File: TensorComplexes.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (2216 lines) | stat: -rw-r--r-- 69,974 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
-- -*- coding: utf-8 -*-
--------------------------------------------------------------------------------
-- Copyright 2011  David Eisenbud, Daniel Erman, Gregory G. Smith and Dumitru Stamate
--
-- This program is free software: you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free Software
-- Foundation, either version 3 of the License, or (at your option) any later
-- version.
--
-- This program is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-- FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
-- details.
--
-- You should have received a copy of the GNU General Public License along with
-- this program.  If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------
-*Not needed now, but would be nice:
kk as an optional second argument
handling of rings (out put of pairs, so that ring name can be set)
facility for making tensors
exterior multiplication and contraction
Schur Functors
functoriality 
a code bettiTC that would tell you the Betti table of a tensor complex w/o computing the resolution
links to arXiv papers in the documentation
cleaning up tensorComplex1.  for instance, the balanced case should call the 
   non-balanced case, and compute w internally.
*-


newPackage(
  "TensorComplexes",
  AuxiliaryFiles => false,
  Version => "1.0",
  Date => "29 July 2011",
  Authors => {
    {	 
      Name => "David Eisenbud", 
      Email => "de@msri.org", 
      HomePage => "http://www.msri.org/~de/"},
    {
      Name => "Daniel Erman", 
      Email => "derman@math.stanford.edu", 
      HomePage => "http://math.stanford.edu/~derman/"},	     
    {
      Name => "Gregory G. Smith", 
      Email => "ggsmith@mast.queensu.ca", 
      HomePage => "http://www.mast.queensu.ca/~ggsmith"},
    {
      Name => "Dumitru Stamate", 
      Email => "dumitru.stamate@fmi.unibuc.ro"}},
  Headline => "multilinear algebra with labeled bases",
  Keywords => {"Commutative Algebra"},
  DebuggingMode => false
  )

export {
  "LabeledModule",
  "LabeledModuleMap",
  "labeledModule",
  "underlyingModules",
  "basisList",
  "fromOrdinal",
  "toOrdinal",
  "multiSubsets",
  "tensorProduct",
  "symmetricMultiplication",
  "cauchyMap",
  "traceMap",
  "flattenedGenericTensor",
  "minorsMap",
  "tensorComplex1",
  "flattenedESTensor",
  "MonSize",
  "hyperdeterminant",
  "hyperdeterminantMatrix",
  "pureResTC1",
  "pureResTC",
  "pureResES1",
  "pureResES"
  }

--------------------------------------------------------------------------------
-- CODE
--------------------------------------------------------------------------------
-- constructing labeled modules
LabeledModule = new Type of HashTable
LabeledModule.synonym = "free module with labeled basis"

labeledModule = method(TypicalValue => LabeledModule)
labeledModule Module := M -> (
  if not isFreeModule M then error "expected a free module";
  new LabeledModule from {
    symbol module => M,
    symbol underlyingModules => {},
    symbol basisList => apply(rank M, i -> i),
    symbol cache => new CacheTable})
labeledModule Ring := S -> (
  new LabeledModule from {
    symbol module => S^1,
    symbol underlyingModules => {},
    symbol basisList => {{}},
    symbol cache => new CacheTable})

net LabeledModule := E -> net module E
LabeledModule#{Standard,AfterPrint} = 
LabeledModule#{Standard,AfterNoPrint} = E -> (
  << endl;				  -- double space
  << concatenate(interpreterDepth:"o") << lineNumber << " : free ";
  << ring E << "-module with labeled basis" << endl;)

module LabeledModule := E -> E.module
ring LabeledModule := E -> ring module E
rank LabeledModule := E -> rank module E
underlyingModules = method(TypicalValue => List)
underlyingModules LabeledModule := E -> E.underlyingModules
basisList = method(TypicalValue => List)
basisList LabeledModule := E -> E.basisList
fromOrdinal = method(TypicalValue => Thing)
fromOrdinal(ZZ, LabeledModule) := (i, E) -> (basisList E)#i
toOrdinal = method(TypicalValue => ZZ)
toOrdinal(Thing, LabeledModule) := (l, E) -> (
  position(basisList E, j -> j === l))

LabeledModule == LabeledModule := (E,F) -> (
  module E === module F 
  and underlyingModules E === underlyingModules F
  and basisList E === basisList F)

exteriorPower (ZZ, LabeledModule) := options -> (d,E) -> (
  S := ring E;
  r := rank E;
  if d < 0 or d > r then labeledModule S^0
  else if d === 0 then labeledModule S
  else new LabeledModule from {
      symbol module => S^(binomial(rank E, d)),
      symbol underlyingModules => {E},
      symbol basisList => subsets(basisList E, d),
      symbol cache => new CacheTable})

tomultisubset = x -> apply(#x, i -> x#i - i)
multiSubsets = method(TypicalValue => List)
multiSubsets (ZZ,ZZ) := (n,d) -> apply(subsets(n+d-1,d), tomultisubset)
multiSubsets (List,ZZ) := (L,d) -> apply(multiSubsets(#L,d), i -> L_i)

symmetricPower (ZZ, LabeledModule) := (d,E) -> (
  S := ring E;
  if d < 0 then labeledModule S^0
  else if d === 0 then labeledModule S
  else new LabeledModule from {
    symbol module => (ring E)^(binomial(rank E + d - 1, d)),
    symbol underlyingModules => {E},
    symbol basisList => multiSubsets(basisList E, d),
    symbol cache => new CacheTable})

productList = L -> (
  --L is supposed to be a list of lists
  n := #L;
  if n === 0 then {}
  else if n === 1 then apply(L#0, i -> {i})
  else if n === 2 then flatten table(L#0, L#1, (i,j) -> {i} | {j})
  else flatten table(productList drop(L,-1), last L, (i,j) -> i | {j}))

-- This code probably belongs in the core of Macaulay2
tensorProduct = method(Dispatch => Thing)
tensorProduct List := args -> tensorProduct toSequence args
tensorProduct Sequence := args -> (
  if #args === 0 then  error "expected more than 0 arguments"; -- note: can't return, since we don't know the ring!
  y := youngest args;
  key := (tensorProduct, args);
  if y =!= null and y#?key then y#key else (
    type := apply(args, class);
    if not same type then error "incompatible objects in tensor product";
    type = first type;
    meth := lookup(symbol tensorProduct, type);
    if meth === null then error "no method for tensor product";
    S := meth args;
    if y =!= null then y#key = S;
    S))

LabeledModule.tensorProduct = T -> (
  L := toList T;
  num := #L;
  if num < 0 then error "expected a nonempty list";
  S := ring L#0;
  if num === 0 then labeledModule S
  else (
    if any(L, l -> ring l =!= S) then error "expected modules over the same ring";
    new LabeledModule from {
      symbol module => S^(product apply(L, l -> rank l)),
      symbol underlyingModules => L,
      symbol basisList => productList apply(L, l -> basisList l),
      symbol cache => new CacheTable}))
LabeledModule ** LabeledModule := tensorProduct
tensor(LabeledModule, LabeledModule) := LabeledModule => {} >> o -> (F,E) -> F ** E

LabeledModuleMap = new Type of HashTable
LabeledModuleMap.synonym = "map of labeled modules"
ring LabeledModuleMap := f->f.ring
source LabeledModuleMap := f->f.source
target LabeledModuleMap := f->f.target
matrix LabeledModuleMap := o-> f->f.matrix




map(LabeledModule, LabeledModule, Matrix) := o-> (E,F,f) ->
new LabeledModuleMap from {
  symbol ring => ring F,
  symbol source => F,
  symbol target => E,
  symbol matrix => map(module E,module F,f)}
map(LabeledModule, LabeledModule, Function) := o-> (E,F,f) ->
new LabeledModuleMap from {
  symbol ring => ring F,
  symbol source => F,
  symbol target => E,
  symbol matrix => map(module E,module F,f)}
map(LabeledModule, LabeledModule, List) := o -> (E,F,L) ->
new LabeledModuleMap from {
  symbol ring => ring F,
  symbol source => F,
  symbol target => E,
  symbol matrix => map(module E,module F,L)}
map(LabeledModule,LabeledModule,ZZ) := LabeledModuleMap => o -> 
(E,F,i) -> map(E,F,matrix map(module E, module F, i))
map(LabeledModule,LabeledModule,LabeledModuleMap) := LabeledModuleMap => o -> 
(E,F,f) -> map(E,F, matrix f)

net LabeledModuleMap := g -> net matrix g
LabeledModuleMap#{Standard,AfterPrint} = 
LabeledModuleMap#{Standard,AfterNoPrint} = f -> (
  << endl;				  -- double space
  << concatenate(interpreterDepth:"o") << lineNumber << " : Matrix";
  << " " << target f << " <--- " << source f;
  << endl;)

coker LabeledModuleMap := Module => f -> coker matrix f
rank LabeledModuleMap := ZZ => f -> rank matrix f
transpose LabeledModuleMap := LabeledModuleMap => f ->
map(source f,target f, transpose matrix f)

--want a betti command!
--betti(LabeledModuleMap) := HashTable => o-> f -> betti map(target f, source f, matrix f)
LabeledModule#id = E -> map(E,E,1)

LabeledModuleMap * LabeledModuleMap := LabeledModuleMap => (f,g) -> 
map(target f, source g, matrix f * matrix g)

tensor(LabeledModuleMap, LabeledModuleMap) := LabeledModuleMap => {} >> o -> (m, n) -> (
    map((target m)**(target n), (source m)**(source n), (matrix m)**(matrix n)))
LabeledModuleMap ** LabeledModuleMap := LabeledModuleMap => (f,g) -> tensor(f,g)

LabeledModuleMap.tensorProduct = T -> fold(tensor, T)
     
traceMap = method()
traceMap LabeledModule := LabeledModuleMap => E -> (
  S := ring E;
  T := E ** E;
  map(T, labeledModule S^1, (i,j) -> (
      I := fromOrdinal(i,T);
      if I_0 == I_1 then 1_S else 0_S)))

-*multisetToMonomial = (l,m) -> (
  seen := new MutableHashTable;
  scan(m, i -> if seen#?i then seen#i = seen#i +1 else seen#i = 1);
  apply(l, i -> if seen#?i then seen#i else 0))
monomialToMultiset = (l,e) -> flatten apply(#e, i -> toList(e#i:l#i))
*-


symmetricMultiplication = method(TypicalValue => LabeledModuleMap)
symmetricMultiplication (LabeledModule,ZZ,ZZ) := (F,d,e) -> (
  --make the map Sym^d(F)\otimes Sym^e F \to Sym^(d+e) F
  --Caveat: for large examples it would probably be better to make this as a sparse matrix!
  S := ring F;
  Sd := symmetricPower(d,F);
  Se := symmetricPower(e,F);
  Sde := symmetricPower(d+e,F);
  SdSe := tensorProduct {Sd,Se};
  map(Sde,SdSe, 
    (i,j) -> if fromOrdinal (i,Sde) == sort flatten fromOrdinal(j, SdSe) 
    then 1_S else 0_S))

cauchyMap = method(TypicalValue => LabeledModuleMap)
cauchyMap (ZZ, LabeledModule) := (b,E) -> (
  sour := exteriorPower(b,E);
  L := underlyingModules E;
  L10 := {exteriorPower(b,L#0)};
  L11 := apply(#L-1, j -> symmetricPower(b,L#(j+1)));
  L = L10 | L11;
  targ := tensorProduct L;
  M := mutableMatrix(ring E, rank targ, rank sour);
  local j;
  for i in basisList sour do (
    j = transpose i;
    if j#0 == unique j#0 then (
      j = apply(j, l -> sort l);
      M_(toOrdinal(j,targ), toOrdinal(i,sour)) = 1));
  map(targ, sour, matrix M))

flattenedGenericTensor = method()
flattenedGenericTensor (List, Ring) := LabeledModuleMap => (L,kk)->(
  --make ring of generic tensor
  if #L === 0 then error "expected a nonempty list";
  inds := productList apply(#L, i -> toList(0..L#i-1));
  x := symbol x;
  vrbls := apply(inds,i -> x_(toSequence i));
  local S;
  if #L === 1 then S=kk[x_0..x_(L_0-1)] 
  else S = kk[vrbls];
  --make generic tensor (flattened)
  Blist := apply(#L, i->labeledModule S^(L_i));
  --B = tensor product of all but Blist_0
  if #L === 1 then map(labeledModule S,Blist_0, vars S)
  else(
    B := tensorProduct apply(#L-1, i -> Blist_(i+1));     
    map(B, Blist_0, 
      (i,j) -> x_(toSequence({fromOrdinal(j, Blist_0)}| fromOrdinal(i, B))))))

minorsMap = method()
-- Since we may not need the "full" minors map, we may be able
-- to speed up this method.
minorsMap(Matrix, LabeledModule):= LabeledModuleMap => (f,E) -> (
  --Assumes that E has the form 
  --E = wedge^b((source f)^*) ** wedge^b(target f)
  --where source f and target f are labeled free modules.
  S := ring f;
  b := #((basisList E)_0_0);
  if b != #((basisList E)_0_1) or #((basisList E)_0) != 2
  then error "E doesn't have the right format";
  J := basisList E;
  sour := (underlyingModules((underlyingModules E)_0))_0;
  tar := (underlyingModules((underlyingModules E)_1))_0;
  map(labeledModule S, E, (i,j)-> (
      p := J_j;
      det submatrix(f, apply(p_1, k-> toOrdinal(k, tar)),
	apply(p_0, k-> toOrdinal(k, sour))))))

minorsMap(LabeledModuleMap, LabeledModule) := LabeledModuleMap => (f,E) ->
     minorsMap(matrix f, E)


isBalanced = f-> rank source f == sum ((underlyingModules target f)/rank)

tensorComplex1 = method()


-*
This makes the first map of a tensor complex, at least when w satisfies a somewhat
technical condition that is spelled out in the documentation file.  Eventually,
if possible, we would like to allow w to be an arbitrary weight vector.  But we don't
know how to program the map explicitly in that case.

The notation in the code follows the notation from the Berkesch-Erman-Kummini-Sam paper
"Tensor Complexes".

We start with a ring S and labeled free modules A and B_i for i=1..n.
The input to the code is a map of labeled free modules
 f: A^* --> B_1\otimes B_2 \otimes ... \otimes B_n,
 along with a weight vector w.  We think of f as the flattening of a tensor
 f\in A\otimes B_1\otimes ... \otimes B_n.

Based on f and w, we could define 
a degree sequence d via the formula for d'(w) given in Notation 5.2 of the BEKS paper.  However,
since we only need d1 in the construction, we only define that number in the code.
The output map will go from a module F1 generated in degree d1 to a module F0 generated in
degree 0.

We also define r0 and r1 following the formulas given in Notation 5.2 of BEKS.  By
construction r0 is always 0.  Our restriction on w essentially amounts to the condition
that r1 must equal 1 or 2.  The code thus gives an error message when r1<1 or r1>2.

The desired map will be constructed as a composite g5 * g4 * g3 * g2 * g1 * g0 from
F1->G1->G2->G3->G4->G5->F0.  This follows the construction outlined in Section 4 of BEKS.

The modules are defined as follows.  The definition of F1 and F0 can be found in Theorem 5.3
of BEKS.  Since we are working with labeled modules, we can identify a module with its dual
and we do this repeatedly.  In particular, we identify divided powers with symmetric powers.
Since we never use the divided power multiplication, this does not cause problems.

We give the full description in the case that r1=2.  When r=1, there are some minor variations,
starting with G3.

F1= wedge^d1 A ** \otimes_{j=1}^{r1-1} wedge^{b_j} B_j ** \otimes_{j=r1}^n S^{w_j-d1} B_j

G1= the tensor product of two modules, one of which is F1, the other of which is the image of a trace map
  =[[\otimes_{j=r1}^n S^d1 B_j]**[\otimes_{j=r1}^n S^d1 B_j]^*]**F1
  =[[\otimes_{j=r1}^n S^d1 B_j]**[\otimes_{j=r1}^n S^d1 B_j]^*]
  [\otimes_{j ** wedge^d1 A ** \otimes_{j=1}^{r1-1} wedge^{b_j} B_j ** \otimes_{j=r1}^n S^{w_j-d1} B_j]
  
G2=same as G1 but dropping all parentheses in the tensor product.  so G2 is the tensor product
  of 2*(n-r1+1)+(n+1) modules.


G3=same as G2, but we reorder the factors.  Recall that we are covering the case r1==2
  In this case d1=b1 and G3 is the tensor product of three factors
G3 =[wedge^d1 A] ** [wedge^d1 B_1 ** S^d1 B_2 ** S^d1 B_3 ** ... ** S^d1 B_n] **
    [S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]

G4=[wedge^d1 A] ** [wedge^d1 (B_1 ** B_2 ** ... B_n)] **
    [S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]

G5=same as G4, but altering parentheses so that G5 is now a tensor product of two modules
  =[wedge^d1 A ** wedge^d1 (B_1 ** B_2 ** ... B_n)] **
    [S^d1 B_2 ** S^{w_2-d1} B_2 ** S^d1 B_3 ** S^{w_3-d1} B_3 ** ... ** S^d1 B_n ** S^{w_n-d1} B_n]

F0=S ** \otimes_{i=1}^n S^{w_j} Bj]

Now we discuss the various maps gi.  Note that all maps are degree 0 maps, except for g5.

g0: we define a trace map 
    trMap: S--> [\otimes_{j=r1}^n S^d1 B_j] ** [\otimes_{j=r1}^n S^d1 B_j]^*
    then we define g0=trMap**id_(F1).

g1: is given by an identity matrix, as the only difference between G1 and G2 is how we
    label the bases.

g2: is a permutation matrix (and thus an isomorphism) obtained by simply 
    reordering the basis of G2.

g3: Repeated application of Cauchy decomposition provide a surjection 
    wedge^d1(B_1**..**B_n)-->wedge^d1 B_1** S^d1 B_2 ** S^d1 B_3 ** .. S^d1 B_n.
    we label the dual of this map by dualCauchyMap.
    then g3 is the tensor product of two identity maps and dualCauchyMap.

g4: is given by an identity matrix, and the only difference between G4 and G5 is how
    we label the bases.

g5: The source of G5 is the tensor product of two modules.
    We define minMap on the first factor of G5: 
       minMap: [wedge^d1 A ** wedge^d1 (B_1 ** B_2 ** ... B_n)] -> S
    by sending a a basis element to the corresponding minor of f.  This is the only
    of the maps that is not degree 0.
    We then define symMultMap on the second factor of G5:
       symMultMap: [S^d1 B_2 ** S^{w_2-d1} B_2 ** ... ] -> [S^{w_2} B_2 ** ...]
    by tensoring together a bunch of symmetric multiplication maps.

NOTE: When n=0 or n=1 (i.e. when f represents a 1-tensor or a 2-tensor), the main construction
presents some issues having to do with tensor products over empty sets.  
So we simply treat those cases separately in the code.
*-



tensorComplex1 (LabeledModuleMap,List) := LabeledModuleMap => (f,w) -> (
  -- NOTE: local variables names following the notation from the
  -- Berkesch-Erman-Kummini-Sam "Tensor Complexes" paper
  -- 
  -- f: A --> B1** B2** ... Bn
  -- makes the map F0 <- F1 as above.
  -- w = (0,w1,...).  w must satisfy some technical conditions that are checked below.
  -- These technical conditions also appear in the documentation node for this function.
  if not w_0 == 0 and w_1 >=0 and min apply(toList(2..#w), i-> w_i-w_(i-1)) > 0 then 
      error "w not of the form (0,non-neg,increasing)";
  
  S := ring f;  
  B := {S^0} | underlyingModules target f;
  A := source f;
  a := rank A;
  n := #B-1;
  if #w != n+1 then error"weight vector has wrong length";
  b := B / rank; -- {0, b1, b2,..,bn}
  
  d1 := if w_1>0 then 1 else b_1;
  r1 := # select(w, wj -> wj < d1);
  if r1>2 then error "r1>2 is a case we can't handle";
  if n === 0 or n===1 and r1 ===1 then return f;
  if n === 1 and r1 === 2
      then return map(exteriorPower(b_1,B_1),exteriorPower(b_1,A)**labeledModule(S^{ -d1}), gens minors(b_1,matrix f));

    F1 := tensorProduct({exteriorPower(d1,A)}|
	 apply(toList(1..r1-1),j-> exteriorPower(b_j,B_j)) | -- r1 = 1 or 2
      apply(toList(r1..n), j-> symmetricPower(w_j-d1,B_j)));
    F0 := tensorProduct apply(n, j-> symmetricPower(w_(j+1), B_(j+1)));
    --  F1 is the source of the output map, and F0 is the target.
    trMap := traceMap tensorProduct apply(toList(r1..n), 
      j -> symmetricPower(d1,B_j));
    G1 := tensorProduct(target trMap, F1);
    g0 := map(G1, F1, trMap ** id_F1);
    G1factors := flatten(
      ((underlyingModules target trMap) | {F1}) / underlyingModules );
    -- G2 and G1 are isomorphic as free modules with ordered basis but different
    -- as labeled modules.  G2 is obtained from G1 by dropping parentheses in 
    -- the tensor product.
    G2 := tensorProduct G1factors;
    -- g1 is the isomorphism induced by dropping all parentheses in the tensor product.
    -- Due to indexing conventions, matrix(g1) is just an identity matrix.
    g1 := map(G2, G1, id_(S^(rank G1)));
    perm := {};
    if r1==2 then perm = join({2*n-2, 2*n-1}, toList(0..n-2), 
      flatten apply(n-1, j -> {j+n-1, j+2*n}))
    else  perm ={2*n}|toList(0..n-1)|flatten apply(n, j -> {j+n, j+2*n+1});
    G3factors := G1factors_perm;
    G3 := tensorProduct G3factors;
    -- G3 is obtained from G2 by reordering the factors in the tensor product.
    -- g2 is the isomorphism induced by reordering the factors of the tensor product.
    -- The reordering is given by the permutation 'perm'.  
    permMatrix := mutableMatrix(S, rank G3, rank G2);
    for J in basisList G2 do permMatrix_(toOrdinal(J_perm,G3),toOrdinal(J,G2)) = 1;
    g2 := map(G3, G2, matrix permMatrix);
    --  G3=G3a**G3b**G3c. The map g3: G3->G4 is defined as the tensor product of 3 maps.
    G3a := G3factors_0;
    G3b := tensorProduct G3factors_(toList(1..n));
    G3c := tensorProduct G3factors_(toList(n+1..#G3factors-1));
    prodB := tensorProduct apply(n,i -> B_(i+1));  
    -- G4=G3a**G4b**G3c.
    G4b := exteriorPower(d1, prodB);
    G4 := tensorProduct({G3a,G4b,G3c});
    dualCauchyMap := map (G4b, G3b, transpose cauchyMap(d1, prodB));
    g3 := id_(G3a) ** dualCauchyMap ** id_(G3c); 
    -- G5 is obtained from G4 by adding parentheses in the tensor product.
    --  the map g4: G4->G5 is simply represented by an identity matrix.
    G5 := (G3a**G4b)**G3c;
    g4 := map(G5,G4,matrix id_(G4));
    symMultMap := map(F0, G3c, tensorProduct apply(toList(r1..n), 
      	j -> symmetricMultiplication(B_j,d1,w_j-d1)));
    minMap := minorsMap(f, tensorProduct(G3a, G4b));
    g5 := minMap ** symMultMap;
    --  the source of minMap is (G3a**G4b).  the source of symMultMap is G3c.
    map(F0, F1 ** labeledModule S^{ -d1}, g5 * g4 * g3 * g2 * g1 * g0))


--  When the input for tensorComplex1 is a balanced tensor, a weight vector is unnecessary.
--  Recall that a tensor of format a x b1 x b2 x ... x bn is balanced if a=b1+b2+...+bn.
--  See Section 3 of BEKS.

tensorComplex1 LabeledModuleMap := LabeledModuleMap => f -> (
  -- The output is the first map F0 <- F1 of the balanced tensor complex.
  -- If f is not balanced this outputs an error.  
  -- If f is balanced, then this computes the appropriate weight w, and calls the other
  -- version of this method.
  if not isBalanced f then error "The map f is not a balanced tensor. Need to add a weight vector as a second input.";
  S := ring f;
  B := {S^0} | underlyingModules target f;
  n := #B-1;
  b := B/rank; --- {0,b1,b2,..,bn}
  w := {0}|accumulate(plus,{0}|b_(toList(0..#b-2)));  --{0,0,b1,b1+b2,...,b1+..+b(n-1)}
  tensorComplex1(f,w)
  )





-- When f is a balanced tensor, then this reproduces the tensor
-- used by Eisenbud and Schreyer in their original construction of
-- pure resolutions.  For instance tensorComplex f will equal to their
-- pure resolution.  However, this function works even in the nonbalanced
-- case.  In that case, it produces the `natural' analogue of their tensor.

flattenedESTensor = method(Options=>{MonSize => 32})
flattenedESTensor (List, Ring) := LabeledModuleMap => o-> (L,kk)->(
  --make ring of generic tensor
  if #L === 0 then error "expected a nonempty list";
  if #L === 1 then error "expected a balanced tensor";
  n:=#L-1;
  x:=symbol x;
  S:=kk[x_0..x_(n-1), MonomialSize=>o.MonSize];
  Blist := apply(#L, i->labeledModule S^(L_i));
  --B = tensor product of all but Blist_0
  B := tensorProduct apply(#L-1, i -> Blist_(i+1));     
  map(B, Blist_0, 
      (i,j) -> if 0<=j-sum fromOrdinal(i,B) then if j-sum fromOrdinal(i,B)<n 
      then x_(j-sum fromOrdinal(i,B)) else 0 else 0)
 )
-*
flattenedESTensor = method()
flattenedESTensor (List, Ring) := LabeledModuleMap => (L,kk)->(
  --make ring of generic tensor
  if #L === 0 then error "expected a nonempty list";
  if #L === 1 then error "expected a balanced tensor";
  n:=#L-1;
  x:=symbol x;
  S:=kk[x_0..x_(n-1)];
  Blist := apply(#L, i->labeledModule S^(L_i));
  --B = tensor product of all but Blist_0
  B := tensorProduct apply(#L-1, i -> Blist_(i+1));     
  map(B, Blist_0, 
      (i,j) -> if 0<=j-sum fromOrdinal(i,B) then if j-sum fromOrdinal(i,B)<n 
      then x_(j-sum fromOrdinal(i,B)) else 0 else 0)
 )
*-


hyperdeterminant = method()
hyperdeterminant LabeledModuleMap := f -> (
     --hyperdeterminant of a boundaryformat tensor f
     --check boundary format
     b := apply(underlyingModules target f, M -> rank M);
     if not rank source f == 1 + sum b - #b then
     	  error"not boundary format!";
     w := {0,1}|apply(toList(2..#b), i-> sum(toList(0..i-2), j-> b_j)-(i-2));
     det matrix tensorComplex1 (f,w))

-- Gives a matrix of linear forms whose determinant equals the desired hyperdeterminant.
-- This only works for hyperdeterminants of boundary format.
hyperdeterminantMatrix = method()
hyperdeterminantMatrix LabeledModuleMap := f -> (
     --check boundary format
     b := apply(underlyingModules target f, M -> rank M);
     if not rank source f == 1 + sum b - #b then
     	  error"not boundary format!";
     w := {0,1}|apply(toList(2..#b), i-> sum(toList(0..i-2), j-> b_j)-(i-2));
     matrix tensorComplex1 (f,w))

-- There is a bijection between degree sequences and balanced tensor complexes.
-- This code takes a degree sequence to the first map of the corresponding
-- balanced tensor complex.
pureResTC1=method()     
pureResTC1 (List,Ring) := LabeledModuleMap =>(d,kk)->(
     b := apply(#d-1,i-> d_(i+1)-d_i);
     if min b<=0 then error"d is not strictly increasing";
     a := d_(#b) - d_0;
     f := flattenedGenericTensor({a}|b,kk);
     tensorComplex1(f)
     )


pureResTC=method()
pureResTC (List,Ring):=ChainComplex => (d,kk)->(
     res coker matrix pureResTC1(d,kk)
     ) 


--  This code takes a degree sequence and a base field as an input, and
--  it outputs the first map of the Eisenbud-Schreyer pure resolution 
--  corresponding to that degree sequence.
pureResES1=method(Options =>{MonSize =>32})     
pureResES1 (List,Ring) := LabeledModuleMap => o -> (d,kk)->(
     b := apply(#d-1,i-> d_(i+1)-d_i);
     if min b<=0 then error"d is not strictly increasing";
     a := d_(#b) - d_0;
     f := flattenedESTensor({a}|b,kk,MonSize => o.MonSize);
     tensorComplex1(f)
     )

pureResES=method()
pureResES (List,Ring):=ChainComplex => (d,kk)->(
     res coker matrix pureResES1(d,kk)
     ) 

--------------------------------------------------------------------------------
-- DOCUMENTATION
--------------------------------------------------------------------------------
beginDocumentation()

doc ///
   Key 
      TensorComplexes
   Headline 
      multilinear algebra for the construction of tensor complexes
   Description
    Text
      A $b_1\times \cdots\times  b_n$ tensor with coefficients in a ring S may 
      be thought of as a multilinear linear form on 
      $X := Proj(Spec S \times \mathbb P^{b_1-1}\times \cdots \times \mathbb P^{b_n-1})$.
      (If $S$ is graded, we may replace $Spec S$ by $Proj S$.)
         
      This package provides a family of definitions around the notion of {\it LabeledModule} 
      that makes it convenient to manipulate complicated multilinear constructions with tensors. 
      We implement one such construction, that of Tensor Complexes, from the paper 
      ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors''
      of Berkesch, Erman, Kummini and Sam (BEKS), which extends the construction of 
      pure resolutions in the paper ``Betti numbers of graded modules and cohomology of vector bundles''
      of Eisenbud and Schreyer. This itself is an instance of the technique of ``collapsing homogeneous
      vector bundles'' developed by Kempf and described, for example, in the book ``Cohomology of
      vector bundles and syzygies'' of Weyman. 
      
      Tensor complexes specialize to several well-known constructions including: the Eagon-Northcott 
      and Buchsbaum-Rim complexes, and the others in this family described by Eisenbud and Buchsbaum 
      (see Eisenbud ``Commutative algebra with a view towards algebraic geometry'', A2.6), 
      and the {\it hyperdeterminants} of Weyman and Zelevinsky.
  
      A collection of $a$ tensors of type $b_1\times \dots \times b_n$ 
      may be regarded as a map $E := \mathcal O_X^a(-1,-1,\dots,-1) \to \mathcal O_X$ (with $X$ as above). 
      Equivalently, we may think of this as a single $a \times b_1 \times \cdots \times b_n$ tensor.
      
      One important construction made from such a collection of tensors is the Koszul complex 
      $$
      \mathbf K := \cdots \to \wedge^2 (\oplus_1^a O_X(-1,\dots, -1)) \to \oplus_1^a O_X(-1,\dots, -1)\to  O_X  \to 0.
      $$
      Let $\mathcal O_X(d, e_1,\dots e_n)$ be the tensor product of the pull-backs to $X$ 
      of the line bundles $\mathcal O_{\mathbb P^n}(d)$ and  $\mathcal O_{\mathbb P^{b_i-1}}(-1)$.  
      If we twist the Koszul complex by $O_X(0, -w_1, \dots -w_n)$ 
      and then push it forward to $Spec S$ we get the tensor complex 
      $F(\phi,w)$ of BEKS. 
      
      Each map $\partial_i$ in the tensor complex can be defined by
      a rather involved construct in multilinear algebra. This package implements the 
      construction of $\partial_1$ in the range of cases described explicitly in BEKS 
      (Sections 4 and 12).
      This range includes the hyperdeterminants of boundary format, 
      the construction of the first map of the pure resolutions of Eisenbud-Schreyer, 
      and the first map in most of the much larger family of generic pure resolutions of BEKS.
///

doc ///
   Key 
    tensorComplex1
    (tensorComplex1, LabeledModuleMap, List)
    (tensorComplex1, LabeledModuleMap)
   Headline
    computes the first map of the tensor complex
   Usage
    tensorComplex1(f,w)
    tensorComplex1 f
   Inputs
    f: LabeledModuleMap
    w: List 
       of ZZ
   Outputs
    : LabeledModuleMap
   Description
    Text
      Let $X := Proj(Spec S \times \mathbb P^{b_1-1}\times \cdots \times \mathbb P^{b_n-1})$,
      and let
      $$
      \mathbf K := \cdots \wedge^2 \oplus_1^a O_X(-1,\dots, -1) \to  O_X  \to 0
      $$
      be the Koszul complex of the multilinear forms corresponding to f, on $X$.
      The output of {\tt tensorComplex1(f,w)} is the first map of the complex obtained
      by pushing $\mathbf K \otimes {\mathcal O}_X(w_1,\dots,w_n)$ down to $Spec S$.

      This script implements the construction of tensor complexes from the paper 
      ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors''
      of Berkesch, Erman, Kummini and Sam (BEKS).
      
      The program requires that $f$ is a flattened tensor, 
      that is, a map $A \to B_1\otimes\cdots\otimes B_n$.
      Returns the first map in the tensor complex $F(f,w)$ of BEKS, requiring
      that $w$ satisfies:
      $$
      w_0 = 0, w_1 \geq 0, w_2 \geq w_1+b_1, \ {\rm and }\  w_i>w_{i-1} \ {\rm for }\ i\geq 2.
      $$
      
      When $rank A=\sum rank B_i$, that is, $L_0 = \sum_{i=1}^n L_i$ then
      we are in the ``balanced case'' discussed in Section 3 of BEKS. In
      this case giving a weight vector is unnecessary, and one can use the format
      {\tt tensorComplex1 f}.
      
      The example from section 12 of BEKS appears below.
      
    Example
      f = flattenedGenericTensor({4,2,2},ZZ/32003)
      S = ring f;
      g = tensorComplex1(f,{0,0,2})
      g1 = tensorComplex1 f
      betti matrix g
      betti matrix g1
      betti res coker g
    
    Text
      We can recover the Eagon-Northcott complex as follows. 
   
    Example
      f = flattenedGenericTensor({6,2}, ZZ/32003) 
      S = ring f;
      g = tensorComplex1(f,{0,0});
      transpose g
      betti res coker g
      betti eagonNorthcott matrix entries matrix f
      
    Text
      The following example is taken from the introduction to BEKS.
    
    Example
      f = flattenedGenericTensor({7,1,2,1,2,1},ZZ/32003);
      S = ring f;
      g = tensorComplex1 f;
      betti res coker g

    Text
      The input map need not be generic.
    
    Example
      S = QQ[x,y,z];
      F = labeledModule S^5
      G = tensorProduct(labeledModule S^2, labeledModule S^2)
      f = map(G,F, (i,j) -> random(1,S))
      g = tensorComplex1(f, {0,0,2});
      betti res coker g
      
   Caveat
     Unlike BEKS, this method does not work with arbitrary weight vectors {\tt w}.
      
   SeeAlso
    flattenedGenericTensor
    flattenedESTensor
    hyperdeterminant
    hyperdeterminantMatrix
///

doc ///
   Key 
     LabeledModule
   Headline 
     the class of free modules with a labeled basis
   Description
    Text
      A labeled module $F$ is a free module together with two additional pieces of data:
      a @TO basisList@ which corresponds to the basis of $F$, and
      a list of @TO underlyingModules@ which were used in the construction of $F$. The constructor
      @TO labeledModule@ can be used to construct a labeled module from a free module. The call
      {\tt labeledModule E}, where $E$ is a free module, returns a labeled module with @TO basisList@
      $\{1,\dots, rank E\}$ and @TO underlyingModules@ $\{E\}$.ß
      
      For example if $A,B$ are of type LabeledModule, then
      {\tt F=tensorProduct(A,B)} constructs the LabeledModule $F=A\otimes B$ with 
      @TO basisList@ equal to the list of pairs $\{a,b\}$ where $a$ belongs to the basis list
      of $A$ and $b$ belongs to the basis list of $b$. The list of @TO underlyingModules@ of $F$
      is $\{A,B\}$.
      
      Certain functors which are the identity in the category of modules are non-trivial
      isomorphisms in the category of labeled modules.  For example, if {\tt F} is a labeled
      module with basis list {\tt \{0,1\}} then {\tt tensorProduct F} is a labeled free module
      with basis list {\tt \{\{ 0\},\{ 1\}\} }.  Similarly, one must be careful when applying the functors
      @TO exteriorPower@ and @TO symmetricPower@.  For a ring $S$, the multiplicative unit 
      for tensor product is the rank 1 free $S$-module whose generator is labeled by {\tt \{\} }. 
      This is constructed by {\tt labeledModule S}.
///



doc ///
   Key 
     labeledModule
     (labeledModule,Module)
     (labeledModule,Ring)   
   Headline
     makes a labeled module     
   Usage
     labeledModule M
     labeledModule R
   Inputs
     M: Module
       which is free
     R: Ring  
   Outputs
     : LabeledModule
   Description
    Text
      This is the basic construction for a @TO LabeledModule@.  Given a free module $M$ of rank $r$,
      this constructs a labeled module with basis labeled by $\{0,..,r-1\}$ and
      no underlying modules.
    Example
      S = ZZ/101[a,b,c];
      E = labeledModule S^3
      basisList E
      underlyingModules E
      module E
      rank E
    
    Text
      For technical reasons, it is often convenient to construct a rank $1$ free module
      whose generator is labeled by the empty set. This is constructed by {\tt labeledModule S}.
      
      
    Example
      S = ZZ/101[a,b,c];
      F = labeledModule S
      basisList F
      underlyingModules F
      module F
      E = labeledModule S^1
      basisList E
      underlyingModules E 
///
doc ///
   Key 
    tensorProduct
   Headline
    tensor product of Modules and LabeledModules, Matrices, Maps and LabeledModuleMaps
   Usage
    tensorProduct L
    (tensorProduct List)
    (tensorProduct Sequence)
   Inputs
    L: List
     or @TO Sequence@ of objects of type @TO Matrix@, @TO Module@, @TO LabeledModule@ or @TO LabeledModuleMap@
   Outputs
    :Matrix
     or, in general, an object of the same type as the inputs.
   Description
    Text
     Forms the tensor product of the objects in the input list or sequence. 
     In the case where the inputs are of type @TO LabeledModule@, the output is a labeled module
     whose basis list is the set of tuples of elements of the basis lists of the input modules
    Example
     S = ZZ/101[x,y]
     M = labeledModule(S^4)
     basisList M
     E = exteriorPower(2,M)
     basisList E
     underlyingModules E
     N = tensorProduct(E,labeledModule(S^2))
     basisList N
     underlyingModules N
   SeeAlso
    basisList
    underlyingModules
    LabeledModule
    LabeledModuleMap
    "**"
///


doc ///
   Key
     hyperdeterminant
     (hyperdeterminant, LabeledModuleMap)
   Headline
     computes the hyperdeterminant of a boundary format tensor
   Usage
     hyperdeterminant f
   Inputs
     f: LabeledModuleMap
   Outputs
     : RingElement
   Description
    Text
      This constructs the hyperdeterminant of a tensor of {\em boundary format}, where
      we say that a $a\times b_1\times \dots \times b_n$ has boundary format if
      $$
      a-\sum_{i=1}^n (b_i-1)=1.
      $$
      We construct the hyperdeterminant as the determinant of a certain square matrix
      derived from $f$.  The {\tt hyperdeterminant} function outputs the hyperdeterminant
      itself, whereas the @TO hyperdeterminantMatrix@ function outputs the matrix used to
      compute the hyperdeterminant.  (For background on computing hyperdeterminants, see
      Section 14.3 of the book ``Discriminants, resultants, and multidimensional
      determinants '' by Gelfand-Kapranov-Zelevinsky.)
      
      The following constructs the generic hyperdeterminant of format $3\times 2\times 2$,
      which is a polynomial of degree 6 consisting of 66 monomials.
    
    Example
      f=flattenedGenericTensor({3,2,2},QQ);
      S=ring f;
      h=hyperdeterminant f;
      degree h
      #terms h    
      
   Caveat
     There is bug involving the graded structure of the output. Namely, the code assumes that
     all entries of {\tt f} have degree 1, and gives the wrong graded structure if this is not
     the case. If {\tt ring f} is not graded, then 
     the code gives an error.  
     
   SeeAlso
     hyperdeterminantMatrix
///

doc ///
   Key
     hyperdeterminantMatrix
     (hyperdeterminantMatrix, LabeledModuleMap)
   Headline
     computes a matrix whose determinant equals the hyperdeterminant of a boundary format tensor
   Usage
     hyperdeterminantMatrix f
   Inputs
     f: LabeledModuleMap
   Outputs
     : LabeledModuleMap
   Description
    Text
      This constructs a matrix whose determinant equals 
      the hyperdeterminant of a tensor of {\em boundary format}, where
      we say that a $a\times b_1\times \dots \times b_n$ has boundary format if
      $$
      a-\sum_{i=1}^n (b_i-1)=1.
      $$
      The entries of the output matrix correspond to entries of the input tensor.

    Example
      f=flattenedGenericTensor({3,2,2},QQ);
      S=ring f;
      M=hyperdeterminantMatrix f
      det(M)==hyperdeterminant f
    
   Caveat
     There is bug involving the graded structure of the output. Namely, the code assumes that
     all entries of {\tt f} have degree 1, and gives the wrong graded structure if this is not
     the case. If {\tt ring f} is not graded, then 
     the code gives an error.  
     
   SeeAlso
     hyperdeterminant
///



doc ///
   Key 
    --exteriorPower
    (exteriorPower, ZZ, LabeledModule)
   Headline 
    Exterior power of a @TO LabeledModule@
   Usage 
    E = exteriorPower(i,M)
   Inputs 
    i: ZZ
    M: LabeledModule
   Outputs
    : LabeledModule
   Description
    Text
      This produces the exterior power of a labeled module as a labeled module
      with the natural basis list.  For instance if $M$ is a labeled module with
      basis list $L$, then {\tt exteriorPower(2,M)} is a labeled
      module with basis list {\tt subsets(2,L)} and with $M$ as an underlying module,
    Example
      S=ZZ/101[x,y,z];
      M=labeledModule(S^3);
      E=exteriorPower(2,M)
      basisList E
      underlyingModules E
      F=exteriorPower(2,E);
      basisList F 
    Text
     The first exterior power of a labeled module is not the identity in the category
     of labeled modules.  For instance, if $M$ is a free labeled module with basis
     list $\{0,1\}$ and with no underlying modules, then ${\tt exteriorPower(1,M)}$ is
     a labeled module with basis list $\{ \{0\}, \{1\},\}$ and with $M$ as an underlying
     module.
    Example
     S=ZZ/101[x,y,z];
     M=labeledModule(S^2);
     E=exteriorPower(1,M);
     basisList M
     basisList E
     underlyingModules M
     underlyingModules E
    Text
     By convention, the zeroeth symmetric power of an $S$-module is the labeled module
     $S^1$ with basis list $\{\{\}\}$ and with no underlying modules.  
    Example
     S=ZZ/101[x,y,z];
     M=labeledModule(S^2);
     E=exteriorPower(0,M)
     basisList E
     underlyingModules E
   SeeAlso
///

doc ///
   Key 
    (symmetricPower, ZZ, LabeledModule)
   Headline 
    Symmetric power of a @TO LabeledModule@
   Usage 
    E = symmetricPower(i,M)
   Inputs 
    i: ZZ
    M: LabeledModule
   Outputs
    E: LabeledModule
   Description
    Text
      This produces the symmetric power of a labeled module as a labeled module
      with the natural basis list.  For instance if $M$ is a labeled module with
      basis list $L$, then {\tt exteriorPower(2,M)} is a labeled
      module with basis list {\tt multiSubsets(2,L)} and with $M$ as an underlying module,
    Example
      S=ZZ/101[x,y,z];
      M=labeledModule(S^3);
      F=symmetricPower(2,M)
      basisList F
      underlyingModules F
      G=symmetricPower(2,F);
      basisList G 
    Text
     The first symmetric power of a labeled module is not the identity in the category
     of labeled modules.  For instance, if $M$ is a free labeled module with basis
     list $\{0,1\}$ and with no underlying modules, then ${\tt symmetricPower(1,M)}$ is
     a labeled module with basis list $\{ \{0\}, \{1\},\}$ and with $M$ as an underlying
     module.
    Example
     S=ZZ/101[x,y,z];
     M=labeledModule(S^2);
     E=symmetricPower(1,M);
     basisList M
     basisList E
     underlyingModules M
     underlyingModules E
    Text
     By convention, the zeroeth symmetric power of an $S$-module is the labeled module
     $S^1$ with basis list $\{\{\}\}$ and with no underlying modules.  
    Example
     S=ZZ/101[x,y,z];
     M=labeledModule(S^2);
     E=symmetricPower(0,M)
     basisList E
     underlyingModules E
   SeeAlso
///

doc ///
   Key
     pureResES1
   Headline
     computes the first map of the Eisenbud--Schreyer pure resolution of a given type
   Usage
     pureResES1(d,kk)
   Inputs
     d: List
     kk: Ring
   Outputs
     : LabeledModuleMap
   Description
    Text
      Given a degree sequence $d\in \mathbb Z^{n+1}$ and a field $k$ of arbitrary characteristic, 
      this produces the first map of pure resolution of type d as constructed by
      Eisenbud and Schreyer in Section 5 of ``Betti numbers of graded modules and cohomology 
      of vector bundles''.  The cokernel of this map is a module of finite of length over a
      polynomial ring in $n$ variables.
      
      The code gives an error if d is not strictly increasing with $d_0=0$.
      
      There is an OPTION, MonSize => n (where n is 8,16, or 32). This sets the @TO MonomialSize@ option
      when the base ring of flattenedESTensor is created.
      
    Example
      d={0,2,4,5};
      p=pureResES1(d,ZZ/32003)
      betti res coker p
      dim coker p
   
   SeeAlso
     pureResES
///


doc ///
   Key
     pureResES
   Headline
     constructs the Eisenbud--Schreyer pure resolution of a given type
   Usage
     pureResES(d,kk)
   Inputs
     d: List
     kk: Ring
   Outputs
     : ChainComplex
   Description
    Text
      Given a degree sequence $d$, this function returns the pure resolution of
      type $d$ constructed in by Eisenbud and Schreyer in Section 5 of 
      ``Betti numbers of graded modules and cohomology of vector bundles''.  The
      function operates by resolving the output of {\tt pureResES1(d,kk)}.
      
    Example
      d={0,2,4,5};
      FF=pureResES(d,ZZ/32003)
      betti FF
      
   SeeAlso
     pureResES1
///


doc ///
   Key
     pureResTC1
   Headline
     computes the first map of a balanced tensor complex with pure resolution of a given type
   Usage
     pureResTC1(d,kk)
   Inputs
     d: List
     kk: Ring
   Outputs
     : LabeledModuleMap
   Description
    Text
      Given a degree sequence $d\in \mathbb Z^{n+1}$ and a field $k$ of arbitrary characteristic, 
      this produces the first map of a balanced tensor complex with a 
      pure resolution of type d, as constructed in Section 3
      of the paper ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors
      by Berkesch-Erman-Kummini-Sam.  The cokernel of the output is an indecomposable
      module of codimension $n$.

      The code gives an error if d is not strictly increasing with $d_0=0$.
      
    Example
      d={0,2,4,5};
      p=pureResTC1(d,ZZ/32003)
      betti res coker p
   
   SeeAlso
     pureResTC
///


doc ///
   Key
     pureResTC
   Headline
     constructs the balanced tensor complex of a given type
   Usage
     pureResTC(d,kk)
   Inputs
     d: List
     kk: Ring
   Outputs
     : ChainComplex
   Description
    Text
      Given a degree sequence $d$, this function returns a balanced tensor complex
      that is a  pure resolution of type $d$, as constructed in Section 3
      of the paper ``Tensor Complexes: Multilinear free resolutions constructed from higher tensors
      by Berkesch-Erman-Kummini-Sam.
      The function operates by resolving the output of {\tt pureResTC1(d,kk)}.
      
      The code gives an error if d is not strictly increasing with $d_0=0$.

    Example
      d={0,2,4,5};
      FF=pureResTC(d,ZZ/32003)
      betti FF
      
   SeeAlso
     pureResTC1
///




doc ///
   Key 
    flattenedGenericTensor
    (flattenedGenericTensor, List, Ring)
   Headline 
    Make a generic tensor of given format
   Usage
    flattenedGenericTensor(L,kk)
   Inputs
    L: List
     of positive ZZ
    kk: Ring
     Name of ground field (or ring)
   Outputs
    f: LabeledModuleMap
   Description
    Text
     Given a list $L = \{a, b_1,\dots, b_n\}$ of positive integers 
     with
     $
     a= sum_i b_i,
     $
     and a field (or ring of integers) kk,
     the script creates a polynomial ring $S$ over $kk$ with $a\times b_1\times\cdots\times b_n$ variables,
     and a generic map
     $$
     f: A \to B_1\otimes\cdots \otimes B_n
     $$
     of @TO LabeledModule@s over $S$, where 
     $A$ is a free LabeledModule of rank $a$ and 
     $B_i$ is a free LabeledModule of rank $b_i$.
     We think of $f$ as representing a tensor of type $(a,b_1,\dots,b_n)$
     made from the elementary symmetric functions.
     
     The format of $F$ is the one required
     by @TO tensorComplex1@, namely $f: A \to B_1\otimes \cdots \otimes B_n$, with
     $a = rank A, b_i = rank B_i$.
    Example
     kk = ZZ/101
     f = flattenedGenericTensor({5,2,1,2},kk)
     numgens ring f
     betti matrix f
     S = ring f
     tensorComplex1 f
   SeeAlso
    flattenedESTensor
    tensorComplex1
///
doc ///
   Key 
    flattenedESTensor
   Headline
    make a flattened tensor from elementary symmetric functions
   Usage
    flattenedESTensor(L,kk)
   Inputs
    L: List
     of positive ZZ
    kk: Ring
     Name of ground field (or ring)
   Outputs
    f: LabeledModuleMap
   Description
    Text
     Given a list $L = \{a, b_1,\dots, b_n\}$ of positive integers 
     with
     $
     a= sum_i b_i,
     $
     and a field (or ring of integers) kk,
     the script creates a ring $S = kk[x_1,\dots,x_n]$ and a map
     $$
     f: A \to B_1\otimes\cdots \otimes B_n
     $$
     of @TO LabeledModule@s over $S$, where 
     $A$ is a free LabeledModule of rank $a$ and 
     $B_i$ is a free LabeledModule of rank $b_i$.
     The map $f$ is constructed from symmetric functions, and 
     corresponds to collection of linear forms on $P^{b_1-1}\times\cdots\timesß P^{b_n-1}$
     as used in the construction of 
     pure resolutions in the paper 
     ``Betti numbers of graded modules and cohomology of vector bundles''
     of Eisenbud and Schreyer.
     
     The format of $F$ is the one required
     by @TO tensorComplex1@, namely $f: A \to B_1\otimes \cdots \otimes B_n$, with
     $a = rank A, b_i = rank B_i$.
     
     There is an OPTION, MonSize => n (where n is 8,16, or 32). This sets the @TO MonomialSize@ option
     when the base ring of flattenedESTensor is created.

    Example
     kk = ZZ/101
     f = flattenedESTensor({5,2,1,2},kk)
     numgens ring f
     betti matrix f
     S = ring f
     g = tensorComplex1 f
     betti res coker g
   SeeAlso
    flattenedGenericTensor
    tensorComplex1
///


doc ///
   Key
     LabeledModuleMap
   Headline
     the class of maps between LabeledModules
   Description
    Text
      A map between two labeled modules remembers the labeled module structure of the
     source of target.  
     Some, but not all methods available for maps have been extended to
     this class.  In these cases, one should apply the method to the underlying
     matrix.  See @TO (rank,LabeledModuleMap)@.

///


doc ///
   Key
     (map,LabeledModule,LabeledModule,Function)
   Headline
     create a LabeledModuleMap by specifying a function that gives each entry
   Usage
     map(F,G,f)
   Inputs
     F: LabeledModule
     G: LabeledModule
     f: Function
   Outputs
     : LabeledModuleMap
   Description
    Text
      This function produces essentially the same output as 
      {\tt map(Module,Module,Function)}, except that the output map
      belongs to the class LabeledModuleMap, and thus remembers the labeled
      module structure of the source and target. 
    Example
      S=QQ[x,y,z];
      F=labeledModule(S^3)
      f=map(F,F,(i,j)->(S_i)^j)      
   SeeAlso
      (map,Module,Module,Function)
///


doc ///
   Key
     (map,LabeledModule,LabeledModule,LabeledModuleMap)
   Headline
     creates a new LabeledModuleMap from a given LabeledModuleMap
   Usage
     map(F,G,f)
   Inputs
     F: LabeledModule
     G: LabeledModule
     f: LabeledModuleMap
   Outputs
     : LabeledModuleMap
   Description
    Text
      This function produces has the same output {\tt map(F,G,matrix f)}.
      This function is most useful when the either source/target of $f$ is
      isomorphic to $F/G$ as a module with basis, 
      but not as a labeled module.  
     
    Example
      S=QQ[x,y,z];
      A=labeledModule(S^2)
      F=(A**A)**A
      G=A**(A**A)
      f=map(F,G,id_(F))      
   SeeAlso
      (map,LabeledModule,LabeledModule,Matrix)
      (map,Module,Module,Matrix)
///


doc ///
   Key
     (map,LabeledModule,LabeledModule,Matrix)
   Headline
     creates a LabeledModuleMap from a matrix
   Usage
     map(F,G,M)
   Inputs
     F: LabeledModule
     G: LabeledModule
     M: Matrix
   Outputs
     : LabeledModuleMap
   Description
    Text
      This function produces essentially the same output as 
      {\tt map(Module,Module,Matrix)}, except that the output map
      belongs to the class LabeledModuleMap, and thus remembers the labeled
      module structure of the source and target. 
    Example
      S=QQ[x,y,z];
      F=labeledModule(S^3)
      M=matrix{{1,2,3},{x,y,z},{3*x^2,x*y,z^2}}
      g=map(F,F,M)      
      source g
   SeeAlso
      (map,Module,Module,Matrix)
///




doc ///
   Key
     (map,LabeledModule,LabeledModule,List)
   Headline
     creates a LabeledModuleMap from a list
   Usage
     map(F,G,L)
   Inputs
     F: LabeledModule
     G: LabeledModule
     L: List
   Outputs
     : LabeledModuleMap
   Description
    Text
      This function produces essentially the same output as 
      @TO (map,Module,Module,List)@, except that the output map
      belongs to the class LabeledModuleMap, and thus remembers the labeled
      module structure of the source and target. 
    Example
      S=QQ[x,y,z];
      F=labeledModule(S^3)
      L={{1,2,3},{x,y,z},{3*x^2,x*y,z^2}}
      g=map(F,F,L)      
      source g
   SeeAlso
      (map,Module,Module,List)
///


doc ///
   Key
     (map,LabeledModule,LabeledModule,ZZ)
   Headline
     creates scalar multiplication by an integer as a LabeledModuleMap
   Usage
     map(F,G,m)
   Inputs
     F: LabeledModule
     G: LabeledModule
     m: ZZ
   Outputs
     : LabeledModuleMap
   Description
    Text
      This function produces essentially the same output as 
      @TO (map,Module,Module,ZZ)@, except that the output map
      belongs to the class LabeledModuleMap, and thus remembers the labeled
      module structure of the source and target.  If $m=0$ then the output is
      the zero map.  If $m\ne 0$, then $F$ and $G$ must have the same rank.
    Example
      S=QQ[x,y,z];
      F=labeledModule(S^3);
      G=labeledModule(S^2);
      g=map(F,G,0)      
      h=map(F,F,1)
   SeeAlso
      (map,Module,Module,ZZ)
///



-*
doc ///
   Key
     (coker,LabeledModuleMap)
     (rank,LabeledModuleMap)
     (transpose,LabeledModuleMap)
     (symbol *, LabeledModule,LabeledModule)
     (symbol **, LabeledModule,LabeledModule)
   Headline
     a number of methods for maps have been extended to the class LabeledModuleMap
   Usage
     coker(f)
     rank(f)
     transpose(f)
   Inputs
     f: LabeledModuleMap
   Outputs
     : Thing
   Description
    Text
      A number of methods that apply to maps have been extend the class LabeledModuleMap.
      Where this is the case, the syntax is exactly the same.
    Example
      R=ZZ/101[a,b];
      F=labeledModule(R^3);
      f=map(F,F,(i,j)->a^i+b^j);
      rank f
      coker f
    Text
      Many methods have not been extended.  In these cases, one will see an error message,
      and should apply the method to {\tt matrix f} instead of directly to {\tt f}.
    Example
      R=ZZ/101[a,b];
      F=labeledModule(R^2);
      f=map(F,F,(i,j)->a^i+b^j);
      entries matrix f     
///
*-

doc ///
   Key
     underlyingModules
     (underlyingModules, LabeledModule)     
   Headline
     gives the list of underlying modules of a labeled module
   Usage
     underlyingModules(F)
   Inputs
     F: LabeledModule
   Outputs
    : List
   Description
    Text
      One of the key features of a labeled module is that it comes equipped
      with a list of modules used in its construction.  For instance, if $F$
      is the tensor product of $A$ and $B$, then the underlying modules of
      $F$ would be the set $\{ A,B\}$.  Similarly, if $G=\wedge^2 A$, then
      $A$ is the only underlying module of $G$.
    
    Example
      S=ZZ/101[x,y,z];
      A=labeledModule(S^2);
      B=labeledModule(S^5);
      F=A**B
      underlyingModules(F)
      G=exteriorPower(2,A)
      underlyingModules(G)
///


doc ///
   Key
     basisList
     (basisList, LabeledModule)     
   Headline
     gives the list used to label the basis elements of a labeled module
   Usage
     basisList(F)
   Inputs
     F: LabeledModule
   Outputs
    : List
   Description
    Text
      One of the key features of a labeled module of rank $r$
      is that the basis can be labeled by any list of cardinality $r$.
      This is particularly convenient when working with tensor products, symmetric
      powers, and exterior powers.  For instance, if $A$ is a labeled module with
      basis labeled by $\{0,\dots, r-1\}$ then it is natural to think of
      $\wedge^2 A$ as a labeled module with a basis labeled by elements of the
      lists
      $$
      \{(i,j)| 0\leq i<j\leq r-1\}.
      $$
      When you use apply the functions @TO tensorProduct@, @TO symmetricPower@
      and @TO exteriorPower@ to a labeled module, the output is a labeled
      module with a natural basis list.
          
    Example
      S=ZZ/101[x,y,z];
      A=labeledModule(S^2);
      B=labeledModule(S^4);
      F=A**B
      basisList(F)
      G=exteriorPower(2,B)
      basisList(G)
///


doc ///
   Key
     fromOrdinal
     (fromOrdinal, ZZ, LabeledModule)     
   Headline
     outputs the label of a basis element of a labeled module
   Usage
     fromOrdinal(i,F)
   Inputs
     i: ZZ
     F: LabeledModule
   Outputs
     : Thing
   Description
    Text
      This function allows one to access the labels of the basis
      elements of a labeled free module.  
      For instance, if $F$ is a labeled free module of $r$,
      then its basis is labeled by a list $L$.
      This function takes an integer $i$ between $0$ and outputs the $i$'th element
      of $L$.
      
      This function is particularly useful when defining maps between labeled free
      modules.
    Example
      S=ZZ/101[x_{0,0,0}..x_{2,1,1}];
      A=labeledModule(S^3);
      fromOrdinal(0,A)
      B=labeledModule(S^2);
      C=symmetricPower(2,B)
      fromOrdinal(0,C)      
      f=map(A,C,(i,j)->x_(flatten {fromOrdinal(j,A)}|fromOrdinal(i,C)))
   SeeAlso
     basisList
     toOrdinal
///


doc ///
   Key
     toOrdinal
     (toOrdinal, Thing, LabeledModule)
   Headline
     turns the label of a basis element of a labeled module into a corresponding ordinal
   Usage
     toOrdinal(i,F)
   Inputs
     l: Thing
     F: LabeledModule
   Outputs
     : ZZ
   Description
    Text
      This function allows one to move from the labels of the basis
      elements of a labeled free module of rank $r$ to the integers
      $\{0,1, \dots, r-1\}$.
      More specifically, if $F$ is a labeled free module where we have labeled the
      basis with the list $L$, then this function an element  $l\in L$
      to the ordinal $j$ such that $l$ is the $j$'th element of $L$.
      
    Example
      S=ZZ/101[x_{0,0,0}..x_{2,1,1}];
      C=symmetricPower(2,labeledModule(S^3))
      basisList C
      toOrdinal({0,0},C)
      toOrdinal({1,2},C)
   SeeAlso
     basisList
     fromOrdinal
///


doc ///
   Key
     multiSubsets
     (multiSubsets, ZZ, ZZ)
     (multiSubsets, List, ZZ)
   Headline
     produce all subsets of a given size, allowing repetitions
   Usage
     multiSubsets(L,n)
     multiSubsets(m,n)
   Inputs
     L: List
     n: ZZ
     m: ZZ
   Outputs
     : List
   Description
    Text
      {\tt multiSubsets(L,n)} yields all multisets of cardinality $n$ with element
      from $L$.  {\tt multiSubsets(m,n)} yields all multisets of cardinality $n$
      with elements in the list $\{0,\dots,m-1\}$.
    Example
      L={a,b,c}
      multiSubsets(L,2)
      multiSubsets(3,2)
   SeeAlso
     subsets
///


doc ///
   Key
     traceMap
     (traceMap, LabeledModule)
   Headline
     produces the trace map from a ring to a free module tensored with its dual
   Usage
     traceMap F
   Inputs
     F: LabeledModule
   Outputs
     : LabeledModuleMap
   Description
    Text
      If $F$ is a free labeled module, then this produces the trace map
      $S\to F\otimes F^*$.
    Example
      S=ZZ/101[x,y,z];
      F=labeledModule(S^3);
      traceMap F
   SeeAlso
///




doc ///
   Key
    cauchyMap
    (cauchyMap, ZZ, LabeledModule)
   Headline
    produces one surjection from the Cauchy decomposition of the exterior power of a tensor product
   Usage
    cauchyMap(b,E)
   Inputs
    b: ZZ
    E: LabeledModule
     must be a tensor product
   Outputs
    : LabeledModuleMap
   Description
    Text
      We begin with a module $E$ that was constructed as a tensor
      product $E=A\otimes B$, where $A$ and $B$ are free modules.
      Cauchy decomposition provides a formula for decomposing $\wedge^b E$
      as $GL(A)\times GL(B)$ representations.  This function constructs 
      the surjection onto the $\wedge^b A\otimes S^b B$ 
      factor:
      $$
      \wedge^b E \to \wedge^b A\otimes S^b B.
      $$
    Example
      S=ZZ/101[x,y,z];
      A=labeledModule(S^3);
      B=labeledModule(S^3);
      E=tensorProduct(A,B)
      f=cauchyMap(2,E)
      underlyingModules source f
      underlyingModules target f
   SeeAlso
///


-*
doc ///
   Key
    (symbol ==, LabeledModule,  LabeledModule),
   Headline
    tests equality for labeled modules
   Usage
    F==G
   Inputs
    F: LabeledModule
    G: LabeledModule
   Outputs
    : Boolean
   Description
    Text
     Two labeled modules are equal if they are equal as modules and if they have the
     same basis list and list of underlying modules.
    Example
     S=ZZ/101[x,y,z];
     F=labeledModule(S^3)
     G=labeledModule(S^3)
     H=exteriorPower(2,labeledModule(S^2))
     F==G
     F==H
     basisList(F)
     basisList(H)
   SeeAlso
///
*-



doc ///
   Key
    (target, LabeledModuleMap)
   Headline
    the target of a map of a labeled modules
   Usage
    target f
   Inputs
    f: LabeledModuleMap
   Outputs
    : LabeledModule
   Description
    Text
     This yields the target of a map of a labeled module, as a labeled module.
    Example
     S=ZZ/101[x,y,z];
     F=labeledModule(S^2);
     G=symmetricPower(2,F);
     f=map(F,G,{{x,y,z},{y,z,x}})
     target f
     basisList target f 
   SeeAlso
    (source, LabeledModuleMap)
///


doc ///
   Key
    (source, LabeledModuleMap)
   Headline
    the source of a map of a labeled modules
   Usage
    source f
   Inputs
    f: LabeledModuleMap
   Outputs
    : LabeledModule
   Description
    Text
     This yields the source of a map of a labeled module, as a labeled module.
    Example
     S=ZZ/101[x,y,z];
     F=labeledModule(S^2);
     G=symmetricPower(2,F);
     f=map(G,F,{{x,y},{y,z},{z,x}})
     source f
     basisList source f 
   SeeAlso
    (target, LabeledModuleMap)
///


doc ///
   Key
    symmetricMultiplication
    (symmetricMultiplication, LabeledModule, ZZ, ZZ)
   Headline
    creates the symmetric multiplication map
   Usage
    symmetricMultiplication(F,i,j)
   Inputs
    F: LabeledModule
    i: ZZ
    j: ZZ
   Outputs
    : LabeledModuleMap
   Description
    Text
     Given a labeled free module $F$, and two nonnegative integers $i$ and $j$,
     this yields the multiplication map
     $$
     f: S^i(F)\otimes S^j(F)\to S^{i+j}(F).
     $$
     The output map is treated as a map of labeled modules, and the source and target
     are inherit the natural structure as labeled modules from $F$.  For instance,
     if the basis list of $F$ is $L$, then the basis list of the target of $f$ is the
     list {\tt multiSubsets(i+j,L)}. 
    Example
     S=ZZ/101[x,y,z];
     F=labeledModule(S^2);
     f=symmetricMultiplication(F,2,2)
     source f
     basisList F
     basisList source f
     basisList target f
   SeeAlso
///

doc ///
   Key
    minorsMap
    (minorsMap, Matrix, LabeledModule)
    (minorsMap, LabeledModuleMap, LabeledModule)
   Headline
    creates a map of labeled free modules whose image is the minors of a map of labeled free modules 
   Usage
    minorsMap(f,E)
    minorsMap(M,E)
   Inputs
    f: LabeledModuleMap
    M: Matrix
    E: LabeledModule
   Outputs
    : LabeledModuleMap
   Description
    Text
     This function assumes that $E$ has the form $E=\wedge^b B \otimes \wedge^b A$ where 
     $A$ and $B$ are labeled free $S$-modules and where $f: A^*\to B$ (or where $M$ is matrix
     representing such a map).  The output is the map
     $$
     E\to S
     $$
     sending each basis element to the corresponding $b\times b$ minor of $f$ (or $M$).
    Example
     S=ZZ/101[x,y,z];
     A=labeledModule(S^2);
     B=labeledModule(S^{3:-2});
     M=matrix{{x^2,x*y,y^2},{y^2,y*z,z^2}}
     f=map(A,B,M);
     E=(exteriorPower(2,B))**(exteriorPower(2,A))
     minorsMap(f,E)
     minorsMap(M,E)
   SeeAlso
///


doc ///
   Key
    (tensor, LabeledModule, LabeledModule)
   Headline
    creates the tensor product of two labeled modules, as a labeled module
   Usage
    tensor(F,E)
   Inputs
    F: LabeledModule
    E: LabeledModule
   Outputs
    : LabeledModule
   Description
    Text
     This {\tt tensor(F,E)} is the same as {\tt tensorProduct(F,E)}.  See
     @TO tensorProduct@ for more details.
    Example
     S=ZZ/101[x,y,z];
     F=labeledModule(S^2);
     E=labeledModule(S^3);
     G=tensor(F,E)
     basisList G
   SeeAlso
///


doc ///
   Key
    (tensor, LabeledModuleMap, LabeledModuleMap)
   Headline
    creates the tensor product of two maps of labeled modules, as a map of labeled module
   Usage
    tensor(f,g)
   Inputs
    f: LabeledModuleMap
    g: LabeledModuleMap
   Outputs
    : LabeledModuleMap
   Description
    Text
     If $f: A\to B$ and $g: C\to D$ are maps of labeled modules, then {\tt tensor(f,g)}
     is the map of labeled modules
     $$
     f\otimes g: A\otimes C \to B\otimes D.
     $$
    Example
     S=ZZ/101[x,y,z];
     A=labeledModule(S^2);
     B=labeledModule(S^3);
     C=labeledModule(S^3);
     D=labeledModule(S^{2:-1});
     f=map(A,B,{{1,1,1},{0,3,5}})
     g=map(C,D,{{x,y},{0,z},{y,0}})
     tensor(f,g)
   SeeAlso
///


///
print docTemplate
///
-*beginDocumentation()

undocumented { (net, LabeledModule), (net, LabeledModuleMap) }

  Key => (ring, LabeledModule),
  Key => (module, LabeledModule),
  Key => (rank, LabeledModule),

  Key => (matrix, LabeledModuleMap),
  Key => (ring, LabeledModuleMap),
  Key => (rank, LabeledModuleMap),
  Key => (transpose, LabeledModuleMap),
    
  Key => (symbol ==, LabeledModule, LabeledModule),

  Key => {(symbol **, LabeledModule, LabeledModule), 
    (tensor,LabeledModule, LabeledModule)},

  Key => {(tensor, LabeledModuleMap, LabeledModuleMap),
    (symbol **, LabeledModuleMap, LabeledModuleMap)},

  Key => (symbol *, LabeledModuleMap, LabeledModuleMap),
*-
-------------------------------------------------------------------------------- 
-- TEST
--------------------------------------------------------------------------------

-- test 0
TEST ///
S = ZZ/101[a,b,c];
E = labeledModule S^4
assert(basisList E  == apply(4, i -> i))
assert(underlyingModules E == {})
assert(module E == S^4)
assert(fromOrdinal(2,E) == 2)
assert(toOrdinal(1,E) == 1)
F = labeledModule S
assert(basisList F == {{}})
assert(rank F == 1)
F' = labeledModule S^0
assert(basisList F' == {})
///

-- test 1
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^4
E = exteriorPower(2,F)
assert(rank E == 6)
assert(#basisList E == 6)
assert(exteriorPower(0,E) == labeledModule S)
assert(basisList exteriorPower(1,E) == apply(basisList E, i -> {i}))
assert(exteriorPower(-1,E) == labeledModule S^0)
E' = exteriorPower(2,E)
assert(#basisList E' == 15)
assert(#multiSubsets(basisList E,2) == binomial(6+2-1,2))
assert(#multiSubsets({0,1,2},2) == binomial(3+2-1,2))
///

-- test 2
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^4
E = symmetricPower(2,F)
assert(#basisList E == binomial(4+2-1,2))
assert(toOrdinal({0,3},E) == 6)
assert(fromOrdinal(7,E) == {1,3})
assert(symmetricPower(0,E) == labeledModule S)
assert(symmetricPower(-1,E) == labeledModule S^0)
assert(basisList symmetricPower(1,E) == apply(basisList E, i -> {i}))
///

-- test 3
TEST ///
S = ZZ/101[a,b,c];
F1 = labeledModule S^2
F2 = labeledModule S^3
F3 = labeledModule S^5
assert(tensor(F1,F2) == F1 ** F2)
E = tensorProduct {F1,F2,F3}
assert(rank E == product {rank F1, rank F2, rank F3})
assert(basisList E == sort basisList E)
assert((underlyingModules E)#0 == F1)
assert((underlyingModules E)#1 == F2)
assert((underlyingModules E)#2 == F3)
F = tensorProduct {labeledModule S^1, F2}
assert(F != F2)
assert((underlyingModules F)#0 == labeledModule S^1)
assert((underlyingModules F)#1 == F2)
assert(toOrdinal({0,1}, F) == 1)
assert(fromOrdinal(5,E) == {0,1,0})
///

-- test 4
TEST ///
S = ZZ/101[a,b,c];
F = labeledModule S^2
assert(matrix symmetricMultiplication(F,1,1) == matrix{
    {1_S,0,0,0},{0,1,1,0},{0,0,0,1}})
assert(rank symmetricMultiplication(F,2,1) == 4)
assert(matrix symmetricMultiplication(F,2,0) == id_(S^3))
///

-- test 5
TEST ///
S = ZZ/101[a,b,c];
F2 = labeledModule S^2;
F3 = labeledModule S^3;
F5 = labeledModule S^5;
F30 = tensorProduct {F2,F3,F5}
assert(rank cauchyMap(2,F30)  == 90)
F2' =  tensorProduct {F2, labeledModule S^1}
assert(matrix cauchyMap(1,F2') == id_(S^2))
///

--test 6
TEST///
kk=ZZ/101;
f=flattenedGenericTensor({4,1,2,1},kk);
BD=new BettiTally from {(0,{0},0) => 2, (1,{1},1) => 4, (2,{3},3) => 4, (3,{4},4) => 2};
assert(betti res coker matrix tensorComplex1 f==BD)
f=flattenedESTensor({4,1,2,1},kk);
assert(betti res coker matrix tensorComplex1 f==BD)
assert(betti pureResTC({0,1,3,4},kk)==BD)
assert(betti pureResES({0,1,3,4},kk)==BD)
f = flattenedGenericTensor({3,3},kk)
assert( (betti res coker tensorComplex1 f) === new BettiTally from {(1,{3},3) => 1, (0,{0},0) => 1} )
f = flattenedGenericTensor({3,2,2},kk)
assert(hyperdeterminant f ==  det matrix tensorComplex1 (f,{0,1,2}))
f = flattenedGenericTensor({3,3},kk)
assert(hyperdeterminant f ==  det matrix tensorComplex1 (f,{0,1}))
assert(hyperdeterminant f ==  det matrix tensorComplex1 (f,{0,0}))
f=flattenedESTensor({3,2,2},kk)
assert(hyperdeterminant f ==  det matrix tensorComplex1 (f,{0,1,2}))

///

--add further tests!! esp of the non balanced case.
--
end
--------------------------------------------------------------------------------
-- SCRATCH SPACE
--------------------------------------------------------------------------------

restart
uninstallPackage "TensorComplexes"
-- path=append(path,"~/IMA-2011/TensorComplexes/")
installPackage "TensorComplexes"
viewHelp TensorComplexes
check "TensorComplexes"

kk=ZZ/101;
f = flattenedGenericTensor({4,2,2,2},kk)
hyperdeterminantMatrix(f)
betti res coker tensorComplex1 (f, {0,0})

betti pureResTC({0,1,3,4,6,7},ZZ/101)
hyperdeterminant  flattenedESTensor({5,3,2,2},ZZ/2) 

kk = ZZ/101;
f=flattenedGenericTensor({7,2,2},kk)
S=ring f;
p1=tensorComplex1(f,{0,1,4});
I=ann coker p1;



f=flattenedESTensor({7,1,2,1,2,1},kk)
betti res coker tensorComplex1 f


f = flattenedGenericTensor({6,2},ZZ/32003)

betti res coker tensorComplex1(f,{0,0})

f = flattenedGenericTensor({3},kk)
betti res coker tensorComplex1 f

g = tensorComplex1 f

betti res coker matrix g
cokermatrix f

restart
uninstallPackage "TensorComplexes"
installPackage "TensorComplexes"
viewHelp "TensorComplexes"
check "TensorComplexes"




--Erman's conjecture (proven by Eisenbud and Schreyer): If the regularity of one of the ES modules
--is r, then its annihilator is exactly m^(r+1).
--This is verified in 3 variables for r<=4 with the code below
--for d= 4,5,6, and values up to 0,2,3,7 for d=7.
--the call
--pureResES1({0,2,4,7},ZZ/101);
--or even
--pureResES1({0,2,4,7},ZZ/101, MonSize=>8);
--exhausts the memory of my laptop instantly!
restart
loadPackage ("TensorComplexes", Reload => true)


d=7, n = 3
LL = subsets(toList(1..d-1),n-1)
time scan(LL, L1 -> (
	  L := {0}|L1|{d};
	  time f := pureResES1(L,ZZ/101,MonSize =>8);
	  print (rank target f, L);	  
          print betti ann(coker (f)
--	  **coker(gens ((ideal vars ring f)^(d-n+1)))
	  )
     ))