1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
-- FrobeniusMultiplicities Macaulay 2 package
-- Copyright (C) 2009 Jason G McCullough
--This program is free software; you can redistribute it and/or
--modify it under the terms of the GNU General Public License version 2
--as published by the Free Software Foundation.
--This program is distributed in the hope that it will be useful,
--but WITHOUT ANY WARRANTY; without even the implied warranty of
--MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
--GNU General Public License for more details.
--=========================================================================--
--=========================================================================--
--=========================================================================--
newPackage(
"FrobeniusMultiplicities",
Version => "0.7",
Date => "May 27, 2009",
Authors => {
{Name => "Jason McCullough", Email => "jmccullo@math.ucr.edu", HomePage => "http://www.math.ucr.edu/~jmccullo"}
},
Headline => "successive approximations of Hilbert-Kunz and related
multiplicities in characteristic p > 0; the Frobenius action on
modules and free complexes is implemented as well",
DebuggingMode => false
)
--=========================================================================--
export{"frob","tensorF","torF","hkSeq","tiSeq","frobeniusPower"}
--=========================================================================--
--*************************************************************************--
-- Computes F^n(M) where M is a module and F^n is the nth iteration of
-- the Frobenius functor.
-- Usage: frob(M,n)
frob = method()
frob(Module,ZZ) := Module => (M,n) -> (
N := minimalPresentation M;
T := relations N;
L := entries T;
q := (char ring M)^n;
LL := applyTable(L,x->x^q);
coker matrix LL
)
--*************************************************************************--
-- Computes F^n(C) where F^n is the nth Frobenius functor and C is a
-- minimal free resolution of a module M or a complex of free modules.
-- The first integer i input gives the homological degree to which M2
-- should compute C.
-- Usage: tensorF(M,i,n) or tensorF(C,n)
tensorF = method()
tensorF(Module,ZZ,ZZ) := ChainComplex => (M,i,n) -> (
C := res(M,LengthLimit=>(i+1));
tensorF(C,n)
)
tensorF(ChainComplex,ZZ) := ChainComplex => (C,n) -> (
for i from 0 to length C do if not isFreeModule C_i then error "Expected complex of free modules";
A := ring C;
p := char A;
if p == 0 then error "Expect complex over ring of positive characteristic";
q := p ^ n;
len := length C;
mats := for i from 1 to len list matrix applyTable( entries C.dd_i, x->x^(q)); --apply(entries(C.dd_i),l->apply(l,x->x^(p^n)));
degs := for i from 0 to len list (- q*(degrees C_i));
maps := for i from 1 to len list map(A^(degs#(i-1)),A^(degs#i),mats#(i-1));
chainComplex maps
)
--*************************************************************************--
-- Computes tor_i(M,fnA) where M is an A-module and fnA is the bimodule
-- with left action given by f^n.
-- Note: This is the same as HH_i(F^n(C)) where C is a free resolution of M.
-- Usage: torF(M,i,n)
torF = method()
torF(Module,ZZ,ZZ) := Module => (M,i,n) ->(
HH_i(tensorF(M,i,n))
)
-----------------------------------------------------------------------------
TEST ///
A = ZZ/2[x,y,z];
k = module A / ideal vars A;
assert zero torF(k,1,1);
///
-----------------------------------------------------------------------------
--*************************************************************************--
-- Computes I^[p^n]
-- Usage: frobeniusPower(I,n)
frobeniusPower = method()
frobeniusPower(Ideal,ZZ) := Ideal =>(I,n) ->(
p := char ring I;
if not isPrime p then error "Expected ideal from a ring of positive characteristic";
if not isField coefficientRing ring I then error "Expected ideal from a quotient of a polynomial ring";
Ipngens := for i in I_* list i^(p^n);
ideal Ipngens
)
--*************************************************************************--
-- Computes the first n elements in the sequence defining the Hilbert-Kunz
-- Multiplicity of M. In other words, this function outputs the list
-- length(
-- with left action given by f^n.
-- Note: This is the same as HH_i(F^n(C)) where C is a free resolution of M.
-- Usage: torF(M,i,n)
hkSeq = method()
hkSeq(Module,ZZ) := List =>(M,n) ->(
p := char ring M;
if not isPrime p then error "Expected module over ring of positive prime characteristic";
d := dim ring M;
A := ring M;
m := ideal vars A;
mpn := frobeniusPower(m,n);
for i from 1 to n list (degree ((module A / frobeniusPower(m,i)) ** M))/(p^(i*d))
)
--*************************************************************************--
-- Computes hkSeq of the residue field, usually written e_HK(R).
-- Usage: hkSeq(A,n)
hkSeq(Ring,ZZ) := List =>(A,n) ->(
p := char A;
if not isPrime p then error "Expected ring of positive prime characteristic";
d := dim A;
k := module A / ideal vars A;
for i from 1 to n list (degree torF(k,0,i))/(p^(i*d))
)
--*************************************************************************--
-- Computes by default the first 8 terms of hkSeq for a ring.
-- Usage: hkSeq(A)
hkSeq(Ring) := List =>(A) ->(
hkSeq(A,8)
)
--*************************************************************************--
-- Computes by default the first 8 terms of hkSeq for a module.
-- Usage: hkSeq(M)
hkSeq(Module) := List =>(M) ->(
hkSeq(M,8)
)
--*************************************************************************--
-- Computes the sequence of numbers defining the higher derived Hilbert-Kunz
-- multiplicities defined.
-- Usage: hkSeq(A)
tiSeq = method()
tiSeq(Module,ZZ,ZZ) := List =>(M,i,n) ->(
p := char ring M;
if not isPrime p then error "Expected module over ring of positive prime characteristic";
d := dim ring M;
for j from 1 to n list (degree torF(M,i,j))/(p^(j*d))
)
tiSeq(Ring,ZZ,ZZ) := List =>(A,i,n) ->(
k = module A / ideal vars A;
tiSeq(k,i,n)
)
tiSeq(Ring,ZZ) := List =>(A,i) ->(
tiSeq(A,i,8)
)
tiSeq(Module,ZZ) := List =>(M,i) ->(
tiSeq(M,i,8)
)
beginDocumentation() -- the start of the documentation
-----------------------------------------------------------------------------
document {
Key => FrobeniusMultiplicities,
Headline => "Computations in characteristic p>0 related to the Frobenius
and Hilbert-Kunz multiplicities",
EM "FrobeniusMultiplicities", " is a package which will hopefully help users
make computations involving the Frobenius endomorphism, the Hilbert-Kunz
Multiplicity and the higher derived Hilbert-Kunz multiplicities. In particular
we add functions", TO (frob,Module,ZZ), ", ", TO (hkSeq,Module,ZZ), ", ", TO (tiSeq, Module, ZZ, ZZ), ", ",
TO (frobeniusPower, Ideal, ZZ), ", ", TO (torF, Module, ZZ, ZZ), " and ",
TO (tensorF, Module, ZZ, ZZ), "."
}
-----------------------------------------------------------------------------
document {
Key => {frob,(frob, Module, ZZ)},
Headline => "computes the module F^n(M) where F^n is the nth iteration of the Frobenius functor",
Usage => "frob(M,n)",
Inputs => {
"M" => Module,
"n" => ZZ,
},
Outputs => {
Module => {"the module F^n(M)"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
"The function ", TT "frob(M,n)", ", computes the module ", TT "F^n(M)",
". It does this by finding a minimal presentation of M and applying the nth Frobenius
to the elements in the defining matrix and then taking the cokernel.",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
M = module A / ideal vars A;
frob(M,3)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {frobeniusPower,(frobeniusPower, Ideal, ZZ)},
Headline => "computes the ideal generated by the (p^n)th powers of the generators of an ideal where p is the characteristic of the ambient ring",
Usage => "frobeniusPower(I,n)",
Inputs => {
"I" => Ideal,
"n" => ZZ
},
Outputs => {
Ideal => {"the ideal I^[p^n] generated by the (p^n)th powers of the generators of I"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
"The function ", TT "frobeniusPower(I,n)", ", computes the ideal ", TT "I^[p^n}",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
I = ideal vars A;
frobeniusPower(I,3)
frobeniusPower(I,4)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {tensorF,
(tensorF, ChainComplex, ZZ)
},
Headline => "computes the complex F^n(C) where C is a chain complex of free modules and where F^n is the nth iteration of the Frobenius functor",
Usage => "tensorF(C,n)",
Inputs => {
"C" => ChainComplex,
"n" => ZZ
},
Outputs => {
ChainComplex => {"the chain complex F^n(C)"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
"The function ", TT "tensorF(C,n)", ", computes the chain complex ", TT "F^n(C)",
". It does this by applying the nth Frobenius to the elements in the matrices defining the maps in the chain complex.",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
M = module A / ideal vars A;
C = res M
C.dd
D = tensorF(C,3)
D.dd
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {tensorF,
(tensorF, Module, ZZ, ZZ)
},
Headline => "computes the complex F^n(C) where C is the free resolution of M (with LengthLimit set to i+1) and where F^n is the nth iteration of the Frobenius functor",
Usage => "tensorF(M,i,n)",
Inputs => {
"M" => Module,
"i" => ZZ,
"n" => ZZ
},
Outputs => {
ChainComplex => {"the chain complex F^n(C) where C is the free resolution of M"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
"The function ", TT "tensorF(M,i,n)", ", computes the chain complex ", TT "F^n(C)",
" where C is the free resolution of M. It does this by applying the nth Frobenius to the elements in the matrices defining the maps in the chain complex.",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
M = module A / ideal vars A;
C = res M
C.dd
D = tensorF(C,3)
D.dd
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {torF,
(torF, Module, ZZ, ZZ)
},
Headline => "computes the module Tor_i(M,fnA) where fnA is the module A^1 with A-action defined by x.a = x^(p^n)a.",
Usage => "torF(M,i,n)",
Inputs => {
"M" => Module,
"i" => ZZ,
"n" => ZZ
},
Outputs => {
Module => {"the module Tor_i(M,fnA where fnA is the module A^1 with A-action defined by the nth Frobenius"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
"The function ", TT "torF(M,i,n)", ", computes the module ", TT "Tor_i(M,fnA)",
" where M is a module over a characteristic p>0 ring A and fnA is A-module A^1 with A-action defined by the nth Frobenius x->x^(p^n). This function calls tensorF(C,i,n) and takes homology.",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
M = module A / ideal vars A;
torF(M,0,1)
torF(M,0,2)
torF(M,1,2)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {hkSeq,
(hkSeq, Module, ZZ),
(hkSeq, Ring, ZZ)
},
Headline => "computes the first n approximations of the Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
Usage => "hkSeq(A,n)",
Inputs => {
"A" => {"a ", TO "Ring", " or ", TO "Module"},
"n" => ZZ
},
Outputs => {
List =>{"The function ", TT "hkSeq(A,n)", ", computes the first n approximations of the Hilbert-Kunz multiplicity of a ring or module; that is, the function computes
the length of modules A/m^[p^i]A divided by p^(nd) for i from 1 to n where d = dim A. The limit defined by this sequence of numbers exists and is defined to be the Hilbert-Kunz multiplicity of A. This function
calls the function torF(M,i,n)."}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
hkSeq(A,6)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {
(hkSeq, Module),
(hkSeq, Ring)
},
Headline => "computes the first 8 approximations of the Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
Usage => "hkSeq(A)",
Inputs => {
"A" => {"a ", TO "Ring", " or ", TO "Module"}
},
Outputs => {
List => {"The function ", TT "hkSeq(A)", ", computes the first 8 approximations of the Hilbert-Kunz multiplicity of a ring or module. It calls by default ", TT "hkSeq(A,8)", "." }
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
hkSeq(A)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {tiSeq,
(tiSeq, Module, ZZ, ZZ),
(tiSeq, Ring, ZZ, ZZ)
},
Headline => "computes the first n approximations of the ith derived Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
Usage => "tiSeq(A,n)",
Inputs => {
"A" => {"a ", TO "Ring", " or ", TO "Module"},
"i" => ZZ,
"n" => ZZ
},
Outputs => {
List =>{"the first n approximations of the ith derived Hilbert-Kunz multiplicity"}
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic ", TT "p>0", "."},
"The function ", TT "tiSeq(A,n)", ", computes the first n approximations of the ith derived Hilbert-Kunz multiplicity of a ring or module; that is, the function computes
the length of modules ", TT "Tor_i(A,fjA)", " divided by ", TT "p^(jd)", " for j from 1 to n where ", TT "d = dim A", " and ", TT "fjA ", " is the A-module A with action defined by the jth Frobenius. The limit defined by this sequence of numbers exists and is defined to be the Hilbert-Kunz multiplicity of A. This function
calls the function ", TT "torF(M,i,n)", ".",
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
tiSeq(A,1,6)
tiSeq(A,2,6)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
document {
Key => {
(tiSeq, Module, ZZ),
(tiSeq, Ring, ZZ)
},
Headline => "computes the first 8 approximations of the ith derived Hilbert-Kunz multiplicity of a ring of positive prime characteristic or a module over such a ring.",
Usage => "tiSeq(A)",
Inputs => {
"A" => {"a ", TO "Ring", " or ", TO "Module"},
"i" => ZZ
},
Outputs => {
List => {"The function ", TT "tiSeq(A,i)", ", computes the first 8 approximations of the ith derived Hilbert-Kunz multiplicity of a ring or module. It calls by default ", TT "tiSeq(A,i,8)", "." }
},
Caveat => {"The ambient ring is assumed to a quotient of a polynomial ring over a field of characteristic p>0."},
EXAMPLE lines ///
A = ZZ/2[x,y,z]/ideal(x^2, x*y);
tiSeq(A,1)
tiSeq(A,2)
///,
PARA {
"This symbol is provided by the package ", TO FrobeniusMultiplicities, "."
}
}
-----------------------------------------------------------------------------
|