module with labeled basis" << endl;)
module LabeledModule := E -> E.module
ring LabeledModule := E -> ring module E
rank LabeledModule := E -> rank module E
underlyingModules = method(TypicalValue => List)
underlyingModules LabeledModule := E -> E.underlyingModules
basisList = method(TypicalValue => List)
basisList LabeledModule := E -> E.basisList
fromOrdinal = method(TypicalValue => Thing)
fromOrdinal(ZZ, LabeledModule) := (i, E) -> (basisList E)#i
toOrdinal = method(TypicalValue => ZZ)
toOrdinal(Thing, LabeledModule) := (l, E) -> (
position(basisList E, j -> j === l))
LabeledModule == LabeledModule := (E,F) -> (
module E === module F
and underlyingModules E === underlyingModules F
and basisList E === basisList F)
exteriorPower (ZZ, LabeledModule) := options -> (d,E) -> (
S := ring E;
r := rank E;
if d < 0 or d > r then labeledModule S^0
else if d === 0 then labeledModule S
else new LabeledModule from {
symbol module => S^(binomial(rank E, d)),
symbol underlyingModules => {E},
symbol basisList => subsets(basisList E, d),
symbol cache => new CacheTable})
tomultisubset = x -> apply(#x, i -> x#i - i)
multiSubsets = method(TypicalValue => List)
multiSubsets (ZZ,ZZ) := (n,d) -> apply(subsets(n+d-1,d), tomultisubset)
multiSubsets (List,ZZ) := (L,d) -> apply(multiSubsets(#L,d), i -> L_i)
symmetricPower (ZZ, LabeledModule) := (d,E) -> (
S := ring E;
if d < 0 then labeledModule S^0
else if d === 0 then labeledModule S
else new LabeledModule from {
symbol module => (ring E)^(binomial(rank E + d - 1, d)),
symbol underlyingModules => {E},
symbol basisList => multiSubsets(basisList E, d),
symbol cache => new CacheTable})
productList = L -> (
--L is supposed to be a list of lists
n := #L;
if n === 0 then {}
else if n === 1 then apply(L#0, i -> {i})
else if n === 2 then flatten table(L#0, L#1, (i,j) -> {i} | {j})
else flatten table(productList drop(L,-1), last L, (i,j) -> i | {j}))
-- This code probably belongs in the core of Macaulay2
tensorProduct = method(Dispatch => Thing)
tensorProduct List := args -> tensorProduct toSequence args
tensorProduct Sequence := args -> (
if #args === 0 then error "expected more than 0 arguments"; -- note: can't return, since we don't know the ring!
y := youngest args;
key := (tensorProduct, args);
if y =!= null and y#?key then y#key else (
type := apply(args, class);
if not same type then error "incompatible objects in tensor product";
type = first type;
meth := lookup(symbol tensorProduct, type);
if meth === null then error "no method for tensor product";
S := meth args;
if y =!= null then y#key = S;
S))
LabeledModule.tensorProduct = T -> (
L := toList T;
num := #L;
if num < 0 then error "expected a nonempty list";
S := ring L#0;
if num === 0 then labeledModule S
else (
if any(L, l -> ring l =!= S) then error "expected modules over the same ring";
new LabeledModule from {
symbol module => S^(product apply(L, l -> rank l)),
symbol underlyingModules => L,
symbol basisList => productList apply(L, l -> basisList l),
symbol cache => new CacheTable}))
LabeledModule ** LabeledModule := tensorProduct
tensor(LabeledModule, LabeledModule) := LabeledModule => {} >> o -> (F,E) -> F ** E
LabeledModuleMap = new Type of HashTable
LabeledModuleMap.synonym = "map of labeled modules"
ring LabeledModuleMap := f->f.ring
source LabeledModuleMap := f->f.source
target LabeledModuleMap := f->f.target
matrix LabeledModuleMap := o-> f->f.matrix
map(LabeledModule, LabeledModule, Matrix) := o-> (E,F,f) ->
new LabeledModuleMap from {
symbol ring => ring F,
symbol source => F,
symbol target => E,
symbol matrix => map(module E,module F,f)}
map(LabeledModule, LabeledModule, Function) := o-> (E,F,f) ->
new LabeledModuleMap from {
symbol ring => ring F,
symbol source => F,
symbol target => E,
symbol matrix => map(module E,module F,f)}
map(LabeledModule, LabeledModule, List) := o -> (E,F,L) ->
new LabeledModuleMap from {
symbol ring => ring F,
symbol source => F,
symbol target => E,
symbol matrix => map(module E,module F,L)}
map(LabeledModule,LabeledModule,ZZ) := LabeledModuleMap => o ->
(E,F,i) -> map(E,F,matrix map(module E, module F, i))
map(LabeledModule,LabeledModule,LabeledModuleMap) := LabeledModuleMap => o ->
(E,F,f) -> map(E,F, matrix f)
net LabeledModuleMap := g -> net matrix g
LabeledModuleMap#{Standard,AfterPrint} =
LabeledModuleMap#{Standard,AfterNoPrint} = f -> (
<< endl; -- double space
<< concatenate(interpreterDepth:"o") << lineNumber << " : Matrix";
<< " " << target f << " <--- " << source f;
<< endl;)
coker LabeledModuleMap := Module => f -> coker matrix f
rank LabeledModuleMap := ZZ => f -> rank matrix f
transpose LabeledModuleMap := LabeledModuleMap => f ->
map(source f,target f, transpose matrix f)
--want a betti command!
--betti(LabeledModuleMap) := HashTable => o-> f -> betti map(target f, source f, matrix f)
LabeledModule#id = E -> map(E,E,1)
LabeledModuleMap * LabeledModuleMap := LabeledModuleMap => (f,g) ->
map(target f, source g, matrix f * matrix g)
tensor(LabeledModuleMap, LabeledModuleMap) := LabeledModuleMap => {} >> o -> (m, n) -> (
map((target m)**(target n), (source m)**(source n), (matrix m)**(matrix n)))
LabeledModuleMap ** LabeledModuleMap := LabeledModuleMap => (f,g) -> tensor(f,g)
LabeledModuleMap.tensorProduct = T -> fold(tensor, T)
traceMap = method()
traceMap LabeledModule := LabeledModuleMap => E -> (
S := ring E;
T := E ** E;
map(T, labeledModule S^1, (i,j) -> (
I := fromOrdinal(i,T);
if I_0 == I_1 then 1_S else 0_S)))
-*multisetToMonomial = (l,m) -> (
seen := new MutableHashTable;
scan(m, i -> if seen#?i then seen#i = seen#i +1 else seen#i = 1);
apply(l, i -> if seen#?i then seen#i else 0))
monomialToMultiset = (l,e) -> flatten apply(#e, i -> toList(e#i:l#i))
*-
symmetricMultiplication = method(TypicalValue => LabeledModuleMap)
symmetricMultiplication (LabeledModule,ZZ,ZZ) := (F,d,e) -> (
--make the map Sym^d(F)\otimes Sym^e F \to Sym^(d+e) F
--Caveat: for large examples it would probably be better to make this as a sparse matrix!
S := ring F;
Sd := symmetricPower(d,F);
Se := symmetricPower(e,F);
Sde := symmetricPower(d+e,F);
SdSe := tensorProduct {Sd,Se};
map(Sde,SdSe,
(i,j) -> if fromOrdinal (i,Sde) == sort flatten fromOrdinal(j, SdSe)
then 1_S else 0_S))
cauchyMap = method(TypicalValue => LabeledModuleMap)
cauchyMap (ZZ, LabeledModule) := (b,E) -> (
sour := exteriorPower(b,E);
L := underlyingModules E;
L10 := {exteriorPower(b,L#0)};
L11 := apply(#L-1, j -> symmetricPower(b,L#(j+1)));
L = L10 | L11;
targ := tensorProduct L;
M := mutableMatrix(ring E, rank targ, rank sour);
local j;
for i in basisList sour do (
j = transpose i;
if j#0 == unique j#0 then (
j = apply(j, l -> sort l);
M_(toOrdinal(j,targ), toOrdinal(i,sour)) = 1));
map(targ, sour, matrix M))
flattenedGenericTensor = method()
flattenedGenericTensor (List, Ring) := LabeledModuleMap => (L,kk)->(
--make ring of generic tensor
if #L === 0 then error "expected a nonempty list";
inds := productList apply(#L, i -> toList(0..L#i-1));
x := symbol x;
vrbls := apply(inds,i -> x_(toSequence i));
local S;
if #L === 1 then S=kk[x_0..x_(L_0-1)]
else S = kk[vrbls];
--make generic tensor (flattened)
Blist := apply(#L, i->labeledModule S^(L_i));
--B = tensor product of all but Blist_0
if #L === 1 then map(labeledModule S,Blist_0, vars S)
else(
B := tensorProduct apply(#L-1, i -> Blist_(i+1));
map(B, Blist_0,
(i,j) -> x_(toSequence({fromOrdinal(j, Blist_0)}| fromOrdinal(i, B))))))
minorsMap = method()
-- Since we may not need the "full" minors map, we may be able
-- to speed up this method.
minorsMap(Matrix, LabeledModule):= LabeledModuleMap => (f,E) -> (
--Assumes that E has the form
--E = wedge^b((source f)^*) ** wedge^b(target f)
--where source f and target f are labeled free modules.
S := ring f;
b := #((basisList E)_0_0);
if b != #((basisList E)_0_1) or #((basisList E)_0) != 2
then error "E doesn't have the right format";
J := basisList E;
sour := (underlyingModules((underlyingModules E)_0))_0;
tar := (underlyingModules((underlyingModules E)_1))_0;
map(labeledModule S, E, (i,j)-> (
p := J_j;
det submatrix(f, apply(p_1, k-> toOrdinal(k, tar)),
apply(p_0, k-> toOrdinal(k, sour))))))
minorsMap(LabeledModuleMap, LabeledModule) := LabeledModuleMap => (f,E) ->
minorsMap(matrix f, E)
isBalanced = f-> rank source f == sum ((underlyingModules target f)/rank)
tensorComplex1 = method()
-*
This makes the first map of a tensor complex, at least when w satisfies a somewhat
technical condition that is spelled out in the documentation file. Eventually,
if possible, we would like to allow w to be an arbitrary weight vector. But we don't
know how to program the map explicitly in that case.
The notation in the code follows the notation from the Berkesch-Erman-Kummini-Sam paper
"Tensor Complexes".
We start with a ring S and labeled free modules A and B_i for i=1..n.
The input to the code is a map of labeled free modules
f: A^* --> B_1\otimes B_2 \otimes ... \otimes B_n,
along with a weight vector w. We think of f as the flattening of a tensor
f\in A\otimes B_1\otimes ... \otimes B_n.
Based on f and w, we could define
a degree sequence d via the formula for d'(w) given in Notation 5.2 of the BEKS paper. However,
since we only need d1 in the construction, we only define that number in the code.
The output map will go from a module F1 generated in degree d1 to a module F0 generated in
degree 0.
We also define r0 and r1 following the formulas given in Notation 5.2 of BEKS. By
construction r0 is always 0. Our restriction on w essentially amounts to the condition
that r1 must equal 1 or 2. The code thus gives an error message when r1<1 or r1>2.
The desired map will be constructed as a composite g5 * g4 * g3 * g2 * g1 * g0 from
F1->G1->G2->G3->G4->G5->F0. This follows the construction outlined in Section 4 of BEKS.
The modules are defined as follows. The definition of F1 and F0 can be found in Theorem 5.3
of BEKS. Since we are working with labeled modules, we can identify a module with its dual
and we do this repeatedly. In particular, we identify divided powers with symmetric powers.
Since we never use the divided power multiplication, this does not cause problems.
We give the full description in the case that r1=2. When r=1, there are some minor variations,
starting with G3.
F1= wedge^d1 A ** \otimes_{j=1}^{r1-1} wedge^{b_j} B_j ** \otimes_{j=r1}^n S^{w_j-d1} B_j
G1= the tensor product of two modules, one of which is F1, the other of which is the image of a trace map
=[[\otimes_{j=r1}^n S^d1 B_j]**[\otimes_{j=r1}^n S^d1 B_j]^*]**F1
=[[\otimes_{j=r1}^n S^d1 B_j]**[\otimes_{j=r1}^n S^d1 B_j]^*]
[\otimes_{j ** wedge^d1 A ** \otimes_{j=1}^{r1-1} wedge^{b_j} B_j ** \otimes_{j=r1}^n S^{w_j-d1} B_j]
G2=same as G1 but dropping all parentheses in the tensor product. so G2 is the tensor product
of 2*(n-r1+1)+(n+1) modules.
G3=same as G2, but we reorder the factors. Recall that we are covering the case r1==2
In this case d1=b1 and G3 is the tensor product of three factors
G3 =[wedge^d1 A] ** [wedge^d1 B_1 ** S^d1 B_2 ** S^d1 B_3 ** ... ** S^d1 B_n] **
[S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]
G4=[wedge^d1 A] ** [wedge^d1 (B_1 ** B_2 ** ... B_n)] **
[S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]
G5=same as G4, but altering parentheses so that G5 is now a tensor product of two modules
=[wedge^d1 A ** wedge^d1 (B_1 ** B_2 ** ... B_n)] **
[S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]
F0=S ** \otimes_{i=1}^n S^{w_j} Bj]
Now we discuss the various maps gi. Note that all maps are degree 0 maps, except for g5.
g0: we define a trace map
trMap: S--> [\otimes_{j=r1}^n S^d1 B_j] ** [\otimes_{j=r1}^n S^d1 B_j]^*
then we define g0=trMap**id_(F1).
g1: is given by an identity matrix, as the only difference between G1 and G2 is how we
label the bases.
g2: is a permutation matrix (and thus an isomorphism) obtained by simply
reordering the basis of G2.
g3: Repeated application of Cauchy decomposition provide a surjection
wedge^d1(B_1**..**B_n)-->wedge^d1 B_1** S^d1 B_2 ** S^d1 B_3 ** .. S^d1 B_n.
we label the dual of this map by dualCauchyMap.
then g3 is the tensor product of two identity maps and dualCauchyMap.
g4: is given by an identity matrix, and the only difference between G4 and G5 is how
we label the bases.
g5: The source of G5 is the tensor product of two modules.
We define minMap on the first factor of G5:
minMap: [wedge^d1 A ** wedge^d1 (B_1 ** B_2 ** ... B_n)] -> S
by sending a a basis element to the corresponding minor of f. This is the only
of the maps that is not degree 0.
We then define symMultMap on the second factor of G5:
symMultMap: [S^d1 B_2 ** S^{w_2-d1} B_2 ** ... ] -> [S^{w_2} B_2 ** ...]
by tensoring together a bunch of symmetric multiplication maps.
NOTE: When n=0 or n=1 (i.e. when f represents a 1-tensor or a 2-tensor), the main construction
presents some issues having to do with tensor products over empty sets.
So we simply treat those cases separately in the code.
*-
tensorComplex1 (LabeledModuleMap,List) := LabeledModuleMap => (f,w) -> (
-- NOTE: local variables names following the notation from the
-- Berkesch-Erman-Kummini-Sam "Tensor Complexes" paper
--
-- f: A --> B1** B2** ... Bn
-- makes the map F0 <- F1 as above.
-- w = (0,w1,...). w must satisfy some technical conditions that are checked below.
-- These technical conditions also appear in the documentation node for this function.
if not w_0 == 0 and w_1 >=0 and min apply(toList(2..#w), i-> w_i-w_(i-1)) > 0 then
error "w not of the form (0,non-neg,increasing)";
S := ring f;
B := {S^0} | underlyingModules target f;
A := source f;
a := rank A;
n := #B-1;
if #w != n+1 then error"weight vector has wrong length";
b := B / rank; -- {0, b1, b2,..,bn}
d1 := if w_1>0 then 1 else b_1;
r1 := # select(w, wj -> wj < d1);
if r1>2 then error "r1>2 is a case we can't handle";
if n === 0 or n===1 and r1 ===1 then return f;
if n === 1 and r1 === 2
then return map(exteriorPower(b_1,B_1),exteriorPower(b_1,A)**labeledModule(S^{ -d1}), gens minors(b_1,matrix f));
F1 := tensorProduct({exteriorPower(d1,A)}|
apply(toList(1..r1-1),j-> exteriorPower(b_j,B_j)) | -- r1 = 1 or 2
apply(toList(r1..n), j-> symmetricPower(w_j-d1,B_j)));
F0 := tensorProduct apply(n, j-> symmetricPower(w_(j+1), B_(j+1)));
-- F1 is the source of the output map, and F0 is the target.
trMap := traceMap tensorProduct apply(toList(r1..n),
j -> symmetricPower(d1,B_j));
G1 := tensorProduct(target trMap, F1);
g0 := map(G1, F1, trMap ** id_F1);
G1factors := flatten(
((underlyingModules target trMap) | {F1}) / underlyingModules );
-- G2 and G1 are isomorphic as free modules with ordered basis but different
-- as labeled modules. G2 is obtained from G1 by dropping parentheses in
-- the tensor product.
G2 := tensorProduct G1factors;
-- g1 is the isomorphism induced by dropping all parentheses in the tensor product.
-- Due to indexing conventions, matrix(g1) is just an identity matrix.
g1 := map(G2, G1, id_(S^(rank G1)));
perm := {};
if r1==2 then perm = join({2*n-2, 2*n-1}, toList(0..n-2),
flatten apply(n-1, j -> {j+n-1, j+2*n}))
else perm ={2*n}|toList(0..n-1)|flatten apply(n, j -> {j+n, j+2*n+1});
G3factors := G1factors_perm;
G3 := tensorProduct G3factors;
-- G3 is obtained from G2 by reordering the factors in the tensor product.
-- g2 is the isomorphism induced by reordering the factors of the tensor product.
-- The reordering is given by the permutation 'perm'.
permMatrix := mutableMatrix(S, rank G3, rank G2);
for J in basisList G2 do permMatrix_(toOrdinal(J_perm,G3),toOrdinal(J,G2)) = 1;
g2 := map(G3, G2, matrix permMatrix);
-- G3=G3a**G3b**G3c. The map g3: G3->G4 is defined as the tensor product of 3 maps.
G3a := G3factors_0;
G3b := tensorProduct G3factors_(toList(1..n));
G3c := tensorProduct G3factors_(toList(n+1..#G3factors-1));
prodB := tensorProduct apply(n,i -> B_(i+1));
-- G4=G3a**G4b**G3c.
G4b := exteriorPower(d1, prodB);
G4 := tensorProduct({G3a,G4b,G3c});
dualCauchyMap := map (G4b, G3b, transpose cauchyMap(d1, prodB));
g3 := id_(G3a) ** dualCauchyMap ** id_(G3c);
-- G5 is obtained from G4 by adding parentheses in the tensor product.
-- the map g4: G4->G5 is simply represented by an identity matrix.
G5 := (G3a**G4b)**G3c;
g4 := map(G5,G4,matrix id_(G4));
symMultMap := map(F0, G3c, tensorProduct apply(toList(r1..n),
j -> symmetricMultiplication(B_j,d1,w_j-d1)));
minMap := minorsMap(f, tensorProduct(G3a, G4b));
g5 := minMap ** symMultMap;
-- the source of minMap is (G3a**G4b). the source of symMultMap is G3c.
map(F0, F1 ** labeledModule S^{ -d1}, g5 * g4 * g3 * g2 * g1 * g0))
-- When the input for tensorComplex1 is a balanced tensor, a weight vector is unnecessary.
-- Recall that a tensor of format a x b1 x b2 x ... x bn is balanced if a=b1+b2+...+bn.
-- See Section 3 of BEKS.
tensorComplex1 LabeledModuleMap := LabeledModuleMap => f -> (
-- The output is the first map F0 <- F1 of the balanced tensor complex.
-- If f is not balanced this outputs an error.
-- If f is balanced, then this computes the appropriate weight w, and calls the other
-- version of this method.
if not isBalanced f then error "The map f is not a balanced tensor. Need to add a weight vector as a second input.";
S := ring f;
B := {S^0} | underlyingModules target f;
n := #B-1;
b := B/rank; --- {0,b1,b2,..,bn}
w := {0}|accumulate(plus,{0}|b_(toList(0..#b-2))); --{0,0,b1,b1+b2,...,b1+..+b(n-1)}
tensorComplex1(f,w)
)
-- When f is a balanced tensor, then this reproduces the tensor
-- used by Eisenbud and Schreyer in their original construction of
-- pure resolutions. For instance tensorComplex f will equal to their
-- pure resolution. However, this function works even in the nonbalanced
-- case. In that case, it produces the `natural' analogue of their tensor.
flattenedESTensor = method(Options=>{MonSize => 32})
flattenedESTensor (List, Ring) := LabeledModuleMap => o-> (L,kk)->(
--make ring of generic tensor
if #L === 0 then error "expected a nonempty list";
if #L === 1 then error "expected a balanced tensor";
n:=#L-1;
x:=symbol x;
S:=kk[x_0..x_(n-1), MonomialSize=>o.MonSize];
Blist := apply(#L, i->labeledModule S^(L_i));
--B = tensor product of all but Blist_0
B := tensorProduct apply(#L-1, i -> Blist_(i+1));
map(B, Blist_0,
(i,j) -> if 0<=j-sum fromOrdinal(i,B) then if j-sum fromOrdinal(i,B)<n
then x_(j-sum fromOrdinal(i,B)) else 0 else 0)
)
-*
flattenedESTensor = method()
flattenedESTensor (List, Ring) := LabeledModuleMap => (L,kk)->(
--make ring of generic tensor
if #L === 0 then error "expected a nonempty list";
if #L === 1 then error "expected a balanced tensor";
n:=#L-1;
x:=symbol x;
S:=kk[x_0..x_(n-1)];
Blist := apply(#L, i->labeledModule S^(L_i));
--B = tensor product of all but Blist_0
B := tensorProduct apply(#L-1, i -> Blist_(i+1));
map(B, Blist_0,
(i,j) -> if 0<=j-sum fromOrdinal(i,B) then if j-sum fromOrdinal(i,B)<n
then x_(j-sum fromOrdinal(i,B)) else 0 else 0)
)
*-
hyperdeterminant = method()
hyperdeterminant LabeledModuleMap := f -> (
--hyperdeterminant of a boundaryformat tensor f
--check boundary format
b := apply(underlyingModules target f, M -> rank M);
if not rank source f == 1 + sum b - #b then
error"not boundary format!";
w := {0,1}|apply(toList(2..#b), i-> sum(toList(0..i-2), j-> b_j)-(i-2));
det matrix tensorComplex1 (f,w))
-- Gives a matrix of linear forms whose determinant equals the desired hyperdeterminant.
-- This only works for hyperdeterminants of boundary format.
hyperdeterminantMatrix = method()
hyperdeterminantMatrix LabeledModuleMap := f -> (
--check boundary format
b := apply(underlyingModules target f, M -> rank M);
if not rank source f == 1 + sum b - #b then
error"not boundary format!";
w := {0,1}|apply(toList(2..#b), i-> sum(toList(0..i-2), j-> b_j)-(i-2));
matrix tensorComplex1 (f,w))
-- There is a bijection between degree sequences and balanced tensor complexes.
-- This code takes a degree sequence to the first map of the corresponding
-- balanced tensor complex.
pureResTC1=method()
pureResTC1 (List,Ring) := LabeledModuleMap =>(d,kk)->(
b := apply(#d-1,i-> d_(i+1)-d_i);
if min b<=0 then error"d is not strictly increasing";
a := d_(#b) - d_0;
f := flattenedGenericTensor({a}|b,kk);
tensorComplex1(f)
)
pureResTC=method()
pureResTC (List,Ring):=ChainComplex => (d,kk)->(
res coker matrix pureResTC1(d,kk)
)
-- This code takes a degree sequence and a base field as an input, and
-- it outputs the first map of the Eisenbud-Schreyer pure resolution
-- corresponding to that degree sequence.
pureResES1=method(Options =>{MonSize =>32})
pureResES1 (List,Ring) := LabeledModuleMap => o -> (d,kk)->(
b := apply(#d-1,i-> d_(i+1)-d_i);
if min b<=0 then error"d is not strictly increasing";
a := d_(#b) - d_0;
f := flattenedESTensor({a}|b,kk,MonSize => o.MonSize);
tensorComplex1(f)
)
pureResES=method()
pureResES (List,Ring):=ChainComplex => (d,kk)->(
res coker matrix pureResES1(d,kk)
)
--------------------------------------------------------------------------------
-- DOCUMENTATION
--------------------------------------------------------------------------------
beginDocumentation()
doc ///
Key
TensorComplexes
Headline
multilinear algebra for the construction of tensor complexes
Description
Text
A $b_1\times \cdots\times b_n$ tensor with coefficients in a ring S may
be thought of as a multilinear linear form on
$X := Proj(Spec S \times \mathbb P^{b_1-1}\times \cdots \times \mathbb P^{b_n-1})$.
(If $S$ is graded, we may replace $Spec S$ by $Proj S$.)
This package provides a family of definitions around the notion of {\it LabeledModule}
that makes it convenient to manipulate complicated multilinear constructions with tensors.
We implement one such construction, that of Tensor Complexes, from the paper
``Tensor Complexes: Multilinear free resolutions constructed from higher tensors''
of Berkesch, Erman, Kummini and Sam (BEKS), which extends the construction of
pure resolutions in the paper ``Betti numbers of graded modules and cohomology of vector bundles''
of Eisenbud and Schreyer. This itself is an instance of the technique of ``collapsing homogeneous
vector bundles'' developed by Kempf and described, for example, in the book ``Cohomology of
vector bundles and syzygies'' of Weyman.
Tensor complexes specialize to several well-known constructions including: the Eagon-Northcott
and Buchsbaum-Rim complexes, and the others in this family described by Eisenbud and Buchsbaum
(see Eisenbud ``Commutative algebra with a view towards algebraic geometry'', A2.6),
and the {\it hyperdeterminants} of Weyman and Zelevinsky.
A collection of $a$ tensors of type $b_1\times \dots \times b_n$
may be regarded as a map $E := \mathcal O_X^a(-1,-1,\dots,-1) \to \mathcal O_X$ (with $X$ as above).
Equivalently, we may think of this as a single $a \times b_1 \times \cdots \times b_n$ tensor.
One important construction made from such a collection of tensors is the Koszul complex
$$
\mathbf K := \cdots \to \wedge^2 (\oplus_1^a O_X(-1,\dots, -1)) \to \oplus_1^a O_X(-1,\dots, -1)\to O_X \to 0.
$$
Let $\mathcal O_X(d, e_1,\dots e_n)$ be the tensor product of the pull-backs to $X$
of the line bundles $\mathcal O_{\mathbb P^n}(d)$ and $\mathcal O_{\mathbb P^{b_i-1}}(-1)$.
If we twist the Koszul complex by $O_X(0, -w_1, \dots -w_n)$
and then push it forward to $Spec S$ we get the tensor complex
$F(\phi,w)$ of BEKS.
Each map $\partial_i$ in the tensor complex can be defined by
a rather involved construct in multilinear algebra. This package implements the
construction of $\partial_1$ in the range of cases described explicitly in BEKS
(Sections 4 and 12).
This range includes the hyperdeterminants of boundary format,
the construction of the first map of the pure resolutions of Eisenbud-Schreyer,
and the first map in most of the much larger family of generic pure resolutions of BEKS.
///
doc ///
Key
tensorComplex1
(tensorComplex1, LabeledModuleMap, List)
(tensorComplex1, LabeledModuleMap)
Headline
computes the first map of the tensor complex
Usage
tensorComplex1(f,w)
tensorComplex1 f
Inputs
f: LabeledModuleMap
w: List
of ZZ
Outputs
: LabeledModuleMap
Description
Text
Let $X := Proj(Spec S \times \mathbb P^{b_1-1}\times \cdots \times \mathbb P^{b_n-1})$,
and let
$$
\mathbf K := \cdots \wedge^2 \oplus_1^a O_X(-1,\dots, -1) \to O_X \to 0
$$
be the Koszul complex of the multilinear forms corresponding to f, on $X$.
The output of {\tt tensorComplex1(f,w)} is the first map of the complex obtained
by pushing $\mathbf K \otimes {\mathcal O}_X(w_1,\dots,w_n)$ down to $Spec S$.
This script implements the construction of tensor complexes from the paper
``Tensor Complexes: Multilinear free resolutions constructed from higher tensors''
of Berkesch, Erman, Kummini and Sam (BEKS).
The program requires that $f$ is a flattened tensor,
that is, a map $A \to B_1\otimes\cdots\otimes B_n$.
Returns the first map in the tensor complex $F(f,w)$ of BEKS, requiring
that $w$ satisfies:
$$
w_0 = 0, w_1 \geq 0, w_2 \geq w_1+b_1, \ {\rm and }\ w_i>w_{i-1} \ {\rm for }\ i\geq 2.
$$
When $rank A=\sum rank B_i$, that is, $L_0 = \sum_{i=1}^n L_i$ then
we are in the ``balanced case'' discussed in Section 3 of BEKS. In
this case giving a weight vector is unnecessary, and one can use the format
{\tt tensorComplex1 f}.
The example from section 12 of BEKS appears below.
Example
f = flattenedGenericTensor({4,2,2},ZZ/32003)
S = ring f;
g = tensorComplex1(f,{0,0,2})
g1 = tensorComplex1 f
betti matrix g
betti matrix g1
betti res coker g
Text
We can recover the Eagon-Northcott complex as follows.
Example
f = flattenedGenericTensor({6,2}, ZZ/32003)
S = ring f;
g = tensorComplex1(f,{0,0});
transpose g
betti res coker g
betti eagonNorthcott matrix entries matrix f
Text
The following example is taken from the introduction to BEKS.
Example
f = flattenedGenericTensor({7,1,2,1,2,1},ZZ/32003);
S = ring f;
g = tensorComplex1 f;
betti res coker g
Text
The input map need not be generic.
Example
S = QQ[x,y,z];
F = labeledModule S^5
G = tensorProduct(labeledModule S^2, labeledModule S^2)
f = map(G,F, (i,j) -> random(1,S))
g = tensorComplex1(f, {0,0,2});
betti res coker g
Caveat
Unlike BEKS, this method does not work with arbitrary weight vectors {\tt w}.
SeeAlso
flattenedGenericTensor
flattenedESTensor
hyperdeterminant
hyperdeterminantMatrix
///
doc ///
Key
LabeledModule
Headline
the class of free modules with a labeled basis
Description
Text
A labeled module $F$ is a free module together with two additional pieces of data:
a @TO basisList@ which corresponds to the basis of $F$, and
a list of @TO underlyingModules@ which were used in the construction of $F$. The constructor
@TO labeledModule@ can be used to construct a labeled module from a free module. The call
{\tt labeledModule E}, where $E$ is a free module, returns a labeled module with @TO basisList@
$\{1,\dots, rank E\}$ and @TO underlyingModules@ $\{E\}$.ß
For example if $A,B$ are of type LabeledModule, then
{\tt F=tensorProduct(A,B)} constructs the LabeledModule $F=A\otimes B$ with
@TO basisList@ equal to the list of pairs $\{a,b\}$ where $a$ belongs to the basis list
of $A$ and $b$ belongs to the basis list of $b$. The list of @TO underlyingModules@ of $F$
is $\{A,B\}$.
Certain functors which are the identity in the category of modules are non-trivial
isomorphisms in the category of labeled modules. For example, if {\tt F} is a labeled
module with basis list {\tt \{0,1\}} then {\tt tensorProduct F} is a labeled free module
with basis list {\tt \{\{ 0\},\{ 1\}\} }. Similarly, one must be careful when applying the functors
@TO exteriorPower@ and @TO symmetricPower@. For a ring $S$, the multiplicative unit
for tensor product is the rank 1 free $S$-module whose generator is labeled by {\tt \{\} }.
This is constructed by {\tt labeledModule S}.
///
doc ///
Key
labeledModule
(labeledModule,Module)
(labeledModule,Ring)
Headline
makes a labeled module
Usage
labeledModule M
labeledModule R
Inputs
M: Module
which is free
R: Ring
Outputs
: LabeledModule
Description
Text
This is the basic construction for a @TO LabeledModule@. Given a free module $M$ of rank $r$,
this constructs a labeled module with basis labeled by $\{0,..,r-1\}$ and
no underlying modules.
Example
S = ZZ/101[a,b,c];
E = labeledModule S^3
basisList E
underlyingModules E
module E
rank E
Text
For technical reasons, it is often convenient to construct a rank $1$ free module
whose generator is labeled by the empty set. This is constructed by {\tt labeledModule S}.
Example
S = ZZ/101[a,b,c];
F = labeledModule S
basisList F
underlyingModules F
module F
E = labeledModule S^1
basisList E
underlyingModules E
///
doc ///
Key
tensorProduct
Headline
tensor product of Modules and LabeledModules, Matrices, Maps and LabeledModuleMaps
Usage
tensorProduct L
(tensorProduct List)
(tensorProduct Sequence)
Inputs
L: List
or @TO Sequence@ of objects of type @TO Matrix@, @TO Module@, @TO LabeledModule@ or @TO LabeledModuleMap@
Outputs
:Matrix
or, in general, an object of the same type as the inputs.
Description
Text
Forms the tensor product of the objects in the input list or sequence.
In the case where the inputs are of type @TO LabeledModule@, the output is a labeled module
whose basis list is the set of tuples of elements of the basis lists of the input modules
Example
S = ZZ/101[x,y]
M = labeledModule(S^4)
basisList M
E = exteriorPower(2,M)
basisList E
underlyingModules E
N = tensorProduct(E,labeledModule(S^2))
basisList N
underlyingModules N
SeeAlso
basisList
underlyingModules
LabeledModule
LabeledModuleMap
"**"
///
doc ///
Key
hyperdeterminant
(hyperdeterminant, LabeledModuleMap)
Headline
computes the hyperdeterminant of a boundary format tensor
Usage
hyperdeterminant f
Inputs
f: LabeledModuleMap
Outputs
: RingElement
Description
Text
This constructs the hyperdeterminant of a tensor of {\em boundary format}, where
we say that a $a\times b_1\times \dots \times b_n$ has boundary format if
$$
a-\sum_{i=1}^n (b_i-1)=1.
$$
We construct the hyperdeterminant as the determinant of a certain square matrix
derived from $f$. The {\tt hyperdeterminant} function outputs the hyperdeterminant
itself, whereas the @TO hyperdeterminantMatrix@ function outputs the matrix used to
compute the hyperdeterminant. (For background on computing hyperdeterminants, see
Section 14.3 of the book ``Discriminants, resultants, and multidimensional
determinants '' by Gelfand-Kapranov-Zelevinsky.)
The following constructs the generic hyperdeterminant of format $3\times 2\times 2$,
which is a polynomial of degree 6 consisting of 66 monomials.
Example
f=flattenedGenericTensor({3,2,2},QQ);
S=ring f;
h=hyperdeterminant f;
degree h
#terms h
Caveat
There is bug involving the graded structure of the output. Namely, the code assumes that
all entries of {\tt f} have degree 1, and gives the wrong graded structure if this is not
the case. If {\tt ring f} is not graded, then
the code gives an error.
SeeAlso
hyperdeterminantMatrix
///
doc ///
Key
hyperdeterminantMatrix
(hyperdeterminantMatrix, LabeledModuleMap)
Headline
computes a matrix whose determinant equals the hyperdeterminant of a boundary format tensor
Usage
hyperdeterminantMatrix f
Inputs
f: LabeledModuleMap
Outputs
: LabeledModuleMap
Description
Text
This constructs a matrix whose determinant equals
the hyperdeterminant of a tensor of {\em boundary format}, where
we say that a $a\times b_1\times \dots \times b_n$ has boundary format if
$$
a-\sum_{i=1}^n (b_i-1)=1.
$$
The entries of the output matrix correspond to entries of the input tensor.
Example
f=flattenedGenericTensor({3,2,2},QQ);
S=ring f;
M=hyperdeterminantMatrix f
det(M)==hyperdeterminant f
Caveat
There is bug involving the graded structure of the output. Namely, the code assumes that
all entries of {\tt f} have degree 1, and gives the wrong graded structure if this is not
the case. If {\tt ring f} is not graded, then
the code gives an error.
SeeAlso
hyperdeterminant
///
doc ///
Key
--exteriorPower
(exteriorPower, ZZ, LabeledModule)
Headline
Exterior power of a @TO LabeledModule@
Usage
E = exteriorPower(i,M)
Inputs
i: ZZ
M: LabeledModule
Outputs
: LabeledModule
Description
Text
This produces the exterior power of a labeled module as a labeled module
with the natural basis list. For instance if $M$ is a labeled module with
basis list $L$, then {\tt exteriorPower(2,M)} is a labeled
module with basis list {\tt subsets(2,L)} and with $M$ as an underlying module,
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^3);
E=exteriorPower(2,M)
basisList E
underlyingModules E
F=exteriorPower(2,E);
basisList F
Text
The first exterior power of a labeled module is not the identity in the category
of labeled modules. For instance, if $M$ is a free labeled module with basis
list $\{0,1\}$ and with no underlying modules, then ${\tt exteriorPower(1,M)}$ is
a labeled module with basis list $\{ \{0\}, \{1\},\}$ and with $M$ as an underlying
module.
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^2);
E=exteriorPower(1,M);
basisList M
basisList E
underlyingModules M
underlyingModules E
Text
By convention, the zeroeth symmetric power of an $S$-module is the labeled module
$S^1$ with basis list $\{\{\}\}$ and with no underlying modules.
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^2);
E=exteriorPower(0,M)
basisList E
underlyingModules E
SeeAlso
///
doc ///
Key
(symmetricPower, ZZ, LabeledModule)
Headline
Symmetric power of a @TO LabeledModule@
Usage
E = symmetricPower(i,M)
Inputs
i: ZZ
M: LabeledModule
Outputs
E: LabeledModule
Description
Text
This produces the symmetric power of a labeled module as a labeled module
with the natural basis list. For instance if $M$ is a labeled module with
basis list $L$, then {\tt exteriorPower(2,M)} is a labeled
module with basis list {\tt multiSubsets(2,L)} and with $M$ as an underlying module,
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^3);
F=symmetricPower(2,M)
basisList F
underlyingModules F
G=symmetricPower(2,F);
basisList G
Text
The first symmetric power of a labeled module is not the identity in the category
of labeled modules. For instance, if $M$ is a free labeled module with basis
list $\{0,1\}$ and with no underlying modules, then ${\tt symmetricPower(1,M)}$ is
a labeled module with basis list $\{ \{0\}, \{1\},\}$ and with $M$ as an underlying
module.
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^2);
E=symmetricPower(1,M);
basisList M
basisList E
underlyingModules M
underlyingModules E
Text
By convention, the zeroeth symmetric power of an $S$-module is the labeled module
$S^1$ with basis list $\{\{\}\}$ and with no underlying modules.
Example
S=ZZ/101[x,y,z];
M=labeledModule(S^2);
E=symmetricPower(0,M)
basisList E
underlyingModules E
SeeAlso
///
doc ///
Key
pureResES1
Headline
computes the first map of the Eisenbud--Schreyer pure resolution of a given type
Usage
pureResES1(d,kk)
Inputs
d: List
kk: Ring
Outputs
: LabeledModuleMap
Description
Text
Given a degree sequence $d\in \mathbb Z^{n+1}$ and a field $k$ of arbitrary characteristic,
this produces the first map of pure resolution of type d as constructed by
Eisenbud and Schreyer in Section 5 of ``Betti numbers of graded modules and cohomology
of vector bundles''. The cokernel of this map is a module of finite of length over a
polynomial ring in $n$ variables.
The code gives an error if d is not strictly increasing with $d_0=0$.
There is an OPTION, MonSize => n (where n is 8,16, or 32). This sets the @TO MonomialSize@ option
when the base ring of flattenedESTensor is created.
Example
d={0,2,4,5};
p=pureResES1(d,ZZ/32003)
betti res coker p
dim coker p
SeeAlso
pureResES
///
doc ///
Key
pureResES
Headline
constructs the Eisenbud--Schreyer pure resolution of a given type
Usage
pureResES(d,kk)
Inputs
d: List
kk: Ring
Outputs
: ChainComplex
Description
Text
Given a degree sequence $d$, this function returns the pure resolution of
type $d$ constructed in by Eisenbud and Schreyer in Section 5 of
``Betti numbers of graded modules and cohomology of vector bundles''. The
function operates by resolving the output of {\tt pureResES1(d,kk)}.
Example
d={0,2,4,5};
FF=pureResES(d,ZZ/32003)
betti FF
SeeAlso
pureResES1
///
doc ///
Key
pureResTC1
Headline
computes the first map of a balanced tensor complex with pure resolution of a given type
Usage
pureResTC1(d,kk)
Inputs
d: List
kk: Ring
Outputs
: LabeledModuleMap
Description
Text
Given a degree sequence $d\in \mathbb Z^{n+1}$ and a field $k$ of arbitrary characteristic,
this produces the first map of a balanced tensor complex with a
pure resolution of type d, as constructed in Section 3
of the paper ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors
by Berkesch-Erman-Kummini-Sam. The cokernel of the output is an indecomposable
module of codimension $n$.
The code gives an error if d is not strictly increasing with $d_0=0$.
Example
d={0,2,4,5};
p=pureResTC1(d,ZZ/32003)
betti res coker p
SeeAlso
pureResTC
///
doc ///
Key
pureResTC
Headline
constructs the balanced tensor complex of a given type
Usage
pureResTC(d,kk)
Inputs
d: List
kk: Ring
Outputs
: ChainComplex
Description
Text
Given a degree sequence $d$, this function returns a balanced tensor complex
that is a pure resolution of type $d$, as constructed in Section 3
of the paper ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors
by Berkesch-Erman-Kummini-Sam.
The function operates by resolving the output of {\tt pureResTC1(d,kk)}.
The code gives an error if d is not strictly increasing with $d_0=0$.
Example
d={0,2,4,5};
FF=pureResTC(d,ZZ/32003)
betti FF
SeeAlso
pureResTC1
///
doc ///
Key
flattenedGenericTensor
(flattenedGenericTensor, List, Ring)
Headline
Make a generic tensor of given format
Usage
flattenedGenericTensor(L,kk)
Inputs
L: List
of positive ZZ
kk: Ring
Name of ground field (or ring)
Outputs
f: LabeledModuleMap
Description
Text
Given a list $L = \{a, b_1,\dots, b_n\}$ of positive integers
with
$
a= sum_i b_i,
$
and a field (or ring of integers) kk,
the script creates a polynomial ring $S$ over $kk$ with $a\times b_1\times\cdots\times b_n$ variables,
and a generic map
$$
f: A \to B_1\otimes\cdots \otimes B_n
$$
of @TO LabeledModule@s over $S$, where
$A$ is a free LabeledModule of rank $a$ and
$B_i$ is a free LabeledModule of rank $b_i$.
We think of $f$ as representing a tensor of type $(a,b_1,\dots,b_n)$
made from the elementary symmetric functions.
The format of $F$ is the one required
by @TO tensorComplex1@, namely $f: A \to B_1\otimes \cdots \otimes B_n$, with
$a = rank A, b_i = rank B_i$.
Example
kk = ZZ/101
f = flattenedGenericTensor({5,2,1,2},kk)
numgens ring f
betti matrix f
S = ring f
tensorComplex1 f
SeeAlso
flattenedESTensor
tensorComplex1
///
doc ///
Key
flattenedESTensor
Headline
make a flattened tensor from elementary symmetric functions
Usage
flattenedESTensor(L,kk)
Inputs
L: List
of positive ZZ
kk: Ring
Name of ground field (or ring)
Outputs
f: LabeledModuleMap
Description
Text
Given a list $L = \{a, b_1,\dots, b_n\}$ of positive integers
with
$
a= sum_i b_i,
$
and a field (or ring of integers) kk,
the script creates a ring $S = kk[x_1,\dots,x_n]$ and a map
$$
f: A \to B_1\otimes\cdots \otimes B_n
$$
of @TO LabeledModule@s over $S$, where
$A$ is a free LabeledModule of rank $a$ and
$B_i$ is a free LabeledModule of rank $b_i$.
The map $f$ is constructed from symmetric functions, and
corresponds to collection of linear forms on $P^{b_1-1}\times\cdots\timesß P^{b_n-1}$
as used in the construction of
pure resolutions in the paper
``Betti numbers of graded modules and cohomology of vector bundles''
of Eisenbud and Schreyer.
The format of $F$ is the one required
by @TO tensorComplex1@, namely $f: A \to B_1\otimes \cdots \otimes B_n$, with
$a = rank A, b_i = rank B_i$.
There is an OPTION, MonSize => n (where n is 8,16, or 32). This sets the @TO MonomialSize@ option
when the base ring of flattenedESTensor is created.
Example
kk = ZZ/101
f = flattenedESTensor({5,2,1,2},kk)
numgens ring f
betti matrix f
S = ring f
g = tensorComplex1 f
betti res coker g
SeeAlso
flattenedGenericTensor
tensorComplex1
///
doc ///
Key
LabeledModuleMap
Headline
the class of maps between LabeledModules
Description
Text
A map between two labeled modules remembers the labeled module structure of the
source of target.
Some, but not all methods available for maps have been extended to
this class. In these cases, one should apply the method to the underlying
matrix. See @TO (rank,LabeledModuleMap)@.
///
doc ///
Key
(map,LabeledModule,LabeledModule,Function)
Headline
create a LabeledModuleMap by specifying a function that gives each entry
Usage
map(F,G,f)
Inputs
F: LabeledModule
G: LabeledModule
f: Function
Outputs
: LabeledModuleMap
Description
Text
This function produces essentially the same output as
{\tt map(Module,Module,Function)}, except that the output map
belongs to the class LabeledModuleMap, and thus remembers the labeled
module structure of the source and target.
Example
S=QQ[x,y,z];
F=labeledModule(S^3)
f=map(F,F,(i,j)->(S_i)^j)
SeeAlso
(map,Module,Module,Function)
///
doc ///
Key
(map,LabeledModule,LabeledModule,LabeledModuleMap)
Headline
creates a new LabeledModuleMap from a given LabeledModuleMap
Usage
map(F,G,f)
Inputs
F: LabeledModule
G: LabeledModule
f: LabeledModuleMap
Outputs
: LabeledModuleMap
Description
Text
This function produces has the same output {\tt map(F,G,matrix f)}.
This function is most useful when the either source/target of $f$ is
isomorphic to $F/G$ as a module with basis,
but not as a labeled module.
Example
S=QQ[x,y,z];
A=labeledModule(S^2)
F=(A**A)**A
G=A**(A**A)
f=map(F,G,id_(F))
SeeAlso
(map,LabeledModule,LabeledModule,Matrix)
(map,Module,Module,Matrix)
///
doc ///
Key
(map,LabeledModule,LabeledModule,Matrix)
Headline
creates a LabeledModuleMap from a matrix
Usage
map(F,G,M)
Inputs
F: LabeledModule
G: LabeledModule
M: Matrix
Outputs
: LabeledModuleMap
Description
Text
This function produces essentially the same output as
{\tt map(Module,Module,Matrix)}, except that the output map
belongs to the class LabeledModuleMap, and thus remembers the labeled
module structure of the source and target.
Example
S=QQ[x,y,z];
F=labeledModule(S^3)
M=matrix{{1,2,3},{x,y,z},{3*x^2,x*y,z^2}}
g=map(F,F,M)
source g
SeeAlso
(map,Module,Module,Matrix)
///
doc ///
Key
(map,LabeledModule,LabeledModule,List)
Headline
creates a LabeledModuleMap from a list
Usage
map(F,G,L)
Inputs
F: LabeledModule
G: LabeledModule
L: List
Outputs
: LabeledModuleMap
Description
Text
This function produces essentially the same output as
@TO (map,Module,Module,List)@, except that the output map
belongs to the class LabeledModuleMap, and thus remembers the labeled
module structure of the source and target.
Example
S=QQ[x,y,z];
F=labeledModule(S^3)
L={{1,2,3},{x,y,z},{3*x^2,x*y,z^2}}
g=map(F,F,L)
source g
SeeAlso
(map,Module,Module,List)
///
doc ///
Key
(map,LabeledModule,LabeledModule,ZZ)
Headline
creates scalar multiplication by an integer as a LabeledModuleMap
Usage
map(F,G,m)
Inputs
F: LabeledModule
G: LabeledModule
m: ZZ
Outputs
: LabeledModuleMap
Description
Text
This function produces essentially the same output as
@TO (map,Module,Module,ZZ)@, except that the output map
belongs to the class LabeledModuleMap, and thus remembers the labeled
module structure of the source and target. If $m=0$ then the output is
the zero map. If $m\ne 0$, then $F$ and $G$ must have the same rank.
Example
S=QQ[x,y,z];
F=labeledModule(S^3);
G=labeledModule(S^2);
g=map(F,G,0)
h=map(F,F,1)
SeeAlso
(map,Module,Module,ZZ)
///
-*
doc ///
Key
(coker,LabeledModuleMap)
(rank,LabeledModuleMap)
(transpose,LabeledModuleMap)
(symbol *, LabeledModule,LabeledModule)
(symbol **, LabeledModule,LabeledModule)
Headline
a number of methods for maps have been extended to the class LabeledModuleMap
Usage
coker(f)
rank(f)
transpose(f)
Inputs
f: LabeledModuleMap
Outputs
: Thing
Description
Text
A number of methods that apply to maps have been extend the class LabeledModuleMap.
Where this is the case, the syntax is exactly the same.
Example
R=ZZ/101[a,b];
F=labeledModule(R^3);
f=map(F,F,(i,j)->a^i+b^j);
rank f
coker f
Text
Many methods have not been extended. In these cases, one will see an error message,
and should apply the method to {\tt matrix f} instead of directly to {\tt f}.
Example
R=ZZ/101[a,b];
F=labeledModule(R^2);
f=map(F,F,(i,j)->a^i+b^j);
entries matrix f
///
*-
doc ///
Key
underlyingModules
(underlyingModules, LabeledModule)
Headline
gives the list of underlying modules of a labeled module
Usage
underlyingModules(F)
Inputs
F: LabeledModule
Outputs
: List
Description
Text
One of the key features of a labeled module is that it comes equipped
with a list of modules used in its construction. For instance, if $F$
is the tensor product of $A$ and $B$, then the underlying modules of
$F$ would be the set $\{ A,B\}$. Similarly, if $G=\wedge^2 A$, then
$A$ is the only underlying module of $G$.
Example
S=ZZ/101[x,y,z];
A=labeledModule(S^2);
B=labeledModule(S^5);
F=A**B
underlyingModules(F)
G=exteriorPower(2,A)
underlyingModules(G)
///
doc ///
Key
basisList
(basisList, LabeledModule)
Headline
gives the list used to label the basis elements of a labeled module
Usage
basisList(F)
Inputs
F: LabeledModule
Outputs
: List
Description
Text
One of the key features of a labeled module of rank $r$
is that the basis can be labeled by any list of cardinality $r$.
This is particularly convenient when working with tensor products, symmetric
powers, and exterior powers. For instance, if $A$ is a labeled module with
basis labeled by $\{0,\dots, r-1\}$ then it is natural to think of
$\wedge^2 A$ as a labeled module with a basis labeled by elements of the
lists
$$
\{(i,j)| 0\leq i<j\leq r-1\}.
$$
When you use apply the functions @TO tensorProduct@, @TO symmetricPower@
and @TO exteriorPower@ to a labeled module, the output is a labeled
module with a natural basis list.
Example
S=ZZ/101[x,y,z];
A=labeledModule(S^2);
B=labeledModule(S^4);
F=A**B
basisList(F)
G=exteriorPower(2,B)
basisList(G)
///
doc ///
Key
fromOrdinal
(fromOrdinal, ZZ, LabeledModule)
Headline
outputs the label of a basis element of a labeled module
Usage
fromOrdinal(i,F)
Inputs
i: ZZ
F: LabeledModule
Outputs
: Thing
Description
Text
This function allows one to access the labels of the basis
elements of a labeled free module.
For instance, if $F$ is a labeled free module of $r$,
then its basis is labeled by a list $L$.
This function takes an integer $i$ between $0$ and outputs the $i$'th element
of $L$.
This function is particularly useful when defining maps between labeled free
modules.
Example
S=ZZ/101[x_{0,0,0}..x_{2,1,1}];
A=labeledModule(S^3);
fromOrdinal(0,A)
B=labeledModule(S^2);
C=symmetricPower(2,B)
fromOrdinal(0,C)
f=map(A,C,(i,j)->x_(flatten {fromOrdinal(j,A)}|fromOrdinal(i,C)))
SeeAlso
basisList
toOrdinal
///
doc ///
Key
toOrdinal
(toOrdinal, Thing, LabeledModule)
Headline
turns the label of a basis element of a labeled module into a corresponding ordinal
Usage
toOrdinal(i,F)
Inputs
l: Thing
F: LabeledModule
Outputs
: ZZ
Description
Text
This function allows one to move from the labels of the basis
elements of a labeled free module of rank $r$ to the integers
$\{0,1, \dots, r-1\}$.
More specifically, if $F$ is a labeled free module where we have labeled the
basis with the list $L$, then this function an element $l\in L$
to the ordinal $j$ such that $l$ is the $j$'th element of $L$.
Example
S=ZZ/101[x_{0,0,0}..x_{2,1,1}];
C=symmetricPower(2,labeledModule(S^3))
basisList C
toOrdinal({0,0},C)
toOrdinal({1,2},C)
SeeAlso
basisList
fromOrdinal
///
doc ///
Key
multiSubsets
(multiSubsets, ZZ, ZZ)
(multiSubsets, List, ZZ)
Headline
produce all subsets of a given size, allowing repetitions
Usage
multiSubsets(L,n)
multiSubsets(m,n)
Inputs
L: List
n: ZZ
m: ZZ
Outputs
: List
Description
Text
{\tt multiSubsets(L,n)} yields all multisets of cardinality $n$ with element
from $L$. {\tt multiSubsets(m,n)} yields all multisets of cardinality $n$
with elements in the list $\{0,\dots,m-1\}$.
Example
L={a,b,c}
multiSubsets(L,2)
multiSubsets(3,2)
SeeAlso
subsets
///
doc ///
Key
traceMap
(traceMap, LabeledModule)
Headline
produces the trace map from a ring to a free module tensored with its dual
Usage
traceMap F
Inputs
F: LabeledModule
Outputs
: LabeledModuleMap
Description
Text
If $F$ is a free labeled module, then this produces the trace map
$S\to F\otimes F^*$.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^3);
traceMap F
SeeAlso
///
doc ///
Key
cauchyMap
(cauchyMap, ZZ, LabeledModule)
Headline
produces one surjection from the Cauchy decomposition of the exterior power of a tensor product
Usage
cauchyMap(b,E)
Inputs
b: ZZ
E: LabeledModule
must be a tensor product
Outputs
: LabeledModuleMap
Description
Text
We begin with a module $E$ that was constructed as a tensor
product $E=A\otimes B$, where $A$ and $B$ are free modules.
Cauchy decomposition provides a formula for decomposing $\wedge^b E$
as $GL(A)\times GL(B)$ representations. This function constructs
the surjection onto the $\wedge^b A\otimes S^b B$
factor:
$$
\wedge^b E \to \wedge^b A\otimes S^b B.
$$
Example
S=ZZ/101[x,y,z];
A=labeledModule(S^3);
B=labeledModule(S^3);
E=tensorProduct(A,B)
f=cauchyMap(2,E)
underlyingModules source f
underlyingModules target f
SeeAlso
///
-*
doc ///
Key
(symbol ==, LabeledModule, LabeledModule),
Headline
tests equality for labeled modules
Usage
F==G
Inputs
F: LabeledModule
G: LabeledModule
Outputs
: Boolean
Description
Text
Two labeled modules are equal if they are equal as modules and if they have the
same basis list and list of underlying modules.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^3)
G=labeledModule(S^3)
H=exteriorPower(2,labeledModule(S^2))
F==G
F==H
basisList(F)
basisList(H)
SeeAlso
///
*-
doc ///
Key
(target, LabeledModuleMap)
Headline
the target of a map of a labeled modules
Usage
target f
Inputs
f: LabeledModuleMap
Outputs
: LabeledModule
Description
Text
This yields the target of a map of a labeled module, as a labeled module.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^2);
G=symmetricPower(2,F);
f=map(F,G,{{x,y,z},{y,z,x}})
target f
basisList target f
SeeAlso
(source, LabeledModuleMap)
///
doc ///
Key
(source, LabeledModuleMap)
Headline
the source of a map of a labeled modules
Usage
source f
Inputs
f: LabeledModuleMap
Outputs
: LabeledModule
Description
Text
This yields the source of a map of a labeled module, as a labeled module.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^2);
G=symmetricPower(2,F);
f=map(G,F,{{x,y},{y,z},{z,x}})
source f
basisList source f
SeeAlso
(target, LabeledModuleMap)
///
doc ///
Key
symmetricMultiplication
(symmetricMultiplication, LabeledModule, ZZ, ZZ)
Headline
creates the symmetric multiplication map
Usage
symmetricMultiplication(F,i,j)
Inputs
F: LabeledModule
i: ZZ
j: ZZ
Outputs
: LabeledModuleMap
Description
Text
Given a labeled free module $F$, and two nonnegative integers $i$ and $j$,
this yields the multiplication map
$$
f: S^i(F)\otimes S^j(F)\to S^{i+j}(F).
$$
The output map is treated as a map of labeled modules, and the source and target
are inherit the natural structure as labeled modules from $F$. For instance,
if the basis list of $F$ is $L$, then the basis list of the target of $f$ is the
list {\tt multiSubsets(i+j,L)}.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^2);
f=symmetricMultiplication(F,2,2)
source f
basisList F
basisList source f
basisList target f
SeeAlso
///
doc ///
Key
minorsMap
(minorsMap, Matrix, LabeledModule)
(minorsMap, LabeledModuleMap, LabeledModule)
Headline
creates a map of labeled free modules whose image is the minors of a map of labeled free modules
Usage
minorsMap(f,E)
minorsMap(M,E)
Inputs
f: LabeledModuleMap
M: Matrix
E: LabeledModule
Outputs
: LabeledModuleMap
Description
Text
This function assumes that $E$ has the form $E=\wedge^b B \otimes \wedge^b A$ where
$A$ and $B$ are labeled free $S$-modules and where $f: A^*\to B$ (or where $M$ is matrix
representing such a map). The output is the map
$$
E\to S
$$
sending each basis element to the corresponding $b\times b$ minor of $f$ (or $M$).
Example
S=ZZ/101[x,y,z];
A=labeledModule(S^2);
B=labeledModule(S^{3:-2});
M=matrix{{x^2,x*y,y^2},{y^2,y*z,z^2}}
f=map(A,B,M);
E=(exteriorPower(2,B))**(exteriorPower(2,A))
minorsMap(f,E)
minorsMap(M,E)
SeeAlso
///
doc ///
Key
(tensor, LabeledModule, LabeledModule)
Headline
creates the tensor product of two labeled modules, as a labeled module
Usage
tensor(F,E)
Inputs
F: LabeledModule
E: LabeledModule
Outputs
: LabeledModule
Description
Text
This {\tt tensor(F,E)} is the same as {\tt tensorProduct(F,E)}. See
@TO tensorProduct@ for more details.
Example
S=ZZ/101[x,y,z];
F=labeledModule(S^2);
E=labeledModule(S^3);
G=tensor(F,E)
basisList G
SeeAlso
///
doc ///
Key
(tensor, LabeledModuleMap, LabeledModuleMap)
Headline
creates the tensor product of two maps of labeled modules, as a map of labeled module
Usage
tensor(f,g)
Inputs
f: LabeledModuleMap
g: LabeledModuleMap
Outputs
: LabeledModuleMap
Description
Text
If $f: A\to B$ and $g: C\to D$ are maps of labeled modules, then {\tt tensor(f,g)}
is the map of labeled modules
$$
f\otimes g: A\otimes C \to B\otimes D.
$$
Example
S=ZZ/101[x,y,z];
A=labeledModule(S^2);
B=labeledModule(S^3);
C=labeledModule(S^3);
D=labeledModule(S^{2:-1});
f=map(A,B,{{1,1,1},{0,3,5}})
g=map(C,D,{{x,y},{0,z},{y,0}})
tensor(f,g)
SeeAlso
///
///
print docTemplate
///
-*beginDocumentation()
undocumented { (net, LabeledModule), (net, LabeledModuleMap) }
Key => (ring, LabeledModule),
Key => (module, LabeledModule),
Key => (rank, LabeledModule),
Key => (matrix, LabeledModuleMap),
Key => (ring, LabeledModuleMap),
Key => (rank, LabeledModuleMap),
Key => (transpose, LabeledModuleMap),
Key => (symbol ==, LabeledModule, LabeledModule),
Key => {(symbol **, LabeledModule, LabeledModule),
(tensor,LabeledModule, LabeledModule)},
Key => {(tensor, LabeledModuleMap, LabeledModuleMap),
(symbol **, LabeledModuleMap, LabeledModuleMap)},
Key => (symbol *, LabeledModuleMap, LabeledModuleMap),
*-
--------------------------------------------------------------------------------
-- TEST
--------------------------------------------------------------------------------
-- test 0
TEST ///
S = ZZ/101[a,b,c];
E = labeledModule S^4
assert(basisList E == apply(4, i -> i))
assert(underlyingModules E == {})
assert(module E == S^4)
assert(fromOrdinal(2,E) == 2)
assert(toOrdinal(1,E) == 1)
F = labeledModule S
assert(basisList F == {{}})
assert(rank F == 1)
F' = labeledModule S^0
assert(basisList F' == {})
///
-- test 1
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^4
E = exteriorPower(2,F)
assert(rank E == 6)
assert(#basisList E == 6)
assert(exteriorPower(0,E) == labeledModule S)
assert(basisList exteriorPower(1,E) == apply(basisList E, i -> {i}))
assert(exteriorPower(-1,E) == labeledModule S^0)
E' = exteriorPower(2,E)
assert(#basisList E' == 15)
assert(#multiSubsets(basisList E,2) == binomial(6+2-1,2))
assert(#multiSubsets({0,1,2},2) == binomial(3+2-1,2))
///
-- test 2
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^4
E = symmetricPower(2,F)
assert(#basisList E == binomial(4+2-1,2))
assert(toOrdinal({0,3},E) == 6)
assert(fromOrdinal(7,E) == {1,3})
assert(symmetricPower(0,E) == labeledModule S)
assert(symmetricPower(-1,E) == labeledModule S^0)
assert(basisList symmetricPower(1,E) == apply(basisList E, i -> {i}))
///
-- test 3
TEST ///
S = ZZ/101[a,b,c];
F1 = labeledModule S^2
F2 = labeledModule S^3
F3 = labeledModule S^5
assert(tensor(F1,F2) == F1 ** F2)
E = tensorProduct {F1,F2,F3}
assert(rank E == product {rank F1, rank F2, rank F3})
assert(basisList E == sort basisList E)
assert((underlyingModules E)#0 == F1)
assert((underlyingModules E)#1 == F2)
assert((underlyingModules E)#2 == F3)
F = tensorProduct {labeledModule S^1, F2}
assert(F != F2)
assert((underlyingModules F)#0 == labeledModule S^1)
assert((underlyingModules F)#1 == F2)
assert(toOrdinal({0,1}, F) == 1)
assert(fromOrdinal(5,E) == {0,1,0})
///
-- test 4
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^2
assert(matrix symmetricMultiplication(F,1,1) == matrix{
{1_S,0,0,0},{0,1,1,0},{0,0,0,1}})
assert(rank symmetricMultiplication(F,2,1) == 4)
assert(matrix symmetricMultiplication(F,2,0) == id_(S^3))
///
-- test 5
TEST ///
S = ZZ/101[a,b,c];
F2 = labeledModule S^2;
F3 = labeledModule S^3;
F5 = labeledModule S^5;
F30 = tensorProduct {F2,F3,F5}
assert(rank cauchyMap(2,F30) == 90)
F2' = tensorProduct {F2, labeledModule S^1}
assert(matrix cauchyMap(1,F2') == id_(S^2))
///
--test 6
TEST///
kk=ZZ/101;
f=flattenedGenericTensor({4,1,2,1},kk);
BD=new BettiTally from {(0,{0},0) => 2, (1,{1},1) => 4, (2,{3},3) => 4, (3,{4},4) => 2};
assert(betti res coker matrix tensorComplex1 f==BD)
f=flattenedESTensor({4,1,2,1},kk);
assert(betti res coker matrix tensorComplex1 f==BD)
assert(betti pureResTC({0,1,3,4},kk)==BD)
assert(betti pureResES({0,1,3,4},kk)==BD)
f = flattenedGenericTensor({3,3},kk)
assert( (betti res coker tensorComplex1 f) === new BettiTally from {(1,{3},3) => 1, (0,{0},0) => 1} )
f = flattenedGenericTensor({3,2,2},kk)
assert(hyperdeterminant f == det matrix tensorComplex1 (f,{0,1,2}))
f = flattenedGenericTensor({3,3},kk)
assert(hyperdeterminant f == det matrix tensorComplex1 (f,{0,1}))
assert(hyperdeterminant f == det matrix tensorComplex1 (f,{0,0}))
f=flattenedESTensor({3,2,2},kk)
assert(hyperdeterminant f == det matrix tensorComplex1 (f,{0,1,2}))
///
--add further tests!! esp of the non balanced case.
--
end
--------------------------------------------------------------------------------
-- SCRATCH SPACE
--------------------------------------------------------------------------------
restart
uninstallPackage "TensorComplexes"
-- path=append(path,"~/IMA-2011/TensorComplexes/")
installPackage "TensorComplexes"
viewHelp TensorComplexes
check "TensorComplexes"
kk=ZZ/101;
f = flattenedGenericTensor({4,2,2,2},kk)
hyperdeterminantMatrix(f)
betti res coker tensorComplex1 (f, {0,0})
betti pureResTC({0,1,3,4,6,7},ZZ/101)
hyperdeterminant flattenedESTensor({5,3,2,2},ZZ/2)
kk = ZZ/101;
f=flattenedGenericTensor({7,2,2},kk)
S=ring f;
p1=tensorComplex1(f,{0,1,4});
I=ann coker p1;
f=flattenedESTensor({7,1,2,1,2,1},kk)
betti res coker tensorComplex1 f
f = flattenedGenericTensor({6,2},ZZ/32003)
betti res coker tensorComplex1(f,{0,0})
f = flattenedGenericTensor({3},kk)
betti res coker tensorComplex1 f
g = tensorComplex1 f
betti res coker matrix g
cokermatrix f
restart
uninstallPackage "TensorComplexes"
installPackage "TensorComplexes"
viewHelp "TensorComplexes"
check "TensorComplexes"
--Erman's conjecture (proven by Eisenbud and Schreyer): If the regularity of one of the ES modules
--is r, then its annihilator is exactly m^(r+1).
--This is verified in 3 variables for r<=4 with the code below
--for d= 4,5,6, and values up to 0,2,3,7 for d=7.
--the call
--pureResES1({0,2,4,7},ZZ/101);
--or even
--pureResES1({0,2,4,7},ZZ/101, MonSize=>8);
--exhausts the memory of my laptop instantly!
restart
loadPackage ("TensorComplexes", Reload => true)
d=7, n = 3
LL = subsets(toList(1..d-1),n-1)
time scan(LL, L1 -> (
L := {0}|L1|{d};
time f := pureResES1(L,ZZ/101,MonSize =>8);
print (rank target f, L);
print betti ann(coker (f)
-- **coker(gens ((ideal vars ring f)^(d-n+1)))
)
))
|