1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
|
--*- coding: utf-8 -*-
---------------------------------------------------------------------------
-- PURPOSE: Computations with vector bundles on toric varieties
-- PROGRAMMER : René Birkner
-- UPDATE HISTORY : November 2008, November 2009, April 2010
---------------------------------------------------------------------------
newPackage("ToricVectorBundles",
Headline => "vector bundles on toric varieties",
Version => "1.1",
Date => "August 21, 2014",
Authors => {
{Name => "René Birkner",
HomePage => "http://page.mi.fu-berlin.de/rbirkner/indexen.htm",
Email => "rbirkner@math.fu-berlin.de"},
{Name => "Nathan Ilten",
HomePage => "http://people.cs.uchicago.edu/~nilten/",
Email => "nilten@cs.uchicago.edu"},
{Name => "Lars Petersen",
Email => "petersen@math.fu-berlin.de"}},
Keywords => {"Toric Geometry"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry: Macaulay2",
"journal URI" => "http://j-sag.org/",
"article title" => "Computations with equivariant toric vector bundles",
"acceptance date" => "2010-06-15",
"published article URI" => "http://j-sag.org/Volume2/jsag-3-2010.pdf",
"published code URI" => "http://j-sag.org/Volume2/ToricVectorBundles.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/ToricVectorBundles.m2",
"release at publication" => "314a1e7a1a5f612124f23e2161c58eabeb491f46",
"version at publication" => "1.0",
"volume number" => "2",
"volume URI" => "http://j-sag.org/Volume2/"
},
Configuration => {},
PackageExports => {"Polyhedra"}
)
-- Check version compatibility of Polyhedra
if (options Polyhedra)#Version < "1.1" then error("expected at least version 1.1 of Polyhedra to be installed.")
---------------------------------------------------------------------------
-- COPYRIGHT NOTICE:
--
-- Copyright 2010 René Birkner, Nathan Owen Ilten, and Lars Petersen
--
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
--
---------------------------------------------------------------------------
export {"ToricVectorBundle",
"ToricVectorBundleKaneyama",
"ToricVectorBundleKlyachko",
"toricVectorBundle",
"addBase",
"addBaseChange",
"addDegrees",
"addFiltration",
"areIsomorphic",
"base",
"cartierIndex",
"charts",
"cocycleCheck",
"cotangentBundle",
"deltaE",
"details",
"eulerChi",
"existsDecomposition",
"filtration",
"findWeights",
"isGeneral",
"isomorphism",
"isVectorBundle",
"randomDeformation",
"regCheck",
"tangentBundle",
"twist",
"weilToCartier",
"hirzebruchFan",
"pp1ProductFan",
"projectiveSpaceFan",
"customConeSort"}
protect allRaysTable
protect isoMatrix
protect gradedRing
protect cech
protect isVB
protect cocyle
protect degreesList
protect cocycle
protect weights
protect isomorphic
---------------------------------------------------------------------------
-- DEFINING NEW TYPES
---------------------------------------------------------------------------
-- For some reason it is important for ToricVectorBundles to be able to sort
-- cones. Since cones as keys in hashtables do not work anymore we move the old
-- code for sorting cones here from OldPolyhedra.m2 and implement a method for
-- sorting the new keys.
Cone ? Cone := (C1,C2) -> (
if C1 == C2 then symbol == else (
if ambDim C1 != ambDim C2 then ambDim C1 ? ambDim C2 else (
if dim C1 != dim C2 then dim C1 ? dim C2 else (
R1 := sort rays C1;
R2 := sort rays C2;
if R1 != R2 then (
R1 = apply(numColumns R1, i -> R1_{i});
R2 = apply(numColumns R2, i -> R2_{i});
(a,b) := (set R1,set R2);
r := (sort matrix {join(select(R1,i->not b#?i),select(R2,i->not a#?i))})_{0};
if a#?r then symbol > else symbol <)
else (
R1 = linSpace C1;
R2 = linSpace C2;
R1 = apply(numColumns R1, i -> R1_{i});
R2 = apply(numColumns R2, i -> R2_{i});
(c,d) := (set R1,set R2);
l := (sort matrix {join(select(R1,i->not d#?i),select(R2,i->not c#?i))})_{0};
if c#?l then symbol > else symbol <)))))
customConeSort = method()
customConeSort List := L -> (
L = apply(L, l -> posHull l);
L = sort L;
L = apply(L, l -> (rays l, linealitySpace l));
L
)
-- Defining the new type ToricVectorBundle, the parent type to the two types of TVB
ToricVectorBundle = new Type of HashTable
-- Defining the new type ToricVectorBundleKaneyama
ToricVectorBundleKaneyama = new Type of ToricVectorBundle
ToricVectorBundleKaneyama.synonym = "vector bundle on a toric variety (Kaneyama's description)"
globalAssignment ToricVectorBundleKaneyama
-- Defining the new type ToricVectorBundleKlyachko
ToricVectorBundleKlyachko = new Type of ToricVectorBundle
ToricVectorBundleKlyachko.synonym = "vector bundle on a toric variety (Klyachko's description)"
globalAssignment ToricVectorBundleKlyachko
-- Modifying the standard output for a ToricVectorBundleKaneyama to give an overview of its characteristica
net ToricVectorBundleKaneyama := tvb -> ( horizontalJoin flatten (
"{",
-- prints the parts vertically
stack (horizontalJoin \ sort apply({"dimension of the variety",
"rank of the vector bundle",
"number of affine charts"}, key -> (net key, " => ", net tvb#key))),
"}" ))
-- Modifying the standard output for a ToricVectorBundleKlyachko to give an overview of its characteristica
net ToricVectorBundleKlyachko := tvb -> ( horizontalJoin flatten (
"{",
-- prints the parts vertically
stack (horizontalJoin \ sort apply({"dimension of the variety",
"rank of the vector bundle",
"number of affine charts",
"number of rays"}, key -> (net key, " => ", net tvb#key))),
"}" ))
---------------------------------------------------------------
-- Sorting rays
---------------------------------------------------------------
-- A ray is a matrix ZZ^n <-- ZZ^1, so rays can be sorted by assembling them
-- into a matrix and calling "sortColumns". We sort the rays as in the package
-- Polyhedra, so that changes to the algorithm for computing the hash code of
-- matrices doesn't affect what we do.
raySort = value Polyhedra#"private dictionary"#"raySort"
raySortOfFan = (fan) -> (
r := rays fan;
raySort for i from 0 to numColumns r - 1 list r_{i}
)
---------------------------------------------------------------
-- FUNCTIONS TO CONSTRUCT VECTOR BUNDLES AND MODIFY THEM
---------------------------------------------------------------
-- PURPOSE : Building a Vector Bundle of rank 'k' on the Toric Variety given by the Fan 'F'
toricVectorBundle = method(Options => true)
-- INPUT : '(k,F)', a strictly positive integer 'k' and a pure and full dimensional Fan 'F'
-- OUTPUT : A ToricVectorBundleKaneyama or ToricVectorBundleKlyachko
-- COMMENT : If no option is given the function will return a ToricVectorBundleKlyachko, if "Type" => "Kaneyama" is given it returns a ToricVectorBundleKaneyama
toricVectorBundle (ZZ,Fan) := {"Type"=>"Klyachko"} >> opts -> (k,F) -> (
if opts#"Type" == "Kaneyama" then makeVBKaneyama(k,F) else if opts#"Type" == "Klyachko" then makeVBKlyachko(k,F) else error("Expected Type to be Klyachko or Kaneyama."))
-- INPUT : '(k,F,L1,L2)', a strictly positive integer 'k',a pure and full dimensional Fan 'F', and two lists 'L1' and 'L2'
-- OUTPUT : A ToricVectorBundleKaneyama or ToricVectorBundleKlyachko
-- COMMENT : If no option is given the function will return a ToricVectorBundleKlyachko where the base matrices are given in the first list and the
-- filtration matrices are given in the second list,
-- if "Type" => "Kaneyama" is given it returns a ToricVectorBundleKaneyama where the degree matrices are given in the first list and the
-- transition matrices are given in the second list.
toricVectorBundle (ZZ,Fan,List,List) := {"Type"=>"Klyachko"} >> opts -> (k,F,L1,L2) -> (
if opts#"Type" == "Kaneyama" then makeVBKaneyama(k,F,L1,L2) else if opts#"Type" == "Klyachko" then makeVBKlyachko(k,F,L1,L2) else error("Expected Type to be Klyachko or Kaneyama."))
-- PURPOSE : Changing the base matrices of a given ToricVectorBundleKlyachko to those given in the List
-- INPUT : '(tvb,L)', a ToricVectorBundle 'tvb' and a list 'L'of k by k matrices over a common ring/field, one for each
-- ray of the underlying fan
-- OUTPUT : The ToricVectorBundleKlyachko 'tvb'
-- COMMENT : Note that the matrices in 'L' will be assigned to the rays in the order they appear in rays tvb
addBase = method(TypicalValue => ToricVectorBundleKlyachko)
addBase (ToricVectorBundleKlyachko,List) := (tvb,L) -> (
-- Extracting data out of tvb
k := tvb#"rank of the vector bundle";
n := tvb#"number of rays";
R := raySortOfFan tvb#"ToricVariety";
-- Checking for input errors
if n != #L then error("Expected number of matrices to match number of rays of the fan.");
if any(L, l -> not instance(l,Matrix)) then error("Expected the bases to be given as matrices.");
P := unique apply(L,ring);
if #P != 1 then (
if P === {QQ,ZZ} or P === {ZZ,QQ} then (
L = apply(L, l -> promote(l,QQ));
P = {QQ})
else error("Expected all the bases to be over the same ring."));
-- Creating the table of bases for the rays
baseTable := hashTable apply(n, i -> (
M := L#i;
-- Checking for more input errors
if numColumns M != k or numRows M != k then error("Expected the base change matrices to be rank times rank matrices.");
if det M == 0 then error("Expected the bases to have full rank.");
-- Inserting the matrix at the i-th position
R#i => M));
-- Writing the bases into the bundle
new ToricVectorBundleKlyachko from {
"ring" => first P,
"rayTable" => tvb#"rayTable",
"baseTable" => baseTable,
"filtrationMatricesTable" => tvb#"filtrationMatricesTable",
"filtrationTable" => tvb#"filtrationTable",
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"number of rays" => tvb#"number of rays",
symbol cache => new CacheTable})
-- PURPOSE : Changing the transition matrices of a given ToricVectorBundle to those given in the List
-- INPUT : '(tvb,L)', a ToricVectorBundle 'tvb' and a list 'L'of k by k matrices over QQ, one for each
-- pair of top dimensional Cones intersecting in a common codim 1 face.
-- OUTPUT : The ToricVectorBundle 'tvb'
-- COMMENT : Note that the ToricVectorBundle already has a list of pairs (i,j) denoting the codim 1 intersections
-- of two top dim cones, with i<j and they are ordered in lexicographic order. So the matrices in 'L'
-- will be assigned to the pairs (i,j) in that order, where the matrix A assigned to (i,j) denotes the
-- transition
-- (e_i^1,...,e_i^k) = (e_j^1,...,e_j^k)* A
addBaseChange = method(TypicalValue => ToricVectorBundleKaneyama)
addBaseChange (ToricVectorBundleKaneyama,List) := (tvb,L) -> (
-- Extracting data out of tvb
pairlist := sort keys tvb#"baseChangeTable";
k := tvb#"rank of the vector bundle";
-- Checking for input errors
if #pairlist != #L then error("Expected the number of matrices to match the number of codim 1 Cones.");
baseChangeTable := hashTable apply(#pairlist, i -> (
M := L#i;
-- Checking for more input errors
if not instance(M,Matrix) then error("Expected the transition matrices to be given as rank times rank matrices.");
if numColumns M != k or numRows M != k then error("Expected the base change matrices to be k by k matrices.");
if det M == 0 then error("The base change matrices must be invertible.");
R := ring source M;
M = if R === ZZ or R === QQ then promote(M,QQ) else error("Expected base change over ZZ or QQ");
-- Inserting the matrix at the i-th position
pairlist#i => M));
-- Writing the new transition matrices into the bundle
new ToricVectorBundleKaneyama from {
"degreeTable" => tvb#"degreeTable",
"baseChangeTable" => baseChangeTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => k,
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable})
-- PURPOSE : Changing the degrees of the local generators of a given ToricVectorBundleKaneyama to those given in the List
-- INPUT : '(tvb,L)', a ToricVectorBundleKaneyama 'tvb' and a list 'L'of n by k matrices over ZZ, one for each
-- top dimensional Cone.
-- OUTPUT : The ToricVectorBundleKaneyama 'tvb'
-- COMMENT : Note that in the ToricVectorBundleKaneyama the top dimensional Cones are already numbered and that the degree
-- matrices will be assigned to the Cones in that order.
addDegrees = method(TypicalValue => ToricVectorBundleKaneyama)
addDegrees (ToricVectorBundleKaneyama,List) := (tvb,L) -> (
-- Extracting data out of tvb
tCT := customConeSort keys tvb#"degreeTable";
k := tvb#"rank of the vector bundle";
n := tvb#"dimension of the variety";
-- Checking for input errors
if #tCT != #L then error("Number of degree matrices must match the number of top dim cones.");
degreeTable := hashTable apply(#tCT, i -> (
M := L#i;
-- Checking for more input errors
if not instance(M,Matrix) then error("The degrees must be given as dimension times rank matrices.");
if ring M =!= ZZ then error("Expected the degrees to be in the ZZ lattice.");
if numColumns M != k then error("The number of degrees must match the vector bundle rank.");
if numRows M != n then error("The degrees must have the dimension of the underlying toric variety.");
-- Inserting the degree matrix
tCT#i => M));
-- Writing the new degree table into the bundle
new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => tvb#"baseChangeTable",
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => n,
"rank of the vector bundle" => k,
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable})
-- INPUT : '(tvb,L)', a ToricVectorBundleKlyachko 'tvb' and a list 'L'of 1 by k matrices over ZZ, one for each
-- ray of the fan
-- OUTPUT : The ToricVectorBundleKlyachko 'tvb'
-- COMMENT : Note that the matrices in 'L' will be assigned to the rays in the order they appear in rays tvb
addFiltration = method(TypicalValue => ToricVectorBundleKlyachko)
addFiltration (ToricVectorBundleKlyachko,List) := (tvb,L) -> (
-- Extracting data out of tvb
n := tvb#"number of rays";
k := tvb#"rank of the vector bundle";
R := rays tvb;
-- Checking for input errors
if n != #L then error("The number of matrices has to match the number of rays of the fan.");
if any(L, l -> not instance(l,Matrix)) then error("The filtrations have to be given as matrices.");
if any(L, l -> ring l =!= ZZ) then error("The filtrations have to be given as matrices over ZZ.");
if any(L, l -> numColumns l != k or numRows l != 1) then error("The filtrations have to be given as 1 times n matrices.");
-- Writing the new filtration matrices into the table
filtrationMatricesTable := hashTable apply(n, i -> R#i => L#i);
-- Computing the list of changes in the filtrations
filtrationTable := hashTable apply(pairs filtrationMatricesTable, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({(min L1 - 1) => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
-- Writing the new filtration maps and changes tables into the bundle
new ToricVectorBundleKlyachko from {
"ring" => tvb#"ring",
"rayTable" => tvb#"rayTable",
"baseTable" => tvb#"baseTable",
"filtrationMatricesTable" => filtrationMatricesTable,
"filtrationTable" => filtrationTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"number of rays" => tvb#"number of rays",
symbol cache => new CacheTable})
-- PURPOSE : Giving the number of affine charts of a ToricVectorBundle
-- INPUT : 'tvb', a ToricVectorBundle
-- OUTPUT : 'ZZ', the number of affine charts
charts = method(TypicalValue => ZZ)
charts ToricVectorBundle := tvb -> tvb#"number of affine charts"
-- PURPOSE : Checking if the ToricVectorBundleKaneyama fulfills the cocycle condition
-- INPUT : 'tvb', a ToricVectorBundleKaneyama
-- OUTPUT : 'true' or 'false'
cocycleCheck = method(TypicalValue => Boolean)
cocycleCheck ToricVectorBundleKaneyama := (cacheValue symbol cocycle)( tvb -> (
-- Extracting data out of tvb
n := tvb#"dimension of the variety";
k := tvb#"rank of the vector bundle";
bCT := tvb#"baseChangeTable";
topCones := customConeSort keys tvb#"topConeTable";
L := hashTable {};
-- For each codim 2 Cone computing the list of topCones which have this Cone as a face
-- and save the list of indices of these topCones as an element in L
for i from 0 to #topCones - 1 do L = merge(hashTable apply(facesAsCones(2,posHull topCones#i), C -> (rays C, linealitySpace C) => {i}),L,(a,b) -> sort join(a,b));
-- Finding the cyclic order of every list of topCones in L and write this cyclic order as a
-- list of consecutive pairs
L = for l in values L list (
pairings := {};
start := l#0;
a := start;
l = drop(l,1);
i := position(l, e -> dim intersection(posHull topCones#a, posHull topCones#e) == n-1);
while i =!= null do (
pairings = pairings | {(a,l#i)};
a = l#i;
l = drop(l,{i,i});
i = position(l, e -> dim intersection(posHull topCones#a, posHull topCones#e) == n-1));
if dim intersection(posHull topCones#a, posHull topCones#start) == n-1 then pairings | {(a,start)} else continue);
-- Check for every cyclic order of topCones if the product of the corresponding transition
-- matrices is the identity
all(L, l -> product apply(reverse l, e -> if e#0 > e#1 then inverse bCT#(e#1,e#0) else bCT#e) == map(QQ^k,QQ^k,1))))
-- PURPOSE : Presenting some details of the given ToricVectorBundle
-- INPUT : 'tvb', a ToricVectorBundleKaneyama
-- OUTPUT : '(A,C)', where 'A' is a hashTable giving the enumeration of the maximal cones with their rays and degree matrix,
-- and 'B' gives the transition matrices for the codim 1 pairs
-- COMMENT : This function gives the possibility to have a quick overview on the main properties of a ToricVectorBundleKaneyama
details = method()
details ToricVectorBundle := tvb -> (
if instance(tvb,ToricVectorBundleKaneyama) then (hashTable apply(pairs(tvb#"topConeTable"), p -> ( p#1 => (rays posHull p#0,tvb#"degreeTable"#(p#0)))),tvb#"baseChangeTable")
else hashTable apply(rays tvb, r -> r => (tvb#"baseTable"#r,tvb#"filtrationMatricesTable"#r)))
-- PURPOSE : Checking if a ToricVectorBundleKaneyama satisfies the regularity conditions of the degrees
-- INPUT : 'tvb', a ToricVectorBundleKaneyama
-- OUTPUT : 'true' or 'false'
-- COMMENT : This function is for checking ToricVectorBundles whose degrees and matrices
-- are inserted by hand. Those generated for example by tangentBundle fulfill the
-- conditions automatically.
regCheck = method(TypicalValue => Boolean)
regCheck ToricVectorBundleKaneyama := (cacheValue symbol regCheck)( tvb -> (
-- Extracting the necessary data
tCT := customConeSort keys tvb#"topConeTable";
c1T := tvb#"codim1Table";
bCT := tvb#"baseChangeTable";
dT := tvb#"degreeTable";
k := tvb#"rank of the vector bundle";
all(keys bCT, p -> (
-- Taking a pair corresponding to a codim 1 cone, the corresponding transition matrix and its inverse
A := bCT#p;
B := inverse A;
-- Computing the dual of the codim 1 cone
C := dualCone posHull c1T#p;
-- Check for all pairs of degree vectors of the two top Cones the reg condition
all(k, i -> (
ri := (dT#(tCT#(p#1)))_{i};
all(k, j -> (
rj := (dT#(tCT#(p#0)))_{j};
(if A^{i}_{j} != 0 then contains(C,rj-ri) else true) and (if A^{j}_{i} != 0 then contains(C,ri-rj) else true)))))))))
----------------------------------------------------------------------------
-- OPERATIONS ON TORIC VECTOR BUNDLES
----------------------------------------------------------------------------
-- PURPOSE : Returning the base representation of the bundle
-- INPUT : 'tvb', a ToricVectorBundleKlyachko
-- OUTPUT : A HashTable which gives for each ray of the fan the matrix of the basis
base = method(TypicalValue => HashTable)
base ToricVectorBundleKlyachko := tvb -> tvb#"baseTable"
-- PURPOSE : Returning the filtration matrices of the bundle
-- INPUT : 'tvb', a ToricVectorBundleKlyachko
-- OUTPUT : A HashTable which gives for each ray of the matrix of the filtration
filtration = method(TypicalValue => HashTable)
filtration ToricVectorBundleKlyachko := tvb -> tvb#"filtrationMatricesTable"
-- PURPOSE : Checking for the descriptions of two given vector bundles in Klyachko's description if they are isomorphic
-- INPUT : '(T1,T2)', two ToricVectorBundleKlyachko
-- OUTPUT : 'true', if they are isomorphic, 'false' otherwise
-- COMMENT : If the check reveals that they are isomorphic, the isomorphism can be obtained with the function isomorphism
areIsomorphic = method(TypicalValue => Boolean)
areIsomorphic (ToricVectorBundleKlyachko,ToricVectorBundleKlyachko) := (T1,T2) -> (
-- Creating the entries in the cacheTables of the two bundles if they are not yet present
if not T1.cache.?isomorphic then (
T1.cache.isomorphic = new MutableHashTable;
if not T1.cache.?isoMatrix then T1.cache.isoMatrix = new MutableHashTable);
if not T2.cache.?isomorphic then (
T2.cache.isomorphic = new MutableHashTable;
if not T2.cache.?isoMatrix then T2.cache.isoMatrix = new MutableHashTable);
-- If this pairing has not been checked before, check it now
if not T1.cache.isomorphic#?T2 then (
local isoMatrix;
T1.cache.isomorphic#T2 = (
-- To be isomorphic, the bundles must be over the same TV, over the same ring and must have the same rank
T1#"ToricVariety" == T2#"ToricVariety" and T1#"ring" === T2#"ring" and T1#"rank of the vector bundle" == T2#"rank of the vector bundle" and (
-- If this is the case, extract the filtrations
fMT1 := T1#"filtrationMatricesTable";
fMT2 := T2#"filtrationMatricesTable";
bT1 := T1#"baseTable";
bT2 := T2#"baseTable";
bundleRing := T1#"ring";
R := rays T1;
r0 := R#0;
R = drop(R,1);
-- Check for the first ray, if they have the same filtration numbers and dimensions of the filtration steps
sort fMT1#r0 == sort fMT2#r0 and (
-- if this is the case, resort both base matrices according to the filtration and compute the possible isomorphism
A := submatrix'(sort(promote(fMT1#r0,bundleRing) || bT1#r0),{0},);
B := submatrix'(sort(promote(fMT2#r0,bundleRing) || bT2#r0),{0},);
isoMatrix = B*(A^-1);
-- check for the remaining rays if the filtrations are identical
all(R, r -> (
f1 := flatten entries fMT1#r;
f2 := flatten entries fMT2#r;
sort f1 == sort f2 and all(unique f1, e -> (
E1 := (bT1#r)_(positions(f1, i -> i <= e));
E2 := (bT2#r)_(positions(f2, i -> i <= e));
image(isoMatrix*E1) == image E2)))))));
-- If they are isomorphic then write the isomorphism into the cache of both bundles
if T1.cache.isomorphic#T2 then (
T1.cache.isoMatrix#T2 = isoMatrix;
T2.cache.isomorphic#T1 = true;
T2.cache.isoMatrix#T1 = isoMatrix^-1));
T1.cache.isomorphic#T2)
-- PURPOSE : Obtaining the isomorphism if two vector bundles are isomorphic
-- INPUT : '(T1,T2)', two ToricVectorBundleKlyachko
-- OUTPUT : The isomorphism, if they are isomorphic, otherwise an error
isomorphism = method(TypicalValue => Matrix)
isomorphism (ToricVectorBundleKlyachko,ToricVectorBundleKlyachko) := (T1,T2) -> (
if not areIsomorphic(T1,T2) then error("The bundles are not isomorphic");
T1.cache.isoMatrix#T2)
-- PURPOSE : Compute the Euler characteristic
eulerChi = method(TypicalValue => ZZ)
-- INPUT : '(T,u)', where 'T' is a ToricVectorBundle and 'u' is a one column matrix over ZZ giving a degree vector
-- OUTPUT : The Euler characteristic of the Cech complex at degree 'u'
eulerChi (Matrix,ToricVectorBundle) := (u,T) -> (
if not T.cache.?eulerChi then T.cache.eulerChi = new MutableHashTable;
if not T.cache.eulerChi#?u then (
n := T#"dimension of the variety";
-- Compute the Cech complex and compute the alternating sum of the dimensions
if instance(T,ToricVectorBundleKlyachko) then T.cache.eulerChi#u = sum apply(n+1, i -> (-1)^i * sum values (cechComplex(i,T,u))#1)
else T.cache.eulerChi#u = sum apply(n+2, i -> (-1)^i * numColumns (cechComplex(i,T,u))#1));
T.cache.eulerChi#u)
-- INPUT : 'T', a ToricVectorBundle
-- OUTPUT : The Euler characteristic of the bundle
eulerChi ToricVectorBundle := T -> (
-- Compute the set of degrees with possible cohomology
L := latticePoints deltaE T;
-- Sum up their characteristics
sum apply(L, l -> eulerChi(l,T)))
-- PURPOSE : Returning the table of codimension 1 cones of the underlying fan
-- INPUT : 'T', a ToricVectorBundleKaneyama
-- OUTPUT : a HashTable
codim1Table = method(TypicalValue => HashTable)
codim1Table ToricVectorBundleKaneyama := T -> T#"codim1Table"
-- PURPOSE : Computing the cohomology group of a given ToricVectorBundle
-- INPUT : '(i,T,weight)', 'i' for the 'i'th cohomology group, 'T' a ToricVectorBundle, and 'weight' the degree
-- OUTPUT : 'ZZ', the graded module of the degree 'weight' part of the 'i'th cohomology group of 'T'
cohomology(ZZ,ToricVectorBundle,Matrix) := opts -> (i,T,weight) -> cohom(i,T,weight)
-- PURPOSE : Computing the cohomology group of a given ToricVectorBundle
-- INPUT : '(i,T,P)', 'i' for the 'i'th cohomology group, 'T' a ToricVectorBundle, and 'P' a list of degrees
-- OUTPUT : 'List', the list of the graded modules of the corresponding degree parts of the cohomology group which are non zero
cohomology(ZZ,ToricVectorBundle,List) := opts -> (i,T,P)-> (
if opts.Degree == 1 then print ("Number of degrees to calculate: "|(toString(#P)));
for j in P list (
if opts.Degree == 1 then << "." << flush;
j = cohomology(i,T,j);
if j != 0 then j else continue))
-- PURPOSE : Computing the cohomology group of a given ToricVectorBundle
-- INPUT : '(i,T)', 'i' for the 'i'th cohomology group, 'T' a ToricVectorBundle
-- OUTPUT : the group as a graded module where the generators have the corresponding degree of the weight vector
-- COMMENT : if the option "Degree" => 1 is given then it displays the number of degrees to calculate
cohomology(ZZ,ToricVectorBundle) := opts -> (i,T)-> (
L := cohomology(i,T,latticePoints deltaE T,Degree => opts.Degree);
if L == {} then (ring T)^0 else directSum L)
-- PURPOSE : Computing the rank of the cohomology group of a given ToricVectorBundle
-- INPUT : '(i,S)', 'i' for the 'i'th cohomology group, 'S' a Sequence of ToricVectorBundle and a weight vector
-- OUTPUT : 'ZZ', the rank of the degree 'weight' part of the 'i'th cohomology group of the bundle
hh(ZZ,Sequence) := (i,S) -> (
-- Checking for input errors
if #S != 2 then error("The Sequence has to contain a toric vector bundle and a weight vector.");
if not instance(S#1,Matrix) then error("The second argument has to be a weight vector given by a matrix.");
if not instance(S#0,ToricVectorBundleKaneyama) and not instance(S#0,ToricVectorBundleKlyachko) then error("The first argument has to be a toric vector bundle.");
(T,u) := S;
rank cohomology(i,T,u))
-- PURPOSE : Computing the rank of the cohomology group of a given ToricVectorBundle
-- INPUT : '(i,T)', 'i' for the 'i'th cohomology group, 'T' a ToricVectorBundle
-- OUTPUT : 'ZZ', the rank of the 'i'th cohomology group
hh(ZZ,ToricVectorBundle) := ZZ => (i,T) -> rank cohomology(i,T)
-- PURPOSE : Computing the coker bundle of a toric vector bundle
-- INPUT : '(T,M)', where 'T' is a ToricVectorBundleKlyachko and 'M' a matrix with the bundle space as target
-- OUTPUT : The bundle given by the cokernels of the filtrations
coker (ToricVectorBundleKlyachko,Matrix) := (T,M) -> (
k := T#"rank of the vector bundle";
tRing := T#"ring";
-- Checking for input errors
if k != numRows M then error("The source of the matrix has to be the vector bundle.");
if tRing =!= ring M then error("Matrix and bundle have to be over the same ring.");
-- Computing the map from the bundle to the kernel
N := transpose mingens ker transpose M;
-- Computing a basis of the cokernel
coKerGens := mingens image N;
newRank := numColumns coKerGens;
bT := T#"baseTable";
fT := T#"filtrationTable";
-- Computing the new baseTable with filtrations
bT = hashTable apply(keys bT, j -> (
fTj := drop(sort keys fT#j,1);
cols := {};
oldCoKer := map(tRing^newRank,tRing^0,0);
-- Going through the filtration steps and computing the cokernel for each step
j => apply(fTj, i -> (
cols = cols | fT#j#i;
-- Computing the cokernel
A := N * (bT#j)_cols;
-- Representing this in the basis chosen
gkMA := (gens ker (coKerGens | A))^{0..newRank-1};
-- Selecting the new basis elements that appear in this filtration step
gkMA = mingens (image(oldCoKer | gkMA) / image oldCoKer);
-- Appending these new vectors
oldCoKer = oldCoKer |gkMA;
-- appending the filtration step number
(gkMA,matrix {toList(numColumns gkMA:i)})))));
-- Generating the new filtration matrices and tables
fMT := hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,last)});
fT = hashTable apply(pairs fMT, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({min L1 - 1 => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
bT = hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,first)});
Tnew := new ToricVectorBundleKlyachko from {
"ring" => T#"ring",
"rayTable" => T#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => T#"ToricVariety",
"number of affine charts" => T#"number of affine charts",
"dimension of the variety" => T#"dimension of the variety",
"rank of the vector bundle" => newRank,
"number of rays" => T#"number of rays",
symbol cache => new CacheTable};
if T.cache.?isVB and T.cache.isVB then Tnew.cache.isVB = T.cache.isVB;
Tnew)
-- PURPOSE : Computing the cotangent bundle on a smooth, pure, and full dimensional Toric Variety
cotangentBundle = method(Options => {"Type" => "Klyachko"})
-- INPUT : 'F', a smooth, pure, and full dimensional Fan
-- OUTPUT : 'tvb', a ToricVectorBundle
cotangentBundle Fan := opts -> F -> (
if opts#"Type" == "Klyachko" then dual tangentBundleKlyachko F else if opts#"Type" == "Kaneyama" then cotangentBundleKaneyama F else error("Expected Type to be Klyachko or Kaneyama."))
-- PURPOSE : Computing the polytope deltaE in the degree space such that outside this polytope
-- every cohomology is 0
deltaE = method()
-- INPUT : 'tvb', a ToricVectorBundle
-- OUTPUT : a Polyhedron
deltaE ToricVectorBundle := (cacheValue symbol deltaE)( T -> (
if not isComplete T#"ToricVariety" then error("The toric variety needs to be complete.");
n := T#"dimension of the variety";
if instance(T,ToricVectorBundleKaneyama) then (
dT := values T#"degreeTable";
dT = matrix {dT};
convexHull dT)
else (
W := findWeights T;
W = apply(W,first);
W = matrix {W};
convexHull W)))
--oldDeltaE = method()
--oldDeltaE ToricVectorBundle := (cacheValue symbol oldDeltaE)( tvb -> (
-- if not isComplete tvb#"ToricVariety" then error("The toric variety needs to be complete.");
-- n := tvb#"dimension of the variety";
-- if instance(tvb,ToricVectorBundleKaneyama) then (
-- -- Extracting necessary data
-- raylist := rays tvb;
-- rl := #raylist;
-- k := tvb#"rank of the vector bundle";
-- tCT := sort keys tvb#"topConeTable";
-- dT := tvb#"degreeTable";
-- -- Creating an index table, for each ray the first top cone containing it
-- raytCTindex := hashTable apply(#raylist, r -> r => position(tCT, C -> contains(C,raylist#r)));
-- raylist = transpose matrix {raylist};
-- -- Get the subsets of 'n' elements in 'rl'
-- sset := subsets(rl,n);
-- jList := {{}};
-- -- Get all different combinations of choices of variety dimension many degree vectors
-- for i from 0 to n-1 do jList = flatten apply(jList, l -> apply(k, j -> l|{j}));
-- M := map(QQ^1,QQ^n,0);
-- v := map(QQ^1,QQ^1,0);
-- -- For every 'n' in 'l' subset and any combination in jList get the intersection of the dual cones
-- -- of the corresponding rays. If this is a non-empty compact polytope then add the vertices to the
-- -- list L
-- L := unique flatten apply(sset, s -> (
-- unique for j in jList list (
-- N := matrix apply(n, i -> {raylist^{s#i},raylist^{s#i} * ((dT#(tCT#(raytCTindex#(s#i))))_{j#i})});
-- w := N_{n};
-- N = submatrix'(N,{n});
-- P := intersection(M,v,N,w);
-- if isCompact P and (not isEmpty P) then vertices P else continue)));
-- -- Make a matrix of all the vertices in L
-- M = matrix {L};
-- convexHull M)
-- else (
-- -- Extracting necessary data
-- rayTable := tvb#"rayTable";
-- l := #rayTable;
-- fMT := hashTable apply(pairs tvb#"filtrationMatricesTable", (i,j) -> (j = flatten entries j; i => matrix{{-(min j),max j}}));
-- sset1 := select(subsets(rays tvb,n), s -> rank matrix {s} == n);
-- convexHull matrix {apply(sset1, s -> (
-- M := transpose matrix {apply(s, r -> (-r | r) || (fMT#r))};
-- vertices intersection(M_{0..n-1},M_{n})))})))
-- INPUT : '(tvb1,tvb2)', two ToricVectorBundle over the same Fan
-- OUTPUT : 'tvb', a ToricVectorBundle which is the direct sum
ToricVectorBundle.directSum = args -> (
args = toList args;
T := args#0;
scan(drop(args,1), E -> T = T ++ E);
T)
ToricVectorBundle ++ ToricVectorBundle := (tvb1,tvb2) -> (
-- Checking for input errors
if tvb1#"ToricVariety" != tvb2#"ToricVariety" then error("Expected the bundles to be over the same toric variety.");
-- Extracting data out of tvb1 and tvb2
k1 := tvb1#"rank of the vector bundle";
k2 := tvb2#"rank of the vector bundle";
if instance(tvb1,ToricVectorBundleKaneyama) and instance(tvb2,ToricVectorBundleKaneyama) then (
-- Generating the trivial bundle of dimension k1+k2
E := makeVBKaneyama(k1 + k2,tvb1#"ToricVariety");
-- Computing the new degree table and transition matrices and writing the degrees and transition matrices into the bundle
E = new ToricVectorBundleKaneyama from {
"degreeTable" => merge(tvb1#"degreeTable",tvb2#"degreeTable", (a,b) -> a|b),
"baseChangeTable" => merge(tvb1#"baseChangeTable",tvb2#"baseChangeTable", (a,b) -> a++b),
"ToricVariety" => E#"ToricVariety",
"number of affine charts" => E#"number of affine charts",
"dimension of the variety" => E#"dimension of the variety",
"rank of the vector bundle" => k1 + k2,
"codim1Table" => E#"codim1Table",
"topConeTable" => E#"topConeTable",
symbol cache => new CacheTable};
if (tvb1.cache.?regCheck and tvb2.cache.?regCheck and tvb1.cache.regCheck and tvb2.cache.regCheck and (
tvb1.cache.?cocycle and tvb2.cache.?cocycle and tvb1.cache.cocycle and tvb2.cache.cocycle)) then (
E.cache.regCheck = true;
E.cache.cocycle = true);
E)
else if instance(tvb1,ToricVectorBundleKlyachko) and instance(tvb2,ToricVectorBundleKlyachko) then (
k := k1 + k2;
F := tvb1#"ToricVariety";
R := tvb1#"ring";
tvb := makeVBKlyachko(k,F);
fT1 := tvb1#"filtrationMatricesTable";
fT2 := tvb2#"filtrationMatricesTable";
bT1 := tvb1#"baseTable";
bT2 := tvb2#"baseTable";
filtrationTable := apply(rays tvb, r -> fT1#r | fT2#r);
baseTable := apply(rays tvb, r -> bT1#r ++ bT2#r);
tvb = addFiltration(tvb,filtrationTable);
tvb = addBase(tvb,baseTable);
if tvb1.cache.?isVB and tvb2.cache.?isVB and tvb1.cache.isVB and tvb2.cache.isVB then tvb.cache.isVB = true;
tvb)
else error("The two bundles have to be in the same description."))
-- ToricVectorBundleKlyachko ++ ToricVectorBundleKlyachko := (tvb1,tvb2) -> (
-- -- Extracting data out of tvb1 and tvb2
-- k1 := (tvb1#"rank of the vector bundle");
-- k2 := (tvb2#"rank of the vector bundle");
-- k := k1 + k2;
-- F := tvb1#"ToricVariety";
-- R := tvb1#"ring";
-- tvb := makeVBKlyachko(k,F);
-- fT1 := tvb1#"filtrationMatricesTable";
-- fT2 := tvb2#"filtrationMatricesTable";
-- bT1 := tvb1#"baseTable";
-- bT2 := tvb2#"baseTable";
-- filtrationTable := apply(rays tvb, r -> fT1#r | fT2#r);
-- baseTable := apply(rays tvb, r -> bT1#r ++ bT2#r);
-- tvb = addFiltration(tvb,filtrationTable);
-- tvb = addBase(tvb,baseTable);
-- if tvb1.cache.?isVB and tvb2.cache.?isVB and tvb1.cache.isVB and tvb2.cache.isVB then tvb.cache.isVB = true;
-- tvb)
-- PURPOSE : Computing the dual bundle to a given ToricVectorBundle
-- INPUT : 'tvb', a ToricVectorBundle
-- OUTPUT : the dual ToricVectorBundle
dual ToricVectorBundle := {} >> opts -> tvb -> (
if instance(tvb,ToricVectorBundleKaneyama) then (
-- Inverting the degrees and the transition matrices
degreeTable := hashTable apply(pairs tvb#"degreeTable", p -> p#0 => -(p#1));
baseChangeTable := hashTable apply(pairs tvb#"baseChangeTable", p -> p#0 => transpose inverse p#1);
-- Writing the inverted tables into the bundle
E := new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => baseChangeTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable};
if tvb.cache.?regCheck and tvb.cache.regCheck and tvb.cache.?cocycle and tvb.cache.cocycle then (
E.cache.regCheck = true;
E.cache.cocycle = true);
E)
else (
-- Inverting the filtration. If the filtration has d steps then the new n-th boundary is -(d-n+1th boundary)-1 and the n-th step is the
-- d-n+2 th step
fT := hashTable apply(pairs tvb#"filtrationTable", (r,e) -> r => (k:=sort keys e;e = apply(#k-1, i -> (k#i,e#(k#(i+1))))|{(last k,{})}; hashTable apply(e, entry -> -(entry#0)-1 => entry#1)));
fMT := hashTable apply(pairs fT, q -> q#0 => (q1new:= hashTable flatten apply(pairs q#1, p -> apply(p#1, i -> i => p#0)); matrix {apply(#q1new, j -> q1new#j)}));
-- The orthogonal complement is given by the transpose of the inverse matrix
bT := hashTable apply(pairs tvb#"baseTable", p -> p#0 => transpose inverse p#1);
T := new ToricVectorBundleKlyachko from {
"ring" => tvb#"ring",
"rayTable" => tvb#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"number of rays" => tvb#"number of rays",
symbol cache => new CacheTable};
if tvb.cache.?isVB and tvb.cache.isVB then T.cache.isVB = true;
T))
-- PURPOSE : Checking if a given List of possible degree vectors admits a Decomposition in torus eigenspaces that give the filtration
-- INPUT : '(T,L)', where 'T' is a ToricVectorBundleKlyachko and 'L' is a List where the i-th entry is either a matrix or a List of
-- matrices of possible degree vectors for the i-th cone in maxCones
-- OUTPUT : 'true' if a selection of degrees for each maximal cone admits a decomposition, 'false' otherwise
existsDecomposition = method()
existsDecomposition (ToricVectorBundleKlyachko,List) := (T,L) -> (
-- Checking if the list contains only matrices and lists and converting the former into a list with this matrix
L = apply(L, l -> if instance(l,List) then l else if instance(l,Matrix) then {l} else error("The elements of the list have to be either matrices or lists of them."));
if not T.cache.?degreesList then T.cache.degreesList = {};
mC := maxCones T;
mC = apply(mC, C -> (C = (rays C); apply(numColumns C, i -> C_{i})));
-- Checking for input errors
if #mC != #L then error("There has to be a degree matrix or list of degree matrices for each maximal cone of the fan.");
-- Check if any combination of matrices in L has already been checked and thus saved in the cache
if any(T.cache.degreesList, dl -> all(toList(0..#dl-1), i -> (set L#i)#?(dl#i))) then true
-- otherwise for each maximal cone check the decomposition criterion
else (
-- Add to each Cone the list of possible degrees
mC = apply(#mC, i -> (mC#i,L#i));
allRaysTable := tableForAllRays T;
n := T#"dimension of the variety";
k := rank T;
R := T#"ring";
-- Recursive function that runs through all possible combinations of filtration steps for the rays of a cone
recursiveCheck := (fList,Es,D) -> (
-- if there is still a list of filtration steps, call recursiveCheck again for each entry
if fList != {} then (
Lr := fList#0#1;
r := fList#0#0;
all(Lr, l -> recursiveCheck(drop(fList,1),intersectMatrices(Es,l#1),select(D, d -> (d * r)_(0,0) <= l#0))))
-- otherwise we have a choice of filtration steps and check the condition
else numColumns Es == #D);
-- The check for the criterion begins with the complete bundle
E := map(R^k,R^k,1);
-- For each cone check if there is one of the degree matrices that admits a decomposition
L = for C in mC list (
fList := apply(C#0, r -> (r,allRaysTable#r));
d := select(1,C#1, D -> (
D = promote(D,QQ);
D = apply(numColumns D, i -> transpose D_{i});
recursiveCheck(fList,E,D)));
-- If there is one that admits a decomposition return that, otherwise return the empty set for L
if d == {} then break {} else d#0);
-- If there is a combination then save it to the cache
if L != {} then (
if not T.cache.?isVB then T.cache.isVB = true;
T.cache.degreesList = T.cache.degreesList|{L});
L != {}))
-- PURPOSE : Computing the 'l'-th exterior power of a ToricVectorBundle
-- INPUT : '(l,tvb)', where 'l' is a strictly positive integer and 'tvb'is a TorcVectorBundle
-- OUTPUT : 'tvb', a ToricVectorBundle which is the 'l'-th exterior power
exteriorPower (ZZ,ToricVectorBundle) := ToricVectorBundle => opts -> (l,tvb) -> (
k := tvb#"rank of the vector bundle";
-- Checking for input errors
if l < 0 then error("The power has to be positive.");
-- Generating the list of 'l'-tuples of 0..k-1 and the corresponding index table
ind := subsets(k,l);
indtable := hashTable apply(#ind, i -> ind#i => i);
if instance(tvb,ToricVectorBundleKlyachko) then (
if l == 0 then toricVectorBundle(1,tvb#"ToricVariety")
else if l > k then toricVectorBundle(0,tvb#"ToricVariety")
else (
-- Extracting data
baseTable := tvb#"baseTable";
filtrationTable := tvb#"filtrationMatricesTable";
Rs := rays tvb;
R := tvb#"ring";
F := tvb#"ToricVariety";
-- Computing the 'l'-th exterior powers of the base matrices
baseTable = apply(Rs, r -> (
B := baseTable#r;
M := mutableMatrix(R,#ind,#ind);
for j in ind do for k in ind do M_(indtable#k,indtable#j) = det(B^k_j);
matrix M));
-- Computing the 'l'-th exterior power of the filtration matrices
filtrationTable = apply(Rs, r -> (
filt := filtrationTable#r;
matrix {apply(ind, j -> ( sum flatten entries filt_j))}));
T := makeVBKlyachko(#ind,F,baseTable,filtrationTable);
if tvb.cache.?isVB and tvb.cache.isVB then T.cache.isVB = true;
T))
else (
if l == 0 then toricVectorBundle(1,tvb#"ToricVariety","Type" => "Kaneyama")
else if l > k then toricVectorBundle(0,tvb#"ToricVariety","Type" => "Kaneyama")
else (
-- Computing the 'l'-th exterior powers of the transition matrices
baseChangeTable := hashTable apply(pairs tvb#"baseChangeTable", p -> p#0 => matrix apply(ind, j -> apply(ind, k -> det (p#1)^j_k)));
-- Computing the 'l'-th exterior power of the degrees
degreeTable := hashTable apply(pairs tvb#"degreeTable", p -> p#0 => matrix {apply(ind, j -> (p#1)_j * matrix toList(l:{1}))});
E := new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => baseChangeTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => #ind,
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable};
if tvb.cache.?regCheck and tvb.cache.regCheck and tvb.cache.?cocycle and tvb.cache.cocycle then (
E.cache.regCheck = true;
E.cache.cocycle = true);
E)))
-- PURPOSE : Returning the underlying fan of a toric vector bundle
-- INPUT : 'T', a ToricVectorBundleKaneyama
-- OUTPUT : a Fan
fan ToricVectorBundle := T -> T#"ToricVariety"
-- PURPOSE : Finding all possible sets of weight vectors for each maximal cone in the fan that admit the
-- filtration steps on the rays
-- INPUT : 'T', a ToricVectorBundleKlyachko
-- OUTPUT : a List, where the i-th entry is the list of possible weight matrices for the i-th cone in maxCones T
findWeights = method(TypicalValue => List)
findWeights ToricVectorBundleKlyachko := (cacheValue symbol weights)( T -> (
-- Get the maximal cones and save their rays
mC := maxCones T;
mC = apply(mC, C -> (C = (rays C); apply(numColumns C, i -> C_{i})));
n := T#"dimension of the variety";
k := rank T;
-- Recursive function that goes through the rays and checks for the current ray which filtration steps are possible and for
-- these calls itself again
-- E is the intersection of filtrations of the rays considered so far, L is the list of remaining rays with filtration steps not chosen so far,
-- R is the list of filtration steps not chosen before for rays already handled, these are the possible steps for the next column and newColumn
-- is the already created part of the new column
recursiveColumnsConstructer := (E,L,R,newColumn) -> (
if L != {} then (
l := L#0;
L = drop(L,1);
flatten for e in unique l list (
-- Check if e admits an intersection of the filtrations
if ker(E|e#1) != 0 then (
-- if so call the function again for the next ray
i := position(l, le -> le == e);
recursiveColumnsConstructer(intersectMatrices(E,e#1),L,R|{drop(l,{i,i})},newColumn|{e#0}))
else continue))
else {(R,newColumn)});
-- Recursive function that generates the columns (filtration combinations for a weight vector) by calling the columns constructor and then, if
-- this has created columns, call it self again with the list of remaining filtration steps
recursiveMatricesConstructer := (Elist,L,M) -> (
Lnew := recursiveColumnsConstructer(Elist#0#1,L,{},{Elist#0#0});
if #L#0 != 1 then flatten apply(Lnew, (f,s) -> recursiveMatricesConstructer(drop(Elist,1),f,M|{s}))
else apply(Lnew, (f,s) -> M|{s}));
fMT := T#"filtrationMatricesTable";
bT := T#"baseTable";
bundleRing := T#"ring";
allRaysTable := tableForAllRays T;
apply(mC, C -> (
-- For each maximal cone compute the possible weightvector matrices
L := apply(C, r -> allRaysTable#r);
E := L#0;
-- Compute the possible combinations of filtration steps
Flist := recursiveMatricesConstructer(E,drop(L,1),{});
Flist = apply(Flist, m -> promote(transpose matrix m,QQ));
R := promote(transpose matrix {C},QQ);
Rrank := rank R;
-- Check if this combination admits a weightvector matrix
if Rrank != n then (
M := R^{0..Rrank-1};
for F in Flist list (
D := systemSolver(M,F^{0..Rrank-1});
if (try(lift(D,ZZ); true) else false) and R*D == F then lift(D,ZZ)
else continue))
else (
Rn := inverse R^{0..n-1};
for F in Flist list (
Dn := Rn * (F^{0..Rrank-1});
if (try(lift(Dn,ZZ); true) else false) and R*Dn == F then lift(Dn,ZZ)
else continue))))))
-- PURPOSE : Generating the graded Ring for the cohomology groups
-- INPUT : 'T', a ToricVectorBundle
-- OUTPUT : the ring of the bundle with degree space the lattice of the variety
ring ToricVectorBundle := (cacheValue symbol gradedRing)( T -> (
if instance(T,ToricVectorBundleKlyachko) then (T#"ring")[DegreeRank => T#"dimension of the variety"]
else QQ[DegreeRank => T#"dimension of the variety"]))
-- PURPOSE : Computing the image bundle of a toric vector bundle
-- INPUT : '(T,M)', where 'T' is a ToricVectorBundleKlyachko and 'M' a matrix with the bundle space as its source
-- OUTPUT : The bundle given by the images of the filtrations
image (ToricVectorBundleKlyachko,Matrix) := (T,M) -> (
k := T#"rank of the vector bundle";
tRing := T#"ring";
-- Checking for input errors
if k != numColumns M then error("The source of the matrix has to be the vector bundle.");
if tRing =!= ring M then error("The matrix and the bundle have to be over the same ring.");
-- Compute a basis of the image
Mgens := mingens image M;
ranknew := numColumns Mgens;
bT := T#"baseTable";
fT := T#"filtrationTable";
-- for each ray compute the image of the filtration
bT = hashTable apply(keys bT, j -> (
fTj := drop(sort keys fT#j,1);
cols := {};
oldImage := map(tRing^ranknew,tRing^0,0);
-- for each filtration step compute the image
j => apply(fTj, i -> (
cols = cols | fT#j#i;
-- take the image of the i-th filtration
A := M * (bT#j)_cols;
-- Represent this in the basis chosen
gkMA := (gens ker (Mgens | A))^{0..ranknew-1};
-- Select the new basis vectors of the filtration
gkMA = mingens (image(oldImage | gkMA) / image oldImage);
-- and add them to the matrix
oldImage = oldImage |gkMA;
-- save the new matrix and filtration step
(gkMA,matrix {toList(numColumns gkMA:i)})))));
-- Generate the new filtration matrices and tables
fMT := hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,last)});
fT = hashTable apply(pairs fMT, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({(min L1-1) => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
bT = hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,first)});
Tnew := new ToricVectorBundleKlyachko from {
"ring" => T#"ring",
"rayTable" => T#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => T#"ToricVariety",
"number of affine charts" => T#"number of affine charts",
"dimension of the variety" => T#"dimension of the variety",
"rank of the vector bundle" => ranknew,
"number of rays" => T#"number of rays",
symbol cache => new CacheTable};
if T.cache.?isVB and T.cache.isVB then Tnew.cache.isVB = true;
Tnew)
-- PURPOSE : Check for a ToricVectorBundleKlyachko if it is general
-- INPUT : 'tvb', a ToricVectorBundleKlyachko
-- OUTPUT : 'true' or 'false'
-- COMMENT : A toricVectorBundle is general if for every generating cone 'C' the following holds:
-- For every choice of filtration steps i_1,...,i_n for the rays r_1,..,r_n of C
-- codim \bigcap E^r_j(i_j) = min {\sum codim E^r_j(i_j),rank E}
-- holds.
isGeneral = method()
isGeneral ToricVectorBundleKlyachko := (cacheValue symbol isGeneral)( tvb -> (
fT := tvb#"filtrationMatricesTable";
fT = hashTable apply(pairs fT, p -> p#0 => flatten entries p#1);
bT := tvb#"baseTable";
L := hashTable apply(pairs fT, (j,q) -> j => apply(sort unique q, i -> (bT#j)_(positions(fT#j, e -> e <= i))));
-- recursive function to check every combination of filtration steps
recursiveCheck := (L,Es) -> (
-- if there is still a list of filtration steps, call recursiveCheck again for each entry
if L != {} then all(L#0, l -> recursiveCheck(drop(L,1),Es|{l}))
-- otherwise we have a choice of filtration steps and check the condition
else (
n := numRows Es#0;
codimSum := sum apply(Es, A -> n - numColumns A);
codimSum = min(codimSum,n);
R := ring Es#0;
E := map(R^n,R^n,1);
Es = select(Es, e -> numColumns e != n);
scan(Es, A -> E = intersectMatrices(E,A));
n - numColumns E == codimSum));
F := maxCones tvb#"ToricVariety";
Frays := rays tvb#"ToricVariety";
all(F, C -> (
C = Frays_C;
C = apply(numColumns C, i -> C_{i});
recursiveCheck(apply(C, r -> L#r),{})))))
-- PURPOSE : Checking if the data in T in fact defines a vectorbundle, i.e., satisfies the decomposition condition or
-- regularity and cocycle condition
-- INPUT : 'T', a ToricVectorBundle
-- OUTPUT : 'true' if 'T' is fact a bundle, 'false' otherwise
isVectorBundle = method()
isVectorBundle ToricVectorBundle := (cacheValue symbol isVB)( T -> (
if instance(T,ToricVectorBundleKlyachko) then (
L := findWeights T;
all(L, l -> l != {}) and existsDecomposition(T,L))
else regCheck T and cocycleCheck T))
-- PURPOSE : Computing the kernel bundle of a toric vector bundle
-- INPUT : '(T,M)', where 'T' is a ToricVectorBundleKlyachko and 'M' a matrix with the bundle space as source
-- OUTPUT : The bundle given by the kernels of the filtrations
ker (ToricVectorBundleKlyachko,Matrix) := opts -> (T,M) -> (
k := T#"rank of the vector bundle";
tRing := T#"ring";
-- Checking for input errors
if k != numColumns M then error("The source of the matrix has to be the vector bundle.");
if tRing =!= ring M then error("Matrix and bundle have to be over the same ring.");
-- Compute a basis of the kernel
M = mingens ker M;
ranknew := numColumns M;
bT := T#"baseTable";
fT := T#"filtrationTable";
-- Compute the new filtration for each ray
bT = hashTable apply(keys bT, j -> (
fTj := drop(sort keys fT#j,1);
cols := {};
oldKer := map(tRing^ranknew,tRing^0,0);
-- compute each filtration step
j => apply(fTj, i -> (
cols = cols | fT#j#i;
A := (bT#j)_cols;
-- Represent the kernel intersected with the actual filtration step in the basis chosen
gkMA := (gens ker (M | A))^{0..ranknew-1};
-- Select the "new" vectors
gkMA = mingens (image(oldKer | gkMA) / image oldKer);
oldKer = oldKer |gkMA;
-- Save the new vectors and the filtration step
(gkMA,matrix {toList(numColumns gkMA:i)})))));
-- Compute the filtration matrices and tables
fMT := hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,last)});
fT = hashTable apply(pairs fMT, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({min L1 - 1 => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
bT = hashTable apply(pairs bT, p -> p#0 => matrix {apply(p#1,first)});
Tnew := new ToricVectorBundleKlyachko from {
"ring" => T#"ring",
"rayTable" => T#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => T#"ToricVariety",
"number of affine charts" => T#"number of affine charts",
"dimension of the variety" => T#"dimension of the variety",
"rank of the vector bundle" => ranknew,
"number of rays" => T#"number of rays",
symbol cache => new CacheTable};
if T.cache.?isVB and T.cache.isVB then Tnew.cache.isVB = true;
Tnew)
-- PURPOSE : Returning the maximal cones of the underlying fan
-- INPUT : 'T', a ToricVectorBundle
-- OUTPUT : a List of Cones
maxCones ToricVectorBundle := T -> (
TV := T#"ToricVariety";
TR := rays TV;
TL := linealitySpace TV;
mC := maxCones TV;
sort apply(mC, c -> posHull(TR_c, TL))
-- sort maxCones T#"ToricVariety"
)
-- PURPOSE : Compute a random deformation of a ToricVectorBundleKlyachko
randomDeformation = method(TypicalValue => ToricVectorBundleKlyachko)
-- INPUT : '(tvb,l,h)', where 'tvb' is a ToricVectorBundleKlyachko, 'l' and 'h' are integers
-- OUTPUT : a ToricVectorBundleKlyachko, a random deformation
-- COMMENT : Simply replaces the base matrices by random matrices of full rank with entries between
-- 'l' and 'h'
randomDeformation (ToricVectorBundleKlyachko,ZZ,ZZ) := (tvb,l,h) -> (
-- Checking for input errors
if l > h then error("Expected the first integer to be less or equal than the second integer.");
k := tvb#"rank of the vector bundle";
-- For each ray generate a new k by k matrix of full rank with entries between 'l' and 'h'
bT := hashTable apply(pairs tvb#"baseTable", p -> (
A := 0 * p#1;
while det A == 0 do A = generateRandomMatrix(k,k,l,h);
p#0 => promote(A,tvb#"ring")));
-- Keep the old filtration
new ToricVectorBundleKlyachko from {
"ring" => tvb#"ring",
"rayTable" => tvb#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => tvb#"filtrationMatricesTable",
"filtrationTable" => tvb#"filtrationTable",
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"number of rays" => tvb#"number of rays",
symbol cache => new CacheTable})
-- INPUT : '(tvb,h)', where 'tvb' is a ToricVectorBundleKlyachko and 'h' an integer
-- OUTPUT : a ToricVectorBundleKlyachko, a random deformation
-- COMMENT : Simply replaces the base matrices by random matrices of full rank with entries between
-- 0 and 'h'
randomDeformation (ToricVectorBundleKlyachko,ZZ) := (tvb,h) -> randomDeformation(tvb,0,h)
-- PURPOSE : Returning the rank of the vector bundle
-- INPUT : 'T', a ToricVectorBundle
rank ToricVectorBundle := T -> T#"rank of the vector bundle"
-- PURPOSE : Giving the rays of the underlying Fan of a toric vector bundle
-- INPUT : 'tvb', a TorcVectorBundle
-- OUTPUT : 'L', a List containing the rays of the Fan underlying the bundle
rays ToricVectorBundle := tvb -> raySortOfFan tvb#"ToricVariety"
-- PURPOSE : Computing the 'l'-th symmetric power of a Toric Vector Bundle
-- INPUT : '(l,tvb)', where 'l' is a strictly positive integer and 'tvb' is a ToricVectorBundle
-- OUTPUT : 'tvb', a ToricVectorBundle which is the 'l'-th symmetric power
symmetricPower(ZZ,ToricVectorBundle) := (l,tvb) -> (
-- Checking for input errors
if l < 0 then error("The power has to be strictly positive.");
-- Extracting data
k := tvb#"rank of the vector bundle";
-- Generating the list of 'l'-tuples of 0..k-1 with duplicates and the corresponding index table
ind := sort apply(subsets(k+l-1,l),s -> apply(#s, i -> s#i-i));
allind := sort unique flatten apply(ind, permutations);
indtable := hashTable apply(#ind, i -> ind#i => i);
if instance(tvb,ToricVectorBundleKlyachko) then (
if l == 0 then toricVectorBundle(1,tvb#"ToricVariety")
else (
baseTable := tvb#"baseTable";
filtrationTable := tvb#"filtrationMatricesTable";
Rs := rays tvb;
R := tvb#"ring";
F := tvb#"ToricVariety";
-- Computing the 'l'-th symmetric product of the base matrices
baseTable = apply(Rs, r -> (
B := baseTable#r;
M := mutableMatrix(R,#ind,#ind);
for i1 in ind do (
Bi := B_(i1);
for j in allind do M_(indtable#(sort j),indtable#i1) = M_(indtable#(sort j),indtable#i1) + product apply(#j, j1 -> Bi_(j#j1,j1)));
matrix M));
-- Computing the 'l'-th symmetric products of the filtration matrices
filtrationTable = apply(Rs, r -> (
filt := filtrationTable#r;
matrix {apply(ind, j -> sum flatten entries filt_j)}));
T := makeVBKlyachko(#ind,F,baseTable,filtrationTable);
if tvb.cache.?isVB and tvb.cache.isVB then T.cache.isVB=true;
T))
else (
if l == 0 then toricVectorBundle(1,tvb#"ToricVariety","Type" => "Kaneyama")
else (
-- Computing the 'l'-th symmetric powers of the transition matrices
baseChangeTable := hashTable apply(pairs tvb#"baseChangeTable", p -> (
B := p#1;
M := mutableMatrix(QQ,#ind,#ind);
for i1 in ind do (
Bi := B_(i1);
for j in allind do M_(indtable#(sort j),indtable#i1) = M_(indtable#(sort j),indtable#i1) + product apply(#j, j1 -> Bi_(j#j1,j1)));
M = matrix M;
p#0 => M));
-- Computing the 'l'-th symmetric powers of the degrees
degreeTable := hashTable apply(pairs tvb#"degreeTable", p -> (
dM := p#1;
dM = transpose matrix apply(ind, j -> flatten entries(dM_j * matrix toList((#j):{1})));
p#0 => dM));
E := new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => baseChangeTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => #ind,
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable};
if tvb.cache.?regCheck and tvb.cache.regCheck and tvb.cache.?cocycle and tvb.cache.cocycle then (
E.cache.regCheck = true;
E.cache.cocycle = true);
E)))
-- PURPOSE : Computing the tangent bundle on a smooth, pure, and full dimensional Toric Variety
-- INPUT : 'F', a smooth, pure, and full dimensional Fan
-- OUTPUT : 'tvb', a ToricVectorBundle
-- COMMENT : If no option is given the function will return a ToricVectorBundleKlyachko, if "Type" => "Kaneyama" is given it returns a ToricVectorBundleKaneyama
tangentBundle = method(Options => {"Type" => "Klyachko"})
tangentBundle Fan := opts -> F -> (
if opts#"Type" == "Klyachko" then tangentBundleKlyachko F else if opts#"Type" == "Kaneyama" then dual cotangentBundleKaneyama F else error("Expected Type to be Klyachko or Kaneyama."))
-- PURPOSE : Checking if two toric vector bundles are equal
-- INPUT : '(tvb1,tvb2)', two ToricVectorBundle
-- OUTPUT : 'true' or 'false'
ToricVectorBundle == ToricVectorBundle := (tvb1,tvb2) -> tvb1 === tvb2
-- PURPOSE : Computing the tensor product of two toric vector bundles over the same Fan
-- INPUT : '(tvb1,tvb2)', two ToricVectorBundle over the same Fan in the same description
-- OUTPUT : 'tvb', a ToricVectorBundle which is the tensor product in the same description
tensor(ToricVectorBundle, ToricVectorBundle) := ToricVectorBundle => {} >> opts -> (tvb1, tvb2) -> (
-- Checking for input errors
if tvb1#"ToricVariety" != tvb2#"ToricVariety" then error("Expected bundles over the same toric variety.");
k1 := tvb1#"rank of the vector bundle";
k2 := tvb2#"rank of the vector bundle";
if instance(tvb1,ToricVectorBundleKaneyama) and instance(tvb2,ToricVectorBundleKaneyama) then (
-- Extracting data out of tvb1 and tvb2
-- Generating the trivial bundle of dimension k1+k2
E := makeVBKaneyama(k1 * k2,tvb1#"ToricVariety");
-- Computing the new degree table and transition matrices and writing the degrees and transition matrices into the bundle
E = new ToricVectorBundleKaneyama from {
"degreeTable" => merge(tvb1#"degreeTable",tvb2#"degreeTable", (a,b) -> matrix {flatten apply(k2, j -> apply(k1, i -> a_{i}+b_{j}))}),
"baseChangeTable" => merge(tvb1#"baseChangeTable",tvb2#"baseChangeTable", (a,b) -> (
matrix flatten apply(k2, j -> apply(k1, i -> flatten apply(k2, j' -> apply(k1, i' -> a_(i,i') * b_(j,j'))))))),
"ToricVariety" => E#"ToricVariety",
"number of affine charts" => E#"number of affine charts",
"dimension of the variety" => E#"dimension of the variety",
"rank of the vector bundle" => k1 + k2,
"codim1Table" => E#"codim1Table",
"topConeTable" => E#"topConeTable",
symbol cache => new CacheTable};
if (tvb1.cache.?regCheck and tvb2.cache.?regCheck and tvb1.cache.regCheck and tvb2.cache.regCheck and (
tvb1.cache.?cocycle and tvb2.cache.?cocycle and tvb1.cache.cocycle and tvb2.cache.cocycle)) then (
E.cache.regCheck = true;
E.cache.cocycle = true);
E)
else if instance(tvb1,ToricVectorBundleKlyachko) and instance(tvb2,ToricVectorBundleKlyachko) then (
-- Extracting data out of tvb1 and tvb2
F := tvb1#"ToricVariety";
bT1 := tvb1#"baseTable";
bT2 := tvb2#"baseTable";
fmT1 := tvb1#"filtrationMatricesTable";
fmT2 := tvb2#"filtrationMatricesTable";
-- Computing the bases and filtration matrices
k := k1 * k2;
tvb := makeVBKlyachko(k,F);
R := rays tvb;
baseTable := apply(R, r -> bT1#r ** bT2#r);
filtrationTable := apply(R, r -> matrix {flatten apply(flatten entries fmT1#r, e1 -> apply(flatten entries fmT2#r, e2 -> e1 + e2))});
-- Writing the new Tables into the bundle
tvb = addBase(tvb,baseTable);
tvb = addFiltration(tvb,filtrationTable);
if tvb1.cache.?isVB and tvb2.cache.?isVB and tvb1.cache.isVB and tvb2.cache.isVB then tvb.cache.isVB = true;
tvb)
else error("The two toric vector bundles have to be in the same description."))
ToricVectorBundle ** ToricVectorBundle := (tvb1,tvb2) -> tensor(tvb1,tvb2)
-- ToricVectorBundleKlyachko ** ToricVectorBundleKlyachko := tensor
-- PURPOSE : Computing the twist of a Toric Vector Bundle by a divisor line bundle
-- INPUT : '(T,d)', where 'T' is a toricVectorBundleKlyachko and 'd' a list of integers one for each ray of the fan
-- OUTPUT : a ToricVectorBundleKlyachko
-- COMMENT : If d={d_1,..d_l} then this corresponds to the line bundle which is the d_i twist on the i-th ray
twist = method(TypicalValue => ToricVectorBundleKlyachko)
twist (ToricVectorBundleKlyachko,List) := (T,d) -> (
k := T#"rank of the vector bundle";
fT := T#"filtrationMatricesTable";
-- Checking for input errors
if #d != #fT then error("The number of twists has to match the number of rays of the fan.");
R := rays T;
fT = apply(#R, i -> fT#(R#i) + matrix{toList(k:-(d#i))});
addFiltration(T,fT))
-- PURPOSE : Computing the Cartier index of a Weil divisor
-- INPUT : '(L,F)', where 'F' is a Fan and 'L' is a list of integers defining a Weil divisor
-- OUTPUT : The smallest multiple of the divisor which is Cartier if the divisor is QQ-Cartier, if not
-- an error is returned
cartierIndex = method(TypicalValue => ZZ)
cartierIndex (List,Fan) := (L,F) -> (
rl := raySortOfFan F;
-- Checking for input errors
if #L != #rl then error("The number of weights has to equal the number of rays.");
n := ambDim F;
-- Checking for further errors and assigning the weights to the rays
L = hashTable apply(#rl, i -> (if class L#i =!= ZZ then error("The weights have to be in ZZ."); rl#i => L#i));
-- Keeping track of the lowest common multiple of denominators of the degrees,
-- to check whether the divisor itself is Cartier or which multiple
denom := 1;
-- Computing the degree vector for every top dimensional cone
Frays := rays F;
scan(sort maxCones F, C -> (
rC := Frays_C;
-- Taking the first n x n submatrix
rC1 := rC_{0..n-1};
-- Setting up the solution vector by composing the corresponding weights
v := matrix apply(n, i -> (c := rC1_{i}; {-(L#c)}));
-- Computing the degree vector
w := vertices polyhedronFromHData(matrix {toList(n:0)},matrix {{0}},transpose rC1,v);
-- Checking if w also fulfils the equations given by the remaining rays
if numColumns rC != n then (
v = v || matrix apply(toList(n..(numColumns rC)-1), i -> {-(L#(rC_{i}))});
if (transpose rC)*w - v != 0 then error("The weights do not define a Cartier divisor."));
-- Check if w is QQ-Cartier
scan(flatten entries w, e -> denom = lcm(denominator e ,denom))));
denom)
-- PURPOSE : Generating the Vector Bundle given by a divisor
weilToCartier = method(Options => {"Type" => "Klyachko"})
-- INPUT : '(L,F)', a list 'L' of weight vectors, one for each ray of the Fan 'F'
-- OUTPUT : 'tvb', a ToricVectorBundle
-- COMMENT : If no option is given the function will return a ToricVectorBundleKlyachko, if "Type" => "Kaneyama" is given it returns a ToricVectorBundleKaneyama
weilToCartier (List,Fan) := opts -> (L,F) -> (
rl := raySortOfFan F;
-- Checking for input errors
if #L != #rl then error("The number of weights has to equal the number of rays.");
n := ambDim F;
if opts#"Type" == "Kaneyama" then (
if not isPure F or ambDim F != dim F then error("Expected the Fan to be pure of maximal dimension.");
-- Creating 0 matrices to compute intersection of hyperplanes to compute the degrees
Mfull := matrix {toList(n:0)};
vfull := matrix {{0}};
-- Checking for further errors and assigning the weights to the rays
L = hashTable apply(#rl, i -> (if class L#i =!= ZZ then error("The weights have to be in ZZ."); rl#i => L#i));
-- Keeping track of the lowest common multiple of denominators of the degrees,
-- to check whether the divisor itself is Cartier or which multiple
denom := 1;
-- Computing the degree vector for every top dimensional cone
tvb := makeVBKaneyama(1,F);
gC := customConeSort keys tvb#"degreeTable";
gC = apply(gC, C -> (
rC := (rays posHull C);
-- Taking the first n x n submatrix
rC1 := rC_{0..n-1};
-- Setting up the solution vector by composing the corresponding weights
v := matrix apply(n, i -> (c := rC1_{i}; {-(L#c)}));
-- Computing the degree vector
w := vertices polyhedronFromHData(Mfull,vfull,transpose rC1,v);
-- Checking if w also fulfils the equations given by the remaining rays
if numColumns rC != n then (
v = v || matrix apply(toList(n..(numColumns rC)-1), i -> {-(L#(rC_{i}))});
if (transpose rC)*w - v != 0 then error("The weights do not define a Cartier divisor."));
-- Check if w is QQ-Cartier
scan(flatten entries w, e -> denom = lcm(denominator e ,denom));
w));
-- If the divisor is only QQ Cartier, then its replaced by its first Cartier multiple
if denom != 1 then error("The divisor is only QQ-Cartier, but "|toString(denom)|" times the divisor is Cartier.");
gC = apply(gC, e -> substitute(denom*e,ZZ));
-- Construct the actual line bundle
addDegrees(tvb,gC))
else if opts#"Type" == "Klyachko" then (
if any(L, l -> not instance(l,ZZ)) then error("The weights have to be in ZZ.");
ind := cartierIndex(L,F);
if ind != 1 then error("The divisor is only QQ-Cartier, but "|toString(ind)|" times the divisor is Cartier.");
T := makeVBKlyachko(1,F,apply(L, l -> matrix{{1_QQ}}),apply(L, l -> matrix{{-l}}));
T.cache.isVB = true;
T)
else error("Expected Type to be Klyachko or Kaneyama."))
-- PURPOSE : Constructing the fan of projective n-space
-- INPUT : 'n', a strictly positive integer
-- OUTPUT : The fan of projective n-space
projectiveSpaceFan = method(TypicalValue => Fan)
projectiveSpaceFan ZZ := n -> (
if n < 1 then error("The dimension has to be strictly positive.");
normalFan convexHull (map(ZZ^n,ZZ^n,1)|map(ZZ^n,ZZ^1,0)))
-- PURPOSE : Constructing the fan of the product of n projective 1-spaces
-- INPUT : 'n', a strictly positive integer
-- OUTPUT : The fan of the product of n projective 1-spaces
pp1ProductFan = method(TypicalValue => Fan)
pp1ProductFan ZZ := n -> (
if n < 1 then error("The number of PP^1's has to be strictly positive.");
normalFan hypercube n)
-- PURPOSE : Constructing the fan of the Hirzebruch n-surface
-- INPUT : 'n', a positive integer
-- OUTPUT : The fan of the Hirzebruch n-surface
hirzebruchFan = method(TypicalValue => Fan)
hirzebruchFan ZZ := n -> hirzebruch n
---------------------------------------
-- AUXILIARY FUNCTIONS, not public
---------------------------------------
-- PURPOSE : Computing the Cech complex of a vector bundle
cechComplex = method()
-- INPUT : '(k,T,u)', where 'k' is an integer between -1 and the dimension of the bundle +1, 'T' a ToricVectorBundleKlyachko, and 'u' a
-- one column matrix giving a degree vector
-- OUTPUT : '(Fk,Fkcolumns,FktoFk+1)', where 'Fk' is a hashTable with the summands of the 'k'th chain, 'Fkcolumns' is a hashTable with the
-- dimensions of these summands, and 'FktoFk+1' is a hashTable with the components of the 'k'th
-- boundary operator
cechComplex (ZZ,ToricVectorBundleKlyachko,Matrix) := (k,T,u) -> (
-- Checking for input errors
if numRows u != T#"dimension of the variety" or numColumns u != 1 then error("Expected a matrix with 1 column and ", toString T#"dimension of the variety", " rows.");
if ring u =!= ZZ then error("The degree has to be an integer vector.");
if k < -1 or T#"dimension of the variety"+1 < k then error("k has to be between 0 and the variety dimension for the k-th cohomology");
-- For a given space F1 at chain k in the filtration together with the degree vector 'u' and the information of the bundle this auxiliary
-- function computes the boundary operator to the next chain (k+1) which is F1toF2, the dimensions of the summands of 'F1' in 'F1columns'
-- and the next chain 'F2'
makeNewDiffAndTarget := (F1,u,fMT,rT,bT,tvbR,tvbrank,k,n) -> (
F2 := {};
F1toF2 := {};
counter := 0;
F1columns := {};
-- if k==n then the next chain is 0 as well as the boundary operator
if k == n then (
F2 = {(0,{},map(tvbR^tvbrank,tvbR^0,0))};
F1toF2 = {};
F1columns = {0 => tvbrank})
-- k==n-1 then the next chain is "complete bundle" and the boundary operator is the map of all summands of Fn-2
else if k == n-1 then (
F2 = {(0,{},map(tvbR^tvbrank,tvbR^tvbrank,1))};
F1toF2 = apply(pairs F1, (j,dat) -> (
F1columns = append(F1columns,j => numColumns(dat#1));
(j,0,dat#1))))
else (
-- for each cone in F1 compute the cones of one dimension less and their bundle
scan(pairs(F1), (num,dat) -> (
R := dat#0;
Er := dat#1;
-- go through the rays of the cone and remove each of them at a time
scan(#R, i -> (
Ri := drop(R,{i,i});
pos := position(F2, f -> f#1 === Ri);
-- Check if the resulting cone already exists in the new chain F2, if so just add Er to the boundary operator
if pos =!= null then F1toF2 = append(F1toF2,(num,pos,((-1)^i)*Er)) else (
-- if not compute E for new cone and append it to F2
Esum := apply(Ri, r -> (rT#r,((transpose u)*r)_(0,0),r));
Esum = apply(Esum, e -> (e#0,positions(flatten entries(fMT#(e#2)), j -> (j <= e#1)),e#2));
if any(Esum, e -> e#1 == {}) then F2 = append(F2,(counter,Ri,map(tvbR^tvbrank,tvbR^0,0))) else (
E := map(tvbR^tvbrank,tvbR^tvbrank,1);
Esum = select(Esum, e -> sort(e#1) != toList(0..tvbrank-1));
Esum = apply(Esum, e -> (bT#(e#2))_(e#1));
scan(Esum, A -> E = intersectMatrices(E,A));
F2 = append(F2,(counter,Ri,E)));
F1toF2 = append(F1toF2,(num,counter,((-1)^i)*Er));
counter = counter + 1)));
-- Save the dimension of Er into F1columns
F1columns = append(F1columns,num => numColumns Er))));
(hashTable apply(F1toF2, f -> (f#0,f#1) => f#2),hashTable F1columns,hashTable apply(F2, f -> f#0 => (f#1,f#2))));
if not T.cache.?cech then T.cache.cech = new MutableHashTable;
fMT := T#"filtrationMatricesTable";
tvbR := T#"ring";
tvbrank := T#"rank of the vector bundle";
n := T#"dimension of the variety";
-- if k==n+1 the chain is 0 and there is no map
if k == n+1 then (hashTable {0 => ({},map(tvbR^tvbrank,tvbR^0,0))},hashTable {},hashTable {}) else (
rT := T#"rayTable";
bT := T#"baseTable";
if not T.cache.cech#?(k,u) then (
-- rT will be used to sort the rays
-- if the previous chain has not been computed we have to compute the cones of the right dimension (n-k)
if not T.cache.cech#?(k-1,u) or k == 0 then (
-- if k==n then the chain is the "complete bundle" and the next chain is 0
if k == n then (
T.cache.cech#(k,u) = (hashTable {0 => ({},map(tvbR^tvbrank,tvbR^tvbrank,1))},hashTable {0 => tvbrank},hashTable {});
T.cache.cech#(k+1,u) = hashTable {0 => ({},map(tvbR^tvbrank,tvbR^0,0))})
-- if k==-1 the chain is 0
else if k == -1 then T.cache.cech#(k,u) = (hashTable { 0 => ({},map(tvbR^tvbrank,tvbR^0,0))},hashTable {0 => 0},hashTable {})
else (
F1 := faces(k,T#"ToricVariety");
Frays := rays T#"ToricVariety";
Flineality := linealitySpace T#"ToricVariety";
F1 = apply(F1, f-> posHull(Frays_f, Flineality));
-- for each n-k cone in the fan compute Er, the bundle over this cone for the degree u
F1 = hashTable apply(#F1, Cnum -> (
C := F1#Cnum;
R := (rays C);
R = apply(numColumns R, i -> (R_{i}));
R = sort apply(R, r -> (rT#r,r));
Esum := apply(R, r -> (r#0,((transpose u)*(r#1))_(0,0),r#1));
R = apply(R, r -> (r#1));
Esum = apply(Esum, e -> (e#0,positions(flatten entries fMT#(e#2), j -> (j <= e#1)),e#2));
if any(Esum, e -> e#1 == {}) then Cnum => (R,map(tvbR^tvbrank,tvbR^0,0)) else (
E := map(tvbR^tvbrank,tvbR^tvbrank,1);
Esum = select(Esum, e -> sort(e#1) != toList(0..tvbrank-1));
Esum = apply(Esum, e -> (bT#(e#2))_(e#1));
scan(Esum, A -> E = intersectMatrices(E,A));
Cnum => (R,E))));
-- Compute the boundary operator with the auxiliary function
(F1toF2,F1columns,F2) := makeNewDiffAndTarget(F1,u,fMT,rT,bT,tvbR,tvbrank,k,n);
T.cache.cech#(k,u) = (F1,F1columns,F1toF2);
-- Save the next chain to the cache
if not T.cache.cech#?(k+1,u) then T.cache.cech#(k+1,u) = F2))
else (
-- if the previous chain exists use this to compute the chain in question
F10 := T.cache.cech#(k-1,u);
(F10toF11,F10columns,F11) := makeNewDiffAndTarget(F10,u,fMT,rT,bT,tvbR,tvbrank,k-1,n);
(F11toF12,F11columns,F12) := makeNewDiffAndTarget(F11,u,fMT,rT,bT,tvbR,tvbrank,k,n);
T.cache.cech#(k-1,u) = (F10,F10columns,F10toF11);
T.cache.cech#(k,u) = (F11,F11columns,F11toF12);
-- save the next chain to the cache as well
if not T.cache.cech#?(k+1,u) then T.cache.cech#(k+1,u) = F12))
-- if the cache only consists of the chain but not of the boundary operator compute this
else if not instance(T.cache.cech#(k,u),Sequence) then (
F21 := T.cache.cech#(k,u);
(F21toF22,F21columns,F22) := makeNewDiffAndTarget(F21,u,fMT,rT,bT,tvbR,tvbrank,k,n);
T.cache.cech#(k,u) = (F21,F21columns,F21toF22);
if not T.cache.cech#?(k+1,u) then T.cache.cech#(k+1,u) = F22);
T.cache.cech#(k,u)))
-- INPUT : '(k,T,u)', where 'k' is an integer between -1 and the dimension of the bundle +1, 'T' a ToricVectorBundleKlyachko, and 'u' a
-- one column matrix giving a degree vector
-- OUTPUT : '(Fk,Fkcolumns,FktoFk+1)', where 'Fk' is a hashTable with the summands of the 'k'th chain, 'Fkcolumns' is a hashTable with the
-- dimensions of these summands, and 'FktoFk+1' is a hashTable with the components of the 'k'th
-- boundary operator
cechComplex (ZZ,ToricVectorBundleKaneyama,Matrix) := (k,tvb,u) -> (
-- Checking for input errors
if numRows u != tvb#"dimension of the variety" or numColumns u != 1 then error("Expected a matrix with 1 column and ", toString tvb#"dimension of the variety", " rows.");
if ring u =!= ZZ then error("The degree has to be an integer vector.");
if k < 0 or tvb#"dimension of the variety"+1 < k then error("k has to be between 0 and the variety dimension for the k-th cohomology.");
-- For a given space F1 at chain k in the filtration together with the degree vector 'u' and the information of the bundle this auxiliary
-- function computes the boundary operator to the next chain (k+1) which is F1toF2, the dimensions of the summands of 'F1' in 'F1columns'
-- and the next chain 'F2'
makeNewDiffAndTarget := (M1,rk,l,tCT,bCT,dT) -> (
-- Recursive function that finds a path over codim 1 cones from one topdim cone ('i') to another ('j')
-- using the steps in 'pl'
findpath := (i,j,pl) -> (
-- Recursive function finds a path from the actual cone 'i' to the Cone 'j' using the steps in 'pl'
-- where 'cl' is the sequence of steps taken so far from the original 'i' and 'minpath' is the
-- shortest path found so far
findrecursive := (i,j,pl,cl,minpath) -> (
-- If the last step from 'i' to 'j' is part of 'pl' then add '(i,j)' to 'cl'
if member((i,j),pl) or member((j,i),pl) then (
cl = append(cl,(i,j));
-- Check if the new found path is shorter than shortest so far
if #cl < #minpath or minpath == {} then minpath = cl)
-- otherwise find a path with the remaining steps in 'pl'
else (
L1 := {};
L2 := {};
-- Sort the remaining possible steps into those containing 'i'in 'L1' and those who not in 'L2'
for e in pl do if member(i,e) then L1 = append(L1,e) else L2 = append(L2,e);
-- Call findrecursive for each step in 'L1', with new starting cone the other index in the pair and new
-- remaining pairs list 'L2' and add the step to 'cl'
for e in L1 do (
if e#0 == i then minpath = findrecursive(e#1,j,L2,append(cl,e),minpath)
else minpath = findrecursive(e#0,j,L2,append(cl,(e#1,e#0)),minpath)));
minpath);
-- Start with an empty sequence of steps, no minimal path yet and all possible stepsd
cl := {};
minpath := {};
findrecursive(i,j,pl,cl,minpath));
M2 := {};
for p in pairs M1 do (
L := select(toList(0..rk-1), i -> not member(i,p#1#0));
for i from last(p#0)+1 to l-1 do (
cl := append(p#0,i);
C := intersection(posHull p#1#1, posHull tCT#i);
degs := dT#(tCT#(cl#0));
M2 = append(M2,cl => (sort unique join(p#1#0,select(L, i -> contains(dualCone C,u- degs_{i}))),(rays C, linealitySpace C)))));
M2 = hashTable M2;
-- Constructing the zero map over QQ
d1 := map(QQ^0,QQ^0,0);
-- Constructing the matrix of the sequence for the cohomology
scan(pairs M1, (a,b) -> (
b = b#0;
-- 'A' will be a column of the matrix d1 of the sequence
A := map(QQ^0,QQ^(#b),0);
-- One intersection in M1 is selected, by going through the intersections in M2 we get the first "column" of block matrices in A
-- by looking at the images in all intersections in M2
scan(pairs M2, (c,d) -> (
-- Only if the intersection is made by intersecting with one more cone, the resulting matrix has to be computed,
-- because otherwise it is automatically zero
if isSubset(a,c) then (
-- get the signum by looking at the position the new cone is inserted
signum := (-1)^(#c - position(c, e -> not member(e,a)) - 1);
i := a#0;
j := c#0;
-- if i == j then no base change between the two representations has to be made, so the submatrix of the
-- identity inserting the positions of the degrees 'b' into the degrees 'd' is added in this column
if i == j then A = A || (signum * (map(QQ^rk,QQ^rk,1))_b)
-- Otherwise we have to find the transition matrix from cone 'i' to Cone 'j'
else (
-- find the transition matrix
mpath := findpath(i,j,keys bCT);
-- If the path has one element then we take the 'b'-'d' part of that matrix, otherwise the multiplication
-- of the matrices corresponding to the steps in the path and add the path as a new step with corresponding matrix
if #mpath == 1 then (
if i < j then A = A || (signum * (bCT#(i,j))_b)
else A = A || (signum * (inverse (bCT#(j,i)))_b))
else (
A1 := map(QQ^rk,QQ^rk,1);
for p in mpath do (
if p#0 < p#1 then A1 = bCT#p * A1
else A1 = (inverse bCT#(p#1,p#0))*A1);
if i < j then bCT = hashTable join(apply(pairs bCT, ps -> ps#0 => ps#1), {(i,j) => A1})
else bCT = hashTable join(apply(pairs bCT, ps -> ps#0 => ps#1), {(j,i) => inverse A1});
A = A || (signum * A1_b))))
else (
A = A || map(QQ^rk,QQ^(#b),0))));
-- Adding the new column to d1
if d1 == map(QQ^0,QQ^0,0) then d1 = A
else d1 = d1 | A));
(d1,M2));
if not tvb.cache.?cech then tvb.cache.cech = new MutableHashTable;
rk := tvb#"rank of the vector bundle";
l := tvb#"number of affine charts";
tCT := customConeSort keys tvb#"topConeTable";
bCT := tvb#"baseChangeTable";
dT := tvb#"degreeTable";
if not tvb.cache.cech#?(k,u) then (
if k == 0 then (
M20 := hashTable apply(subsets(l,k+1), cl -> (
C := intersection apply(cl, i -> posHull tCT#i);
degs := dT#(tCT#(cl#0));
L := select(toList(0..rk-1), i -> contains(dualCone C,u - degs_{i}));
cl => (L,(rays C, linealitySpace C))));
(d20,M30) := makeNewDiffAndTarget(M20,rk,l,tCT,bCT,dT);
tvb.cache.cech#(k,u) = (M20,d20);
tvb.cache.cech#(k+1,u) = M30)
else (
M1 := if not tvb.cache.cech#?(k-1,u) then (
hashTable apply(subsets(l,k), cl -> (
C := intersection apply(cl, i -> posHull tCT#i);
degs := dT#(tCT#(cl#0));
L := select(toList(0..rk-1), i -> contains(dualCone C,u - degs_{i}));
cl => (L,(rays C, linealitySpace C))))) else tvb.cache.cech#(k-1,u);
(d1,M2) := makeNewDiffAndTarget(M1,rk,l,tCT,bCT,dT);
(d2,M3) := makeNewDiffAndTarget(M2,rk,l,tCT,bCT,dT);
tvb.cache.cech#(k-1,u) = (M1,d1);
tvb.cache.cech#(k,u) = (M2,d2);
tvb.cache.cech#(k+1,u) = M3))
else if not instance(tvb.cache.cech#(k,u),Sequence) then (
M21 := tvb.cache.cech#(k,u);
(d21,M31) := makeNewDiffAndTarget(M21,rk,l,tCT,bCT,dT);
tvb.cache.cech#(k,u) = (M21,d21);
tvb.cache.cech#(k+1,u) = M31);
tvb.cache.cech#(k,u))
-- PURPOSE : Checking for a matrix if it is over ZZ or QQ and returning an error if not
-- INPUT : '(M,msg)', where 'M' is a matrix and 'msg' is the name of the object 'M' describes
-- OUTPUT : The matrix promoted to QQ if it was over ZZ or QQ, otherwise an error
chkZZQQ = (M,msg) -> (
R := ring M;
if R =!= ZZ and R =!= QQ then error("expected matrix of ",msg," to be over ZZ or QQ");
promote(M,QQ));
-- PURPOSE : Computing the cohomology of a given ToricVectorBundle
cohom = method()
-- INPUT : '(k,tvb,u)', 'k' for the 'k'th cohomology group, 'tvb' a ToricVectorBundleKaneyama, and 'u' the degree
-- OUTPUT : 'ZZ', the dimension of the degree 'u' part of the 'k'th cohomology group of 'tvb'
cohom (ZZ,ToricVectorBundleKaneyama,Matrix) := (k,T,u) -> (
if not T.cache.?HH then T.cache.HH = new MutableHashTable;
if not T.cache.HH#?(k,u) then (
-- Get the k-1 th and k th differential
d := if k == 0 then rank ker (cechComplex(k,T,u))#1 else (
-- Generate the two boundary operators
d1 := (cechComplex(k-1,T,u))#1;
d2 := (cechComplex(k,T,u))#1;
(rank ker d2) - (rank image d1));
T.cache.HH#(k,u) = (ring T)^(toList(d:flatten entries(-u))));
T.cache.HH#(k,u))
-- INPUT : '(k,tvb,u)', 'k' for the 'k'th cohomology group, 'tvb' a ToricVectorBundleKlyachko, and 'u' the degree
-- OUTPUT : 'ZZ', the dimension of the degree 'u' part of the 'k'th cohomology group of 'tvb'
cohom (ZZ,ToricVectorBundleKlyachko,Matrix) := (k,T,u) -> (
if not T.cache.?HH then T.cache.HH = new MutableHashTable;
if not T.cache.HH#?(k,u) then (
-- Get the k-1 th, k th and k+1 th chain in the Cech complex
(F1,F1columns,F1toF2) := cechComplex(k-1,T,u);
(F2,F2columns,F2toF3) := cechComplex(k,T,u);
F3 := (cechComplex(k+1,T,u))#0;
tvbR := T#"ring";
tvbrank := T#"rank of the vector bundle";
-- Generate the two boundary operators
MapF1toF2 := matrix apply(#F2, j -> apply(#F1, i -> if F1toF2#?(i,j) then F1toF2#(i,j) else map(tvbR^tvbrank,tvbR^(F1columns#i),0)));
MapF2toF3 := matrix apply(#F3, j -> apply(#F2, i -> if F2toF3#?(i,j) then F2toF3#(i,j) else map(tvbR^tvbrank,tvbR^(F2columns#i),0)));
-- Compute the cohomology
d := (rank ker MapF2toF3)-(rank image MapF1toF2);
T.cache.HH#(k,u) = (ring T)^(toList(d:flatten entries(-u))));
T.cache.HH#(k,u))
-- PURPOSE : Computing the cotangent bundle on a smooth, pure, and full dimensional Toric Variety
-- INPUT : 'F', a smooth, pure, and full dimensional Fan
-- OUTPUT : 'tvb', a ToricVectorBundleKaneyama
cotangentBundleKaneyama = F -> (
-- Checking for input errors
if not isSmooth F then error("The Toric Variety has to be smooth.");
if not isComplete F then error("The Toric Variety has to be complete.");
if not isPointed F then error("The Fan has to be pointed.");
-- Generating the trivial bundle of dimension n
n := dim F;
tvb := makeVBKaneyama(n,F);
tCT := customConeSort keys tvb#"topConeTable";
pairlist := keys tvb#"baseChangeTable";
-- Computing the degrees and transition matrices of the cotangent bundle
degreeTable := hashTable apply(tCT, p -> p => substitute(rays dualCone posHull p,ZZ));
baseChangeTable := hashTable apply(pairlist, p -> ( p => substitute(inverse(degreeTable#(tCT#(p#1)))*(degreeTable#(tCT#(p#0))),QQ)));
-- Writing the data into the bundle
E := new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => baseChangeTable,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => n,
"rank of the vector bundle" => n,
"codim1Table" => tvb#"codim1Table",
"topConeTable" => tvb#"topConeTable",
symbol cache => new CacheTable};
E.cache.regCheck = true;
E.cache.cocyle = true;
E)
-- PURPOSE : Constructing the fan of projective n-space
generateRandomMatrix = method(TypicalValue => Matrix)
-- INPUT : '(m,n,h)', where 'm' and 'n' are strictly positive integers and 'h' is an integer
-- OUTPUT : An 'm' by 'n' matrix with random entries between 0 and 'h'
generateRandomMatrix (ZZ,ZZ,ZZ) := (m,n,h) -> matrix apply(m, i -> apply(n, j -> random h+1))
-- INPUT : '(m,n,l,h)', where 'm' and 'n' are strictly positive integers and 'l' 'h' are integers
-- of which 'l' is the smaller one
-- OUTPUT : An 'm' by 'n' matrix with random entries between 0 and 'h'
generateRandomMatrix (ZZ,ZZ,ZZ,ZZ) := (m,n,l,h) -> matrix apply(m, i -> apply(n, j -> random(l,h)))
-- PURPOSE : Computing the intersection of the images of two matrices
-- INPUT : '(M,N)', two matrices with the same target
-- OUTPUT : a matrix with the minimal generators of the intersection
intersectMatrices = (M,N) -> (
m := numColumns M;
N = gens ker(M | N);
N = N^{0..m-1};
gens trim image(M*N));
-- PURPOSE : Building a Vector Bundle of rank 'k' on the Toric Variety given by the Fan 'F'
-- with 0 degrees and identity transition matrices
-- INPUT : '(k,F)', a strictly positive integer 'k' and a pure and full dimensional
-- Fan 'F'
-- OUTPUT : The ToricVectorBundleKaneyama 'VB'
makeVBKaneyama = method(TypicalValue => ToricVectorBundleKaneyama)
makeVBKaneyama (ZZ,Fan) := (k,F) -> (
-- Checking for input errors
if k < 0 then error("The vector bundle must have a positive rank.");
if not isComplete F then error("The fan has to be complete.");
if not isPointed F then error("The fan has to be pointed.");
-- Writing the table of Cones of maximal dimension
n := dim F;
Frays := rays F;
Flineality := linealitySpace F;
topConeTable := customConeSort apply(maxCones F, c-> (Frays_c, Flineality));
topConeTable = apply(#topConeTable, i -> topConeTable#i => i);
topConeTable = hashTable topConeTable;
-- Saving the index pairs of top dimensional Cones that intersect in a codim 1 Cone
Ltable := hashTable {};
scan(pairs topConeTable, (C,a) -> Ltable = merge(Ltable,hashTable apply(facesAsCones(1,posHull C), e -> (rays e, linealitySpace e) => a),(b,c) -> if b < c then (b,c) else (c,b)));
Ltable = hashTable flatten apply(pairs Ltable, p -> if instance(p#1,Sequence) then p#1 => p#0 else {});
-- Removing Cones on the "border" of F, which have only 1 index
pairlist := sort keys Ltable;
-- Saving the identity into the Table of transition matrices
baseChangeTable := hashTable apply(pairlist, p -> p => map(QQ^k,QQ^k,1));
-- Saving 0 degrees into the degree table
degreeTable := hashTable apply(keys topConeTable, C -> C => map(ZZ^n,ZZ^k,0));
-- Making the vector bundle
new ToricVectorBundleKaneyama from {
"degreeTable" => degreeTable,
"baseChangeTable" => baseChangeTable,
"codim1Table" => Ltable,
"ToricVariety" => F,
"number of affine charts" => #topConeTable,
"dimension of the variety" => n,
"rank of the vector bundle" => k,
"topConeTable" => topConeTable,
symbol cache => new CacheTable})
-- INPUT : '(k,F,degreeList,matrixList)', a strictly positive integer 'k', a pure and full dimensional
-- Fan 'F' of dimension n, a list 'degreeList' of k by n matrices over ZZ, one for each
-- top dimensional Cone in 'F' where the columns give the degrees of the generators in the
-- corresponding affine chart to this Cone, and a list 'matrixList' of k by k matrices
-- over QQ, one for each pair of top dimensional Cones intersecting in a common codim 1 face.
-- OUTPUT : The ToricVectorBundleKaneyama 'tvb'
-- COMMENT : Note that the top dimensional cones are numbered starting with 0 and the codim 1 intersections are
-- labelled by pairs (i,j) denoting the two top dim cones involved, with i<j and they are ordered
-- in lexicographic order. So the matrices in 'matrixList' will be assigned to the pairs (i,j) in that
-- order, where the matrix A assigned to (i,j) denotes the transition
-- (e_i^1,...,e_i^k) = (e_j^1,...,e_j^k)* A
-- The matrices in 'degreeList' will be assigned to the cones in the order in which they are numbered.
makeVBKaneyama (ZZ,Fan,List,List) := (k,F,degreelist,matrixlist) -> (
-- Generating the trivial vector bundle of rank k
tvb := makeVBKaneyama(k,F);
-- Adding the given degrees and transition matrices
tvb = addDegrees(tvb,degreelist);
tvb = addBaseChange(tvb,matrixlist);
tvb)
-- PURPOSE : Building a Vector Bundle in the Klyachko description of rank 'k' on the Toric Variety given by the Fan 'F'
-- with trivial Filtration for every ray
-- INPUT : '(k,F)', a strictly positive integer 'k' and a pure and full dimensional Fan 'F'
-- OUTPUT : The ToricVectorBundleKlyachko 'VB'
makeVBKlyachko = method(TypicalValue => ToricVectorBundleKlyachko)
makeVBKlyachko (ZZ,Fan) := (k,F) -> (
-- Checking for input errors
if k < 0 then error("The vector bundle must have a positive rank.");
if not isPointed F then error("The Fan has to be pointed");
-- Writing the table of rays
rT := raySortOfFan F;
rT = hashTable apply(#rT, i -> rT#i => i);
-- Writing the table of identity matrices for the vector bundle bases
bT := hashTable apply(keys rT, i -> i => map(QQ^k,QQ^k,1));
-- Writing the table of matrices for the filtration maps
fMT := hashTable apply(keys rT, i -> i => matrix {toList(k:0)});
-- Computing the list of changes in the filtrations
fT := hashTable apply(pairs fMT, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({min L1 - 1 => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
-- Generating the vector bundle
tvb := new ToricVectorBundleKlyachko from {
"ring" => QQ,
"rayTable" => rT,
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => F,
"number of affine charts" => #((maxCones F)),
"dimension of the variety" => dim F,
"rank of the vector bundle" => k,
"number of rays" => #rT,
symbol cache => new CacheTable};
tvb.cache.isVB = true;
tvb)
-- INPUT : '(k,F,baseList,filtrationList)', a strictly positive integer 'k', a pure and full dimensional
-- Fan 'F' of dimension n, a list 'baseList' of k by k matrices over the same ring/field, one for each
-- ray of 'F' where the columns give the basis of the vector bundle over the ray, and a list
-- 'filtrationList' of 1 by k matrices over ZZ, one for each ray such that the i-th column of
-- the base matrix is at first in the part of the filtration indexed by the i-th entry in the filtration
-- matrix.
-- OUTPUT : The ToricVectorBundleKlyachko 'tvb'
-- COMMENT : Note that the bases and filtration matrices will be assigned to the rays in the order, they appear in rays F
makeVBKlyachko (ZZ,Fan,List,List) := (k,F,Bm,Fm) -> (
tvb := makeVBKlyachko(k,F);
tvb = addBase(tvb,Bm);
addFiltration(tvb,Fm))
-- PURPOSE : Solving the system R*X=F
-- INPUT : '(R,F)', two matrices over ZZ
-- OUTPUT : a matrix of QQ solutions
systemSolver = (R,F) -> (
(R1,Lmatrix,Rmatrix) := smithNormalForm lift(R,ZZ);
F1 := entries(Lmatrix * F);
Rmatrix * (matrix apply(numRows R1, i -> F1#i / R1_(i,i)) || map(QQ^(numColumns R1 - numRows R1),QQ^(#F1#0),0)))
-- PURPOSE : Generating the table of all rays together with their filtration
-- INPUT : 'T', a ToricVectorBundleKlyachko
-- OUTPUT : a hashTable, with keys the rays of the variety and for each ray a list of pairs (the filtration step, the filtration)
tableForAllRays = method(TypicalValue => HashTable)
tableForAllRays ToricVectorBundleKlyachko := (cacheValue symbol allRaysTable)( T -> (
fMT := T#"filtrationMatricesTable";
bT := T#"baseTable";
hashTable apply(rays T, r -> (
fT := flatten entries fMT#r;
r => apply(fT, e -> (e,(bT#r)_(positions(fT, i -> i <= e))))))))
-- PURPOSE : Computing the tangent bundle (Klyachko) on a smooth, pure, and full dimensional Toric Variety
-- INPUT : 'F', a smooth, pure, and full dimensional Fan
-- OUTPUT : 'tvb', a ToricVectorBundleKlyachko
tangentBundleKlyachko = F -> (
-- Checking for input errors
if not isSmooth F then error("The Toric Variety has to be smooth.");
-- Generating the trivial bundle of dimension n
n := dim F;
tvb := makeVBKlyachko(n,F);
-- Extracting the rayTable
rayTable := apply(rays tvb,r -> promote(r,QQ));
-- Adding the filtration matrix |-1,0,0,...,0| for each ray
filtrationTable := apply(rayTable, r -> matrix{flatten({-1,toList(n-1:0)})});
-- Adding the base which has as first vector the ray itself to each ray
baseTable := apply(rayTable, r -> r | complement r);
-- Adding bases filtration matrices to the bundle
tvb = addFiltration(tvb,filtrationTable);
tvb = addBase(tvb,baseTable);
tvb.cache.isVB = true;
tvb)
---------------------------------------
-- DOCUMENTATION
---------------------------------------
beginDocumentation()
document {
Key => ToricVectorBundles,
Headline => "cohomology computations of equivariant vector bundles on toric varieties",
"Using the descriptions of Kaneyama and Klyachko this package implements the construction of
equivariant vector bundles on toric varieties.",
PARA{}, "Note that this package implements vector bundles in Kaneyama's description only over
pure and full dimensional fans.",
PARA{}, TT "ToricVectorBundles", " uses the ", TO Polyhedra, " package by ",
HREF("http://page.mi.fu-berlin.de/rbirkner/indexen.htm", "René Birkner"), ". At least version 1.1
of ",TO Polyhedra," must be installed via ",TO installPackage," to use ",TT "ToricVectorBundles",".",
PARA{}, "Each vector bundle is saved either in the description of Kaneyama or the one of Klyachko. The
first description gives the multidegrees (in the dual lattice of the fan) of the generators of the bundle
over each full dimensional cone, and for each codimension-one cone a transition matrix
(See ",TO ToricVectorBundleKaneyama,"). The description of an equivariant vector bundle given by Klyachko
consists of filtrations of a fixed vector space for each ray in the fan of the base variety. Furthermore,
these filtrations have to satisfy a certain compatibility condition (See ",TO ToricVectorBundleKlyachko,").",
PARA{}, "For the mathematical background see ",
UL {
{"Tamafumi Kaneyama,",EM "On equivariant vector bundles on an almost homogeneous variety", ", Nagoya Math. J. 57, 1975."},
{"Alexander A. Klyachko,",EM "Equivariant bundles over toral varieties", ", Izv. Akad. Nauk SSSR Ser. Mat., 53, 1989."},
{"Markus Perling,",EM "Resolution and moduli for equivariant sheaves over toric varieties", ", PhD Thesis, 2003."}
},
SeeAlso => {"Polyhedra::Polyhedra"}
}
document {
Key => ToricVectorBundle,
Headline => "the class of all toric vector bundles",
"In ",TO ToricVectorBundles," an equivariant vector bundle on some toric variety is given as an object of class ",TT "ToricVectorBundle","
which can be given in two descriptions:",
UL {
{"By a collection of vector spaces with filtration for each ray of the underlying fan, ",TO ToricVectorBundleKlyachko,"."},
{"By a set of degree vectors for each maximal cone and a transition matrix for each pair of maximal cones of the underlying
fan, ",TO ToricVectorBundleKaneyama,"."}
},
PARA{}, "For more detailed descriptions see the corresponding pages of the two subtypes.",
SeeAlso => {ToricVectorBundleKlyachko,
ToricVectorBundleKaneyama}
}
document {
Key => ToricVectorBundleKaneyama,
Headline => "the class of all toric vector bundles in Kaneyama's description",
TEX ///"Consider an equivariant vector bundle $E$ of rank $k$ on a toric variety $X$ corresponding to a fan $\Sigma$. Then $E$ is
trivial on any invariant open affine subvariety of $X$ and moreover homogeneously generated by $k$ elements.
Furthermore, the transition maps between these trivializations are homogeneous of degree zero. Thus,
after fixing local homogeneous generators, we get a list of degrees of generators for each cone
in $\Sigma$, along with a transition map for each pair of cones. Conversely, given a list of $k$ degrees for every
cone of $\Sigma$ along with transition maps satisfying compatibility and regularity conditions for every pair of cones,
one can construct an equivariant vector bundle of rank $k$ on $X$."///,
PARA{}, TEX ///"This description of equivariant vector bundles, due to Kaneyama, is implemented for complete, pointed fans in the following way:
It is only necessary to consider charts corresponding to maximal dimensional cones of $\Sigma$. Furthermore, each codimension-one cone of
$\Sigma$ corresponds to a pair of maximal dimensional cones, and thus to a transition map. Due to the compatibility condition for transition maps,
one can reconstruct the transition map corresponding to an arbitrary pair from the maps of this sort. If the dimension of $\Sigma$ is $n$ then
for each maximal dimensional cone the degree list of the corresponding chart is saved as an $n$ times $k$ matrix over ",TO ZZ,", giving
$k$ degree vectors in the dual lattice of the fan, one for each local generator of the bundle. Additionally,
for every pair of maximal cones intersecting in a common codimension-one face, there is a matrix in
GL($k$,",TO QQ,"), representing the transition map between these two affine charts. Indeed, suppose that
cones $\sigma_1$ and $\sigma_1$ intersect in some codimension-one face, with corresponding affine
charts $U_1$ and $U_2$. Then on the intersection, the $i$-th generator for $U_1$ has a unique
representation as a linear combination in the generators for $U_2$ after being multiplied with characters to all
have the required degree. The coefficients in this representation form the $i$-th column of the desired matrix."///,
PARA{}, TEX ///"We briefly consider the example of $\mathbb{P}^2$, corresponding to the complete fan with rays
through $(0,1)$, $(1,0)$, and $(-1,-1)$. Denote by $x$ the character of weight $[1,0]$ and by $y$ the character
of weight $[0,1]$. Now the coordinate rings of the three standard affine charts of $\mathbb{P}^2$ are generated by
respectively $(x^{ -1},x^{ -1}y)$, $(x,y)$, and $(xy^{ -1},y^{ -1})$. This means that the modules of differentials
are generated by respectively $(d(x^{ -1}),d(x^{ -1}y))$, $(dx,dy)$, and $(d(xy^{ -1}),d(y^{ -1}))$. These modules give us
local trivializations of the cotangent bundle on $\mathbb{P}^2$. The degrees of the generators for the first chart
then are $[-1,0]$ and $[-1,1]$, for example. Now, since $d(x^{ -1})=-x^{ -2}dx$ and $d(x^{ -1}y) = -x^{ -2}ydx + x^{ -1}dy$,
we get that the transition map between the generators of the first and second chart is given by the matrix with
columns $(-1,0)$ and $(-1,1)$."///,
PARA{},"An instance of class ToricVectorBundleKlyachko, when displayed or printed, gives an overview of the
characteristics of the bundle:",
EXAMPLE {
" E = cotangentBundle(projectiveSpaceFan 2,\"Type\" => \"Kaneyama\")"
},
PARA{}, "To see all relevant details of a bundle use ",TO details,". The data described above is all stored in a single hash table. In the example from above, the first chart has the key 0, and transition map described above has key (0,1):",
EXAMPLE {
" details E"
},
Caveat=> {"This implementation only supports vector bundles where the corresponding transition maps have coefficients in ",TO QQ,"."},
SeeAlso => {ToricVectorBundleKlyachko,
ToricVectorBundle}
}
document {
Key => ToricVectorBundleKlyachko,
Headline => "the class of all toric vector bundles in Klyachko's description",
TEX ///"A toric vector bundle on a toric variety $X$ is a locally free sheaf $E$
together with an action of the torus $T$ on the geometric vector bundle $V(E)$
such that the projection to the base $X$ is equivariant, and the action of $T$ on the fibers is linear.
There also is an induced action of $T$ on the local sections $s \in{} \Gamma(U,E)$
given by $(t*s)(x) = t^{ -1}(s(t x))$ . This implies that a regular section $x^u \in{} \Gamma(X,O_X)$
for an element $u$ in the character lattice $M$ also has weight $u$.
Other choices for the induced action are possible. In fact, the upper one is different from Klyachko's in his original description
where $x^u \in{} \Gamma(X,O_X)$ has weight $-u$.
We denote by $E_0$ the fiber over the unit $t_0 \in{} T$,
and by $U_\sigma \subset X$ the open affine torus invariant subset associated with the cone $\sigma$.
The primitive generator of the ray $\rho$ in the fan $\Sigma$ is denoted by $v_\rho$.
Evaluating local homogeneous sections $\Gamma(U_{\rho},E)_u$ of weight $u$ at $t_0$
provides us with an embedding of these finite dimensional vector spaces into $E_0$. One can show that
the upper choice of the induced torus action implies that the image of $\Gamma(U_\rho,E)_{u_1}$ is contained
in the image of $\Gamma(U_\rho,E)_{u_2}$ if and only if the pairing $(u_1-u_2,v_\rho) \leq 0$.
Furthermore one observes that the image only depends on the class of the weight $u$
in the quotient lattice $M_\rho := M/M^\rho$, where $M^\rho$ denotes the intersection of $M$
with the vector space perpendicular to the ray $\rho$. Since $M_\rho \cong \mathbb{Z}$ we denote the
image of $\Gamma(U_\rho,E)_u$ in $E_0$ by $E^\rho(i)$ with $i = (u,v_\rho)$.
Each ray $\rho \in{} \Sigma$ thus gives rise to an increasing filtration $\{E^\rho(i)\}$ of $E_0$.
Since $E_0$ is finite dimensional there is only a finite set of integers
$i$ for which a jump occurs, i.e., $E^\rho(i)$ strictly contains
$E^\rho(i-1)$. At all other steps the filtration remains constant.
Apart from that, each open affine subset $U_\sigma$ for $\sigma \in{} \Sigma$ induces a direct sum
decomposition of $E_0 = \oplus_{u \in{} M_\sigma}E^\sigma_u$ such that $E^\rho(i) = \sum_{(u,v_\rho) \leq i} E^\sigma_u$
for each $\rho \in{} \sigma$ and $i \in{} \mathbb{Z}$. Observe that the lattice $M_\sigma$
is defined analogously to the lattice $M_\rho$, i.e., it is the quotient lattice $M/M^\sigma$ where
$M^\sigma$ denotes the intersection of $M$ with the vector space perpendicular to the cone $\sigma$."///,
PARA{},"With the notation and conventions introduced above it is now possible to state the fundamental theorem of Klyachko which completely
describes toric vector bundles in linear algebraic terms:",
PARA{},TT "The category of toric vector bundles on the toric variety ",TEX ///$X$///, TT " is equivalent to the category of finite
dimensional ",TEX ///$k$///, TT"-vector spaces ",TEX ///$E_0$///, TT" with collections of increasing filtrations
",TEX ///$\{E^{\rho}(i)| i \in{} \mathbb{Z}\}$///, TT", indexed by the rays of ",TEX ///$\Sigma$///, TT", satisfying the following
compatibility condition: For each cone ",TEX ///$\sigma \in{} \Sigma$///, TT" there is a decomposition ",TEX ///$E_0 = \oplus_{u \in{} M_\sigma} E_u$///, TT"
such that ",TEX ///$E^{\rho}(i) = \sum_{(u,v_\rho) \leq i} E_u$///, TT" for every ray ",TEX ///$\rho \in{} \sigma$///, TT" and
every ",TEX ///$i \in{} \mathbb{Z}$///,".",
PARA{}, TEX ///"In contrast to the implementation of Kaneyama's description this one
works for every toric variety $X$ i.e., there are no restrictions on the fan $\Sigma$.
For each ray $\rho$ of the fan $\Sigma$
there are two matrices comprising the necessary filtration data. The first one is an invertible matrix $A(\rho) \in{} $
GL("///,TT "k",",",TO QQ,TEX ///") whose columns contain a basis of the vector space $E_0$ which is associated to the
filtration corresponding to the ray $\rho$. The second one is a ",TT "1 x k"," integer matrix, the so
called filtration matrix. It determines at which step an element of the basis given in the first matrix actually contributes to
a certain subspace in the filtration, i.e., if the j-th entry of the filtration matrix is i then the j-th basis vector appears at the
i-th step in the filtration. Hence $E^{\rho}(i)$ is generated by all basis vectors listed
in $A(\rho)$ whose corresponding entry in the filtration matrix is less or equal to $E_0$."///,
PARA{}, TEX ///"To link up to the description of Kaneyama we will also discuss the example of the cotangent bundle $\mathbf{\Omega}_X$
of $X = \mathbb{P}^2$. Recall that $X$ can be given by the complete
fan with rays $\rho_1 = (1,0)$, $\rho_2 = (0,1)$, and $\rho_3 = (-1,-1)$. There are three maximal
cones, namely $\sigma_1$ spanned by $\rho_1,\rho_2$, $\sigma_2$ spanned by
$\rho_2,\rho_3$, and $\sigma_3$ spanned by $\rho_3,\rho_1$.
Each of them corresponds to a torus invariant affine chart $U_{\sigma_i}$. It follows that the $k[\sigma_1^v \cap M]$-module
$\Gamma(U_{\sigma_1},\Omega_X)$ is generated by $dx := d(x^{[1,0]})$, and $dy := d(x^{[0,1]})$,
and analogously for the remaining charts. We now fix a basis of $\Omega_0$ by evaluating the sections $dx,dy$
at the unit $t_0$. This gives rise to filtrations $\Omega^\rho(i)$. We only consider the example $\rho = \rho_3$.
The filtrations for the two other rays can be found by analogous calculations.
Now, $k[U_{\rho_3}] = k[x^{-1},x^{-1}y,xy^{-1}]$. Then, $\Gamma(U_{\rho_3},\Omega_X)$ is generated as a
$k[U_{\rho_3}]$-module by $-x^{-2}dx, -x^{-2}ydx + x^{-1}dy$. Thus,
$\Gamma(U_{\rho_3},\Omega_X)_{[1,0]} = 0$, $\Gamma(U_{\rho_3},\Omega_X)_{[0,0]}$ is generated by
$xy^{-1}(-x^{-2}ydx + x^{-1}dy)$, and $\Gamma(U_{\rho_3},\Omega_X)_{[-1,0]}$
is two-dimensional. Since $[1,0], [0,0]$, and $[-1,0]$ pair with $v_{\rho_3}=(-1,-1)$
to respectively $-1, 0$, and $1$, the filtration $\Omega^{\rho_3}(i)$ jumps at
$1$ and $0$ with corresponding basis vectors $(0,-1)$ and $(-1,1)$.
Since $\Omega_X$ already is a vector bundle we do not have to check the compatibility conditions."///,
PARA{},"An instance of class ToricVectorBundleKlyachko, when displayed or printed, gives an overview
of the characteristics of the bundle:",
EXAMPLE {
" E = cotangentBundle(projectiveSpaceFan 2) "
},
PARA{}, "To see all relevant details of a bundle use ",TO details,". The data described above are stored in a single hash table.
In the example from above, the keys are the rays of the fan, and each of them comes with a base matrix and a filtration matrix:",
EXAMPLE {
" details E"
},
SeeAlso => {ToricVectorBundleKaneyama,
ToricVectorBundle}
}
document {
Key => {addBaseChange, (addBaseChange,ToricVectorBundleKaneyama,List)},
Headline => "changing the transition matrices of a toric vector bundle",
Usage => " F = addBaseChange(E,L)",
Inputs => {
"E" => ToricVectorBundleKaneyama,
"L" => List => {"with matrices over ",TO ZZ," or ",TO QQ}
},
Outputs => {
"F" => ToricVectorBundleKaneyama
},
PARA{}, TT "addBaseChange"," replaces the transition matrices in ",TT "E"," by the matrices in
the ",TO List," ",TT "L",". The matrices in ",TT "L"," must be in GL(",TEX///$k$///,",",TO ZZ,") or
GL(",TEX///$k$///,",",TO QQ,"), where ",TEX///$k$///," is the rank of the vector bundle ",TT "T",".
The list has to contain one matrix for each maximal dimensional cone of the underlying fan over
which ",TT "E"," is defined. The fan can be recovered with ",TO (fan,ToricVectorBundle),".
The vector bundle already has a list of pairs ",TEX///$(i,j)$///," denoting the codim 1 intersections
of two maximal cones with ",TEX///$i<j$///," and they are ordered in lexicographic order. The matrices
will be assigned to the pairs ",TEX///$(i,j)$///," in that order. To see which codimension 1 cone
corresponds to the pair ",TEX///$(i,j)$///," use ",TO (details,ToricVectorBundle),". The
matrix ",TEX///$A$///," assigned to ",TEX///$(i,j)$///," denotes the transition
",TEX///$(e_i^1,...,e_i^k) = (e_j^1,...,e_j^k)*A$///,". The matrices need not satisfy the regularity
or the cocycle condition. These can be checked with ",TO regCheck," and ",TO cocycleCheck,".",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" details E",
" F = addBaseChange(E,{matrix{{1,2},{0,1}},matrix{{1,0},{3,1}},matrix{{1,-2},{0,1}},matrix{{1,0},{-3,1}}})",
" details F",
" cocycleCheck F"
},
SeeAlso => {addDegrees,regCheck,cocycleCheck}
}
document {
Key => {addBase, (addBase,ToricVectorBundleKlyachko,List)},
Headline => "changing the basis matrices of a toric vector bundle in Klyachko's description",
Usage => "F = addBase(E,L)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"L" => List => {"with matrices over ",TO ZZ," or ",TO QQ}
},
Outputs => {
"F" => ToricVectorBundleKlyachko
},
PARA{}, TT "addBase"," replaces the basis matrices in ",TT "E"," by the matrices in
the ",TO List," ",TT "L",". The matrices in ",TT "L"," must be in GL(",TEX///$k,R$///,"),
where ",TEX///$k$///," is the rank of the vector bundle ",TT "E"," and ",TEX///$R$///,"
is ",TO ZZ," or ",TO QQ,". The list has to contain one matrix for each ray of the
underlying fan over which ",TT "E"," is defined. Note that in ",TT "E"," the rays are
already sorted and that the basis matrices in ",TT "L"," will be assigned to the
rays in that order. To see the order use ",TO (rays,ToricVectorBundle),".",
PARA{}, "The matrices need not satisfy the compatibility condition. This can
be checked with ",TO isVectorBundle,".",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2)",
" details E",
" F = addBase(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})",
" details F",
" isVectorBundle F"
},
SeeAlso => {base,addFiltration,isVectorBundle}
}
document {
Key => {addDegrees, (addDegrees,ToricVectorBundleKaneyama,List)},
Headline => "changing the degrees of a toric vector bundle",
Usage => " F = addDegrees(E,L)",
Inputs => {
"E" => ToricVectorBundleKaneyama,
"L" => List => {"with matrices over ",TO ZZ}
},
Outputs => {
"F" => ToricVectorBundleKaneyama
},
PARA{}, TT "addDegrees"," replaces the degree matrices in ",TT "E"," by the matrices in
the ",TO List," ",TT "L",". The matrices in ",TT "L"," must be ",TEX///$n$///," by ",TEX///$k$///,"
matrices over ",TO ZZ,", where ",TEX///$k$///," is the rank of the vector bundle ",TT "E","
and ",TEX///$n$///," is the dimension of the underlying toric variety. The list has to contain one
matrix for each maximal dimensional cone of the underlying fan over which ",TT "E"," is defined.
Note that in ",TT "E"," the top dimensional cones are already sorted and that the degree matrices
in ",TT "L"," will be assigned to the cones in that order. To find out the order use ",TO (maxCones,ToricVectorBundle),".
The matrices need not satisfy the regularity condition. This can be checked with ",TO regCheck,".",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" details E",
" F = addDegrees(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})",
" details F",
" regCheck F"
},
SeeAlso => {addBaseChange,regCheck,cocycleCheck}
}
document {
Key => {addFiltration, (addFiltration,ToricVectorBundleKlyachko,List)},
Headline => "changing the filtration matrices of a toric vector bundle in Klyachko's description",
Usage => "F = addFiltration(E,L)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"L" => List => {"with matrices over ",TO ZZ}
},
Outputs => {
"F" => ToricVectorBundleKlyachko
},
PARA{}, TT "addFiltration"," replaces the filtration matrices in ",TT "E"," by the matrices in
the ",TO List," ",TT "L",". The matrices in ",TT "L"," must be ",TEX///$1$///," by ",TEX///$k$///,"
matrices over ",TO ZZ,", where ",TEX///$k$///," is the rank of the vector bundle ",TT "E",". The
list has to contain one matrix for each ray of the underlying fan over which ",TT "E"," is defined.
Note that in ",TT "E"," the rays are already sorted and that the filtration matrices in ",TT "L","
will be assigned to the rays in that order. To see the order, use ",TO (rays,ToricVectorBundle),".",
PARA{}, TEX ///"The filtration on the vector bundle over a ray is given by the filtration matrix for this
ray in the following way: The first index $j$, such that the $i$-th basis
vector in the basis over this ray appears in the $j$-th step of the filtration, is the
$i$-th entry of the filtration matrix. OR in other words, the $j$-th step
step in the filtration is given by all columns of the basis matrix for which the corresponding entry
in the filtration matrix is less or equal to $j$."///,
PARA{}, "The matrices need not satisfy the compatibility condition. This can be checked
with ",TO isVectorBundle,".",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2)",
" details E",
" F = addFiltration(E,{matrix{{1,3}},matrix{{-1,3}},matrix{{2,-3}},matrix{{0,-1}}})",
" details F",
" isVectorBundle F"
},
PARA{}, "This means that for example over the first ray the first basis vector of the filtration of ",TT "F","
appears at the filtration step 1 and the second at 3.",
SeeAlso => {filtration,addBase,isVectorBundle}
}
document {
Key => {areIsomorphic, (areIsomorphic,ToricVectorBundleKlyachko,ToricVectorBundleKlyachko)},
Headline => "checks if two vector bundles are isomorphic",
Usage => " b = areIsomorphic(E,F)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"F" => ToricVectorBundleKlyachko
},
Outputs => {
"b" => Boolean => {"whether ", TT "E", " and ", TT "F", " are isomorphic"}
},
PARA{}, TT "E"," and ",TT "F"," must be vector bundles over the same fan. Two equivariant vector
bundles in Klyachko's description are isomorphic if there exists a simultaneous isomorphism for
the filtered vector spaces of all rays. The method then returns whether the bundles are
isomorphic.",
EXAMPLE {
" HF = hirzebruchFan 2",
" E = exteriorPower(2, cotangentBundle HF)",
" F = weilToCartier({-1,-1,-1,-1},HF)",
" areIsomorphic(E,F)"
},
PARA{}, "To obtain the isomorphism, if two bundles are isomorphic use ",TO isomorphism,".",
SeeAlso => {isomorphism,base,filtration,details}
}
document {
Key => {base, (base,ToricVectorBundleKlyachko)},
Headline => " the basis matrices for the rays",
Usage => " b = base E",
Inputs => {
"E" => ToricVectorBundleKlyachko
},
Outputs => {
"b" => HashTable
},
PARA{}, "The basis of a toric vector bundle in Klyachko's description is given for each ray as a square
matrix of rank ",TEX///$k$///," of the bundle. The output is a ",TO HashTable," where the keys are the
rays of the fan given as one column matrices over ",TO ZZ,", and for each ray a ",TEX///$k$///,"
by ",TEX///$k$///," matrix over ",TO QQ," and ",TEX///$k$///," is the rank of the bundle.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" base E"
},
SeeAlso => {addBase,filtration,isVectorBundle}
}
document {
Key => {cartierIndex, (cartierIndex,List,Fan)},
Headline => " the Cartier index of a Weil divisor",
Usage => " N = cartierIndex(L,F)",
Inputs => {
"L" => List,
"F" => Fan => {"a pure and full dimensional fan"}
},
Outputs => {
"N" => ZZ
},
PARA{}, TT "L"," must be a list of weights,
exactly one for each ray of the fan. Then the Cartier index is the smallest strictly positive
natural number ",TEX ///$N$///," such that ",TEX ///$N$///," times the Weil divisor is Cartier.
If the Weil divisor defined by these weights is not ",TO QQ,"-Cartier, then ",TEX ///$N$///," would
be infinity. In this case ",TT "cartierIndex"," returns an error. Otherwise it returns ",TEX ///$N$///,".",
EXAMPLE {
" F = fan posHull matrix {{1,5},{5,1}}",
" L = {2,2}",
" cartierIndex(L,F)"
},
PARA{}, "If we change the Weil divisor we get a different Cartier index:",
EXAMPLE {
" L = {3,3}",
" cartierIndex(L,F)"
},
SeeAlso => {weilToCartier}
}
document {
Key => {charts, (charts,ToricVectorBundle)},
Headline => " the number of maximal affine charts",
Usage => " n = charts E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"n" => ZZ
},
PARA{}, "The function ",TT "charts"," returns the number of maximal cones in the underlying
fan, i.e., the number of affine charts.",
EXAMPLE {
" E = cotangentBundle pp1ProductFan 3",
" charts E"
},
SeeAlso => {"Polyhedra::Fan",(fan,ToricVectorBundle)}
}
document {
Key => {cocycleCheck, (cocycleCheck,ToricVectorBundleKaneyama)},
Headline => " checks if a toric vector bundle fulfills the cocycle condition",
Usage => " b = cocycleCheck E",
Inputs => {
"E" => ToricVectorBundleKaneyama
},
Outputs => {
"b" => Boolean => {"whether ", TT "E", " satisfies the cocyle condition"}
},
PARA{}, "The transition matrices in ",TT "E"," define an equivariant toric vector bundle
if they satisfy the cocycle condition. I.e. in this implementation of complete fans this
means that for every codimension 2 cone of the fan the cycle of transition matrices of
codimension 1 cones containing the codimension 2 cone gives the identity when multiplied.",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" details E",
" A = matrix{{1,2},{0,1}};",
" B = matrix{{1,0},{3,1}};",
" C = matrix{{1,-2},{0,1}};",
" E1 = addBaseChange(E,{A,B,C,matrix{{1,0},{0,1}}})",
" cocycleCheck E1",
" D = inverse(B)*A*C",
" E1 = addBaseChange(E,{A,B,C,D})",
" cocycleCheck E1"
},
SeeAlso => {addBaseChange,addDegrees,regCheck}
}
document {
Key => {(cohomology,ZZ,ToricVectorBundle)},
Headline => " the i-th cohomology group of a toric vector bundle",
Usage => " c = HH^i E ",
Inputs => {
"i" => ZZ,
"T" => ToricVectorBundle
},
Outputs => {
"c" => Module
},
PARA{}, "Computes the ",TEX///$i$///,"-th cohomology group of the toric vector bundle ",TEX///$E$///,". The
output is the ",TEX///$i$///,"-th cohomology group as a multigraded module. For this, it computes the
set of all degrees that can give non-zero cohomology (see ",TO deltaE,"). This set is finite if the
underlying toric variety is complete. If the toric variety is not complete then an error is returned.",
PARA{},"The computation of the cohomology groups for a toric vector bundle given in terms of Kaneyama is done by
the usual Cech cohomology complex, again separately for every degree ",TEX///$u \in{} M$///,".",
PARA{}, "If the option ",TT "Degree => 1"," is used then it displays the number of degrees for which
it computes the cohomology. ",TEX///$i$///," must be between ",TEX///$0$///," and the dimension of
the underlying toric variety.",
EXAMPLE {
" E = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" HH^0 E",
" HH^0 (E,Degree => 1)"
},
PARA{}, TEX ///"In case the toric vector bundle $E$ is given in Klyachko's description, there is a
special exact sequence of finite dimensional vector spaces for every weight $u \in{} M$
whose cohomology groups in degree $i$ are isomorphic to $H^i(X,E)$. This exact
sequence can be found in the Klyachko's paper listed on the main page of the documentation."///,
PARA{}, "If the option ",TT "Degree => 1"," is used then it displays the number of degrees for which
it computes the cohomology. ",TEX///$i$///," must be between ",TEX///$0$///," and the dimension of
the underlying toric variety.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" HH^0 E",
" HH^0 (E,Degree => 1)"
},
SeeAlso => {(ring,ToricVectorBundle),
deltaE,
(cohomology,ZZ,ToricVectorBundle,Matrix),
(cohomology,ZZ,ToricVectorBundle,List),
(hh,ZZ,ToricVectorBundle),
eulerChi}
}
document {
Key => {(cohomology,ZZ,ToricVectorBundle,List)},
Headline => " the i-th cohomology of a toric vector bundle for a given list of degrees",
Usage => " c = HH_i^E L",
Inputs => {
"i" => ZZ,
"E" => ToricVectorBundle,
"L" => List => {" containing weights of the form, one column matrix over ",TO ZZ}
},
Outputs => {
"c" => List
},
PARA{}, TEX ///"Computes the $i$-th cohomology of the toric vector bundle $E$ for a
given list of degrees. For this $i$ must be between $0$ and the rank of
the vector bundle. The entries of the list "///,TT "L"," must be one column matrices each defining a point
in the lattice of the fan over which ",TEX///$E$///," is defined",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" HH_0^E {matrix{{1},{0}},matrix{{-1},{0}}}"
},
SeeAlso => {(ring,ToricVectorBundle),
deltaE,
(cohomology,ZZ,ToricVectorBundle),
(cohomology,ZZ,ToricVectorBundle,Matrix),
(hh,ZZ,ToricVectorBundle),
eulerChi}
}
document {
Key => {(cohomology,ZZ,ToricVectorBundle,Matrix)},
Headline => " the i-th cohomology of a toric vector bundle in a given degree",
Usage => " c = HH_i^E u ",
Inputs => {
"i" => ZZ,
"E" => ToricVectorBundle,
"u" => Matrix => {"over ",TO ZZ," with just one column, giving a weight in the lattice"}
},
Outputs => {
"c" => Module
},
PARA{}, TEX ///"Computes the $i$-th cohomology group of the toric vector bundle $E$ of
degree $u$ where $u$ must be a one-column matrix giving a point in the
lattice of the fan over which $E$ is defined and $i$ must be between $0$
and the dimension of the underlying toric variety."///,
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" HH^0 (E,matrix{{1},{0}})"
},
SeeAlso => {(ring,ToricVectorBundle),
deltaE,
(cohomology,ZZ,ToricVectorBundle),
(cohomology,ZZ,ToricVectorBundle,List),
(hh,ZZ,ToricVectorBundle),
eulerChi}
}
document {
Key => {(coker,ToricVectorBundleKlyachko,Matrix)},
Headline => " the cokernel of a morphism to a vector bundle",
Usage => " E1 = coker(E,M)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"M" => Matrix => {"over ",TO ZZ," or ",TO QQ}
},
Outputs => {
"E1" => ToricVectorBundleKlyachko
},
PARA{}, TT "M"," must be a matrix over ",TO ZZ," or ",TO QQ," where the target space is the space
of the bundle, i.e., the matrix must have ",TEX///$k$///," rows if the bundle has rank
",TEX///$k$///,". Then the new bundle is given on each ray ",TEX///$\rho$///," by the following
filtration of coker(E,M)",TEX///${}^\rho = ( E^{\rho} ) / $///,"im(M) :",
PARA{}, "coker(E,M)",TEX///${}^\rho(i) := E^{\rho}(i) / ( E^{\rho}(i) \cap $///," im(M) ).",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" E = E ** E",
" M = matrix {{1,0},{0,1},{1,0},{0,1/1}}",
" E1 = coker(E,M)",
" details E1"
},
SeeAlso => {(image,ToricVectorBundleKlyachko,Matrix),
(ker,ToricVectorBundleKlyachko,Matrix)}
}
document {
Key => {cotangentBundle, (cotangentBundle,Fan)},
Headline => " the cotangent bundle on a toric variety",
Usage => " E = cotangentBundle F",
Inputs => {
"F" => Fan
},
Outputs => {
"E" => {ofClass ToricVectorBundleKaneyama," or ",ofClass ToricVectorBundleKlyachko}
},
PARA{}, "If the fan ",TT "F"," is pure, of full dimension and smooth, then the function generates the
cotangent bundle of the toric variety given by ",TT "F",". If no further options are given then the
resulting bundle will be in Klyachko's description:",
EXAMPLE {
" F = projectiveSpaceFan 2",
" E = tangentBundle F",
" details E"
},
PARA{}, "If the option ",TT "\"Type\" => \"Kaneyama\""," is given then the resulting bundle will be in
Kaneyama's description:",
EXAMPLE {
" F = projectiveSpaceFan 2",
" E = tangentBundle(F,\"Type\" => \"Kaneyama\")",
" details E"
},
SeeAlso => {tangentBundle}
}
document {
Key => {deltaE, (deltaE,ToricVectorBundle)},
Headline => " the polytope of possible degrees that give non zero cohomology",
Usage => " P = deltaE E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"P" => Polyhedron
},
PARA{}, "For a toric vector bundle over a complete toric variety there is a finite set of
degrees ",TEX///$u$///," such that the degree ",TEX///$u$///," part of the cohomology of the
vector bundle is non-zero. This function computes a polytope ",TEX///$\Delta_E$///,", such
that these degrees are contained in this polytope. If the underlying toric variety is not
complete then an error is returned.",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2, \"Type\" => \"Kaneyama\")",
" P = deltaE E",
" vertices P",
" E1 = tangentBundle projectiveSpaceFan 2",
" P1 = deltaE E1",
" vertices P1"
},
SeeAlso => {eulerChi,
(cohomology,ZZ,ToricVectorBundle),
(hh,ZZ,ToricVectorBundle)}
}
document {
Key => {details, (details,ToricVectorBundle)},
Headline => " the details of a toric vector bundle",
Usage => " ht = details E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"ht" => Sequence => {" or ",TO HashTable," if the bundle is in Klyachko's description"}
},
PARA{}, "For a toric vector bundle in Kaneyama's description, the sequence ",TT "ht"," contains
a hash table that assigns to each maximal cone ",TEX///$\sigma$///," of the underlying fan
its matrix of rays and its matrix of degrees, and a hash table giving a transition matrix for
every pair of maximal cones that intersect in a codimension 1 face.",
EXAMPLE {
" E = tangentBundle(pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
"details E"
},
PARA{}, "For a toric vector bundle in Klyachko's description, the hash table ",TT "ht"," contains
the rays of the underlying fan and for each ray the basis of the bundle over this ray and the
filtration matrix.",
EXAMPLE {
" E = tangentBundle pp1ProductFan 2",
"details E"
}
}
document {
Key => (dual,ToricVectorBundle),
Headline => " the dual bundle of a toric vector bundle",
Usage => " Ed = dual E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"Ed" => ToricVectorBundle
},
PARA{}, TT "dual"," computes the dual vector bundle of a toric vector bundle.",
EXAMPLE {
" E = tangentBundle(pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" Ed = dual E",
" details Ed",
" Ed == cotangentBundle(pp1ProductFan 2,\"Type\" => \"Kaneyama\")"
},
EXAMPLE {
" E = tangentBundle projectiveSpaceFan 2",
" Ed = dual E",
" details Ed",
" Ed == cotangentBundle projectiveSpaceFan 2"
},
SeeAlso => {tangentBundle,cotangentBundle}
}
document {
Key => {eulerChi, (eulerChi,ToricVectorBundle), (eulerChi,Matrix,ToricVectorBundle)},
Headline => " the Euler characteristic of a toric vector bundle",
Usage => " i = eulerChi E \neulerChi(u,E)",
Inputs => {
"E" => ToricVectorBundle,
"u" => Matrix => {"with just one column over ",TO ZZ," representing a degree vector"}
},
Outputs => {
"i" => ZZ
},
PARA{}, "This function computes the Euler characteristic of a vector bundle if only the bundle is given
to the function. For this it first computes the set of all degrees that give non-zero cohomology
(see ",TO deltaE,") and then computes the Euler characteristic for each these degrees. If the underlying
variety is not complete then this set may not be finite. Thus, for a non-complete toric variety an error
is returned.",
PARA{}, "If in addition a one-column matrix over ",TO ZZ,", representing a degree vector ",TT "u",", is given, it
computes the Euler characteristic of the degree ",TT "u","-part of the vector bundle ",TT "E",". For this the variety
need not be complete.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" u = matrix {{0},{0}}",
" eulerChi(u,E)",
" eulerChi E"
},
EXAMPLE {
" E = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" u = matrix {{0},{0}}",
" eulerChi(u,E)",
" eulerChi E"
},
SeeAlso => {deltaE,
(cohomology,ZZ,ToricVectorBundle),
(hh,ZZ,ToricVectorBundle)}
}
document {
Key => {existsDecomposition, (existsDecomposition,ToricVectorBundleKlyachko,List)},
Headline => " checks if a list of matrices of weight vectors for each maximal cone admits a decomposition",
Usage => " b = existsDecomposition(E,L)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"L" => List
},
Outputs => {
"b" => Boolean => {"whether there exists a decomposition"}
},
PARA{}, "The list ",TT "L"," must have one entry for each maximal cone ",TEX///$\sigma$///," in the
underlying fan ",TEX///$\Sigma$///," of ",TT "E",". If the rank of the bundle is ",TEX///$k$///," and
the ambient dimension of the variety is ",TEX///$n$///," then each entry must either be
an ",TEX///$n$///," by ",TEX///$k$///," matrix over ",TO ZZ," or a list of these. Then it checks for
each maximal cone in the fan (given in the order of ",TO (maxCones,ToricVectorBundle),") if
for any of the matrices in the corresponding entry in ",TT "L"," these weight vectors admit a decomposition
of the bundle into torus eigenspaces. See ",
HREF("http://math.stanford.edu/~sampayne/", "Sam Payne's"), " ", EM "Moduli of toric vector bundles", ",
Compositio Math. 144, 2008. Lemma 3.5.",
PARA{}, "One can for example use the output of the function ",TO findWeights,".",
EXAMPLE{
" E = tangentBundle projectiveSpaceFan 3",
" L = findWeights E",
" existsDecomposition(E,L)"
},
PARA{}, "Note that the data given in the description of ",TT "E"," defines an equivariant vector bundle
on the toric variety exactly if there exists a set of weight vectors for each maximal cone that admits a
decomposition. The function ",TO isVectorBundle," uses this.",
SeeAlso => {findWeights,isVectorBundle,(maxCones,ToricVectorBundle)}
}
document {
Key => {(exteriorPower,ZZ,ToricVectorBundle)},
Headline => " the 'l'-th exterior power of a toric vector bundle",
Usage => " Ee = exteriorPower(l,E)",
Inputs => {
"l" => ZZ => {" strictly positive"},
"E" => ToricVectorBundle
},
Outputs => {
"Ee" => ToricVectorBundle
},
PARA{}, TT "exteriorPower"," computes the ",TT "l","-th exterior power of a toric vector bundle in each
description. The resulting bundle will be given in the same description as the original bundle.
",TT "l"," must be strictly positive and at most equal the rank of the bundle.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" details E",
" Ee = exteriorPower(2,E)",
" details Ee"
},
SeeAlso => {(symbol ++,ToricVectorBundle,ToricVectorBundle),
(tensor,ToricVectorBundle,ToricVectorBundle),
(symmetricPower,ZZ,ToricVectorBundle)}
}
document {
Key => {(fan,ToricVectorBundle)},
Headline => " the underlying fan of a toric vector bundle",
Usage => " F = fan E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"F" => Fan
},
PARA{}, "Returns the fan of the underlying toric variety. This is an object of the package Polyhedra.
See also ",TO "Polyhedra::Fan",".",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" F = fan E",
" rays F"
},
SeeAlso => {"Polyhedra::Fan",charts,(maxCones,ToricVectorBundle)}
}
document {
Key => {filtration, (filtration,ToricVectorBundleKlyachko)},
Headline => " the filtration matrices of the vector bundle",
Usage => " f = filtration E",
Inputs => {
"E" => ToricVectorBundleKlyachko
},
Outputs => {
"f" => HashTable
},
PARA{}, "For each ray of the fan there is a filtration matrix. If the bundle has rank ",TEX///$k$///,"
then this is a one row matrix over ",TO ZZ," with ",TEX///$k$///," entries. This defines the
filtration on the corresponding base matrix (see ",TO base,") such that the ",TEX///$j$///,"-th
filtration is generated by all columns of the base matrix for which the entry in the same column of the
filtration matrix is less or equal to ",TEX///$j$///,".",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" filtration E"
},
PARA{}, "So in this example for each ray the first column of the basis appears at -1 and the second at 0.",
SeeAlso => {addFiltration,base,isVectorBundle}
}
document {
Key => {findWeights, (findWeights,ToricVectorBundleKlyachko)},
Headline => " finds the possible weight vectors for the maximal cones",
Usage => " L = findWeights E",
Inputs => {
"E" => ToricVectorBundleKlyachko
},
Outputs => {
"L" => List
},
PARA{}, "The list ",TT "L"," contains a list for each maximal cone ",TEX///$\sigma$///," of the
underlying fan. For each maximal cone ",TEX///$\sigma$///," this list contains all matrices of
possible weight vectors, that induce the filtrations on the rays of this cone (modulo permutations,
but yet not all permutations). This means that for one of these matrices ",TEX///$M$///," multiplied
with the matrix ",TEX///$R$///," of rays of this cone (the rays are the rows) gives the matrix of
filtrations of these rays (where for each filtration the entries may be permuted).",
EXAMPLE{
" E = tangentBundle projectiveSpaceFan 3",
" findWeights E"
},
SeeAlso => {filtration,existsDecomposition,isVectorBundle}
}
document {
Key => {(ring,ToricVectorBundle)},
Headline => " the graded ring of the bundle",
Usage => " R = ring E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"R" => Ring
},
PARA{}, "For a vector bundle in Kaneyama's description the graded ring is ",TO QQ," with degree
space the lattice of the underlying fan.",
EXAMPLE{
" E = tangentBundle(projectiveSpaceFan 3,\"Type\" => \"Kaneyama\")",
" ring E"
},
PARA{}, "For a vector bundle in Klyachko's description the graded ring is ",TO QQ," with degree
space the lattice of the underlying fan.",
EXAMPLE{
" E = toricVectorBundle(1,projectiveSpaceFan 2, toList(3:matrix{{1/2}}),toList(3:matrix{{-1}}))",
" ring E"
},
SeeAlso => {(cohomology,ZZ,ToricVectorBundle),
(cohomology,ZZ,ToricVectorBundle,Matrix),
(cohomology,ZZ,ToricVectorBundle,List)}
}
document {
Key => {(hh,ZZ,ToricVectorBundle)},
Headline => " the rank of the i-th cohomology group of a toric vector bundle",
Usage => " d = hh^i E \nd = hh^i (E,u)",
Inputs => {
"i" => ZZ,
"E" => {"and an optional ",TT "u",", ",ofClass Matrix," over ",TO ZZ,", giving a point in the lattice of the fan"}
},
Outputs => {
"d" => ZZ
},
PARA{}, TT "hh^i"," computes the rank of the ",TEX///$i$///,"-th cohomology group. If no
further argument is given then it returns the rank of the complete cohomology group. For this
it computes the set of all degrees that can give non-zero cohomology (see ",TO deltaE,"). This
set is finite if the underlying toric variety is complete. If the toric variety is not complete,
then an error is returned.",
PARA{}, "If in addition a one column matrix ",TEX///$u$///," over ",TO ZZ," is given it returns the
rank of the degree ",TEX///$u$///," part of the cohomology group. For this the variety need not be
complete.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" u = matrix{{0},{0}}",
" hh^0 (E,u)",
" hh^0 E"
},
SeeAlso => {(cohomology,ZZ,ToricVectorBundle),
(cohomology,ZZ,ToricVectorBundle,Matrix),
(cohomology,ZZ,ToricVectorBundle,List),
deltaE}
}
document {
Key => {hirzebruchFan,(hirzebruchFan,ZZ)},
Headline => "the fan of the n-th Hirzebruch surface",
Usage => " F = hirzebruchFan n",
Inputs => {
"n" => ZZ => {"positive"}
},
Outputs => {
"F" => Fan
},
PARA{}, "Generates the fan of the ",TEX///$n$///,"-th Hirzebruch surface.",
EXAMPLE {
" F = hirzebruchFan 3",
" rays F"
},
SeeAlso => {"Polyhedra::Fan",
"Polyhedra::hirzebruch",
pp1ProductFan,
projectiveSpaceFan}
}
document {
Key => {(image,ToricVectorBundleKlyachko,Matrix)},
Headline => " the image of a vector bundle under a morphism",
Usage => " E1 = image(E,M)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"M" => Matrix => {"over ",TO ZZ," or ",TO QQ}
},
Outputs => {
"E1" => ToricVectorBundleKlyachko
},
PARA{}, TT "M"," must be a matrix over ",TO ZZ," or ",TO QQ," where the source space is the space
of the bundle, i.e., the matrix must have ",TEX///$k$///," columns if the bundle has rank ",TEX///$k$///,".
Then the new bundle is given on each ray ",TEX///$\rho$///," by the following filtration of
image",TEX///$(E,M)^\rho := M(E^\rho)$///," :",
PARA{}, "image",TEX///$(E,M)^\rho(i) := M(E^\rho(i))$///,".",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" E = E ** E",
" M = matrix {{1,0,1,0},{0,1,0,1/1}}",
" E1 = image(E,M)",
" details E1"
},
SeeAlso => {(coker,ToricVectorBundleKlyachko,Matrix),
(ker,ToricVectorBundleKlyachko,Matrix)}
}
document {
Key => {isGeneral, (isGeneral,ToricVectorBundleKlyachko)},
Headline => " checks whether a toric vector bundle is general",
Usage => " b = isGeneral E",
Inputs => {
"E" => ToricVectorBundleKlyachko
},
Outputs => {
"b" => Boolean => {"whether ", TT "E", " is general"}
},
PARA{}, TEX ///"A toric vector bundle in Klyachko's description is general if for every maximal cone
$\Sigma$ in the fan the following condition holds: Let $\rho_1,...,\rho_l$ be
the rays of $\sigma$. Then for every choice of filtration steps $i_1,...,i_l$
for each ray, i.e., choose an integer for each ray where the filtration enlarges, the equation"///,
PARA{}, "codim ",TEX///$(\cap E^{\rho_j} ( i_j )) = min \{ \sum ($///,"codim ",TEX///$E^{\rho_j} ( i_j )),rank E \}$///,
PARA{}, "holds.",
EXAMPLE {
" E = cotangentBundle hirzebruchFan 2",
" isGeneral E"
},
SeeAlso => {filtration,base,randomDeformation}
}
document {
Key => {isomorphism, (isomorphism,ToricVectorBundleKlyachko,ToricVectorBundleKlyachko)},
Headline => " the isomorphism if the two bundles are isomorphic",
Usage => " M = isomorphism(E,F)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"F" => ToricVectorBundleKlyachko
},
Outputs => {
"M" => Matrix => {"over the ring over which the two bundles are defined"}
},
PARA{}, "Two equivariant vector bundles in Klyachko's description are isomorphic if there exists a
simultaneous isomorphism for the filtered vector spaces of all rays. If the two bundles are isomorphic
(see ",TO areIsomorphic,") this function returns the isomorphism. For this, the two bundles must be
defined over the same fan.",
EXAMPLE{
" HF = hirzebruchFan 2",
" E = exteriorPower(2, cotangentBundle HF)",
" F = weilToCartier({-1,-1,-1,-1},HF)",
" M = isomorphism(E,F)"
},
SeeAlso => {areIsomorphic,base,filtration,details}
}
document {
Key => {isVectorBundle, (isVectorBundle,ToricVectorBundle)},
Headline => " checks if the data does in fact define an equivariant toric vector bundle",
Usage => " b = isVectorBundle E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"b" => Boolean => {"whether ",TT "E"," defines a toric vector bundle"}
},
PARA{}, "If ",TT "E"," is in Klyachko's description then the data in ",TT "E"," defines an equivariant
toric vector on the toric variety if and only if for each maximal cone exists a decomposition into
torus eigenspaces of the bundle. See ",HREF("http://math.stanford.edu/~sampayne/", "Sam Payne's"), " ",
EM "Moduli of toric vector bundles", ", Compositio Math. 144, 2008. Section 2.3. This uses the two
functions ",TO findWeights," and ",TO existsDecomposition,".",
EXAMPLE{
" E = toricVectorBundle(2,pp1ProductFan 2)",
" E = addBase(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})",
" isVectorBundle E",
" F = toricVectorBundle(1,normalFan crossPolytope 3)",
" F = addFiltration(F,apply({2,1,1,2,2,1,1,2}, i -> matrix {{i}}))",
" isVectorBundle F"
},
PARA{}, "If ",TT "E"," is in Kaneyama's description then data in ",TT "E"," defines an equivariant
toric vector bundle on the toric variety if and only if it satisfies the regularity and the cocycle
condition (See ",TO cocycleCheck," and ",TO regCheck,").",
EXAMPLE{
" E = toricVectorBundle(2,pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" isVectorBundle E",
" E = addBaseChange(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})",
" isVectorBundle E"
},
SeeAlso => {findWeights,
existsDecomposition,
addBase,
addFiltration,
cocycleCheck,
regCheck,
addBaseChange,
addDegrees,
details}
}
document {
Key => {(ker,ToricVectorBundleKlyachko,Matrix)},
Headline => " the kernel of a morphism to a vector bundle",
Usage => " E1 = ker(E,M)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"M" => Matrix => {"over ",TO ZZ," or ",TO QQ}
},
Outputs => {
"E1" => ToricVectorBundleKlyachko
},
PARA{}, TT "M"," must be a matrix over ",TO ZZ," or ",TO QQ," where the source space is the space
of the bundle, i.e., the matrix must have ",TEX///$k$///," columns if the bundle has rank ",TEX///$k$///,".
Then the new bundle is given on each ray ",TEX///$\rho$///," by the following filtration of
ker",TEX///$(E,M)^\rho := $///," ker",TEX///$(M) \cap (E^\rho)$///," :",
PARA{}, "ker",TEX///$(E,M)^\rho(i) := $///," ker",TEX///$(M) \cap E^\rho(i)$///,".",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" E = E ** E",
" M = matrix {{1,0,1,0},{0,1,0,1/1}}",
" E1 = ker(E,M)",
" details E1"
},
SeeAlso => {(coker,ToricVectorBundleKlyachko,Matrix),
(image,ToricVectorBundleKlyachko,Matrix)}
}
document {
Key => {(maxCones,ToricVectorBundle)},
Headline => " the list of maximal cones of the underlying fan",
Usage => " L = maxCones E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"L" => List => {" of cones"}
},
PARA{}, "Returns the list of maximal cones of the underlying fan. These are the cones that
generate the fan, i.e., are not a face of another. See ",TO "Polyhedra::Fan",", ",TO "Polyhedra::maxCones","
and ",TO "Polyhedra::Cone",".",
EXAMPLE {
" E = tangentBundle pp1ProductFan 2",
" L = maxCones E",
" apply(L,rays)"
},
EXAMPLE {
" E = tangentBundle(pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" L = maxCones E",
" apply(L,rays)"
},
SeeAlso => {"Polyhedra::Fan",
"Polyhedra::maxCones",
"Polyhedra::Cone",
charts,
(fan,ToricVectorBundle),
(rays,ToricVectorBundle)}
}
document {
Key => (net,ToricVectorBundleKaneyama),
Headline => "displays characteristics of a toric vector bundle",
Usage => " net E",
Inputs => {
"E" => ToricVectorBundleKaneyama
},
PARA{}, "Displays an overview of the properties of a toric vector bundle,
the dimension of the variety, the number of affine charts, and the rank of the
vector bundle.",
EXAMPLE {
" E = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\");",
" net E"
},
SeeAlso => {(net,ToricVectorBundleKlyachko),
details}
}
document {
Key => (net,ToricVectorBundleKlyachko),
Headline => "displays characteristics of a toric vector bundle in Klyachko's description",
Usage => " net E",
Inputs => {
"E" => ToricVectorBundleKlyachko
},
PARA{}, "Displays an overview of the properties of a toric vector bundle,
the dimension of the variety, the number of affine charts, the number of rays of the fan,
and the rank of the vector bundle.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3;",
" net E"
},
SeeAlso => {(net,ToricVectorBundleKaneyama),
details}
}
document {
Key => {pp1ProductFan,(pp1ProductFan,ZZ)},
Headline => "the fan of n products of PP^1",
Usage => " F = pp1ProductFan n",
Inputs => {
"n" => ZZ => {"strictly positive"}
},
Outputs => {
"F" => Fan
},
PARA{}, "Generates the fan of the product of ",TEX///$n$///," projective one-spaces. This is
the same as the normal fan of the ",TEX///$n$///," dimensional hypercube.",
EXAMPLE {
" F = pp1ProductFan 2",
" rays F",
" maxCones F"
},
SeeAlso => {"Polyhedra::Fan",
hirzebruchFan,
projectiveSpaceFan}
}
document {
Key => {projectiveSpaceFan,(projectiveSpaceFan,ZZ)},
Headline => "the fan of projective n space",
Usage => " F = projectiveSpaceFan n",
Inputs => {
"n" => ZZ => {"strictly positive"}
},
Outputs => {
"F" => Fan
},
PARA{}, "Generates the fan of projective ",TEX///$n$///,"-space.",
EXAMPLE {
" F = projectiveSpaceFan 2",
" rays F",
" maxCones F"
},
SeeAlso => {"Polyhedra::Fan",
hirzebruchFan,
pp1ProductFan}
}
document {
Key => {randomDeformation, (randomDeformation,ToricVectorBundleKlyachko,ZZ), (randomDeformation,ToricVectorBundleKlyachko,ZZ,ZZ)},
Headline => " a random deformation of a given toric vector bundle",
Usage => " E1 = randomDeformation(E,h) \nE1 = randomDeformation(E,l,h)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"l" => ZZ => {"less than ",TT "h"},
"h" => ZZ
},
Outputs => {
"E1" => ToricVectorBundleKlyachko
},
PARA{}, TEX ///"For a bundle of rank $k$ the
function "///,TT "randomDeformation",TEX ///" replaces
each base matrix by a random $k$ by $k$ matrix with entries
between $l$ and $h$. For this $h$ must be greater
than $l$. If $l$ is not given then the random entries are between $0$
and $h$ and then $h$ must be strictly positive."///,
EXAMPLE {
" E = tangentBundle pp1ProductFan 2",
" details E",
" E1 = randomDeformation(E,-2,6)",
" details E1"
},
SeeAlso => {base,filtration,details,isGeneral}
}
document {
Key => {(rank,ToricVectorBundle)},
Headline => " the rank of the vector bundle",
Usage => " k = rank E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"k" => ZZ
},
PARA{}, "Returns the rank ",TEX///$k$///," of the toric vector bundle in Kaneyama's description.",
EXAMPLE {
" E = tangentBundle projectiveSpaceFan 3",
" rank E"
},
SeeAlso => {(rays,ToricVectorBundle),
(fan,ToricVectorBundle),
charts}
}
document {
Key => {(rays,ToricVectorBundle)},
Headline => " the rays of the underlying fan",
Usage => " L = rays E",
Inputs => {
"E" => ToricVectorBundle
},
Outputs => {
"L" => List
},
PARA{}, "Returns the rays of the fan of the underlying toric variety as a list. Each ray is
given as a one column matrix.",
EXAMPLE {
" E = cotangentBundle projectiveSpaceFan 2",
" rays E"
},
SeeAlso => {(rank,ToricVectorBundle),
(fan,ToricVectorBundle),
charts}
}
document {
Key => {regCheck, (regCheck,ToricVectorBundleKaneyama)},
Headline => " checking the regularity condition for a toric vector bundle",
Usage => " b = regCheck E",
Inputs => {
"E" => ToricVectorBundleKaneyama
},
Outputs => {
"b" => Boolean => {"whether ", TT "E", " satisfies the regularity condition"}
},
PARA{}, TEX ///"For a toric vector bundle in Kaneyama's description, the regularity condition means that
for every pair of maximal cones $\sigma_1,\sigma_2$intersecting in a common
codimension-one face, the two sets of degrees $d_1,d_2$ and the transition
matrix $A_{1,2}$ fulfil the regularity condition. I.e. for every
$i$ and $j$ we have that either the $(i,j)$ entry of the
matrix $A_{1,2}$ is $0$ or the difference of
the $i$-th degree vector of $d_1$ of $\sigma_1$ and
the $j$-th degree vector of $d_2$ of $\sigma_2$ is in the
dual cone of the intersection of $\sigma_1$ and $\sigma_2$."///,
PARA{}, "Note that this is only necessary for toric vector bundles generated 'by hand'
using ",TO addBaseChange," and ",TO addDegrees,", since bundles generated for example by
",TO tangentBundle," satisfy the condition automatically.",
EXAMPLE {
" E = tangentBundle(pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" regCheck E"
},
SeeAlso => {addBaseChange,addDegrees,cocycleCheck,isVectorBundle}
}
document {
Key => {(symbol **,ToricVectorBundle,ToricVectorBundle)},
Headline => " the tensor product of two toric vector bundles",
Usage => " E = E1 ** E2",
Inputs => {
"E1" => ToricVectorBundle,
"E2" => ToricVectorBundle
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "If ",TEX///$E_1$///," and ",TEX///$E_2$///," are defined over the same fan and in the same description,
then ",TT "tensor"," computes the tensor product of the two vector bundles in this description",
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3)",
" E2 = tangentBundle hirzebruchFan 3",
" E = E1 ** E2",
" details E"
},
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E2 = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E = E1 ** E2",
" details E"
},
SeeAlso => {(tensor,ToricVectorBundle,ToricVectorBundle),
(symbol ++,ToricVectorBundle,ToricVectorBundle),
(exteriorPower,ZZ,ToricVectorBundle),
(symmetricPower,ZZ,ToricVectorBundle)}
}
document {
Key => {(symbol ++,ToricVectorBundle,ToricVectorBundle)},
Headline => " the direct sum of two toric vector bundles",
Usage => " E = E1 ++ E2",
Inputs => {
"E1" => ToricVectorBundle,
"E2" => ToricVectorBundle
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "If ",TEX///$E_1$///," and ",TEX///$E_2$///," are defined over the same fan, then ",TT "directSum"," computes
the direct sum of the two vector bundles. The bundles must both be given in the same description
and the resulting bundle will be in this description.",
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3)",
" E2 = tangentBundle hirzebruchFan 3",
" E = E1 ++ E2",
" details E"
},
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E2 = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E = E1 ++ E2",
" details E"
},
SeeAlso => {(symbol **,ToricVectorBundle,ToricVectorBundle),
(tensor,ToricVectorBundle,ToricVectorBundle),
(exteriorPower,ZZ,ToricVectorBundle),
(symmetricPower,ZZ,ToricVectorBundle)}
}
document {
Key => {(symbol ==,ToricVectorBundle,ToricVectorBundle)},
Headline => " checks for equality",
Usage => " b = E1 == E2",
Inputs => {
"E1" => ToricVectorBundle,
"E2" => ToricVectorBundle
},
Outputs => {
"E" => Boolean => {" whether the two toric vector bundles are equal"}
},
PARA{}, "Checks if two toric vector bundles are identical. This only works if they are given in the same
description.",
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3)",
" E2 = tangentBundle hirzebruchFan 3",
" E1 == E2"
},
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E2 = tangentBundle(hirzebruchFan 3,\"Type\" => \"Kaneyama\")",
" E1 == E2"
},
SeeAlso => {areIsomorphic,
isomorphism}
}
document {
Key => {(symmetricPower,ZZ,ToricVectorBundle)},
Headline => " the 'l'-th symmetric power of a toric vector bundle",
Usage => " Es = symmetricPower(l,E)",
Inputs => {
"l" => ZZ => {" strictly positive"},
"E" => ToricVectorBundle
},
Outputs => {
"Es" => ToricVectorBundle
},
PARA{}, TT "symmetricPower"," computes the ",TEX///$l$///,"-th symmetric power of a toric vector bundle
in each description. The resulting bundle will be given in the same description as the original
bundle. ",TEX///$l$///," must be strictly positive.",
EXAMPLE {
" E = tangentBundle hirzebruchFan 3",
" details E",
" Es = symmetricPower(2,E)",
" details Es"
},
SeeAlso => {(exteriorPower,ZZ,ToricVectorBundle),
(symbol ++,ToricVectorBundle,ToricVectorBundle),
(tensor,ToricVectorBundle,ToricVectorBundle)}
}
document {
Key => {tangentBundle, (tangentBundle,Fan)},
Headline => " the tangent bundle on a toric variety",
Usage => " E = tangentBundle F",
Inputs => {
"F" => Fan
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "If the fan ",TT "F"," is pure, of full dimension and smooth, then the function
generates the tangent bundle of the toric variety given by ",TT "F",". If no further
options are given then the resulting bundle will be in Klyachko's description:",
EXAMPLE {
" F = pp1ProductFan 2",
" E = tangentBundle F",
" details E"
},
PARA{}, "If the option ",TT "\"Type\" => \"Kaneyama\""," is given then the resulting bundle will be in
Kaneyama's description:",
EXAMPLE {
" F = pp1ProductFan 2",
" E = tangentBundle(F,\"Type\" => \"Kaneyama\")",
" details E"
},
SeeAlso => {cotangentBundle}
}
document {
Key => {(tensor,ToricVectorBundle,ToricVectorBundle)},
Headline => " the tensor product of two toric vector bundles",
Usage => " E = tensor(E1,E2)",
Inputs => {
"E1" => ToricVectorBundle,
"E2" => ToricVectorBundle
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "If ",TT "E1"," and ",TT "E2"," are defined over the same fan and are in the same description,
then ",TT "tensor"," computes the tensor product of the two vector bundles in this description.",
EXAMPLE {
" E1 = toricVectorBundle(2,hirzebruchFan 3)",
" E2 = tangentBundle hirzebruchFan 3",
" E = tensor(E1,E2)",
" details E"
},
SeeAlso => {(symbol **,ToricVectorBundle,ToricVectorBundle),
(symbol ++,ToricVectorBundle,ToricVectorBundle),
(exteriorPower,ZZ,ToricVectorBundle),
(symmetricPower,ZZ,ToricVectorBundle)}
}
document {
Key => {toricVectorBundle, (toricVectorBundle,ZZ,Fan)},
Headline => " the trivial bundle of rank 'k' for a given fan",
Usage => " E = toricVectorBundle(k,F)",
Inputs => {
"k" => ZZ => {" strictly positive"},
"F" => {"an object of class Fan"}
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "For a given pure, full dimensional and pointed Fan ",TT "F"," the
function ",TT "toricVectorBundle"," generates the trivial toric vector bundle of rank ",TT "k",".",
PARA{}, TEX ///"If no further options are given then the resulting bundle will be in Klyachko's description:
The basis assigned to every ray is the standard basis of $\mathbb{Q}^k$ and the filtration
is given by $0$ for all $i<0$ and $\mathbb{Q}^k$
for $i>=0$."///,
EXAMPLE{
" E = toricVectorBundle(2,projectiveSpaceFan 2)",
" details E"
},
PARA{}, "If the option ",TT "\"Type\" => \"Kaneyama\""," is given then the resulting bundle will be in
Kaneyama's description: The degree vectors of this bundle are all zero vectors and the transition matrices
are all the identity. Note that for Kaneyama's description only complete, pointed fans are implemented and
thus a non complete fan will produce an error.",
EXAMPLE {
" E = toricVectorBundle(2,pp1ProductFan 2,\"Type\" => \"Kaneyama\")",
" details E"
},
SeeAlso => {addBaseChange,
addDegrees,
addBase,
addFiltration,
details,
regCheck,
cocycleCheck,
isVectorBundle}
}
document {
Key => (toricVectorBundle,ZZ,Fan,List,List),
Headline => " a toric vector bundle of rank 'k' with given filtrations or degrees",
Usage => " E = toricVectorBundle(k,F,L1,L2)",
Inputs => {
"k" => ZZ => {" strictly positive"},
"F" => {"an object of class Fan"},
"L1" => List,
"L2" => List
},
Outputs => {
"E" => ToricVectorBundle
},
PARA{}, "For a given pure, full dimensional and pointed fan ",TT "F"," the
function ",TT "toricVectorBundle"," generates the toric vector bundle of rank ",TT "k"," given
by the data in the two lists ",TT "L1"," and ",TT "L2",".",
PARA{}, "If no further options are given then the resulting bundle will be in Klyachko's description:
The first list ",TT "L1"," will give the basis matrices and the second list ",TT "L2"," will give
the filtration matrices. Then the resulting vector bundle will have these basis and filtration
matrices. The number of matrices in ",TT "L1"," must match the number of rays of the fan and they
must be in GL(",TT "k",",",TEX///$R$///,") for ",TEX///$R$///," being ",TO ZZ," or ",TO QQ,". They
will be assigned to the rays in the order they appear in ",TT "rays F",". The number of matrices
in ",TT "L2"," must also match the number of rays, and they must be ",TEX///$1$///," times ",TT "k","
matrices over ",TO ZZ,". The assignment order is the same as for the basis matrices.",
PARA{}, "Note that the basis and filtration matrices that are given to the function need not
satisfy the compatibility condition. This can by checked by using ",TO regCheck,".",
EXAMPLE {
" L1 = {matrix {{1,0},{0,1}},matrix{{0,1},{1,0}},matrix{{-1,0},{-1,1}}}",
" L2 = {matrix {{-1,0}},matrix{{-2,-1}},matrix{{0,1}}}",
" E = toricVectorBundle(2,projectiveSpaceFan 2,L1,L2)",
" details E"
},
PARA{}, "If the option ",TT "\"Type\" => \"Kaneyama\""," is given then the resulting bundle will be
in Kaneyama's description; Note that this is only implemented for complete, pointed fans: The first
list ",TT "L1"," will give the degree matrices and the second list ",TT "L2"," will give the
transition matrices. The number of matrices in ",TT "L1"," must match the number of maximal cones of
the fan and they must be ",TEX///$n$///," times ",TT "k"," matrices over ",TO ZZ,". They will be
assigned to the cones in the order they appear in ",TT "maxCones F",". The number of matrices
in ",TT "L2"," must match the number of pairs of maximal cones that intersect in a common
codimension-one face and must all be in GL(",TT "k",",",TO QQ,"). They will be assigned to the
pairs ",TEX///$(i,j)$///," in lexicographic order.",
PARA{}, "Note that the degrees and transition matrices that are given to the function need not
satisfy the regularity or the cocycle condition. These can be checked by
using ",TO regCheck," and ",TO cocycleCheck,".",
EXAMPLE {
" L1 = {matrix {{1,0},{0,1}},matrix{{0,1},{1,0}},matrix{{-1,0},{-1,1}}}",
" L2 = {matrix {{-1,0},{0,-1}},matrix{{0,1},{1,0}},matrix{{0,-1},{-1,0}}}",
" E = toricVectorBundle(2,projectiveSpaceFan 2,L1,L2,\"Type\" => \"Kaneyama\")",
" details E"
},
SeeAlso => {addBaseChange,
addDegrees,
addBase,
addFiltration,
details,
regCheck,
cocycleCheck,
isVectorBundle}
}
document {
Key => {twist, (twist,ToricVectorBundleKlyachko,List)},
Headline => " twists a toric vector bundle with a line bundle",
Usage => " E1 = twist(E,L)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"L" => List
},
Outputs => {
"E1" => ToricVectorBundleKlyachko
},
PARA{}, TT "twist"," takes a toric vector bundle ",TEX///$E$///," in Klyachko's description and a list
of integers ",TT "L",". The list must contain one entry for each ray of the underlying fan. Then
it computes the twist of the vector bundle by the line bundle given by these integers
(see ",TO weilToCartier,").",
EXAMPLE {
" E = tangentBundle hirzebruchFan 2",
" L = {1,-2,3,-4}",
" E1 = twist(E,L)",
" details E1"
},
SeeAlso => {weilToCartier,cartierIndex,details}
}
document {
Key => {weilToCartier, (weilToCartier,List,Fan)},
Headline => " the line bundle given by a Cartier divisor",
Usage => " E = weilToCartier(L,F)",
Inputs => {
"L" => List,
"F" => Fan => {"a pure and full dimensional fan"}
},
Outputs => {
"E" => {ofClass ToricVectorBundleKaneyama ," or ", ofClass ToricVectorBundleKlyachko}
},
PARA{}, TT "L"," must a list of weights, exactly one for each ray of the fan. Then the list of weights
for each ray describes a Weil divisor on the toric variety. If the Weil divisor defined by these weights
defines in fact a Cartier divisor, then ",TT "weilToCartier"," computes the toric vector bundle associated
to the Cartier divisor.",
PARA{}, "If no further options are given then the resulting bundle will be in Klyachko's description:",
EXAMPLE {
" F = hirzebruchFan 3",
" E =weilToCartier({1,-3,4,-2},F)",
" details E"
},
PARA{}, "If the option ",TT "\"Type\" => \"Kaneyama\""," is given then the resulting bundle will be in
Kaneyama's description:",
EXAMPLE {
" F = hirzebruchFan 3",
" E =weilToCartier({1,-3,4,-2},F,\"Type\" => \"Kaneyama\")",
" details E"
},
SeeAlso => {cartierIndex}
}
---------------------------------------
-- TESTS
---------------------------------------
-- Test 0
-- Checking toricVectorBundle for Kaneyama type
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => map(QQ^2,QQ^2,1),(0,2) => map(QQ^2,QQ^2,1),(1,3) => map(QQ^2,QQ^2,1),(2,3) => map(QQ^2,QQ^2,1)})
assert(T#"degreeTable" === hashTable apply(facesAsCones(0,pp1ProductFan 2), C -> (rays C, linealitySpace C) => map(ZZ^2,ZZ^2,0)))
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
L1 = {matrix {{1,0},{0,1}},matrix{{0,1},{1,0}},matrix{{-1,0},{-1,1}}}
L2 = {matrix {{-1,0},{0,-1}},matrix{{0,1},{1,0}},matrix{{0,-1},{-1,0}}}
T = toricVectorBundle(2,projectiveSpaceFan 2,L1,L2,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => matrix {{-1/1,0},{0,-1}},(0,2) => matrix{{0/1,1},{1,0}},(1,2) => matrix{{0/1,-1},{-1,0}}})
assert(T#"degreeTable" === hashTable {(matrix {{1,-1},{0,-1}}, map(ZZ^2,0,0)) => matrix{{-1,0},{-1,1}}, (matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{0,1},{1,0}}, (matrix {{-1,0},{-1,1}}, map(ZZ^2,0,0)) => matrix{{1,0},{0,1}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
///
-- Test 1
-- Checking toricVectorBundle for Klyachko type
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2);
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{0}} => map(ZZ^1,ZZ^2,0),matrix{{0},{-1}} => map(ZZ^1,ZZ^2,0),matrix{{1},{0}} => map(ZZ^1,ZZ^2,0),matrix{{0},{1}} => map(ZZ^1,ZZ^2,0)})
assert(T#"baseTable" === hashTable{matrix{{-1},{0}} => map(QQ^2,QQ^2,1),matrix{{0},{-1}} => map(QQ^2,QQ^2,1),matrix{{1},{0}} => map(QQ^2,QQ^2,1),matrix{{0},{1}} => map(QQ^2,QQ^2,1)})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
L1 = {matrix {{1,0},{0,1}},matrix{{0,1},{1,0}},matrix{{-1,0},{-1,1}}}
L2 = {matrix {{-1,0}},matrix{{-2,-1}},matrix{{0,1}}}
T = toricVectorBundle(2,projectiveSpaceFan 2,L1,L2)
assert(T#"ring" === ZZ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{-1}} => matrix{{-1,0}},matrix{{0},{1}} => matrix{{-2,-1}},matrix{{1},{0}} => matrix{{0,1}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{-1}} => matrix {{1,0},{0,1}},matrix{{0},{1}} => matrix{{0,1},{1,0}},matrix{{1},{0}} => matrix{{-1,0},{-1,1}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
///
-- Test 2
-- Checking addBaseChange and cocycleCheck
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama")
T1 = addBaseChange(T,{matrix{{1,2},{0,1}},matrix{{1,0},{3,1}},matrix{{1,-2},{0,1}},matrix{{1,0},{-3,1}}})
assert cocycleCheck T1
T1 = addBaseChange(T,{matrix{{1,2},{0,1}},matrix{{1,0},{3,1}},matrix{{1,-2},{0,1}},matrix{{1,0},{-2,1}}})
assert not cocycleCheck T1
///
-- Test 3
-- Checking regCheck
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama")
assert regCheck T
T1 = addDegrees(T,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})
assert not regCheck T1
T1 = addDegrees(T,{matrix{{-1,0},{-3,-1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{1,2},{3,1}}})
assert regCheck T1
///
-- Test 4
-- Checking tangentBundle for Kaneyama
TEST ///
T = tangentBundle(pp1ProductFan 2,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => map(QQ^2,QQ^2,{{1, 0}, {0, -1}}), (0,2) => map(QQ^2,QQ^2,{{-1, 0}, {0, 1}}), (1,3) => map(QQ^2,QQ^2,{{-1, 0}, {0, 1}}), (2,3) => map(QQ^2,QQ^2,{{1, 0}, {0, -1}})})
assert(T#"degreeTable" === hashTable {(matrix {{-1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{1,0},{0,-1}},(matrix {{-1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{1,0},{0,1}},(matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{-1,0},{0,-1}}, (matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{-1,0},{0,1}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
T = tangentBundle(projectiveSpaceFan 3, "Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => map(QQ^3,QQ^3,{{1, -1, 0}, {0, -1, 0}, {0, -1, 1}}), (0,2) => map(QQ^3,QQ^3,{{-1, 0, 0}, {-1, 1, 0}, {-1, 0, 1}}), (1,2) => map(QQ^3,QQ^3,{{-1, 1, 0}, {-1, 0, 0}, {-1, 0, 1}}), (0,3) => map(QQ^3,QQ^3,{{1, 0, -1}, {0, 0, -1}, {0, 1, -1}}), (1,3) => map(QQ^3,QQ^3,{{1, 0, -1}, {0, 1, -1}, {0, 0, -1}}), (2,3) => map(QQ^3,QQ^3,{{0, 0, -1}, {1, 0, -1}, {0, 1, -1}})})
assert(T#"degreeTable" === hashTable {(matrix {{1,0,0},{0,1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{-1,0,0},{0,-1,0},{0,0,-1}},(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0},{0,0,-1},{1,1,1}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{1,1,1},{0,-1,0},{0,0,-1}}, (matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0},{1,1,1},{0,0,-1}}})
assert(rank T == 3)
assert(T#"dimension of the variety" == 3)
///
-- Test 5
-- Checking tangentBundle for Klyachko
TEST ///
T = tangentBundle hirzebruchFan 3
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{3}} => matrix{{-1,0}},matrix{{0},{-1}} => matrix{{-1,0}},matrix{{1},{0}} => matrix{{-1,0}},matrix{{0},{1}} => matrix{{-1,0}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{3}} => matrix{{-1,1/3},{3,0}},matrix{{0},{-1}} => matrix{{0_QQ,1},{-1,0}},matrix{{1},{0}} => map(QQ^2,QQ^2,1),matrix{{0},{1}} => matrix{{0_QQ,1},{1,0}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
T = tangentBundle pp1ProductFan 3
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{0},{1},{0}} => matrix{{-1,0,0}}, matrix{{-1},{0},{0}} => matrix{{-1,0,0}},matrix{{1},{0},{0}} => matrix{{-1,0,0}}, matrix{{0},{0},{-1}} => matrix{{-1,0,0}}, matrix{{0},{0},{1}} => matrix{{-1,0,0}}, matrix{{0},{-1},{0}} => matrix{{-1,0,0}}})
assert(T#"baseTable" === hashTable {matrix{{0},{1},{0}} => matrix{{0_QQ,1,0},{1,0,0},{0,0,1}}, matrix{{-1},{0},{0}} => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}},matrix{{1},{0},{0}} => matrix{{1_QQ,0,0},{0,1,0},{0,0,1}}, matrix{{0},{0},{-1}} => matrix{{0_QQ,1,0},{0,0,1},{-1,0,0}}, matrix{{0},{0},{1}} => matrix{{0_QQ,1,0},{0,0,1},{1,0,0}}, matrix{{0},{-1},{0}} => matrix{{0_QQ,1,0},{-1,0,0},{0,0,1}}})
assert(rank T == 3)
///
-- Test 6
-- Checking cotangentBundle for Kaneyama
TEST ///
T = cotangentBundle(hirzebruchFan 3,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => map(QQ^2,QQ^2,{{1, 0}, {0, -1}}), (0,2) => map(QQ^2,QQ^2,{{-1, 3}, {0, 1}}), (1,3) => map(QQ^2,QQ^2,{{-1, -3}, {0, 1}}), (2,3) => map(QQ^2,QQ^2,{{1, 0}, {0, -1}})})
assert(T#"degreeTable" === hashTable {(matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{1,0},{0,-1}},(matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{1,0},{0,1}},(matrix {{0,-1},{1,3}}, map(ZZ^2,0,0)) => matrix{{-1,3},{0,1}}, (matrix {{0,-1},{-1,3}}, map(ZZ^2,0,0)) => matrix{{-1,-3},{0,-1}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
T = cotangentBundle(pp1ProductFan 3, "Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(2,6) => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}}, (4,5) => matrix{{1_QQ,0,0},{0,1,0},{0,0,-1}}, (4,6) => matrix{{1_QQ,0,0},{0,-1,0},{0,0,1}}, (3,7) => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}}, (5,7) => matrix{{1_QQ,0,0},{0,-1,0},{0,0,1}}, (6,7) => matrix{{1_QQ,0,0},{0,1,0},{0,0,-1}}, (0,1) => matrix{{1_QQ,0,0},{0,1,0},{0,0,-1}}, (0,2) => matrix{{1_QQ,0,0},{0,-1,0},{0,0,1}}, (1,3) => matrix{{1_QQ,0,0},{0,-1,0},{0,0,1}}, (0,4) => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}}, (2,3) => matrix{{1_QQ,0,0},{0,1,0},{0,0,-1}}, (1,5) => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}}})
assert(T#"degreeTable" === hashTable {(matrix {{1,0,0},{0,1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{1,0,0},{0,1,0},{0,0,1}},(matrix {{-1,0,0},{0,1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{-1,0,0},{0,1,0},{0,0,1}},(matrix {{1,0,0},{0,-1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{1,0,0},{0,-1,0},{0,0,1}},(matrix {{1,0,0},{0,1,0},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{1,0,0},{0,1,0},{0,0,-1}},(matrix {{-1,0,0},{0,-1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{-1,0,0},{0,-1,0},{0,0,1}},(matrix {{-1,0,0},{0,1,0},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{-1,0,0},{0,1,0},{0,0,-1}},(matrix {{1,0,0},{0,-1,0},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{1,0,0},{0,-1,0},{0,0,-1}},(matrix {{-1,0,0},{0,-1,0},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{-1,0,0},{0,-1,0},{0,0,-1}}})
assert(rank T == 3)
assert(T#"dimension of the variety" == 3)
///
-- Test 7
-- Checking cotangentBundle for Klyachko
TEST ///
T = cotangentBundle hirzebruchFan 2
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{2}} => matrix{{1,0}},matrix{{0},{-1}} => matrix{{1,0}},matrix{{1},{0}} => matrix{{1,0}},matrix{{0},{1}} => matrix{{1,0}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{2}} => matrix{{0,2},{1/2,1}},matrix{{0},{-1}} => matrix{{0_QQ,1},{-1,0}},matrix{{1},{0}} => map(QQ^2,QQ^2,1),matrix{{0},{1}} => matrix{{0_QQ,1},{1,0}}})
assert(rank T == 2)
assert(T#"dimension of the variety" == 2)
T = cotangentBundle pp1ProductFan 3
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{0},{1},{0}} => matrix{{1,0,0}}, matrix{{-1},{0},{0}} => matrix{{1,0,0}},matrix{{1},{0},{0}} => matrix{{1,0,0}}, matrix{{0},{0},{-1}} => matrix{{1,0,0}}, matrix{{0},{0},{1}} => matrix{{1,0,0}}, matrix{{0},{-1},{0}} => matrix{{1,0,0}}})
assert(T#"baseTable" === hashTable {matrix{{0},{1},{0}} => matrix{{0_QQ,1,0},{1,0,0},{0,0,1}}, matrix{{-1},{0},{0}} => matrix{{-1_QQ,0,0},{0,1,0},{0,0,1}},matrix{{1},{0},{0}} => matrix{{1_QQ,0,0},{0,1,0},{0,0,1}}, matrix{{0},{0},{-1}} => matrix{{0_QQ,1,0},{0,0,1},{-1,0,0}}, matrix{{0},{0},{1}} => matrix{{0_QQ,1,0},{0,0,1},{1,0,0}}, matrix{{0},{-1},{0}} => matrix{{0_QQ,1,0},{-1,0,0},{0,0,1}}})
assert(rank T == 3)
///
-- Test 8
-- Checking isVectorBundle
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2)
T1 = addBase(T,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})
assert isVectorBundle T1
T = toricVectorBundle(1,normalFan crossPolytope 3)
L = apply({2,1,1,2,2,1,1,2}, i -> matrix {{i}});
T = addFiltration(T,L)
assert not isVectorBundle T
///
-- Test 9
-- Checking deltaE for Kaneyama
TEST ///
T = toricVectorBundle(3,projectiveSpaceFan 2,"Type" => "Kaneyama")
assert(deltaE T == convexHull matrix{{0},{0}})
T = tangentBundle(projectiveSpaceFan 2,"Type" => "Kaneyama")
assert(deltaE T == convexHull matrix {{-1,1,0,1,0,-1},{0,0,-1,-1,1,1}})
T = cotangentBundle(pp1ProductFan 3,"Type" => "Kaneyama")
assert(deltaE T == convexHull matrix {{-1,1,0,0,0,0},{0,0,-1,1,0,0},{0,0,0,0,-1,1}})
///
-- Test 10
-- Checking deltaE for Klyachko
TEST ///
T = toricVectorBundle(3,projectiveSpaceFan 2)
assert(deltaE T == convexHull matrix{{0},{0}})
T = tangentBundle projectiveSpaceFan 2
assert(deltaE T == convexHull matrix {{-1, 1, 0, 1, 0, -1}, {0, 0, -1, -1, 1, 1}})
T = cotangentBundle pp1ProductFan 3
assert(deltaE T == convexHull matrix {{-1,1,0,0,0,0},{0,0,-1,1,0,0},{0,0,0,0,-1,1}})
///
-- Test 11
-- Checking cohomology for Kaneyama
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama")
assert(sort degrees cohomology(0,T,matrix{{0},{0}}) == sort degrees (ring T)^{{0,0},{0,0}})
assert(sort degrees cohomology(0,T) == sort degrees (ring T)^{{0,0},{0,0}})
assert(sort degrees cohomology(1,T) == sort degrees (ring T)^0)
assert(sort degrees cohomology(2,T) == sort degrees (ring T)^0)
T1 = tangentBundle(pp1ProductFan 2,"Type" => "Kaneyama")
assert(sort degrees cohomology(0,T1,matrix{{0},{0}}) == sort degrees (ring T1)^{{0,0},{0,0}})
assert(sort degrees cohomology(0,T1,matrix{{1},{1}}) == sort degrees (ring T1)^0)
assert(sort degrees cohomology(0,T1) == sort degrees (ring T1)^{{1,0},{0,1},{0,0},{0,0},{0,-1},{-1,0}})
assert(sort degrees cohomology(1,T1) == sort degrees (ring T1)^0)
assert(sort degrees cohomology(2,T1) == sort degrees (ring T1)^0)
T = tangentBundle(hirzebruchFan 3 * projectiveSpaceFan 1,"Type" => "Kaneyama")
assert(cohomology(0,T,{matrix {{2},{1},{0}}, matrix{{3},{1},{0}}}) == {(ring T)^{{-2,-1,0}},(ring T)^{{-3,-1,0}}})
assert(cohomology(1,T,{matrix {{-2},{-1},{0}}, matrix{{-1},{-1},{0}}}) == {(ring T)^{{2, 1, 0}},(ring T)^{{1, 1, 0}}})
assert(cohomology(2,T,matrix{{0},{0},{0}}) == (ring T)^0)
assert(cohomology(3,T,matrix{{0},{0},{0}}) == (ring T)^0)
///
-- Test 12
-- Checking cohomology for Klyachko
TEST ///
T = toricVectorBundle(2,pp1ProductFan 2)
assert(sort degrees cohomology(0,T,matrix{{0},{0}}) == sort degrees (ring T)^{{0,0},{0,0}})
assert(sort degrees cohomology(0,T) == sort degrees (ring T)^{{0,0},{0,0}})
assert(sort degrees cohomology(1,T) == sort degrees (ring T)^0)
assert(sort degrees cohomology(2,T) == sort degrees (ring T)^0)
T1 = tangentBundle pp1ProductFan 2
assert(sort degrees cohomology(0,T1,matrix{{0},{0}}) == sort degrees (ring T1)^{{0,0},{0,0}})
assert(sort degrees cohomology(0,T1,matrix{{1},{1}}) == sort degrees (ring T1)^0)
assert(sort degrees cohomology(0,T1) == sort degrees (ring T1)^{{1,0},{0,1},{0,0},{0,0},{0,-1},{-1,0}})
assert(sort degrees cohomology(1,T1) == sort degrees (ring T1)^0)
assert(sort degrees cohomology(2,T1) == sort degrees (ring T1)^0)
T = tangentBundle(hirzebruchFan 3 * projectiveSpaceFan 1)
assert(sort degrees cohomology(0,T) == sort degrees (ring T)^{{0, 0, 1}, {1, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {-1, 0, 0}, {0, 0, -1}, {0, -1, 0}, {-1, -1, 0}, {-2, -1, 0}, {-3, -1, 0}})
assert(sort degrees cohomology(1,T) == sort degrees (ring T)^{{2, 1, 0}, {1, 1, 0}})
assert(sort degrees cohomology(2,T) == sort degrees (ring T)^0)
assert(sort degrees cohomology(3,T) == sort degrees (ring T)^0)
///
-- Test 13
-- Checking weilToCartier
TEST ///
T = weilToCartier({1,4,3,2},projectiveSpaceFan 3,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable {(0,1) => map(QQ^1,QQ^1,1),(0,2) => map(QQ^1,QQ^1,1),(0,3) => map(QQ^1,QQ^1,1),(1,2) => map(QQ^1,QQ^1,1),(1,3) => map(QQ^1,QQ^1,1),(2,3) => map(QQ^1,QQ^1,1)})
assert(T#"degreeTable" === hashTable {(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{-2},{-3},{6}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{8},{-3},{-4}},(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{-2},{7},{-4}}, (map(ZZ^3,ZZ^3,1), map(ZZ^3,0,0)) => matrix{{-2},{-3},{-4}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 3)
T = weilToCartier({1,4,3,2},projectiveSpaceFan 3)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{-1}},matrix{{0},{0},{1}} => matrix{{-4}},matrix{{0},{1},{0}} => matrix{{-3}}, matrix{{1},{0},{0}} => matrix{{-2}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{1_QQ}},matrix{{0},{0},{1}} => matrix{{1_QQ}},matrix{{0},{1},{0}} => matrix{{1_QQ}}, matrix{{1},{0},{0}} => matrix{{1_QQ}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 3)
///
-- Test 14
-- Checking directSum for Kaneyama
TEST ///
T1 = tangentBundle(projectiveSpaceFan 3,"Type" => "Kaneyama")
T2 = weilToCartier({1,7,5,3},projectiveSpaceFan 3,"Type" => "Kaneyama")
T = T1 ++ T2
assert(T#"baseChangeTable" === hashTable {(0,1) => matrix{{1_QQ,-1,0,0},{0,-1,0,0},{0,-1,1,0},{0,0,0,1}}, (0,2) => matrix{{-1_QQ,0,0,0},{-1,1,0,0},{-1,0,1,0},{0,0,0,1}}, (1,2) => matrix{{-1_QQ,1,0,0},{-1,0,0,0},{-1,0,1,0},{0,0,0,1}}, (0,3) => matrix{{1_QQ,0,-1,0},{0,0,-1,0},{0,1,-1,0},{0,0,0,1}}, (1,3) => matrix{{1_QQ,0,-1,0},{0,1,-1,0},{0,0,-1,0},{0,0,0,1}}, (2,3) => matrix{{0_QQ,0,-1,0},{1,0,-1,0},{0,1,-1,0},{0,0,0,1}}})
assert(T#"degreeTable" === hashTable {(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0,-3},{0,0,-1,-5},{1,1,1,9}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{1,1,1,13},{0,-1,0,-5},{0,0,-1,-7}},(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0,-3},{1,1,1,11},{0,0,-1,-7}}, (map(ZZ^3,ZZ^3,1),map(ZZ^3,0,0)) => matrix{{-1,0,0,-3},{0,-1,0,-5},{0,0,-1,-7}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 3)
assert(T == directSum {T1,T2})
T1 = cotangentBundle(hirzebruchFan 3,"Type" => "Kaneyama")
T2 = tangentBundle(hirzebruchFan 3,"Type" => "Kaneyama")
T = T1 ++ T2
assert(T#"baseChangeTable" === hashTable {(0,1) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,1,0},{0,0,0,-1}}, (0,2) => matrix{{-1_QQ,3,0,0},{0,1,0,0},{0,0,-1,0},{0,0,3,1}}, (1,3) => matrix{{-1_QQ,-3,0,0},{0,1,0,0},{0,0,-1,0},{0,0,-3,1}}, (2,3) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,1,0},{0,0,0,-1}}})
assert(T#"degreeTable" === hashTable {(matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{1,0,-1,0},{0,-1,0,1}}, (matrix {{0,-1},{1,3}}, map(ZZ^2,0,0)) => matrix{{-1,3,1,-3},{0,1,0,-1}}, (matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{1,0,-1,0},{0,1,0,-1}}, (matrix {{0,-1},{-1,3}}, map(ZZ^2,0,0)) => matrix {{-1,-3,1,3},{0,-1,0,1}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
///
--Test 15
-- Checking directSum for Klyachko
TEST ///
T1 = tangentBundle projectiveSpaceFan 3
T2 = weilToCartier({1,7,5,3},projectiveSpaceFan 3)
T = T1 ++ T2
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{-1,0,0,-1}},matrix{{0},{0},{1}} => matrix{{-1,0,0,-7}},matrix{{0},{1},{0}} => matrix{{-1,0,0,-5}}, matrix{{1},{0},{0}} => matrix{{-1,0,0,-3}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{-1_QQ,0,0,0},{-1,1,0,0},{-1,0,1,0},{0,0,0,1}},matrix{{0},{0},{1}} => matrix{{0_QQ,1,0,0},{0,0,1,0},{1,0,0,0},{0,0,0,1}},matrix{{0},{1},{0}} => matrix{{0_QQ,1,0,0},{1,0,0,0},{0,0,1,0},{0,0,0,1}}, matrix{{1},{0},{0}} => matrix{{1_QQ,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 3)
assert(T == directSum {T1,T2})
T1 = cotangentBundle hirzebruchFan 3
T2 = tangentBundle hirzebruchFan 3
T = T1 ++ T2
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{3}} => matrix{{1,0,-1,0}},matrix{{0},{-1}} => matrix{{1,0,-1,0}},matrix{{0},{1}} => matrix{{1,0,-1,0}}, matrix{{1},{0}} => matrix{{1,0,-1,0}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{3}} => matrix{{0,3,0,0},{1/3,1,0,0},{0,0,-1,1/3},{0,0,3,0}},matrix{{0},{-1}} => matrix{{0_QQ,1,0,0},{-1,0,0,0},{0,0,0,1},{0,0,-1,0}},matrix{{0},{1}} => matrix{{0,1_QQ,0,0},{1,0,0,0},{0,0,0,1},{0,0,1,0}}, matrix{{1},{0}} => map(QQ^4,QQ^4,1)})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
///
-- Test 16
-- Checking dual for Kaneyama
TEST ///
T = dual weilToCartier({1,4,3,2},projectiveSpaceFan 3,"Type" => "Kaneyama")
assert(T#"baseChangeTable" === hashTable{(0,1) => matrix{{1_QQ}},(0,2) => matrix{{1_QQ}}, (0,3) => matrix{{1_QQ}}, (1,2) => matrix{{1_QQ}},(1,3) => matrix{{1_QQ}},(2,3) => matrix{{1_QQ}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{2},{3},{-6}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{-8},{3},{4}},(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{2},{-7},{4}}, (map(ZZ^3,ZZ^3,1), map(ZZ^3,0,0)) => matrix{{2},{3},{4}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 3)
T1 = tangentBundle(projectiveSpaceFan 3,"Type" => "Kaneyama")
T = dual(T1 ++ T)
assert(T#"baseChangeTable" === hashTable{(0,2) => matrix{{-1_QQ,-1,-1,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}},(0,1) => matrix{{1_QQ,0,0,0},{-1,-1,-1,0},{0,0,1,0},{0,0,0,1}}, (0,3) => matrix{{1_QQ,0,0,0},{-1,-1,-1,0},{0,1,0,0},{0,0,0,1}}, (1,2) => matrix{{0_QQ,1,0,0},{-1,-1,-1,0},{0,0,1,0},{0,0,0,1}},(1,3) => matrix{{1_QQ,0,0,0},{0,1,0,0},{-1,-1,-1,0},{0,0,0,1}},(2,3) => matrix{{-1_QQ,-1,-1,0},{1,0,0,0},{0,1,0,0},{0,0,0,1}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{0,1,0,-2},{0,0,1,-3},{-1,-1,-1,6}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{-1,-1,-1,8},{0,1,0,-3},{0,0,1,-4}},(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{0,1,0,-2},{-1,-1,-1,7},{0,0,1,-4}}, (map(ZZ^3,ZZ^3,1), map(ZZ^3,0,0)) => matrix{{1,0,0,-2},{0,1,0,-3},{0,0,1,-4}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 3)
///
-- Test 17
-- Checking dual for Klyachko
TEST ///
T = dual weilToCartier({1,4,3,2},projectiveSpaceFan 3)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{1}},matrix{{0},{0},{1}} => matrix{{4}},matrix{{0},{1},{0}} => matrix{{3}}, matrix{{1},{0},{0}} => matrix{{2}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{1_QQ}},matrix{{0},{0},{1}} => matrix{{1_QQ}},matrix{{0},{1},{0}} => matrix{{1_QQ}}, matrix{{1},{0},{0}} => matrix{{1_QQ}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 3)
T1 = tangentBundle projectiveSpaceFan 3
T = dual(T1 ++ T)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{1,0,0,-1}},matrix{{0},{0},{1}} => matrix{{1,0,0,-1}},matrix{{0},{1},{0}} => matrix{{1,0,0,-1}}, matrix{{1},{0},{0}} => matrix{{1,0,0,-1}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{-1},{-1}} => matrix{{-1_QQ,-1,-1,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}},matrix{{0},{0},{1}} => matrix{{0_QQ,1,0,0},{0,0,1,0},{1,0,0,0},{0,0,0,1}},matrix{{0},{1},{0}} => matrix{{0_QQ,1,0,0},{1,0,0,0},{0,0,1,0},{0,0,0,1}}, matrix{{1},{0},{0}} => matrix{{1_QQ,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 3)
///
-- Test 18
-- Checking tensor for Kaneyama
TEST ///
T1 = tangentBundle(pp1ProductFan 2,"Type" => "Kaneyama")
T2 = cotangentBundle(pp1ProductFan 2,"Type" => "Kaneyama")
T = T1 ** T2
assert(T#"baseChangeTable" === hashTable{(0,2) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,1}},(0,1) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,1}}, (1,3) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,1}}, (2,3) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,1}}})
assert(T#"degreeTable" === hashTable{(matrix {{-1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{0,-1,1,0},{0,-1,1,0}},(matrix {{-1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{0,-1,1,0},{0,1,-1,0}},(matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{0,1,-1,0},{0,1,-1,0}}, (map(ZZ^2,ZZ^2,1), map(ZZ^2,0,0)) => matrix{{0,1,-1,0},{0,-1,1,0}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
T1 = tangentBundle(hirzebruchFan 2,"Type" => "Kaneyama")
T2 = weilToCartier({5,1,7,3},hirzebruchFan 2,"Type" => "Kaneyama")
T2 = T2 ++ T2
T = T1 ** T2
assert(T#"baseChangeTable" === hashTable{(0,1) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,1,0},{0,0,0,-1}},(0,2) => matrix{{-1_QQ,0,0,0},{2,1,0,0},{0,0,-1,0},{0,0,2,1}}, (1,3) => matrix{{-1_QQ,0,0,0},{-2,1,0,0},{0,0,-1,0},{0,0,-2,1}}, (2,3) => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,1,0},{0,0,0,-1}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{-4,-3,-4,-3},{-1,-2,-1,-2}},(matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{-4,-3,-4,-3},{5,6,5,6}},(matrix {{0,-1},{-1,2}}, map(ZZ^2,0,0)) => matrix{{18,19,18,19},{5,6,5,6}},(matrix {{0,-1},{1,2}}, map(ZZ^2,0,0)) => matrix{{6,3,6,3},{-1,-2,-1,-2}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
///
-- Test 19
-- Checking tensor for Klyachko
TEST ///
T1 = tangentBundle pp1ProductFan 2
T2 = cotangentBundle pp1ProductFan 2
T = T1 ** T2
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{0}} => matrix{{0,-1,1,0}},matrix{{0},{-1}} => matrix{{0,-1,1,0}},matrix{{0},{1}} => matrix{{0,-1,1,0}}, matrix{{1},{0}} => matrix{{0,-1,1,0}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{0}} => matrix{{1_QQ,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,1}},matrix {{0},{-1}} => matrix{{0_QQ,0,0,1},{0,0,-1,0},{0,-1,0,0},{1,0,0,0}},matrix {{0},{1}} => matrix{{0_QQ,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}},matrix{{1},{0}} => matrix{{1_QQ,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
T1 = tangentBundle hirzebruchFan 2
T2 = weilToCartier({5,1,7,3},hirzebruchFan 2)
T2 = T2 ++ T2
T = T1 ** T2
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{2}} => matrix{{-8,-8,-7,-7}},matrix{{0},{-1}} => matrix{{-6,-6,-5,-5}},matrix{{0},{1}} => matrix{{-2,-2,-1,-1}}, matrix{{1},{0}} => matrix{{-4,-4,-3,-3}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{2}} => matrix{{-1,0,1/2,0},{0,-1,0,1/2},{2,0,0,0},{0,2,0,0}},matrix {{0},{-1}} => matrix{{0_QQ,0,1,0},{0,0,0,1},{-1,0,0,0},{0,-1,0,0}},matrix {{0},{1}} => matrix{{0_QQ,0,1,0},{0,0,0,1},{1,0,0,0},{0,1,0,0}},matrix{{1},{0}} => matrix{{1_QQ,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}})
assert(rank T == 4)
assert(T#"dimension of the variety" == 2)
///
-- Test 20
-- Checking symmetricPower for Kaneyama
TEST ///
T = tangentBundle(projectiveSpaceFan 3,"Type" => "Kaneyama")
T = symmetricPower(2,T)
assert(T#"baseChangeTable" === hashTable{(0,1) => matrix{{1_QQ,-1,0,1,0,0},{0,-1,0,2,0,0},{0,-1,1,2,-1,0},{0,0,0,1,0,0},{0,0,0,2,-1,0},{0,0,0,1,-1,1}},(0,2) => matrix{{1_QQ,0,0,0,0,0},{2,-1,0,0,0,0},{2,0,-1,0,0,0},{1,-1,0,1,0,0},{2,-1,-1,0,1,0},{1,0,-1,0,0,1}}, (0,3) => matrix{{1_QQ,0,-1,0,0,1},{0,0,-1,0,0,2},{0,1,-1,0,-1,2},{0,0,0,0,0,1},{0,0,0,0,-1,2},{0,0,0,1,-1,1}}, (1,2) => matrix{{1_QQ,-1,0,1,0,0},{2,-1,0,0,0,0},{2,-1,-1,0,1,0},{1,0,0,0,0,0},{2,0,-1,0,0,0},{1,0,-1,0,0,1}}, (1,3) => matrix{{1_QQ,0,-1,0,0,1},{0,1,-1,0,-1,2},{0,0,-1,0,0,2},{0,0,0,1,-1,1},{0,0,0,0,-1,2},{0,0,0,0,0,1}},(2,3) => matrix{{0_QQ,0,0,0,0,1},{0,0,-1,0,0,2},{0,0,0,0,-1,2},{1,0,-1,0,0,1},{0,1,-1,0,-1,2},{0,0,0,1,-1,1}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0,-2,-1,0},{2,2,2,2,2,2},{0,0,-1,0,-1,-2}},(matrix {{1,0,0},{0,1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{-2,-1,-1,0,0,0},{0,-1,0,-2,-1,0},{0,0,-1,0,-1,-2}},(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{0,-1,0,-2,-1,0},{0,0,-1,0,-1,-2},{2,2,2,2,2,2}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{2,2,2,2,2,2},{0,-1,0,-2,-1,0},{0,0,-1,0,-1,-2}}})
assert(rank T == 6)
assert(T#"dimension of the variety" == 3)
///
-- Test 21
-- Checking symmetricPower for Klyachko
TEST ///
T = tangentBundle projectiveSpaceFan 3
T = symmetricPower(2,T)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{0},{0},{1}} => matrix{{-2,-1,-1,0,0,0}}, matrix{{-1},{-1},{-1}} => matrix{{-2,-1,-1,0,0,0}}, matrix{{1},{0},{0}} => matrix{{-2,-1,-1,0,0,0}}, matrix{{0},{1},{0}} => matrix{{-2,-1,-1,0,0,0}}})
assert(T#"baseTable" === hashTable {matrix{{0},{0},{1}} => matrix{{0_QQ,0,0,1,0,0},{0,0,0,0,1,0},{0,1,0,0,0,0},{0,0,0,0,0,1},{0,0,1,0,0,0},{1,0,0,0,0,0}}, matrix{{-1},{-1},{-1}} => matrix{{1_QQ,0,0,0,0,0},{2,-1,0,0,0,0},{2,0,-1,0,0,0},{1,-1,0,1,0,0},{2,-1,-1,0,1,0},{1,0,-1,0,0,1}}, matrix{{1},{0},{0}} => matrix{{1_QQ,0,0,0,0,0},{0,1,0,0,0,0},{0,0,1,0,0,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}}, matrix{{0},{1},{0}} => matrix{{0_QQ,0,0,1,0,0},{0,1,0,0,0,0},{0,0,0,0,1,0},{1,0,0,0,0,0},{0,0,1,0,0,0},{0,0,0,0,0,1}}})
assert(rank T == 6)
assert(T#"dimension of the variety" == 3)
///
-- Test 22
-- Checking exteriorPower for Kaneyama
TEST ///
T = cotangentBundle(hirzebruch 3,"Type" => "Kaneyama")
T = exteriorPower(2,T)
assert(T#"baseChangeTable" === hashTable{(0,1) => matrix{{-1_QQ}}, (0,2) => matrix{{-1_QQ}}, (1,3) => matrix{{-1_QQ}}, (2,3) => matrix{{-1_QQ}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,0},{0,1}}, map(ZZ^2,0,0)) => matrix{{1},{1}},(matrix {{1,0},{0,-1}}, map(ZZ^2,0,0)) => matrix{{1},{-1}},(matrix {{0,-1},{1,3}}, map(ZZ^2,0,0)) => matrix {{2},{1}},(matrix {{0,-1},{-1,3}}, map(ZZ^2,0,0)) => matrix {{-4},{-1}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 2)
T = tangentBundle(projectiveSpaceFan 3,"Type" => "Kaneyama")
T = exteriorPower(2,T)
assert(T#"baseChangeTable" === hashTable{(0,1) => matrix{{-1_QQ,0,0},{-1,1,-1},{0,0,-1}}, (0,2) => matrix{{-1_QQ,0,0},{0,-1,0},{1,-1,1}}, (0,3) => matrix{{0_QQ,-1,0},{1,-1,1},{0,0,1}}, (1,2) => matrix{{1_QQ,0,0},{1,-1,1},{0,-1,0}}, (1,3) => matrix{{1_QQ,-1,1},{0,-1,0},{0,0,-1}}, (2,3) => matrix{{0_QQ,1,0},{0,0,1},{1,-1,1}}})
assert(T#"degreeTable" === hashTable{(matrix {{1,-1,0},{0,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{-1,0,-1},{2,2,2},{0,-1,-1}},(matrix {{1,0,0},{0,1,0},{0,0,1}}, map(ZZ^3,0,0)) => matrix{{-1,-1,0},{-1,0,-1},{0,-1,-1}},(matrix {{1,0,-1},{0,1,-1},{0,0,-1}}, map(ZZ^3,0,0)) => matrix{{-1,0,-1},{0,-1,-1},{2,2,2}},(matrix {{0,-1,0},{1,-1,0},{0,-1,1}}, map(ZZ^3,0,0)) => matrix{{2,2,2},{-1,0,-1},{0,-1,-1}}})
assert(rank T == 3)
assert(T#"dimension of the variety" == 3)
///
-- Test 23
-- Checking exteriorPower for Klyachko
TEST ///
T = cotangentBundle hirzebruch 3
T = exteriorPower(2,T)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{-1},{3}} => matrix{{1}}, matrix{{0},{1}} => matrix{{1}}, matrix{{0},{-1}} => matrix{{1}}, matrix{{1},{0}} => matrix{{1}}})
assert(T#"baseTable" === hashTable {matrix{{-1},{3}} => matrix{{-1_QQ}}, matrix{{0},{1}} => matrix{{-1_QQ}}, matrix{{0},{-1}} => matrix{{1_QQ}}, matrix{{1},{0}} => matrix{{1_QQ}}})
assert(rank T == 1)
assert(T#"dimension of the variety" == 2)
T = tangentBundle projectiveSpaceFan 3
T = exteriorPower(2,T)
assert(T#"ring" === QQ)
assert(T#"filtrationMatricesTable" === hashTable {matrix{{0},{0},{1}} => matrix{{-1,-1,0}}, matrix{{-1},{-1},{-1}} => matrix{{-1,-1,0}}, matrix{{1},{0},{0}} => matrix{{-1,-1,0}}, matrix{{0},{1},{0}} => matrix{{-1,-1,0}}})
assert(T#"baseTable" === hashTable {matrix{{0},{0},{1}} => matrix{{0_QQ,0,1},{-1,0,0},{0,-1,0}}, matrix{{-1},{-1},{-1}} => matrix{{-1_QQ,0,0},{0,-1,0},{1,-1,1}}, matrix{{1},{0},{0}} => matrix{{1_QQ,0,0},{0,1,0},{0,0,1}}, matrix{{0},{1},{0}} => matrix{{-1_QQ,0,0},{0,0,1},{0,1,0}}})
assert(rank T == 3)
assert(T#"dimension of the variety" == 3)
///
-- Test 24
-- Checking eulerChi
TEST ///
T = tangentBundle hirzebruchFan 3
u = matrix {{0},{0}}
assert(eulerChi(u,T) == 2)
assert(eulerChi T == 6)
T = cotangentBundle projectiveSpaceFan 4
assert(eulerChi T == -1)
T = tangentBundle(hirzebruchFan 3,"Type" => "Kaneyama")
u = matrix {{0},{0}}
assert(eulerChi(u,T) == 2)
assert(eulerChi T == 6)
///
-- Test 25
-- Checking coker
TEST ///
T = tangentBundle hirzebruchFan 2
T = T ** T
M = matrix {{1,0},{0,1},{1,0},{0,1/1}}
T1 = coker(T,M)
assert(T1#"ring" === QQ)
assert(T1#"filtrationMatricesTable" === hashTable {matrix{{-1},{2}} => matrix{{-2,-1}}, matrix{{0},{-1}} => matrix{{-2,-1}}, matrix{{0},{1}} => matrix{{-2,-1}}, matrix{{1},{0}} => matrix{{-2,-1}}})
assert(T1#"baseTable" === new HashTable from {map(ZZ^2,ZZ^1,{{0}, {-1}}) => map(QQ^2,QQ^2,{{0, 1}, {1, 0}}), map(ZZ^2,ZZ^1,{{1}, {0}}) => map(QQ^2,QQ^2,{{1,
0}, {0, 1}}), map(ZZ^2,ZZ^1,{{-1}, {2}}) => map(QQ^2,QQ^2,{{-1/2, 1/2}, {1, 0}}), map(ZZ^2,ZZ^1,{{0}, {1}}) => map(QQ^2,QQ^2,{{0,
1}, {1, 0}})})
assert(rank T1 == 2)
assert(T1#"dimension of the variety" == 2)
///
-- Test 26
-- Checking image
TEST ///
T = tangentBundle hirzebruchFan 2
T = T ** T
M = matrix {{1,-1,1,-1},{0,-1,0,1/1}}
T1 = image(T,M)
assert(T1#"ring" === QQ)
assert(T1#"filtrationMatricesTable" === hashTable {matrix{{-1},{2}} => matrix{{-2,-1}}, matrix{{0},{-1}} => matrix{{-2,-1}}, matrix{{0},{1}} => matrix{{-2,-1}}, matrix{{1},{0}} => matrix{{-2,-1}}})
assert(T1#"baseTable" === new HashTable from {map(ZZ^2,ZZ^1,{{0}, {-1}}) => map(QQ^2,QQ^2,{{-1, 1}, {1, 0}}), map(ZZ^2,ZZ^1,{{1}, {0}}) => map(QQ^2,QQ^2,{{1,
0}, {0, 1}}), map(ZZ^2,ZZ^1,{{-1}, {2}}) => map(QQ^2,QQ^2,{{-1/2, 1/2}, {1, 0}}), map(ZZ^2,ZZ^1,{{0}, {1}}) => map(QQ^2,QQ^2,{{-1,
1}, {1, 0}})})
assert(rank T1 == 2)
assert(T1#"dimension of the variety" == 2)
///
-- Test 27
-- Checking ker
TEST ///
T = tangentBundle hirzebruchFan 2
T = T ** T
M = matrix {{1,0,1,0},{0,1,0,1/1}}
T1 = ker(T,M)
assert(T1#"ring" === QQ)
assert(T1#"filtrationMatricesTable" === hashTable {matrix{{-1},{2}} => matrix{{-1,0}}, matrix{{0},{-1}} => matrix{{-1,0}}, matrix{{0},{1}} => matrix{{-1,0}}, matrix{{1},{0}} => matrix{{-1,0}}})
assert(T1#"baseTable" === new HashTable from {map(ZZ^2,ZZ^1,{{0}, {-1}}) => map(QQ^2,QQ^2,{{0, 1}, {1, 0}}), map(ZZ^2,ZZ^1,{{1}, {0}}) => map(QQ^2,QQ^2,{{1,
0}, {0, 1}}), map(ZZ^2,ZZ^1,{{-1}, {2}}) => map(QQ^2,QQ^2,{{-1/2, 1/2}, {1, 0}}), map(ZZ^2,ZZ^1,{{0}, {1}}) => map(QQ^2,QQ^2,{{0,
1}, {1, 0}})})
assert(rank T1 == 2)
assert(T1#"dimension of the variety" == 2)
///
-- Test 28
-- Checking twist
TEST ///
T = tangentBundle projectiveSpaceFan 3
L = {1,-4,3,-2}
T = twist(T,L)
assert(T#"ring" === QQ)
assert(T#"baseTable" === hashTable {matrix{{0},{0},{1}} => matrix{{0_QQ,1,0},{0,0,1},{1,0,0}}, matrix{{-1},{-1},{-1}} => matrix{{-1_QQ,0,0},{-1,1,0},{-1,0,1}}, matrix{{1},{0},{0}} => matrix{{1_QQ,0,0},{0,1,0},{0,0,1}},matrix{{0},{1},{0}} => matrix{{0_QQ,1,0},{1,0,0},{0,0,1}}})
assert(T#"filtrationMatricesTable" === hashTable {matrix{{0},{0},{1}} => matrix{{3,4,4}}, matrix{{-1},{-1},{-1}} => matrix{{-2,-1,-1}}, matrix{{1},{0},{0}} => matrix{{1, 2, 2}}, matrix{{0},{1},{0}} => matrix{{-4,-3,-3}}})
assert(rank T == 3)
assert(T#"dimension of the variety" == 3)
///
-- Test 29
-- Checking isGeneral
TEST ///
T = tangentBundle pp1ProductFan 3
assert isGeneral T
L1 = {matrix {{1,0},{0,1}},matrix{{1,1},{0,1}},matrix{{-1,0},{0,1}},matrix{{-1,1},{0,-1}}}
L2 = {matrix {{-1,0}},matrix{{-1,0}},matrix{{-1,0}},matrix{{1,1}}}
T = toricVectorBundle(2,hirzebruchFan 3,L1,L2)
assert not isGeneral T
///
-- Test 30
-- Checking cartierIndex
TEST ///
C=posHull matrix {{1,2},{2,1}}
C1=posHull matrix {{1,-1},{2,-1}}
C2=posHull matrix {{2,-1},{1,-1}}
F=fan{C,C1,C2}
assert(cartierIndex({1,1,1},F) == 3)
assert(cartierIndex({3,3,3},F) == 1)
///
end
---------------------------------------
-- END OF FILE
---------------------------------------
uninstallPackage "ToricVectorBundles"
installPackage "ToricVectorBundles"
check "ToricVectorBundles"
restart
loadPackage "ToricVectorBundles";
P1 = convexHull matrix {{1,2,3,3,2,1,0,0},{0,0,1,2,3,3,2,1}};
F1 = normalFan P1;
T1 = tangentBundle F1
HH^1(T1)
HH^2(T1)
P2 = convexHull matrix {
{1,0,0,-1,0,-1,0,1},
{0,1,0,-1,0,0,-1,1},
{0,0,1,0,-1,0,0,0}};
F2 = faceFan P2;
T2 = tangentBundle F2
HH^1(T2)
Omega = cotangentBundle F2
Omega == dual T2
Endo = T2 ** Omega
HH^1(Endo)
K = weilToCartier({-1,-1,-1,-1,-1,-1,-1,-1},F2)
areIsomorphic(K,exteriorPower(3,Omega))
restart
|