1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
setRandomSeed 1
--*********************************************************************
--*
--*This file contains the code implementing the algorithms described
--*in my paper "Computing characteristic classes of projective schemes".
--*This code can be freely used, provided use is properly acknowledged.
--*Please send comments to aluffi@math.fsu.edu
--*
--*Paolo Aluffi, April 2002
--*
--*********************************************************************
--*********************************************************************
--*
--*Minor changes implemented in January 2003:
--*extracted a separate routine blup for blow-ups, and replaced a dimension
--*check in presegre with a direct verification that an element is not
--*a zero-divisor.
--*
--*********************************************************************
--*********************************************************************
--*
--*Adapted to work with 0.9.95, June 2007
--*
--*********************************************************************
--*********************************************************************
--*
--*Adapted to work with 1.1, March 2008
--*
--*(avoiding an unnecessary transfer of a local variable, which was
--*confusing 1.1)
--*
--*********************************************************************
--getrings extracts the ring of the ideal and manufactures
--local copies of the coefficient field (kk), the ring (S, assumed
--to be a polynomial ring), the dimension, and the ideal itself.
getrings := Icenter -> (
print Icenter;
S:=ring Icenter;
if not (isPolynomialRing S) then
<<"Sorry, expecting an ideal defined over a polynomial ring"<<endl
else
kk:=coefficientRing S;
n:=numgens S-1;
z:=symbol z;
S=kk[z_0..z_n];
sequence(kk,S,n,(map(S,ring Icenter,{z_0..z_n})) Icenter)
);
--fixideal prepares the ideal for use by (pre)segre. This amounts to
--trimming, fixing generators so that they all have the same
--degree, and replacing the zero ideal by the ideal generated by 0
fixideal := (S,n,Icenter) -> (
cr:=0;en:=0;
tem:=ideal 0_S;
center:=trim substitute(Icenter,S);
m:=numgens center;
if m!=0 then (
ma:=first max degrees center;
ls:=first entries gens center;
for i from 0 to m-1 do
(en=ls_i,cr=ma-first degree en;
for j from 0 to n do tem=tem+ideal(en*((entries vars S)_0_j)^cr));
tem=trim tem);
sequence(ma,tem));
--blup computes an ideal for the Rees algebra of the given ideal,
--for use in presegre.
blup = (I,t) -> (
m := numgens I;
S := ring I;
kk := coefficientRing S;
R := kk[gens S, t_0 .. t_(m-1)];
II := substitute(I,R);
J := ideal apply(0..(m-2), i -> apply((i+1)..(m-1),
j -> (II_i*t_j-II_j*t_i)));
if m==1 then J=ideal 0_R;
saturate(J,II_0)
);
--presegre applies the previous routines, then computes the shadow
--of the blow-up along the given ideal. This is encoded in the sequence
--of degrees of the images of suitable loci. The output includes
--the max degree of a generator of the ideal.
presegre = (kk,S,n,Icenter) -> (
init:=fixideal(S,n,Icenter);
center:=init_1;
m:=numgens center;
T:=kk[v_1 .. v_m];
U:=kk[v_1 .. v_m , gens S ,MonomialOrder => Eliminate m];
irrel:=ideal(v_1 .. v_m);
blowup:=substitute(blup(center,v),U);
blowup=saturate(blowup,irrel);
Ide:=new MutableList from {0..n};
d:=0;L:=0;Iq:=0;
Ide#0=blowup;
while d<n do
(L=substitute(ideal(random(1,T)),U);
Iq=(Ide#d:L);
if not(isSubset(Iq,Ide#d)) then <<"."
else (d=d+1;Ide#d=saturate(Ide#(d-1)+L,irrel));
);
tem:={};
for d from 0 to n do
(jde=substitute(selectInSubring(1,gens gb Ide#d),S);
tem=append(tem,degree ideal(jde)));
sequence(init_0,tem));
--segre uses the sequence obtained in presegre, and computes the
--push-forward of the Segre class and of the Fulton class. These are
--elements of the globally defined ring intringPn, generated by the
--hyperplane class H. The global variables segreclass and fultonclass
--carry the two classes, available for further manipulations.
--segreclass is displayed.
segre = Icenter -> (
t:=symbol t;
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
<<"Segre class : "<<segreclass<<endl;
fultonclass=(1+H)^(n+1)*segreclass;
);
--CF does the same as segre, but displays fultonclass
CF = Icenter -> (
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
t:=symbol t;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
fultonclass=(1+H)^(n+1)*segreclass;
<<"Fulton class : "<<fultonclass<<endl;
);
--csm computes the Chern-Schwartz-MacPherson class of a hypersurface,
--for use by the more general CSM. The input consists of the intersection
--ring W, where the answer is to be placed, the equation hyper of the
--hypersurface, and the information kk,S,n to be carried along to presegre.
csm := (kk,S,n,W,hyper) -> (
jac:=ideal jacobian ideal hyper;
t:= symbol t;
tem:=(presegre(kk,S,n,jac))_1;
--use W;
(1+H)^(n+1) - sum(0..n,d->tem#d*(-H)^d*(1+H)^(n-d))
);
--CSM assembles many csm computations to get the Chern-Schwartz-MacPherson
--class of an arbitrary ideal. The global variable csmclass carries the
--answer.
CSM = idea -> (
init:=getrings(idea);
kk:=init_0;
S:=init_1;
n:=init_2;
schem:=init_3;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
r:=numgens schem;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
gschem:=(entries gens schem)_0;
for s from 1 to r do
(--<<";"<<endl;
sset#s=apply(subsets(gschem,s),eq->csm(kk,S,n,intringPn,product(eq)));
psum#s=sum(sset#s));
csmclass=sum(1..r,s->-(-1)^s*psum#s);
<<"Chern-Schwartz-MacPherson class : "<<csmclass<<endl;
);
--milnor does both CSM and CF, and defines a global variable milnorclass
--as well.
milnor = Icenter -> (
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
t:=symbol t;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
fultonclass=(1+H)^(n+1)*segreclass;
<<"Fulton class : "<<fultonclass<<endl;
schem:=center;
r:=numgens schem;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
gschem:=(entries gens schem)_0;
for s from 1 to r do
(--<<";"<<endl;
sset#s=apply(subsets(gschem,s),eq->csm(kk,S,n,intringPn,product(eq)));
psum#s=sum(sset#s));
csmclass=sum(1..r,s->-(-1)^s*psum#s);
<<"Chern-Schwartz-MacPherson class : "<<csmclass<<endl;
milnorclass=csmclass-fultonclass;
<<"Milnor class : "<<milnorclass<<endl;
);
--euleraffinehyp computes the Euler characteristic of an affine
--hypersurface, for use by euleraffine.
euleraffinehyp := (kk,S,n,W,eqn) -> (
enleqn:=homogenize(eqn,(entries vars S)_0_0)*(entries vars S)_0_0;
cuteqn:=substitute(enleqn,{(entries vars S)_0_0=>0});
tem:=csm(kk,S,n,W,enleqn)-csm(kk,S,n,W,cuteqn);
tem_(H^n)+1
);
--euleraffine computes the Euler characteristic of an affine scheme,
--by performing many euleraffinehyp.
euleraffine = idea -> (
S:=ring idea;
if not (isPolynomialRing S) then
<<"Sorry, expecting an ideal defined over a polynomial ring"<<endl
else
kk:=coefficientRing S;
n:=numgens S;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
z:=symbol z;
S=kk[z_0..z_n];
schem:=(map(S,ring idea,{z_1..z_n})) idea;
r:=numgens schem;
gschem:=(entries gens schem)_0;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
for s from 1 to r do
(--<<";"<<endl;
sset#s=apply(subsets(gschem,s),
eq->euleraffinehyp(kk,S,n,intringPn,product(eq)));
psum#s=sum(sset#s));
sum(1..r,s->-(-1)^s*psum#s)
);
--*
--*********************************************************************
--*********************************************************************
--*
--* Adding the following `test' code February 2009; it runs through
--* the examples in the documentation on
--*
--* http://www.math.fsu.edu/~aluffi/CSM/CSMexamples.html
--*
--* and should raise an error message for any computation that does
--* not produce the expected result.
--*
--*********************************************************************
-- (
ringP2=QQ[x,y,z];
ringP3=QQ[x,y,z,w];
ringP4=QQ[x,y,z,w,t];
use ringP3;
CSM ideal 0_ringP3;
assert(csmclass==4*H^3+6*H^2+4*H+1);
threelines=ideal(x*y,x*z,y*z);
segre threelines;
assert(segreclass==-10*H^3+3*H^2);
threecoplanarlines=ideal(z,x*y*(x+y));
segre threecoplanarlines;
assert(segreclass==-12*H^3+3*H^2);
use ringP2; threecoplanarlines2=ideal(x*y*(x+y));
segre threecoplanarlines2;
assert(segreclass==-9*H^2+3*H);
CF threelines;
assert(fultonclass==2*H^3+3*H^2);
CF threecoplanarlines;
assert(fultonclass==3*H^2);
CSM threelines;
assert(csmclass==4*H^3+3*H^2);
CSM threecoplanarlines;
assert(csmclass==4*H^3+3*H^2);
use ringP3;threeplanes=ideal(x*y*z);cubic=ideal(x^3+y^3+z^3+w^3);
CF threeplanes;
assert(fultonclass==9*H^3+3*H^2+3*H);
CF cubic;
assert(fultonclass==9*H^3+3*H^2+3*H);
CSM threeplanes;
assert(csmclass==4*H^3+6*H^2+3*H);
CSM cubic;
assert(csmclass==9*H^3+3*H^2+3*H);
use QQ[x,y,z]; eu=euleraffine ideal(x^3+y^3+z^3-1);
assert(eu==9);
eu:=euleraffine ideal(x^3+y^3+z^2-1);
assert(eu==5);
use ringP3; twolinesnilp=ideal(x,z)*ideal(y,z);
CF twolinesnilp;
assert(fultonclass==4*H^3+2*H^2);
CSM twolinesnilp;
assert(csmclass==3*H^3+2*H^2);
twolinesred=ideal(x*y,z);
CF twolinesred;
assert(fultonclass==2*H^3+2*H^2);
CSM twolinesred;
assert(csmclass==3*H^3+2*H^2);
use ringP4; CSM ideal(x^5+y^5+z^5+w^5+t^5);
assert(csmclass==-200*H^4+50*H^3+5*H);
CSM ideal(x^3*t^2+x*z^4+w^5-y^2*t^3);
assert(csmclass==4*H^4+38*H^3+5*H);
use ZZ/2[x,y,z,w];
q0 = 215*x^3*z^2+27*x^4*z+x^5+669*x^2*z^3+720*x*z^4;
q1 = 5*x^4*y+27*x^4*w+108*x^3*y*z+430*x^3*z*w+645*x^2*y*z^2+720*y*z^4+1338*y*z^3*x+2007*x^2*z^2*w+2880*x*z^3*w;
q2 = 10*x^3*y^2+215*x^3*w^2+108*x^3*y*w+162*x^2*y^2*z+1290*x^2*y*z*w+645*x*y^2*z^2+2007*x^2*w^2*z+669*y^2*z^3+2880*y*z^3*w+4014*x*y*z^2*w+4320*x*z^2*w^2;
q3 = 10*x^2*y^3+215*y^3*z^2+162*x^2*y^2*w+645*x^2*y*w^2+108*x*y^3*z+1290*x*y^2*z*w+669*x^2*w^3+2880*x*w^3*z+2007*y^2*z^2*w+4014*x*y*z*w^2+4320*y*z^2*w^2;
q4 = 5*x*y^4+27*y^4*z+108*x*y^3*w+645*x*y^2*w^2+430*y^3*z*w+720*x*w^4+1338*x*w^3*y+2007*y^2*w^2*z+2880*y*w^3*z;
q5 = 215*y^3*w^2+27*y^4*w+y^5+669*y^2*w^3+720*y*w^4;
dtupleideal= ideal(q0,q1,q2,q3,q4,q5);
segre dtupleideal;
assert(segreclass==-70*H^3+13*H^2);
use ZZ/3[x,y,z,w];
q0 = 215*x^3*z^2+27*x^4*z+x^5+669*x^2*z^3+720*x*z^4;
q1 = 5*x^4*y+27*x^4*w+108*x^3*y*z+430*x^3*z*w+645*x^2*y*z^2+720*y*z^4+1338*y*z^3*x+2007*x^2*z^2*w+2880*x*z^3*w;
q2 = 10*x^3*y^2+215*x^3*w^2+108*x^3*y*w+162*x^2*y^2*z+1290*x^2*y*z*w+645*x*y^2*z^2+2007*x^2*w^2*z+669*y^2*z^3+2880*y*z^3*w+4014*x*y*z^2*w+4320*x*z^2*w^2;
q3 = 10*x^2*y^3+215*y^3*z^2+162*x^2*y^2*w+645*x^2*y*w^2+108*x*y^3*z+1290*x*y^2*z*w+669*x^2*w^3+2880*x*w^3*z+2007*y^2*z^2*w+4014*x*y*z*w^2+4320*y*z^2*w^2;
q4 = 5*x*y^4+27*y^4*z+108*x*y^3*w+645*x*y^2*w^2+430*y^3*z*w+720*x*w^4+1338*x*w^3*y+2007*y^2*w^2*z+2880*y*w^3*z;
q5 = 215*y^3*w^2+27*y^4*w+y^5+669*y^2*w^3+720*y*w^4;
dtupleideal= ideal(q0,q1,q2,q3,q4,q5);
segre dtupleideal;
assert(segreclass==-58*H^3+11*H^2);
use ringP2; milnor ideal(y^6+z*x^3*y^2+z^2*x^4);
assert(fultonclass==-18*H^2+6*H);
assert(csmclass==6*H);
assert(milnorclass==18*H^2);
use ringP3; milnor ideal(y^2*z-x^3-x^2*z);
assert(fultonclass==9*H^3+3*H^2+3*H);
assert(csmclass==2*H^3+4*H^2+3*H);
assert(milnorclass==-7*H^3+H^2);
-- )
--*********************************************************************
|