1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
newPackage(
"ToricInvariants",
Version => "3.01",
Date => "July 12, 2018",
Authors => {{Name => "Martin Helmer",
Email => "m.helmer@math.ku.dk",
HomePage => "http://martin-helmer.com/"}},
Headline => "Euclidean distance degrees, polar degrees, degree and codimension of the dual, and Chern-Mather classes of toric varieties X_A from the polytope conv(A) or from its Gale dual",
Keywords => {"Toric Geometry"},
DebuggingMode => false,
PackageImports => {"LLLBases", "Polyhedra" }
);
export{"polarDegrees",
"edDeg",
"cmVolumes",
"cmClass",
"dualDegCodim",
"Output",
"TextOutput",
"ForceAmat"
}
volB=method(TypicalValue=>ZZ)
volB (MutableHashTable):=(alpha)->(
Balpha:=alpha#"Balpha";
vec:=first Balpha;
primVec:=0;
vol:=0;
tempDet:=0;
if allInrelLine(Balpha) then(
primVec=(1/gcd(vec))*vec;
ind:=position(vec,i->i!=0);
for i from 0 to #Balpha-1 do(
tempDet=det(matrix{primVec,Balpha_i});
<<"primVec= "<<primVec<<", vec="<<Balpha_i<<endl;
if tempDet>0 then vol=vol+tempDet;
);
return vol;
)
else return 1;
);
indZ=method(TypicalValue=>ZZ)
indZ (List) :=(Aalpha)->(
alpMat:=matrix Aalpha;
tM:=groebnerBasis transpose groebnerBasis (alpMat);
if numrows(tM)==numColumns(tM) then(
dM:=det(tM);
if dM!=0 then return dM else (error("Face of polytope seems invalid...."); return 1;);
)
else(
print "Index Error";
return 1;
)
);
allInrelLine=method(TypicalValue=>Boolean)
allInrelLine (List) :=(Balpha)->(
if #Balpha==1 then return true;
W:=for b in Balpha list (1/gcd(b))*b;
v:=#W;
--<<"scaled vector= "<<W<<endl;
for i from 0 to v-1 do(
for j from i to v-1 do(
if not (W_j==W_i or W_j==-W_i) then return false;
);
);
return true;
);
muA=method(TypicalValue=>ZZ)
muA (Matrix,MutableHashTable,MutableHashTable):=(A,alpha,beta)->(
return mu(A,alpha,beta);
);
muB=method(TypicalValue=>ZZ)
muB (List,MutableHashTable,MutableHashTable):=(B,BalphaHash,BbetaHash)->(
Balpha:=BalphaHash#"Balpha";
Bbeta:=BbetaHash#"Balpha";
--print "Find mu with";
--<<"Bbeta= "<<Bbeta<<endl;
--<<"Balpha= "<<Balpha<<endl;
w:=-sum(Bbeta);
detSum:=0;
temp:=-1;
muBalbe:=0;
Am:=0;
Amz:=0;
P:=0;
primVec:=0;
vec:=0;
vminus:=0;
vplus:=0;
lambda:=0;
tempDegB:=0;
tempMat:=0;
lams:={};
gcdlams:=1;
if matrix(B)==matrix(Balpha) then(
--print "alpha=big mat";
if allInrelLine(Bbeta) then(
--print "all in rel line";
vec=first Bbeta;
--<<"vec= "<<vec<<", gcd vec= "<<gcd(vec)<<endl;
primVec=(1/gcd(vec))*vec;
ind:=position(vec,i->i!=0);
--<<"primVec= "<<primVec<<", vec="<<vec<<endl;
for i from 0 to #Bbeta-1 do(
lambda=((Bbeta_i)_ind)/(primVec_ind);
lams=append(lams,lambda);
--<<"lambda= "<<lambda<<endl;
if lambda<0 then vminus=vminus+abs(lambda) else vplus=vplus+abs(lambda);
);
gcdlams=gcd(lams);
if vplus==0 then muBalbe=(1/gcdlams)*vminus else if vminus==0 then muBalbe=(1/gcdlams)*vplus else muBalbe=(1/gcdlams)*min(vplus,vminus);
)
else(
--<<"NOT all in rel line"<<endl;
for b in Bbeta do(
temp=det(matrix{w}||matrix{b});
if temp>0 then detSum=detSum+temp;
);
tempDegB=degB(append(Bbeta,w));
muBalbe=(1/indZ(append(Bbeta,w)))*(tempDegB-detSum);
);
)
else(
if allInrelLine(Bbeta) then(
muBalbe=1/BbetaHash#"index";
)
else (
if not allInrelLine(Balpha) then (
--check square....
muBalbe=1/BbetaHash#"index";
)
else(
vec=first Balpha;
primVec=(1/gcd(vec))*vec;
for i from 0 to #Bbeta-1 do(
lambda=det(matrix{Bbeta_i}||matrix{primVec});
lams=append(lams,lambda);
if lambda<0 then vminus=vminus+abs(lambda) else vplus=vplus+abs(lambda);
);
gcdlams=indZ(BbetaHash#"Aalpha");
if vplus==0 then muBalbe=(1/gcdlams)*vminus else if vminus==0 then muBalbe=(1/gcdlams)*vplus else muBalbe=(1/gcdlams)*min(vplus,vminus);
);
);
);
muRet:=1;
if matrix(B)==matrix(Balpha) then(muRet=muBalbe;) else muRet=BalphaHash#"index"*muBalbe;
return muRet;
);
degB=method(TypicalValue=>ZZ)
degB (List):=(Balpha)->(
B:=matrix Balpha;
beta1:=sum select(flatten entries (B_{0}),i->i>0);
beta2:=sum select(flatten entries (B_{1}),i->i>0);
v:={};
m:=length(Balpha);
for i from 0 to m-2 do(
for j from i+1 to m-1 do(
if ( (((Balpha)_i)_0<0) and (((Balpha)_j)_0<0) ) or ( (((Balpha)_i)_1<0) and (((Balpha)_j)_1<0) ) or ( (((Balpha)_i)_0>0) and (((Balpha)_j)_0>0) ) or ( (((Balpha)_i)_1>0) and (((Balpha)_j)_1>0) ) then(
v=append(v,0);
)
else(
v=append(v,min( abs((((Balpha)_i)_0)*(((Balpha)_j)_1)), abs((((Balpha)_i)_1)*(((Balpha)_j)_0)) ));
);
);
);
return beta1*beta2-sum(v);
);
faceLatticeAB=method(TypicalValue=>List)
faceLatticeAB (Matrix):=(A)->(
B:=gens ker A;
Bc:=B;
Ac:=A;
Acl:=entries transpose Ac;
P:=convexHull(A);
VPT:=vertices P;
m:=dim(P);
FacePoset:={};
ifaces:={};
tempFace:={};
curFace:=0;
curVol:=0;
Acols:=entries transpose(A);
notFcols:=0;
interiorCols:={};
faceCounts:={};
n:=numColumns(A);
indsSet:=toList(0..n-1);
for i from 0 to m do(
ifaces={};
--tempFace=faces(i,P);
tempFace=for fc in faces(i,P) list convexHull(VPT_(fc#0));
faceCounts=append(faceCounts, #tempFace);
for f in tempFace do(
curFace=new MutableHashTable;
curFace#"dim"=m-i;
curFace#"verticesMat"=lift(vertices(f),ZZ);
curFace#"verticesList"=entries transpose curFace#"verticesMat";
if i==m then(
curVol=1;
)
else(
curVol=((m-i)!)*volume(f);
);
curFace#"volume"=curVol;
notFcols=toList(set(Acols)-set(curFace#"verticesList"));
interiorCols={};
for c in notFcols do(
if contains(f,transpose matrix{c}) then(
interiorCols=append(interiorCols,c);
);
);
curFace#"interiorCol"=interiorCols;
curFace#"Aalpha"=join(interiorCols,curFace#"verticesList");
if i==0 then (
L:=for wl in curFace#"Aalpha" list position(entries transpose A,ll->ll==wl);
Ac=A_L;
Bc=B^L;
curFace#"Balpha"=entries Bc;
Acl=entries transpose Ac;
)
else(
L2:=for wl in curFace#"Aalpha" list position(Acl,ll->ll==wl);
Bcalpha:=Bc^(indsSet-set(L2));
curFace#"Balpha"=entries Bcalpha;
);
ifaces=append(ifaces,curFace);
);
FacePoset=append(FacePoset,ifaces);
);
return FacePoset;
);
cmClass=method(TypicalValue=>RingElement,Options => {TextOutput=>"Quiet",Output=>RingElement,ForceAmat=>false})
cmClass (Matrix,QuotientRing):=opts->(A,Chring)->(
if opts.Output===HashTable then(
return polarDegrees(A,Chring,Output=>HashTable,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
);
return (polarDegrees(A,Chring,Output=>HashTable,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat))#"CM class";
);
cmClass (Matrix):=opts->(A)->(
if opts.Output===HashTable then(
return polarDegrees(A,Output=>HashTable,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
);
return (polarDegrees(A,Output=>HashTable,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat))#"CM class"
);
polarDegrees=method(TypicalValue=>List,Options => {TextOutput=>"Quiet",Output=>List,ForceAmat=>false})
polarDegrees (Matrix):=opts->(A)->(
n:=numColumns(A);
h:=symbol h;
Chring:=ZZ[h]/(h^n);
return polarDegrees(A,Chring,Output=>opts.Output,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
);
polarDegrees (Matrix,QuotientRing):=opts->(A,Chring)->(
EV:=0;
TempEV:=0;
FacePoset:={};
if opts.Output===HashTable then(
TempEV= cmVolumes(A,TextOutput=>opts.TextOutput,Output=>opts.Output,ForceAmat=>opts.ForceAmat);
EV=first TempEV;
FacePoset=last TempEV;
) else EV=cmVolumes(A,Output=>opts.Output,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
m:=#EV-1;
delta:={};
temp:=0;
for i from 0 to m do(
temp=(-1)^(m-i)*sum(i..m,j->(-1)^(j-i)*binomial(j+1,i+1)*(EV_(m-j)));
delta=append(delta, temp);
);
EVList:=reverse EV;
A=transpose matrix unique entries transpose A;
n:=numColumns(A);
h:=Chring_0;
cmClass:=sum(#(EVList),i->EVList_i*h^(n-1-i));
FirstNonZero:=position (delta,i->(not i==0) );
if opts.Output===List then(
<<"The toric variety has degree = "<<last(EVList)<<endl;
<<"The dual variety has degree = "<<delta_FirstNonZero<<", and codimension = "<<FirstNonZero+1<<endl;
<<"Chern-Mather Volumes: (V_0,..,V_(d-1)) = "<<EVList<<endl;
<<"Polar Degrees: "<<delta<<endl;
<<"ED Degree = "<<sum(delta)<<endl;
<<endl;
<<"Chern-Mather Class: "<<cmClass<<endl;
);
if opts.Output===HashTable then(
delHash:=hashTable{"degree"=>last(EVList),"dual codim"=>FirstNonZero+1,"dual degree"=>delta_FirstNonZero,"hyperplane class"=>Chring_0,"Chow ring"=>Chring,"ED"=>sum(delta),"polar degrees"=>delta,"CM class"=>cmClass,"CM volumes"=>EVList,"FacePoset"=>FacePoset};
return delHash;
);
return delta;
);
dualDegCodim=method(TypicalValue=>HashTable,Options => {ForceAmat=>false})
dualDegCodim (Matrix):=opts->(A)->(
pdh:=polarDegrees(A,Output=>HashTable,ForceAmat=>opts.ForceAmat);
pd:=pdh#"polar degrees";
FirstNonZero:=position (pd,i->(not i==0) );
return hashTable{"dualCodim"=>FirstNonZero+1,"dualDegree"=>pd_FirstNonZero};
);
edDeg=method(TypicalValue=>ZZ,Options => {TextOutput=>"Quiet",Output=>ZZ,ForceAmat=>false})
edDeg (Matrix):=opts->(A)->(
if opts.Output===HashTable then(
return polarDegrees(A,Output=>opts.Output,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
);
return sum polarDegrees(A,TextOutput=>opts.TextOutput,ForceAmat=>opts.ForceAmat);
);
cmVolumes=method(TypicalValue=>List,Options => {TextOutput=>"Quiet",Output=>List,ForceAmat=>false})
cmVolumes (Matrix):=opts->(A)->(
BMatCD2:=false;
AinNum:=numColumns(A);
A=transpose matrix unique entries transpose A;
if opts.TextOutput!="Quiet" and AinNum!=numColumns(A) then (
print "Warning: Input matrix contains duplicate columns, duplicate columns have been removed";
);
if minors(numRows(A),A)!=ideal(1) then (
if opts.TextOutput!="Quiet" then print "Input matrix does not generate the integer lattice, attempting to build a new matrix which generates the lattice and defines the same toric ideal";
betterA:= transpose gens kernel transpose gens kernel A;
if minors(numRows(betterA),betterA)==ideal(1) then(
if opts.TextOutput!="Quiet" then print "New matrix generated";
A=transpose hermite transpose betterA;
)
else(
print "Input matrix does not generate the integer lattice, attempting to build a new matrix which generates the lattice and defines the same toric ideal";
error"Matrix generation failed, please enter a matrix whose columns span the full integer lattice";
return 0;
);
);
if rank(A)!=min(numRows(A),numColumns(A)) then (
error "Input matrix expected to have maximal rank";
return 0;
);
if rank(A)<rank(A||matrix{toList(numColumns(A):1)}) then(
if opts.TextOutput!="Quiet" then print "Adding a row of ones";
A=(A||matrix{toList(numColumns(A):1)});
);
if opts.TextOutput!="Quiet" and ((numRows(A)+numColumns(A))<35) then <<"Proceeding with A-matrix="<<entries(A)<<endl;
P:=convexHull(A);
VPT:=vertices P;
m:=dim(P);
FacePoset:={};
ifaces:={};
tempFace:={};
curFace:=0;
curVol:=0;
Acols:=entries transpose(A);
notFcols:=0;
interiorCols:={};
faceCounts:={};
B:=gens ker A;
--<<"variety has codim= "<<numColumns(B)<<", "<<endl;
if numColumns(B)==2 then(
if not opts.ForceAmat then(
BMatCD2=true;
--print "using B Matrix method";
);
);
--<<BMatCD2<<", B= "<<B<<endl;
Bc:=B;
Ac:=A;
Acl:=entries transpose Ac;
n:=numColumns(A);
indsSet:=toList(0..n-1);
HP:=0;
HS:=0;
--end defs of B mat stuff
timList:={};
timList2:={};
for i from 0 to m do(
ifaces={};
--print "find faces";
--time
tim1:=elapsedTiming(
--tempFace=faces(i,P)
tempFace=for fc in faces(i,P) list convexHull(VPT_(fc#0));
);
timList2=append(timList2,first tim1);
faceCounts=append(faceCounts, #tempFace);
for f in tempFace do(
curFace=new MutableHashTable;
curFace#"dim"=m-i;
curFace#"verticesMat"=lift(vertices(f),ZZ);
curFace#"verticesList"=entries transpose curFace#"verticesMat";
notFcols=toList(set(Acols)-set(curFace#"verticesList"));
interiorCols={};
tim2:=elapsedTiming(
if i>0 and i<m then(
HP = hyperplanes f;
HS = halfspaces f;
HP0:=HP_0;
HS0:=HS_0;
HP1:=HP_1;
HS1:=HS_1;
for c in notFcols do(
--<<"mat c "<<transpose matrix{c}<<endl;
HP2:=(HP0*(transpose matrix{c}))-HP1;
HS2:=(HS0 * (transpose matrix{c}))-HS1;
if all(flatten entries HP2, e -> e == 0) and (all(flatten entries HS2, e -> e <= 0)) then(
interiorCols=append(interiorCols,c);
);
);
);
--print "done int check";
);
timList=append(timList,first tim2);
curFace#"interiorCol"=interiorCols;
curFace#"Aalpha"=join(interiorCols,curFace#"verticesList");
if i==0 then curFace#"Aalpha"=Acols;
if BMatCD2==true then curFace#"index"=indZ(curFace#"Aalpha");
if BMatCD2==true then(
if i==0 then (
L:=for wl in curFace#"Aalpha" list position(entries transpose A,ll->ll==wl);
Ac=A_L;
Bc=B^L;
if opts.TextOutput!="Quiet" then <<"Canonical Forms: Ac= "<<Ac<<", Bc="<<Bc<<endl;
curFace#"Balpha"=entries Bc;
curFace#"subscripts"=L;
Acl=entries transpose Ac;
)
else(
L2:=for wl in curFace#"Aalpha" list position(Acl,ll->ll==wl);
Bcalpha:=Bc^(indsSet-set(L2));
curFace#"Balpha"=entries Bcalpha;
curFace#"subscripts"=L2;
);
);
if i==m then(
curVol=1;
)
else(
if BMatCD2==true then (
if i==0 then(
curVol=((m-i)!)*volume(f)
)
else(
if allInrelLine(curFace#"Balpha") then (
v1:=first curFace#"Balpha";
v1=1/(gcd(v1))*v1;
PosSum:=0;
for b in entries(B^(curFace#"subscripts")) do(
tempdet1:=det(matrix({v1,b}));
if tempdet1>0 then PosSum=PosSum+tempdet1;
);
curVol=PosSum;
)
else curVol=(curFace#"index");
);
)
else(
curVol=((m-i)!)*volume(f);
);
);
curFace#"volume"=curVol;
ifaces=append(ifaces,curFace);
);
FacePoset=append(FacePoset,ifaces);
);
--<<"time to build face lattice= "<<sum(timList2)+sum(timList)<<endl;
V:={};
tempEL:=0;
tempVL:=0;
tempAlpha:=0;
tempBeta:=0;
tempsum:=0;
volBeta:=0;
tempEV:=0;
tempMuBeta:={};
tempMu:=0;
((FacePoset_0)_0)#"EulerOb"=1;
V=append(V,((FacePoset_0)_0)#"EulerOb"*((FacePoset_0)_0)#"volume");
for i from 1 to m do(
tempBeta=FacePoset_i;
tempEL={};
tempVL={};
tempEV=0;
for j from 0 to #(tempBeta)-1 do(
tempsum=0;
for l from 0 to i-1 do(
tempAlpha=FacePoset_l;
for b from 0 to (#(tempAlpha)-1) do(
if isSubset((tempBeta_j)#"verticesList",(tempAlpha_b)#"verticesList") then(
if opts.TextOutput!="Quiet" then(
print "*****************************************";
print "Find mu with";
if(tempAlpha_b)#?"Balpha" and (tempBeta_j)#?"Balpha" then(
<<"Balpha= "<<((tempAlpha_b)#"Balpha")<<endl;
<<"Bbeta= "<<((tempBeta_j)#"Balpha")<<endl;
);
<<"Aalpha= "<<transpose matrix((tempAlpha_b)#"Aalpha")<<", Abeta= "<<transpose matrix((tempBeta_j)#"Aalpha")<<endl;
);
if BMatCD2==true then(
tempMu=muB(entries(Bc),(tempAlpha_b),(tempBeta_j));
)
else (
tempMu=muA(A,tempAlpha_b,tempBeta_j);
);
if opts.TextOutput!="Quiet" then(
<<"mu= "<<tempMu<<endl;
print "*****************************************";
);
tempMuBeta=append(tempMuBeta,{tempMu,(tempAlpha_b)#"verticesMat"});
tempsum=tempsum+(-1)^(i-l-1)*tempMu*((tempAlpha_b)#"EulerOb");
);
);
);
((FacePoset_i)_j)#"EulerOb"=tempsum;
((FacePoset_i)_j)#"Mu"=tempMuBeta;
tempMuBeta={};
tempEL=append(tempEL,tempsum);
tempEV=tempEV+tempsum*((tempBeta_j)#"volume");
);
V=append(V,tempEV);
);
--);
<<endl;
if opts.Output===HashTable then(
return {V,FacePoset};
) else return V;
);
normalizedVolume=method(TypicalValue=>ZZ)
normalizedVolume (Polyhedron,ZZ):=(P,n)->(
if n>dim(P) then return 0;
if n==0 then (
return 1;
)
else (
vertices(P);
return latticeVolume(P);
--return ((dim(P))!)*vP;
);
);
normalizedVolume (Polyhedron):=(P)->(
if dim(P)==0 then return 1 else return latticeVolume(P);
);
---------------------------------------------------
--Internal Functions
--
--mu=method(TypicalValue=>ZZ)
--------------------------------------------------
mu =(A,alpha,beta)->(
dBeta:=beta#"dim";
dAlpha:=alpha#"dim";
r:=dAlpha-dBeta;
d:=numRows(A);
n:=numColumns(A);
vbeta:=beta#"verticesMat";
mbeta:=beta#"verticesList";
valpha:=alpha#"verticesMat";
malpha:=alpha#"verticesList";
Atemp:=0;
Asort3:=beta#"Aalpha";
Asort2:=toList(set(alpha#"Aalpha")-set(beta#"Aalpha"));
Asort1:=toList(set(entries transpose(A))-set(alpha#"Aalpha"));
M:=transpose(matrix(join(Asort1,Asort2,Asort3)));
if numColumns(A)!=numColumns(M) then (
print "There seems to be an error somewhere";
);
W:=(M);
Anew:=transpose hermite(transpose(W));
cs:=n-(#Asort2+#Asort3);
ce:=n-#Asort3-1;
rowInds:={};
inc:=0;
dind:=d-1;
for w from 0 to dind do(
if flatten(entries((Anew^{dind-w})_(toList((ce+1)..(n-1)))))==toList((#Asort3):0) then(
inc=inc+1;
rowInds=append(rowInds,dind-w);
);
if inc==r then break;
);
C:=(Anew_{cs..ce})^rowInds;
if rank(C)==0 then return 1;
big:=convexHull((transpose(matrix{toList(numRows(C):0)})|C));
C1:=transpose matrix delete(toList(numRows(C):0), entries transpose C);
little:=convexHull(C1);
vol1:=normalizedVolume(big,r);
vol2:=normalizedVolume(little,r);
vol:=(vol1-vol2);
if numRows(C)!=r then(
print "Something may be wrong...we seem to have picked a C matrix with the wrong number of rows";
);
return vol;
);
beginDocumentation()
multidoc ///
Node
Key
ToricInvariants
Headline
Given a projective toric variety, the package computes the degree and codimension of the dual, the Euclidean distance degree, polar degrees, and Chern-Mather class
Description
Text
Given a projective toric variety X_A defined by a full rank integer matrix A with the vector (1,1,...,1) in its row space, the package computes the degree and codimension of the dual (i.e. the A-discriminant variety), the Euclidean distance degree of X_A, the polar degrees of X_A, and the Chern-Mather class of X_A.
Note that we do not require that X_A is normal. This package uses the algorithms described in [1] and [2]. For definitions of the objects computed by the package see [1,2].
References: \break
[1] Martin Helmer and Bernd Sturmfels. "Nearest points on toric varieties." Mathematica Scandinavica 122, no. 2 (2018): 213-238. Arxiv version: https://arxiv.org/abs/1603.06544.\break
[2] Martin Helmer and Bernt Ivar Utstol Nodland. "Polar degrees and closest points in codimension two." Journal of Algebra and Its Applications (2017): 1950095. Arxiv version: https://arxiv.org/abs/1711.02381.
Node
Key
polarDegrees
(polarDegrees,Matrix)
Headline
Computes the polar degrees of a projective toric variety
Usage
polarDegrees(A)
Inputs
ForceAmat=>Boolean
if A defines a codimension two toric variety a faster method will be used by default, setting this to true forces the general purpose method
Output=>List
this can be set to HashTable to return a HashTable with all computed values
A:Matrix
a full rank integer matrix with the vector (1,1,...,1) in its row space defining a projective toric variety X_A
Outputs
pd:List
the polar degrees of the projective toric variety X_A.
Description
Text
This function computes the polar degrees of the projective toric variety X_A, we do not assume that X_A is normal. The default output is a list of polar degrees; other values of interest computed by the program are also output. To suppress text output use the option Output =>HashTable.
Example
A=matrix{{0, 0, 0, 1, 1,5}, {7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}}
polarDegrees(A)
A=matrix{{3, 0, 0, 1, 1,2},{3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}}
pdh=polarDegrees(A,Output=>HashTable);
pdh#"polar degrees"
pdh#"dual degree"
pdh#"dual codim"
pdh#"ED"
pdh#"degree"
Node
Key
dualDegCodim
(dualDegCodim,Matrix)
Headline
Computes the degree and codimension of the dual to a projective toric variety
Usage
dualDegCodim(A)
Inputs
ForceAmat=>Boolean
if A defines a codimension two toric variety a faster method will be used by default, setting this to true forces the general purpose method
A:Matrix
a full rank integer matrix with the vector (1,1,...,1) in its row space defining a projective toric variety X_A
Outputs
degCodim:HashTable
the polar degrees of the projective toric variety X_A.
Description
Text
This function computes the degree and codimension of the projective toric variety X_A, we do not assume that X_A is normal. This function uses @TO polarDegrees@ internally and this information can also be obtained from the @TO polarDegrees@ function.
Example
A=matrix{{0, 0, 0, 1, 1,5},{7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}}
dc=dualDegCodim(A)
dc#"dualCodim"
dc#"dualDegree"
pd=polarDegrees(A);
Node
Key
cmClass
(cmClass,Matrix)
Headline
Computes the Chern-Mather class of a projective toric variety
Usage
cmClass(A)
Inputs
ForceAmat=>Boolean
if A defines a codimension two toric variety a faster method will be used by default, setting this to true forces the general purpose method
Output=>List
this can be set to HashTable to return a HashTable with all computed values
A:Matrix
a full rank integer matrix with the vector (1,1,...,1) in its row space defining a projective toric variety X_A
Outputs
cm:RingElement
the Chern-Mather class of the projective toric variety X_A pushedforward to the Chow ring of the ambient projective space.
Description
Text
This function computes the Chern-Mather class of the projective toric variety X_A pushedforward to the Chow ring of the ambient projective space, we do not assume that X_A is normal.
Example
A=matrix{{0, 0, 0, 1, 1,5},{7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}}
cmClass(A)
A=matrix{{3, 0, 0, 1, 1,2}, {3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}}
cmh=cmClass(A,Output=>HashTable);
cmh#"CM class"
cmh#"polar degrees"
cmh#"dual degree"
cmh#"dual codim"
cmh#"ED"
cmh#"degree"
Node
Key
cmVolumes
(cmVolumes,Matrix)
Headline
Computes the Chern-Mather volumes of a projective toric variety
Usage
cmVolumes(A)
Inputs
ForceAmat=>Boolean
if A defines a codimension two toric variety a faster method will be used by default, setting this to true forces the general purpose method
Output=>List
this can be set to HashTable to return a HashTable with all computed values
A:Matrix
a full rank integer matrix with the vector (1,1,...,1) in its row space defining a projective toric variety X_A
Outputs
cmv:List
the Chern-Mather volumes of the projective toric variety X_A, ordered from dimension X_A to dimension zero.
Description
Text
This function computes the Chern-Mather volumes of the projective toric variety X_A, these are the coefficients of the Chern-Mather class ordered from dimension X_A to dimension zero. We do not assume that X_A is normal.
Example
A=matrix{{0, 0, 0, 1, 1,5}, {7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}}
cmVolumes(A)
A=matrix{{3, 0, 0, 1, 1,2}, {3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}}
cm=cmVolumes(A)
Node
Key
edDeg
(edDeg,Matrix)
Headline
Computes the (generic) Euclidean distance degree of a projective toric variety
Usage
edDeg(A)
Inputs
ForceAmat=>Boolean
if A defines a codimension two toric variety a faster method will be used by default, setting this to true forces the general purpose method
Output=>List
this can be set to HashTable to return a HashTable with all computed values
A:Matrix
a full rank integer matrix with the vector (1,1,...,1) in its row space defining a projective toric variety X_A
Outputs
ED:ZZ
the (generic) Euclidean distance degree of the projective toric variety X_A.
Description
Text
This function computes (generic) Euclidean distance degree the projective toric variety X_A, we do not assume that X_A is normal. The default output is a list of polar degrees; other values of interest computed by the program are also output. To suppress text output use the option Output =>HashTable. This function uses @TO polarDegrees@ internally.
Example
A=matrix{{0, 0, 0, 1, 1,5}, {7,0, 1, 3, 0, -2},{1,1, 1, 1, 1, 1}}
edDeg(A)
A=matrix{{3, 0, 0, 1, 1,2}, {3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}}
time edDeg(A)
time edDeg(A,ForceAmat=>true)
///
TEST ///
-*
restart
installPackage "ToricInvariants"
needsPackage "ToricInvariants"
*-
A=matrix{{3, 5, 2, 1, 1,2},{3,-2,0,2,-1,3},{0, 1, 2, 4, 2,0},{1, 1, 1, 1, 1,1}};
pd1=polarDegrees(A);
assert(pd1=={121, 278, 236, 74});
pd2= polarDegrees(A,ForceAmat=>true);
assert(pd1==pd2);
assert(edDeg(A)==709);
assert(cmVolumes(A)=={74, 60, 14, 23});
dc=dualDegCodim A;
assert(dc#"dualCodim"==1);
assert(dc#"dualDegree"==121);
///
TEST ///
-*
restart
needsPackage "ToricInvariants"
*-
A=matrix{{3, 4, 3, 13, 1,2},{7, 1, 2, -4, -2,10},{1, 1, 1, 1, 1,1}};
pd1=polarDegrees(A);
assert(pd1=={226, 362, 146});
assert(edDeg(A)==734);
dc=dualDegCodim A;
assert(dc#"dualCodim"==1);
assert(dc#"dualDegree"==226);
///
TEST ///
-*
restart
needsPackage "ToricInvariants"
*-
A=matrix{{0, -4,5, 3, 3, -1,2},{4, 1, 4, -4, -9,7,11},{1,1, 1, 1, 1, 1,1}};
pdh=polarDegrees(A,Output=>HashTable);
assert(pdh#"polar degrees"=={363, 477, 189});
assert(pdh#"ED"==1029);
///
TEST ///
-*
restart
needsPackage "ToricInvariants"
*-
A=matrix{{3, 0, 0, 1, 1,2,1,2},{3,5,0,2,1,3,12,11},{5, 1, 9, 10, 12,3,7,9},{3, 1, 2, 19, 7,1,1,2},{0, 1, 2, 0, 2,0,5,7},{1, 1, 1, 1, 1,1,1,1}};
time pd=polarDegrees(A,Output=>HashTable);
assert(pd#"polar degrees"=={30840, 119341, 202791, 183622, 87616, 16924});
assert(pd#"ED"==641134);
A=transpose(matrix{{0,0,1},{0,7,1},{3,0,1},{5,0,1}})
ed=edDeg(A,ForceAmat=>true);
assert(ed==10);
///
|