File: FrobeniusMultiplicities.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (468 lines) | stat: -rw-r--r-- 17,312 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
-- FrobeniusMultiplicities Macaulay 2 package
-- Copyright (C) 2009 Jason G McCullough 

--This program is free software; you can redistribute it and/or
--modify it under the terms of the GNU General Public License version 2
--as published by the Free Software Foundation.

--This program is distributed in the hope that it will be useful,
--but WITHOUT ANY WARRANTY; without even the implied warranty of
--MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--GNU General Public License for more details.


--=========================================================================--
--=========================================================================--
--=========================================================================--

newPackage(
     "FrobeniusMultiplicities",
     Version => "0.7", 
     Date => "May 27, 2009",
     Authors => {
	  {Name => "Jason McCullough", Email => "jmccullo@math.ucr.edu", HomePage => "http://www.math.ucr.edu/~jmccullo"}
	  },
     Headline => "successive approximations of Hilbert-Kunz and related
                  multiplicities in characteristic p > 0; the Frobenius action on
		  modules and free complexes is implemented as well",
     DebuggingMode => false
     )

--=========================================================================--
     
export{"frob","tensorF","torF","hkSeq","tiSeq","frobeniusPower"} 
        
--=========================================================================--


--*************************************************************************--
-- Computes F^n(M) where M is a module and F^n is the nth iteration of
-- the Frobenius functor.
-- Usage: frob(M,n)

frob = method()
frob(Module,ZZ) := Module => (M,n) -> (
     N := minimalPresentation M;
     T := relations N;
     L := entries T;
     q := (char ring M)^n;
     LL := applyTable(L,x->x^q);
     coker matrix LL
     )


--*************************************************************************--
-- Computes F^n(C) where F^n is the nth Frobenius functor and C is a
-- minimal free resolution of a module M or a complex of free modules.
-- The first integer i input gives the homological degree to which M2
-- should compute C.  
-- Usage: tensorF(M,i,n) or tensorF(C,n)


tensorF = method()
tensorF(Module,ZZ,ZZ) := ChainComplex => (M,i,n) -> (
     C := res(M,LengthLimit=>(i+1));
     tensorF(C,n)    
     )

tensorF(ChainComplex,ZZ) := ChainComplex => (C,n) -> (
     for i from 0 to length C do if not isFreeModule C_i then error "Expected complex of free modules";
     A := ring C;
     p := char A;
     if p == 0 then error "Expect complex over ring of positive characteristic";
     q := p ^ n;
     len := length C;
     mats := for i from 1 to len list matrix applyTable( entries C.dd_i, x->x^(q));  --apply(entries(C.dd_i),l->apply(l,x->x^(p^n)));
     degs := for i from 0 to len list (- q*(degrees C_i));
     maps := for i from 1 to len list map(A^(degs#(i-1)),A^(degs#i),mats#(i-1));
     chainComplex maps
     )
--*************************************************************************--
-- Computes tor_i(M,fnA) where M is an A-module and fnA is the bimodule
-- with left action given by f^n.  
-- Note: This is the same as HH_i(F^n(C)) where C is a free resolution of M.
-- Usage: torF(M,i,n)


torF = method()
torF(Module,ZZ,ZZ) := Module => (M,i,n) ->(
     HH_i(tensorF(M,i,n))
     )

-----------------------------------------------------------------------------
TEST ///
A = ZZ/2[x,y,z];
k = module A / ideal vars A;
assert zero torF(k,1,1);
///
-----------------------------------------------------------------------------


--*************************************************************************--
-- Computes I^[p^n]
-- Usage: frobeniusPower(I,n)

frobeniusPower = method()
frobeniusPower(Ideal,ZZ) := Ideal =>(I,n) ->(
     p := char ring I;
     if not isPrime p then error "Expected ideal from a ring of positive characteristic";
     if not isField coefficientRing ring I then error "Expected ideal from a quotient of a polynomial ring";
     Ipngens := for i in I_* list i^(p^n);
     ideal Ipngens
     )

--*************************************************************************--
-- Computes the first n elements in the sequence defining the Hilbert-Kunz
-- Multiplicity of M.  In other words, this function outputs the list
-- length(
-- with left action given by f^n.  
-- Note: This is the same as HH_i(F^n(C)) where C is a free resolution of M.
-- Usage: torF(M,i,n)


hkSeq = method()
hkSeq(Module,ZZ) := List =>(M,n) ->(
     p := char ring  M;
     if not isPrime p then error "Expected module over ring of positive prime characteristic";
     d := dim ring  M;
     A := ring M;
     m := ideal vars A;
     mpn := frobeniusPower(m,n);
     for i from 1 to n list (degree ((module A / frobeniusPower(m,i)) ** M))/(p^(i*d))
     )


--*************************************************************************--
-- Computes hkSeq of the residue field, usually written e_HK(R).
-- Usage: hkSeq(A,n)

hkSeq(Ring,ZZ) := List =>(A,n) ->(
     p := char A;
     if not isPrime p then error "Expected ring of positive prime characteristic";
     d := dim A;
     k := module A / ideal vars A;
     for i from 1 to n list (degree torF(k,0,i))/(p^(i*d))
     )

--*************************************************************************--
-- Computes by default the first 8 terms of hkSeq for a ring.
-- Usage: hkSeq(A)

hkSeq(Ring) := List =>(A) ->(
     hkSeq(A,8)
     )

--*************************************************************************--
-- Computes by default the first 8 terms of hkSeq for a module.
-- Usage: hkSeq(M)

hkSeq(Module) := List =>(M) ->(
     hkSeq(M,8)
     )


--*************************************************************************--
-- Computes the sequence of numbers defining the higher derived Hilbert-Kunz
-- multiplicities defined.  
-- Usage: hkSeq(A)

tiSeq = method()
tiSeq(Module,ZZ,ZZ) := List =>(M,i,n) ->(    
     p := char ring M;
     if not isPrime p then error "Expected module over ring of positive prime characteristic";
     d := dim ring M;
     for j from 1 to n list (degree torF(M,i,j))/(p^(j*d))
     )


tiSeq(Ring,ZZ,ZZ) := List =>(A,i,n) ->(
     k = module A / ideal vars A;
     tiSeq(k,i,n)
     )

tiSeq(Ring,ZZ) := List =>(A,i) ->(
     tiSeq(A,i,8)
     )

tiSeq(Module,ZZ) := List =>(M,i) ->(
     tiSeq(M,i,8)
     )




beginDocumentation() -- the start of the documentation

-----------------------------------------------------------------------------

document { 
     Key => FrobeniusMultiplicities, 
     Headline => "Computations in characteristic p>0 related to the Frobenius
                  and Hilbert-Kunz multiplicities",      
     EM "FrobeniusMultiplicities", " is a package which will hopefully help users
     make computations involving the Frobenius endomorphism, the Hilbert-Kunz
     Multiplicity and the higher derived Hilbert-Kunz multiplicities.  In particular
     we add functions", TO (frob,Module,ZZ), ", ", TO (hkSeq,Module,ZZ), ", ", TO (tiSeq, Module, ZZ, ZZ), ", ",
     TO (frobeniusPower, Ideal, ZZ), ", ", TO (torF, Module, ZZ, ZZ), " and ", 
     TO (tensorF, Module, ZZ, ZZ), "."
      }

-----------------------------------------------------------------------------

document {
     Key => {frob,(frob, Module, ZZ)},
     Headline => "computes the module F^n(M) where F^n is the nth iteration of the Frobenius functor",
     Usage => "frob(M,n)",
     Inputs => {
	  "M" => Module,
	  "n" => ZZ,
	  },
     Outputs => {
	  Module => {"the module F^n(M)"}
	  },
          Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     "The function ", TT "frob(M,n)", ", computes the module ", TT "F^n(M)",
     ". It does this by finding a minimal presentation of M and applying the nth Frobenius
     to the elements in the defining matrix and then taking the cokernel.",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     M = module A / ideal vars A;
     frob(M,3)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------

document {
     Key => {frobeniusPower,(frobeniusPower, Ideal, ZZ)},
     Headline => "computes the ideal generated by the (p^n)th powers of the generators of an ideal where p is the characteristic of the ambient ring",
     Usage => "frobeniusPower(I,n)",
     Inputs => {
	  "I" => Ideal,
	  "n" => ZZ
	  },
     Outputs => {
	  Ideal => {"the ideal I^[p^n] generated by the (p^n)th powers of the generators of I"}
	  },
          Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     "The function ", TT "frobeniusPower(I,n)", ", computes the ideal ", TT "I^[p^n}",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     I = ideal vars A;
     frobeniusPower(I,3)
     frobeniusPower(I,4)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }

-----------------------------------------------------------------------------

document {
     Key => {tensorF,
	  (tensorF, ChainComplex, ZZ)
	  },
     Headline => "computes the complex F^n(C) where C is a chain complex of free modules and where F^n is the nth iteration of the Frobenius functor",
     Usage => "tensorF(C,n)",
     Inputs => {
	  "C" => ChainComplex,
	  "n" => ZZ
	  },
     Outputs => {
	  ChainComplex => {"the chain complex F^n(C)"}
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     "The function ", TT "tensorF(C,n)", ", computes the chain complex ", TT "F^n(C)",
     ". It does this by applying the nth Frobenius to the elements in the matrices defining the maps in the chain complex.",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     M = module A / ideal vars A;
     C = res M
     C.dd
     D = tensorF(C,3)
     D.dd
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------

document {
     Key => {tensorF,
	  (tensorF, Module, ZZ, ZZ)
	  },
     Headline => "computes the complex F^n(C) where C is the free resolution of M (with LengthLimit set to i+1) and where F^n is the nth iteration of the Frobenius functor",
     Usage => "tensorF(M,i,n)",
     Inputs => {
	  "M" => Module,
	  "i" => ZZ,
	  "n" => ZZ
	  },
     Outputs => {
	  ChainComplex => {"the chain complex F^n(C) where C is the free resolution of M"}
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     "The function ", TT "tensorF(M,i,n)", ", computes the chain complex ", TT "F^n(C)",
     " where C is the free resolution of M. It does this by applying the nth Frobenius to the elements in the matrices defining the maps in the chain complex.",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     M = module A / ideal vars A;
     C = res M
     C.dd
     D = tensorF(C,3)
     D.dd
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------

document {
     Key => {torF,
	  (torF, Module, ZZ, ZZ)
	  },
     Headline => "computes the module Tor_i(M,fnA) where fnA is the module A^1 with A-action defined by x.a = x^(p^n)a.",
     Usage => "torF(M,i,n)",
     Inputs => {
	  "M" => Module,
	  "i" => ZZ,
	  "n" => ZZ
	  },
     Outputs => {
	  Module => {"the module Tor_i(M,fnA where fnA is the module A^1 with A-action defined by the nth Frobenius"}
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     "The function ", TT "torF(M,i,n)", ", computes the module ", TT "Tor_i(M,fnA)",
     " where M is a module over a characteristic p>0 ring A and fnA is A-module A^1 with A-action defined by the nth Frobenius x->x^(p^n). This function calls tensorF(C,i,n) and takes homology.",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     M = module A / ideal vars A;
     torF(M,0,1)
     torF(M,0,2)
     torF(M,1,2)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

 -----------------------------------------------------------------------------

document {
     Key => {hkSeq,
	  (hkSeq, Module, ZZ),
	  (hkSeq, Ring, ZZ)
	  },
     Headline => "computes the first n approximations of the Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
     Usage => "hkSeq(A,n)",
     Inputs => {
	  "A" => {"a ", TO "Ring", " or ", TO "Module"},
	  "n" => ZZ
	  },
     Outputs => {
	  List =>{"The function ", TT "hkSeq(A,n)", ", computes the first n approximations of the Hilbert-Kunz multiplicity of a ring or module; that is, the function computes
      the length of modules A/m^[p^i]A divided by p^(nd) for i from 1 to n where d = dim A.  The limit defined by this sequence of numbers exists and is defined to be the Hilbert-Kunz multiplicity of A.  This function 
      calls the function torF(M,i,n)."}
      },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     hkSeq(A,6)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	

-----------------------------------------------------------------------------

document {
     Key => {
	  (hkSeq, Module),
	  (hkSeq, Ring)
	  },
     Headline => "computes the first 8 approximations of the Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
     Usage => "hkSeq(A)",
     Inputs => {
	  "A" => {"a ", TO "Ring", " or ", TO "Module"}
	  },
     Outputs => {
	  List => {"The function ", TT "hkSeq(A)", ", computes the first 8 approximations of the Hilbert-Kunz multiplicity of a ring or module.  It calls by default ", TT "hkSeq(A,8)", "." }
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     hkSeq(A)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------

document {
     Key => {tiSeq,
	  (tiSeq, Module, ZZ, ZZ),
	  (tiSeq, Ring, ZZ, ZZ)
	  },
     Headline => "computes the first n approximations of the ith derived Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
     Usage => "tiSeq(A,n)",
     Inputs => {
	  "A" => {"a ", TO "Ring", " or ", TO "Module"},
	  "i" => ZZ,
	  "n" => ZZ
	  },
     Outputs => {
	  List =>{"the first n approximations of the ith derived Hilbert-Kunz multiplicity"}
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic ", TT "p>0", "."},
     "The function ", TT "tiSeq(A,n)", ", computes the first n approximations of the ith derived Hilbert-Kunz multiplicity of a ring or module; that is, the function computes
      the length of modules ", TT "Tor_i(A,fjA)", " divided by ", TT "p^(jd)", " for j from 1 to n where ", TT "d = dim A", " and ", TT "fjA ", " is the A-module A with action defined by the jth Frobenius.  The limit defined by this sequence of numbers exists and is defined to be the Hilbert-Kunz multiplicity of A.  This function 
      calls the function ", TT "torF(M,i,n)", ".",
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     tiSeq(A,1,6)
     tiSeq(A,2,6)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------

document {
     Key => {
	  (tiSeq, Module, ZZ),
	  (tiSeq, Ring, ZZ)
	  },
     Headline => "computes the first 8 approximations of the ith derived Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
     Usage => "tiSeq(A)",
     Inputs => {
	  "A" => {"a ", TO "Ring", " or ", TO "Module"},
	  "i" => ZZ
	  },
     Outputs => {
	  List => {"The function ", TT "tiSeq(A,i)", ", computes the first 8 approximations of the ith derived Hilbert-Kunz multiplicity of a ring or module.  It calls by default ", TT "tiSeq(A,i,8)", "." }
	  },
     Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
     EXAMPLE lines ///
     A = ZZ/2[x,y,z]/ideal(x^2, x*y);
     tiSeq(A,1)
     tiSeq(A,2)
     ///,
     PARA {
     	  "This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
     	  }
     }	   

-----------------------------------------------------------------------------