1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
-- -*- coding: utf-8 -*-
-- licensed under GPL v2 or any later version
-- A collection of algorithms that use NumericalAlgebraicGeometry and related packages.
newPackage select((
"NAGtools",
Version => "1.9",
Date => "Apr 2016",
Headline => "tools of NumericalAlgebraicGeometry",
HomePage => "http://people.math.gatech.edu/~aleykin3/NAG4M2",
AuxiliaryFiles => false,
Authors => {
{Name => "Anton Leykin", Email => "leykin@math.gatech.edu"}
},
PackageExports => {"NumericalAlgebraicGeometry", "SLPexpressions"},
PackageImports => {},
-- DebuggingMode should be true while developing a package,
-- but false after it is done
--DebuggingMode => true
DebuggingMode => false
), x -> x =!= null)
-- Any symbols or functions that the user is to have access to
-- must be placed in one of the following two lists
export {
"preimageViaMonodromy",
"solveViaMonodromy",
"gateHomotopy4preimage",
"RandomPointFunction",
"StoppingCriterion"
}
exportMutable {
}
debug NAGtypes
debug NumericalAlgebraicGeometry
-- Monodromy-based algorithm
-- in:
-- PH, a homotopy from f_A to f_B, where f is a family of (polynomial or other) systems; depends on 2m parameters, m=|A|=|B|
-- p0, AbstractPoint, values of m parameters (assumed generic)
-- s0, a nonempty list of points, solutions of PH_(p0,*)(0)
-- RandomPointFunction, a function that returns a random point p1 suitable for PH
preimageViaMonodromy = method(Options=>{RandomPointFunction=>null,StoppingCriterion=>((n,L)->n>3),Precision=>DoublePrecision})
preimageViaMonodromy (ParameterHomotopy, AbstractPoint, List) := o -> (PH,point0,s0) -> (
if #s0 < 1 then error "at least one solution expected";
p0 := transpose matrix point0;
nextP := if o.RandomPointFunction =!= null then o.RandomPointFunction else (
K := ring p0;
()->point {apply(numrows p0, i->exp(2*pi*ii*random RR))}
);
sols0 := s0;
nSols := #sols0;
same := 0;
dir := temporaryFileName(); -- build a directory to store temporary data
makeDirectory dir;
<< "--backup directory created: "<< toString dir << endl;
opts := new OptionTable from {Precision=>o.Precision};
while not o.StoppingCriterion(same,sols0) do --try
(
p1 := transpose matrix nextP();
p2 := transpose matrix nextP();
elapsedTime sols1 := trackHomotopy(specialize(PH,p0||p1),sols0,opts);
sols1 = select(sols1, s->status s === Regular);
<< " H01: " << #sols1 << endl;
elapsedTime sols2 := trackHomotopy(specialize(PH,p1||p2),sols1,opts);
sols2 = select(sols2, s->status s === Regular);
<< " H12: " << #sols2 << endl;
elapsedTime sols0' := trackHomotopy(specialize(PH,p2||p0),sols2,opts);
sols0' = select(sols0', s->status s === Regular);
<< " H20: " << #sols0' << endl;
elapsedTime sols0 = clusterSolutions(sols0 | sols0'); -- take the union
if #sols0 == nSols then same = same + 1 else (
nSols = #sols0;
same = 0;
ff := openOut (dir|"/backup-"|toString nSols|"-solutions");
ff << toExternalString sols0;
close ff;
);
<< "found " << #sols0 << " points in the fiber so far" << endl;
) -- else print "something went wrong"
;
sols0
)
-- in: PF, a system of polynomials in a ring of the form CC[parameters][variables]
-- point0, (as above)
-- s0, (as above)
solveViaMonodromy = method(Options=>{RandomPointFunction=>null,StoppingCriterion=>((n,L)->n>3)})
solveViaMonodromy (Matrix, AbstractPoint, List) := o -> (PF,point0,s0) -> (
if #s0 < 1 then error "at least one solution expected";
p0 := matrix point0; -- points are row matrices
nParameters := numgens coefficientRing ring PF;
assert(nParameters == numcols p0);
(PR,toPR) := flattenRing ring PF; -- ring PF = C[a][x]
-- toPR: ring PF -> PR
X := drop(gens PR, -nParameters);
PF = toPR PF;
C := coefficientRing PR;
R := C[X];
X = vars R;
nextP := if o.RandomPointFunction =!= null then o.RandomPointFunction else (
K := ring p0;
()->point {apply(numcols p0, i->exp(2*pi*ii*random RR))}
);
sols0 := s0;
nSols := #sols0;
same := 0;
if DBG>9 then (
dir := temporaryFileName(); -- build a directory to store temporary data
makeDirectory dir;
<< "--backup directory created: "<< toString dir << endl;
);
totalNumberOfPaths := 0;
while not o.StoppingCriterion(same,sols0) do --try
(
p1 := matrix nextP(); -- row matrix
F0 := flatten entries (map(R,PR,X|p0)) PF;
F1 := flatten entries (map(R,PR,X|p1)) PF;
totalNumberOfPaths = totalNumberOfPaths + #sols0;
elapsedTime sols1 := track(F0,F1,sols0);
sols1 = select(sols1, s->status s === Regular);
<< " H01: " << #sols1 << endl;
totalNumberOfPaths = totalNumberOfPaths + #sols1;
elapsedTime sols0' := track(F1,F0,gamma=>exp(2*pi*ii*random RR),sols1);
sols0' = select(sols0', s->status s === Regular);
<< " H10: " << #sols0' << endl;
elapsedTime sols0 = clusterSolutions(sols0 | sols0'); -- take the union
if #sols0 == nSols then same = same + 1 else (
nSols = #sols0;
same = 0;
if DBG>9 then (
ff := openOut (dir|"/backup-"|toString nSols|"-solutions");
ff << toExternalString sols0;
close ff;
);
);
<< "found " << #sols0 << " points in the fiber so far" << endl;
);
<< "totalNumberOfPaths = " << totalNumberOfPaths << endl;
sols0
)
-- Parameter homotopy for tracking a point on the fiber of a covering (generically finite-to-one onto) map
-- in:
-- F, a map (column vector)
-- V, variables (list of InputGates)
-- W (optional; W=V if omitted), variables names (list of anything) for coordinates in the target space
-- out:
-- Homotopy that has A_v and B_w as parameters,
-- where v in V are coordinates of the source space
gateHomotopy4preimage = method()
gateHomotopy4preimage(GateMatrix,List) := (F,V) -> gateHomotopy4preimage(F,V,V)
gateHomotopy4preimage(GateMatrix,List,List) := (F,V,W) -> (
assert(#W == numrows F);
assert(#V == #W);
A := matrix{apply(W, v->inputGate symbol A_v)};
B := matrix{apply(W, v->inputGate symbol B_v)};
t := inputGate symbol t;
H := F-((1-t)*transpose A+t*transpose B);
gateHomotopy(H,matrix{V},t,Parameters=>A|B)
)
-- in: S, polynomials describing a subvariety of CC^V
gateHomotopy4preimage(GateMatrix,GateMatrix,List,List) := (F,S,V,W) -> (
assert(#W == numrows F);
A := matrix{apply(W, w->inputGate symbol A_w)};
B := matrix{apply(W, w->inputGate symbol B_w)};
t := inputGate symbol t;
H := (F-((1-t)*transpose A+t*transpose B)) || S;
gateHomotopy(H,matrix{V},t,Parameters=>A|B)
)
TEST ///
setRandomSeed 1
X = inputGate x
F = matrix{{X^2}}
PH = gateHomotopy4preimage(F,{X})
K = CC_53
setDefault(Software=>M2)
SPH = specialize(PH,matrix{{1_K},{2}})
p =matrix{{1_K}}
assert areEqual(norm evaluateH(SPH,p,0), 0)
assert areEqual(norm evaluateHt(SPH,p,0), 1)
assert areEqual(norm evaluateHx(SPH,p,0), 2)
peek PH.GateHomotopy
assert (#preimageViaMonodromy(PH,point p,{point p}) == 2)
///
beginDocumentation()
undocumented{
preimageViaMonodromy,
(preimageViaMonodromy,ParameterHomotopy,AbstractPoint,List),
gateHomotopy4preimage,
(gateHomotopy4preimage,GateMatrix,GateMatrix,List,List),
(gateHomotopy4preimage,GateMatrix,List),
(gateHomotopy4preimage,GateMatrix,List,List),
StoppingCriterion,
RandomPointFunction
}
endPackage "NAGtools"
|