1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
-- this package is a Macaulay2 implementation of the Suffix Tree as given
-- in Amir et.al. It is used for debugging and prototyping the C++ implementation
-- of this data structure in e/NCAlgebras/SuffixTree.{hpp,cpp}
newPackage("SuffixTrees",
Headline => "Data Type for a Suffix Tree as laid out by Amir et.al.",
Version => "0.1",
Date => "Jan 22, 2021",
Authors => {{Name => "Frank Moore",
Email => "moorewf@wfu.edu",
HomePage => "https://math.wfu.edu/moore"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike"}
},
DebuggingMode => false,
Keywords => {"Noncommutative Algebra"}
)
protect label
protect arcLabel
protect isFullPattern
protect patternLeafCount
protect suffixLink
protect children
protect root
protect wordList
protect IncrementLeafCount
SuffixTree = new Type of MutableHashTable
SuffixTreeNode = new Type of MutableHashTable
nullTreeNode = new SuffixTreeNode from hashTable {}
suffixTreeNode = method()
suffixTreeNode (SuffixTreeNode, List, Boolean) := (par, w, b) -> (
--- a constructor for the SuffixTreeNode type. Takes the parent and the
--- arc label as input, and also places the new node in the children of the parent.
v := new SuffixTreeNode from hashTable {(symbol parent) => par,
(symbol children) => new MutableHashTable from {},
(symbol suffixLink) => nullTreeNode,
(symbol arcLabel) => w,
(symbol patternLeafCount) => 0,
(symbol isFullPattern) => b,
(symbol label) => par.label | w};
par.children#w = v;
v
)
net SuffixTreeNode := n -> if n === nullTreeNode then "NullTreeNode" else (net "SuffixTreeNode with label " | net n.label | " and edge label " | net n.arcLabel)
Symbol == ZZ := (a,n) -> false;
ZZ == Symbol := (n,a) -> false;
isZZ = f -> class f === ZZ
suffixTree = method()
suffixTree List := words -> (
--- wordList should be a list of lists of symbols, which represent the noncommutative
--- monomials for which we are building the suffix table.
rootNode := new SuffixTreeNode from hashTable {(symbol parent) => nullTreeNode,
(symbol children) => new MutableHashTable from {},
(symbol suffixLink) => nullTreeNode,
(symbol arcLabel) => {},
(symbol patternLeafCount) => 0,
(symbol isFullPattern) => false,
(symbol label => {})};
tree := new SuffixTree from hashTable {(symbol root) => rootNode,
(symbol wordList) => {}};
rightOverlaps := flatten apply(words, w -> suffixTreeInsert(tree, w));
(tree,rightOverlaps)
)
-- the root node is the unique node in the tree with nullTreeNode as parent
isRoot = method()
isRoot SuffixTreeNode := n -> n.parent == nullTreeNode;
suffixTreeInsert = method()
suffixTreeInsert (SuffixTree, List) := (tree, w) -> (
-- PURPOSE : Insert suffixes into tree
-- INPUT : suffix tree, and a word whose suffixes are to be inserted
-- OUTPUT : nothing
wordNum := #(tree.wordList);
tree.wordList = append(tree.wordList,w);
rightOverlaps := {};
s := w | {wordNum};
v := tree.root;
isFullPattern := true;
while s != {} do (
(newv,roRoot,newLocus) := suffixTreeInsertWorker(tree,v,s,isFullPattern);
v = newv;
if roRoot != {} then (
tempRos := apply(patternLeaves(first roRoot), pl -> (last newLocus.label,pl#0,pl#1));
-- XXXX
tempRos = apply(tempRos, ro -> (tree.wordList#(ro#0),#(tree.wordList#(ro#0)) - #(ro#1),tree.wordList#(ro#2)));
rightOverlaps = rightOverlaps | tempRos;
);
if v =!= tree.root and #s == 2 then v.suffixLink = tree.root;
s = drop(s,1);
isFullPattern = false;
);
rightOverlaps
)
suffixTreeInsertWorker = method()
suffixTreeInsertWorker (SuffixTree,SuffixTreeNode, List, Boolean) := (tree, v, s, isFullPattern) -> (
-- PURPOSE : Worker function for suffixTreeInsert
-- INPUT : v is the locus of previous head, and s is the suffix to be inserted
-- OUTPUT : locus v' of head of s
if v === tree.root then return suffixTreeStepD(v,
s,
isFullPattern);
if v.parent === tree.root then return suffixTreeStepC(v,
tree.root,
drop(v.arcLabel,1),
s,
isFullPattern);
return suffixTreeStepC(v,
v.parent.suffixLink,
v.arcLabel,
s,
isFullPattern);
)
--suffixTreeStepC = method()
--- too many arguments to be a method
suffixTreeStepC = (v,x,beta,s,isFullPattern) -> (
--- Carries out step C in the algorithm. This amounts to computing (and building,
--- if necessary) the suffix link of v. This function can call the Step D code
--- as well (see the algorithm in the paper by Amir, et.al.)
(f,betaHat) := extendedLocus(x,beta);
if #(f.arcLabel) == #betaHat then (
--- in this case, f is in fact the locus of beta
v.suffixLink = f;
return suffixTreeStepD(f,drop(s,#(f.label)),isFullPattern);
);
--- in this case, f is the extended locus of beta. We need to
--- split the arc from f to its parent and insert a node d and a child
--- w which will be the locus of beta
d := splitArc(f,betaHat);
--- set the patternLeafCount of d, and increase if necessary (if s and/or f are pattern leaves)
d.patternLeafCount = f.patternLeafCount + (if isFullPattern then 1 else 0) + (if f.isFullPattern then 1 else 0);
--- add in the locus of s
w := suffixTreeNode(d,drop(s,#(d.label)),isFullPattern);
--- set the suffix link of v to d
v.suffixLink = d;
if #(w.label) == 1 then (d,{f},w) else (d,{},w)
)
suffixTreeStepD = method()
suffixTreeStepD (SuffixTreeNode, List, Boolean) := (y,s,isFullPattern) -> (
--- Carries out step D in the algorithm. This amounts to constructing
--- the locus of the head of s (which is not yet known before calling this function).
--- find the contracted locus of s, starting from the node y
(newy,f,pre) := contractedLocus(y,s,IncrementLeafCount => isFullPattern);
-- drop the letters from s along the path traversed from y to newy
s = drop(s,#(newy.label) - #(y.label));
y = newy;
if f === nullTreeNode then (
-- in this case, there is no common prefix of a label of any child of y and s
-- so just create a leaf immediately.
v := suffixTreeNode(y,s,isFullPattern);
return if y.label != {} and #(v.arcLabel) == 1 then (y,{y},v) else (y,{},v);
);
--- in this case, f is the extended locus of s. We need to split the arc from y to f
p := splitArc(f,pre);
--- update the patternLeafCount of p if necessary
p.patternLeafCount = f.patternLeafCount + (if isFullPattern then 1 else 0) + (if f.isFullPattern then 1 else 0);
--- drop common prefix
s = drop(s,#pre);
--- create new leaf under p for s
w := suffixTreeNode(p,s,isFullPattern);
--- return overlap and head information
if #s == 1 then (p,{p},w) else (p,{},w)
)
splitArc = method()
splitArc (SuffixTreeNode, List) := (f,betaHat) -> (
--- Here, betaHat is the prefix of f.arcLabel. We split the arc from
--- f to its parent by inserting a new internal node with arc label betaHat,
--- making sure to set the parent of f to this new node.
p := f.parent;
d := suffixTreeNode(p,betaHat,false);
remove(p.children,f.arcLabel);
f.arcLabel = drop(f.arcLabel,#betaHat);
d.children#(f.arcLabel) = f;
f.parent = d;
d
)
contractedLocus = method(Options => {IncrementLeafCount => false})
contractedLocus (SuffixTreeNode, List) := opts -> (y,s) -> (
--- s is a suffix not yet in the table. This function finds
--- the locus of the longest prefix of s whose locus exists.
--- The search starts at y, and moves down the tree according to the
--- string s. The return value is the contracted locus (also called y),
--- and a node f which is either a child of y sharing a prefix pre with s - y.label,
--- or f is nullTreeNode if no such child exists.
c := if opts#IncrementLeafCount then 1 else 0;
y.patternLeafCount = y.patternLeafCount + c;
(f,pre) := findMatch(y,s);
while f =!= nullTreeNode and pre == f.arcLabel do (
y = f;
s = drop(s,#pre);
y.patternLeafCount = y.patternLeafCount + c;
(f,pre) = findMatch(y,s);
);
(y,f,pre)
)
isPrefix = (a,b) -> take(b,#a) == a
extendedLocus = method()
extendedLocus (SuffixTreeNode, List) := (x,beta) -> (
--- For this function to work, there must be a path starting from x with
--- beta as a prefix (See e.g. Lemma 1 in Amir, et.al.)
--- This function finds the locus of the shortest word that has beta as a prefix.
--- it returns this locus, together with the prefix that needs to be split (if necessary)
--- if beta is empty, then simply return (x,beta) since x is the extended locus
if beta == {} then return (x,beta);
betaHat := beta;
(f,pre) := findMatch(x,betaHat);
while #(f.arcLabel) < #betaHat do (
x = f;
betaHat = drop(betaHat,#(f.arcLabel));
(f,pre) = findMatch(x,betaHat);
);
(f,betaHat)
)
findMatch = method()
findMatch (SuffixTreeNode, List) := (y,s) -> (
-- PURPOSE : Find an arc from y to a child f whose label shares a prefix with s
-- INPUT : Node y and a list s.
-- OUTPUT : Node f, list pre
-- return nullTreeNode if no match is found, i.e. the empty prefix is the only shared prefix with any
-- child of y
f := nullTreeNode;
pre := {};
for kv in pairs (y.children) do (
(key,val) := kv;
pre = sharePrefix(key,s);
if pre != {} then (
f = val;
break;
);
);
(f,pre)
)
sharePrefix = method()
sharePrefix (List,List) := (s,t) -> (
-- PURPOSE : Return the longest shared prefix of s and t
-- INPUT : Lists s and t
-- OUTPUT : List that s and t share as prefix
i := 0;
while (i < min(#s,#t) and s#i == t#i) do i = i + 1;
take(s,i)
)
patternLeaves = method()
patternLeaves SuffixTreeNode := v -> (
--- This function returns all pattern leaves of v
if #v.children == 0 then return {};
apply(flatten patternLeavesWorker v, x -> (v.label,last x.label))
)
patternLeavesWorker = method()
patternLeavesWorker SuffixTreeNode := v -> (
if #v.children == 0 then return (if v.isFullPattern then {v} else {});
if v.patternLeafCount == 0 then return {};
flatten apply(values v.children, x -> patternLeavesWorker x)
)
allLeaves = method()
allLeaves SuffixTreeNode := v -> (
--- This function returns all leaves of v
if #v.children == 0 then return {(v.label,v.label)};
apply(flatten allLeavesWorker v, x -> (v.label,x.label))
)
allLeavesWorker = method()
allLeavesWorker SuffixTreeNode := v -> (
if #v.children == 0 then return {v};
flatten apply(values v.children, x -> allLeavesWorker x)
)
suffixTreeFirstSubword = method()
suffixTreeFirstSubword (SuffixTree, List) := (tree, s) -> (
cLocus := tree.root;
beta := {};
subwords := {};
initialS := s;
pos := 0;
while (s != {}) do (
(newcLocus,newbeta,leaf,wasPattern) := suffixTreeSubwordsWorker(tree,cLocus,beta,s);
--- this version only returns the first subword
if wasPattern then return {(newcLocus.label | newbeta,pos,initialS)};
pos = pos + 1;
s = drop(s,1);
cLocus = newcLocus;
beta = newbeta;
);
subwords
)
suffixTreeSubwords = method()
suffixTreeSubwords (SuffixTree, List) := (tree, s) -> (
--- This function finds all occurrences in s of the words in the dictionary
--- The return value is a list of pairs of integers (word, position, s)
cLocus := tree.root;
beta := {};
subwords := {};
initialS := s;
pos := 0;
while (s != {}) do (
(newcLocus,newbeta,leaf,wasPattern) := suffixTreeSubwordsWorker(tree,cLocus,beta,s);
if (wasPattern and isPrefix(drop(leaf.label,-1),s)) then
(
subwords = subwords | {(newcLocus.label | newbeta,pos,initialS)};
);
pos = pos + 1;
beta = newbeta;
cLocus = newcLocus;
s = drop(s,1);
);
subwords
)
suffixTreeSubwordsWorker = method()
suffixTreeSubwordsWorker (SuffixTree,SuffixTreeNode, List, List) := (tree,cLocus, beta, s) -> (
--- finds subwords for a single s, based on (cLocus,beta) of previous
if cLocus === tree.root then return suffixTreeSubwordsStepD(tree.root,s);
suffixTreeSubwordsStepC(cLocus.suffixLink,beta,s)
)
suffixTreeSubwordsStepC = method()
suffixTreeSubwordsStepC (SuffixTreeNode, List, List) := (x,beta,s) -> (
--- Step C in algorithm SEARCH in Amir et.al.
--- if there is no beta, then begin search at x (no need to traverse the path beta)
if beta == {} then return suffixTreeSubwordsStepD(x,drop(s,#(x.label)));
(f,betaHat) := extendedLocus(x,beta);
if #(f.arcLabel) == #(betaHat) then suffixTreeSubwordsStepD(f,drop(s,#(f.label))) else (f.parent,betaHat,nullTreeNode,false)
)
suffixTreeSubwordsStepD = method()
suffixTreeSubwordsStepD (SuffixTreeNode, List) := (y, s) -> (
--- Step D in algorithm SEARCH in Amir et.al.
(newy,f,pre) := contractedLocus(y,s);
if f === nullTreeNode then return (newy,pre,nullTreeNode,false);
return (newy,pre,f,f.isFullPattern)
)
suffixTreeSuperwords = method()
suffixTreeSuperwords (SuffixTree, List) := (tree, s) -> (
--- This function finds all occurrences of suffixes in the tree that have
--- s as a prefix. This is equivalent to finding all words in the
--- dictionary that have s as a factor.
--- The return value is a list of pairs of integers (word, position, s)
initialS := s;
(y,f,pre) := contractedLocus(tree.root,s);
if (y.label | pre) =!= s then (
--- no suffix of any word in the dictionary has s as a prefix
return {};
)
else if f === nullTreeNode then (
--- y is the locus of s. Process all leaves of y
return apply(allLeaves y, pl ->
(initialS,#(tree.wordList#(last (pl#1))) - #(pl#1) + 1,tree.wordList#(last (pl#1))));
)
else if #(f.label) == #s + 1 and isZZ(last f.label) then (
--- f is the extended locus of s. If the label of f is {s,#} then process f
return {(initialS,#(tree.wordList#(last f.label)) - #(f.label) + 1, tree.wordList#(last f.label))};
)
else return {}; --- otherwise return {}
)
suffixTreeLeftOverlaps = method()
suffixTreeLeftOverlaps (SuffixTree, List) := (tree, s) -> (
--- This function finds all proper prefixes of s that are also
--- suffixes in the tree.
--- The return value is a list of pairs of integers (word, position,s)
y := tree.root;
initialS := s;
leftOverlaps := {};
(f,pre) := findMatch(y,s);
while f =!= nullTreeNode and pre == f.arcLabel do (
--- in this case, the prefix found matches the arc label, so we move down
--- the tree
y = f;
s = drop(s,#pre);
--- after we move down add all children of y that are suffix leaves to leftOverlaps
--- as long as y is not the root
suffixLeaves := select(values y.children, c -> isZZ(first c.arcLabel) and not c.isFullPattern);
leftOverlaps = leftOverlaps | apply(suffixLeaves, c -> (last c.arcLabel, y.label));
(f,pre) = findMatch(y,s);
);
--- At this point, if pre != {} then there is a common prefix to a child, but
--- the label is not a full match to s. In this case, we add
--- the unique suffix leaf that shares a prefix to our list,
--- as long as it is not a full pattern
if pre != {} and not f.isFullPattern then leftOverlaps = leftOverlaps | {(last f.arcLabel,pre)};
apply(leftOverlaps, lo -> (tree.wordList#(lo#0),#(tree.wordList#(lo#0)) - #(lo#1),initialS))
)
--- the right overlaps function is not necessary since
--- it is combined with the insertion algorithm.
--- if we need to search for right overlaps without insertion
--- then we will implement this as well.
--suffixTreeRightOverlaps = method()
--suffixTreeRightOverlaps (SuffixTree, List) := (tree, s) -> (
--- This function finds all proper prefixes of s that is also
--- a suffix in the tree. It is assumed s is not in the dictionary
--- The return value is a list of pairs of integers (word, position)
--)
checkOverlaps = os -> all(os, o -> ( len := #(o#0) - o#1; take(o#0,-len) == take(o#2,len)))
findOverlapBugs = os -> select(os, o -> ( len := #(o#0) - o#1; take(o#0,-len) != take(o#2,len)))
checkDivisions = sups -> all(sups, sup -> (sup#2)_(toList((sup#1)..(sup#1 + #(sup#0) - 1))) == sup#0)
--- checkTree -- can we write something like this?
beginDocumentation()
doc ///
Key
SuffixTree
Headline
Macaulay2 implementation of the Suffix Tree data type
Description
Text
This package is a Macaulay2 implementation of the Suffix Tree as given
in Amir et.al. It is used for debugging and prototyping the C++ implementation
of this data structure in e/NCAlgebras/SuffixTree.{hpp,cpp}. This package has
no tests or further documentation.
///
end----
restart
debug needsPackage "SuffixTrees"
installPackage "SuffixTrees"
(tree,rightOverlaps) := suffixTree {{c,c,1},{c,a,b,2},{b,a,b,a,3}}
suffixTreeInsert(tree, {c,c,1})
suffixTreeInsert(tree, {c,a,b,2})
suffixTreeInsert(tree, {b,a,b,a,3})
restart
debug needsPackage "SuffixTrees"
--- gens of lead term ideal of generic Sklyanin algebra out to degree 12 (as lists of symbols)
--- I tried putting all this on one line but the parser doesn't like it.
mons = {{Z, X}, {Z, Y}, {Z, Z}, {Y, Y, X}, {Y, Y, Z}, {Y, X, Y, Y}, {Y, Y, Y, Y}, {Y, X, Y, X, X},
{Y, X, Y, X, Y},{Y, X, Y, X, Z},{Y, X, X, Y, X, X}, {Y, X, X, Y, X, Z}, {Y, X, X, Y, Y, Y},
{Y, X, X, X, Y, X, Y}, {Y, X, X, X, Y, Y, Y}, {Y, X, X, Y, X, Y, X}, {Y, X, X, Y, X, Y, Z},
{Y, X, X, X, X, Y, Y, Y}, {Y, X, X, X, Y, X, X, X}, {Y, X, X, X, Y, X, X, Y},
{Y, X, X, X, Y, X, X, Z}, {Y, X, X, X, X, X, Y, Y, Y}, {Y, X, X, X, X, Y, X, X, X},
{Y, X, X, X, X, Y, X, X, Z}, {Y, X, X, X, X, Y, X, Y, X}, {Y, X, X, X, X, Y, X, Y, Z},
{Y, X, X, X, X, X, Y, X, X, Y}, {Y, X, X, X, X, X, Y, X, X, Z}, {Y, X, X, X, X, X, Y, X, Y, X},
{Y, X, X, X, X, X, Y, X, Y, Z}, {Y, X, X, X, X, Y, X, X, Y, X}, {Y, X, X, X, X, Y, X, X, Y, Y},
{Y, X, X, X, X, Y, X, X, Y, Z}, {Y, X, X, X, X, X, X, Y, X, X, Z}, {Y, X, X, X, X, X, X, Y, X, Y, X},
{Y, X, X, X, X, X, X, Y, X, Y, Z}, {Y, X, X, X, X, X, Y, X, X, X, X}, {Y, X, X, X, X, X, Y, X, X, X, Y},
{Y, X, X, X, X, X, Y, X, X, X, Z}, {Y, X, X, X, X, X, X, X, Y, X, X, Z}, {Y, X, X, X, X, X, X, X, Y, X, Y, Z},
{Y, X, X, X, X, X, X, Y, X, X, X, X}, {Y, X, X, X, X, X, X, Y, X, X, X, Y}, {Y, X, X, X, X, X, X, Y, X, X, X, Z},
{Y, X, X, X, X, X, X, Y, X, X, Y, X}, {Y, X, X, X, X, X, X, Y, X, X, Y, Y}, {Y, X, X, X, X, X, X, Y, X, X, Y, Z}}
symbolHash = hashTable {(X,0),(Y,1),(Z,2)}
<< endl;
scan(mons, m -> << "Label " << apply(m, s -> symbolHash#s) << ",")
<< endl;
(tree,rightOverlaps) = suffixTree mons;
--- check that the code did not generate spurious right overlaps/superwords/subwords
(tree, rightOverlaps) = suffixTree mons;
assert(#rightOverlaps == 596)
checkOverlaps rightOverlaps
leftOverlaps = suffixTreeLeftOverlaps(tree, {symbol Y, symbol Y, symbol X});
checkOverlaps leftOverlaps
assert(#leftOverlaps == 23)
suffixTreeSubwords(tree, {symbol Y, symbol Y, symbol Z})
superwords = suffixTreeSuperwords(tree, {symbol Y, symbol Y,symbol X});
checkDivisions superwords
assert(#superwords == 1)
superwords = suffixTreeSuperwords(tree, {symbol Y, symbol Y});
checkDivisions superwords
assert(#superwords == 16)
subwords = suffixTreeSubwords(tree, {symbol Z, symbol Z, symbol X, symbol Y, symbol Y, symbol X, symbol Y, symbol X, symbol Y, symbol Y});
checkDivisions subwords
assert(#subwords == 5)
firstSubword = suffixTreeFirstSubword(tree, {symbol Z, symbol Z, symbol X, symbol Y, symbol Y, symbol X, symbol Y, symbol X, symbol Y, symbol Y});
assert(first firstSubword == first subwords)
--- code to generate the above example
restart
debug needsPackage "NCAlgebra"
kk = ZZ/32003
A = threeDimSklyanin(ZZ/32003,{random kk,random kk, random kk},{X,Y,Z})
I = ideal A
J = ncIdeal gens I
Jgb = ncGroebnerBasis(J, DegreeLimit => 5) -- this takes a bit of time (in bergman)
mons = apply(gens Jgb, f -> (first first pairs (leadMonomial f).terms).monList)
mons = sortUsing(mons, length)
-- subwords bug!!!
restart
debug needsPackage "SuffixTrees"
--- gens of lead term ideal of generic Sklyanin algebra out to degree 12 (as lists of symbols)
--- I tried putting all this on one line but the parser doesn't like it.
mons = {{Z, X}, {Z, Y}, {Z, Z}, {Y, Y, X}}
(tree,rightOverlaps) = suffixTree mons;
subwords = suffixTreeSubwords(tree, {symbol Y, symbol Y, symbol Z})
-- second bug.
restart
debug needsPackage "SuffixTrees"
mons = {{Z,Z},{Z,Y},{Z,X},{Y,Y,X},{Y,Y,Z},{Y,Y,Y,Y},{Y,X,Y,Y},{Y,X,Y,X,Y},
{Y,X,Y,X,Z},{Y,X,Y,X,X},{Y,X,X,Y,Y,Y},{Y,X,X,Y,X,X},{Y,X,X,Y,X,Z},
{Y,X,X,Y,X,Y,Z},{Y,X,X,Y,X,Y,X},{Y,X,X,X,Y,X,Y},{Y,X,X,X,Y,Y,Y},
{Y,X,X,X,Y,X,X,X},{Y,X,X,X,Y,X,X,Y},{Y,X,X,X,Y,X,X,Z},{Y,X,X,X,X,Y,Y,Y},
{Y,X,X,X,X,Y,X,Y,Z}}
#mons
(tree,rightOverlaps) = suffixTree mons;
subwords = suffixTreeSubwords(tree, {Y,X,X,X,X,Y,X,Y,Z,Z})
restart
debug needsPackage "SuffixTrees"
mons = {{Z,X},{Z,Y},{Z,Z},{Y,Y,X}}
(tree,rightOverlaps) = suffixTree mons;
subwords = suffixTreeSubwords(tree, {Y,Y,Z})
restart
debug needsPackage "AssociativeAlgebras"
kk = ZZ/32003
A = threeDimSklyanin(ZZ/32003,{random kk,random kk, random kk},{X,Y,Z})
I = ideal A
J = ideal gens I
Jgb = NCGB(J, 12)
JgbLT = (ideal Jgb)_* / leadTerm / toVariableList / last / last
print toString JgbLT
-- 'correct' term order
restart
debug needsPackage "SuffixTrees"
mons = {{X, X}, {X, Z}, {X, Y}, {Y, Y, X}, {Y, Y, Z}, {Y, Z, Y, Y}, {Y, Y, Y, Y},
{Y, Z, Y, Z, Z}, {Y, Z, Y, Z, Y}, {Y, Z, Y, Z, X}, {Y, Z, Z, Y, Y, Y},
{Y, Z, Z, Y, Z, X}, {Y, Z, Z, Y, Z, Z}, {Y, Z, Z, Z, Y, Y, Y},
{Y, Z, Z, Y, Z, Y, Z}, {Y, Z, Z, Z, Y, Z, Y}, {Y, Z, Z, Y, Z, Y, X},
{Y, Z, Z, Z, Y, Z, Z, Z}, {Y, Z, Z, Z, Y, Z, Z, Y}, {Y, Z, Z, Z, Y, Z, Z, X},
{Y, Z, Z, Z, Z, Y, Y, Y}, {Y, Z, Z, Z, Z, Y, Z, Z, X}, {Y, Z, Z, Z, Z, Y, Z, Y, X},
{Y, Z, Z, Z, Z, Y, Z, Y, Z}, {Y, Z, Z, Z, Z, Z, Y, Y, Y}, {Y, Z, Z, Z, Z, Y, Z, Z, Z},
{Y, Z, Z, Z, Z, Y, Z, Z, Y, Y}, {Y, Z, Z, Z, Z, Y, Z, Z, Y, X}, {Y, Z, Z, Z, Z, Z, Y, Z, Y, X},
{Y, Z, Z, Z, Z, Z, Y, Z, Z, X}, {Y, Z, Z, Z, Z, Y, Z, Z, Y, Z}, {Y, Z, Z, Z, Z, Z, Y, Z, Y, Z},
{Y, Z, Z, Z, Z, Z, Y, Z, Z, Y}, {Y, Z, Z, Z, Z, Z, Y, Z, Z, Z, Z}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Y, X},
{Y, Z, Z, Z, Z, Z, Y, Z, Z, Z, X}, {Y, Z, Z, Z, Z, Z, Y, Z, Z, Z, Y}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, X},
{Y, Z, Z, Z, Z, Z, Z, Y, Z, Y, Z}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Y, Z}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Y, Y},
{Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Y, X}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Z, Z},
{Y, Z, Z, Z, Z, Z, Z, Z, Y, Z, Y, X}, {Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Z, Y},
{Y, Z, Z, Z, Z, Z, Z, Y, Z, Z, Z, X}, {Y, Z, Z, Z, Z, Z, Z, Z, Y, Z, Z, X}}
#mons
(tree,rightOverlaps) = suffixTree mons;
subwords = suffixTreeSubwords(tree, {Y,Z,Z,Z,Z,Y,Z,Y,X,X})
|