File: CSM.test.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (363 lines) | stat: -rw-r--r-- 12,249 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
setRandomSeed 1
--*********************************************************************
--*
--*This file contains the code implementing the algorithms described
--*in my paper "Computing characteristic classes of projective schemes".
--*This code can be freely used, provided use is properly acknowledged.
--*Please send comments to    aluffi@math.fsu.edu
--*
--*Paolo Aluffi, April 2002
--*
--*********************************************************************

--*********************************************************************
--*
--*Minor changes implemented in January 2003:
--*extracted a separate routine blup for blow-ups, and replaced a dimension
--*check in presegre with a direct verification that an element is not
--*a zero-divisor.
--*
--*********************************************************************

--*********************************************************************
--*
--*Adapted to work with 0.9.95, June 2007
--*
--*********************************************************************

--*********************************************************************
--*
--*Adapted to work with 1.1, March 2008
--*
--*(avoiding an unnecessary transfer of a local variable, which was
--*confusing 1.1)
--*
--*********************************************************************

--getrings extracts the ring of the ideal and manufactures
--local copies of the coefficient field (kk), the ring (S, assumed 
--to be a polynomial ring), the dimension, and the ideal itself.

getrings := Icenter -> (
print Icenter;
S:=ring Icenter;
if not (isPolynomialRing S) then 
<<"Sorry, expecting an ideal defined over a polynomial ring"<<endl
else 
kk:=coefficientRing S;
n:=numgens S-1;
z:=symbol z;
S=kk[z_0..z_n];
sequence(kk,S,n,(map(S,ring Icenter,{z_0..z_n})) Icenter)
);

--fixideal prepares the ideal for use by (pre)segre. This amounts to
--trimming, fixing generators so that they all have the same 
--degree, and replacing the zero ideal by the ideal generated by 0

fixideal := (S,n,Icenter) -> (
cr:=0;en:=0;
tem:=ideal 0_S;
center:=trim substitute(Icenter,S);
m:=numgens center;
if m!=0 then (
ma:=first max degrees center;
ls:=first entries gens center;
for i from 0 to m-1 do
	(en=ls_i,cr=ma-first degree en;
	 for j from 0 to n do tem=tem+ideal(en*((entries vars S)_0_j)^cr));
	 tem=trim tem);
sequence(ma,tem));

--blup computes an ideal for the Rees algebra of the given ideal,
--for use in presegre.

blup = (I,t) -> (
	m := numgens I;
	S := ring I;
	kk := coefficientRing S;
	R := kk[gens S, t_0 .. t_(m-1)];
	II := substitute(I,R);
	J := ideal apply(0..(m-2), i -> apply((i+1)..(m-1), 
             j -> (II_i*t_j-II_j*t_i)));
        if m==1 then J=ideal 0_R;
	saturate(J,II_0)
);

--presegre applies the previous routines, then computes the shadow
--of the blow-up along the given ideal. This is encoded in the sequence
--of degrees of the images of suitable loci. The output includes
--the max degree of a generator of the ideal.

presegre = (kk,S,n,Icenter) -> (
init:=fixideal(S,n,Icenter);
center:=init_1;
m:=numgens center;
T:=kk[v_1 .. v_m];
U:=kk[v_1 .. v_m , gens S ,MonomialOrder => Eliminate m];
irrel:=ideal(v_1 .. v_m);
blowup:=substitute(blup(center,v),U);
blowup=saturate(blowup,irrel);
Ide:=new MutableList from {0..n};
d:=0;L:=0;Iq:=0;
Ide#0=blowup;
while d<n do
	(L=substitute(ideal(random(1,T)),U); 
	     Iq=(Ide#d:L);
	 if not(isSubset(Iq,Ide#d)) then <<"."
		else (d=d+1;Ide#d=saturate(Ide#(d-1)+L,irrel)); 
        );
tem:={};
for d from 0 to n do 
 (jde=substitute(selectInSubring(1,gens gb Ide#d),S);
  tem=append(tem,degree ideal(jde)));
sequence(init_0,tem));

--segre uses the sequence obtained in presegre, and computes the
--push-forward of the Segre class and of the Fulton class. These are 
--elements of the globally defined ring intringPn, generated by the 
--hyperplane class H. The global variables segreclass and fultonclass
--carry the two classes, available for further manipulations.
--segreclass is displayed.

segre = Icenter -> (
t:=symbol t;
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
<<"Segre class : "<<segreclass<<endl;
fultonclass=(1+H)^(n+1)*segreclass;
);

--CF does the same as segre, but displays fultonclass

CF = Icenter -> (
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
t:=symbol t;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
fultonclass=(1+H)^(n+1)*segreclass;
<<"Fulton class : "<<fultonclass<<endl;
);

--csm computes the Chern-Schwartz-MacPherson class of a hypersurface,
--for use by the more general CSM. The input consists of the intersection
--ring W, where the answer is to be placed, the equation hyper of the
--hypersurface, and the information kk,S,n to be carried along to presegre.

csm := (kk,S,n,W,hyper) -> (
jac:=ideal jacobian ideal hyper;
t:= symbol t;
tem:=(presegre(kk,S,n,jac))_1;
--use W;
(1+H)^(n+1) - sum(0..n,d->tem#d*(-H)^d*(1+H)^(n-d))
);

--CSM assembles many csm computations to get the Chern-Schwartz-MacPherson
--class of an arbitrary ideal. The global variable csmclass carries the
--answer.

CSM = idea -> (
init:=getrings(idea);
kk:=init_0;
S:=init_1;
n:=init_2;
schem:=init_3;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
r:=numgens schem;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
gschem:=(entries gens schem)_0;
for s from 1 to r do
   (--<<";"<<endl;
   sset#s=apply(subsets(gschem,s),eq->csm(kk,S,n,intringPn,product(eq)));
   psum#s=sum(sset#s));
csmclass=sum(1..r,s->-(-1)^s*psum#s);
<<"Chern-Schwartz-MacPherson class : "<<csmclass<<endl;
);

--milnor does both CSM and CF, and defines a global variable milnorclass
--as well.

milnor = Icenter -> (
init:=getrings(Icenter);
kk:=init_0;
S:=init_1;
n:=init_2;
center:=init_3;
t:=symbol t;
init=presegre(kk,S,n,center);
ma:=init_0;tem:=init_1;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
poly:=sum(0..n,s->tem#s*H^s*(1+ma*H)^(n-s));
segreclass=1 - poly * sum(0..n,i->binomial(n+i,i)*(-ma*H)^i);
fultonclass=(1+H)^(n+1)*segreclass;
<<"Fulton class : "<<fultonclass<<endl;
schem:=center;
r:=numgens schem;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
gschem:=(entries gens schem)_0;
for s from 1 to r do
   (--<<";"<<endl;
   sset#s=apply(subsets(gschem,s),eq->csm(kk,S,n,intringPn,product(eq)));
   psum#s=sum(sset#s));
csmclass=sum(1..r,s->-(-1)^s*psum#s);
<<"Chern-Schwartz-MacPherson class : "<<csmclass<<endl;
milnorclass=csmclass-fultonclass;
<<"Milnor class : "<<milnorclass<<endl;
);

--euleraffinehyp computes the Euler characteristic of an affine 
--hypersurface, for use by euleraffine.

euleraffinehyp := (kk,S,n,W,eqn) -> (
enleqn:=homogenize(eqn,(entries vars S)_0_0)*(entries vars S)_0_0;
cuteqn:=substitute(enleqn,{(entries vars S)_0_0=>0});
tem:=csm(kk,S,n,W,enleqn)-csm(kk,S,n,W,cuteqn);
tem_(H^n)+1
);

--euleraffine computes the Euler characteristic of an affine scheme,
--by performing many euleraffinehyp.

euleraffine = idea -> (
S:=ring idea;
if not (isPolynomialRing S) then 
<<"Sorry, expecting an ideal defined over a polynomial ring"<<endl
else 
kk:=coefficientRing S;
n:=numgens S;
H=symbol H;
intringPn=ZZ[H]/(H^(n+1));
z:=symbol z;
S=kk[z_0..z_n];
schem:=(map(S,ring idea,{z_1..z_n})) idea;
r:=numgens schem;
gschem:=(entries gens schem)_0;
sset:=new MutableList from {0..r};
psum:=new MutableList from {0..r};
for s from 1 to r do
 (--<<";"<<endl;
 sset#s=apply(subsets(gschem,s),
             eq->euleraffinehyp(kk,S,n,intringPn,product(eq)));
 psum#s=sum(sset#s));
sum(1..r,s->-(-1)^s*psum#s)
);

--*
--*********************************************************************

--*********************************************************************
--*
--* Adding the following `test' code February 2009; it runs through
--* the examples in the documentation on 
--*
--* http://www.math.fsu.edu/~aluffi/CSM/CSMexamples.html
--*
--* and should raise an error message for any computation that does 
--* not produce the expected result.
--*
--*********************************************************************

-- (
       ringP2=QQ[x,y,z];
       ringP3=QQ[x,y,z,w];
       ringP4=QQ[x,y,z,w,t];
       use ringP3;
       CSM ideal 0_ringP3;
       assert(csmclass==4*H^3+6*H^2+4*H+1);
       threelines=ideal(x*y,x*z,y*z);
       segre threelines;
       assert(segreclass==-10*H^3+3*H^2);
       threecoplanarlines=ideal(z,x*y*(x+y));
       segre threecoplanarlines;
       assert(segreclass==-12*H^3+3*H^2);
       use ringP2; threecoplanarlines2=ideal(x*y*(x+y));
       segre threecoplanarlines2;
       assert(segreclass==-9*H^2+3*H);
       CF threelines;
       assert(fultonclass==2*H^3+3*H^2);
       CF threecoplanarlines;
       assert(fultonclass==3*H^2);
       CSM threelines;
       assert(csmclass==4*H^3+3*H^2);
       CSM threecoplanarlines;
       assert(csmclass==4*H^3+3*H^2);
       use ringP3;threeplanes=ideal(x*y*z);cubic=ideal(x^3+y^3+z^3+w^3);
       CF threeplanes;
       assert(fultonclass==9*H^3+3*H^2+3*H);
       CF cubic;
       assert(fultonclass==9*H^3+3*H^2+3*H);
       CSM threeplanes;
       assert(csmclass==4*H^3+6*H^2+3*H);
       CSM cubic;
       assert(csmclass==9*H^3+3*H^2+3*H);
       use QQ[x,y,z]; eu=euleraffine ideal(x^3+y^3+z^3-1);
       assert(eu==9);
       eu:=euleraffine ideal(x^3+y^3+z^2-1);
       assert(eu==5);
       use ringP3; twolinesnilp=ideal(x,z)*ideal(y,z);
       CF twolinesnilp; 
       assert(fultonclass==4*H^3+2*H^2);
       CSM twolinesnilp;
       assert(csmclass==3*H^3+2*H^2);
       twolinesred=ideal(x*y,z);
       CF twolinesred; 
       assert(fultonclass==2*H^3+2*H^2);
       CSM twolinesred;
       assert(csmclass==3*H^3+2*H^2);
       use ringP4; CSM ideal(x^5+y^5+z^5+w^5+t^5);
       assert(csmclass==-200*H^4+50*H^3+5*H);
       CSM ideal(x^3*t^2+x*z^4+w^5-y^2*t^3);
       assert(csmclass==4*H^4+38*H^3+5*H);
       use ZZ/2[x,y,z,w]; 
       q0 = 215*x^3*z^2+27*x^4*z+x^5+669*x^2*z^3+720*x*z^4;
       q1 = 5*x^4*y+27*x^4*w+108*x^3*y*z+430*x^3*z*w+645*x^2*y*z^2+720*y*z^4+1338*y*z^3*x+2007*x^2*z^2*w+2880*x*z^3*w;
       q2 = 10*x^3*y^2+215*x^3*w^2+108*x^3*y*w+162*x^2*y^2*z+1290*x^2*y*z*w+645*x*y^2*z^2+2007*x^2*w^2*z+669*y^2*z^3+2880*y*z^3*w+4014*x*y*z^2*w+4320*x*z^2*w^2;
       q3 = 10*x^2*y^3+215*y^3*z^2+162*x^2*y^2*w+645*x^2*y*w^2+108*x*y^3*z+1290*x*y^2*z*w+669*x^2*w^3+2880*x*w^3*z+2007*y^2*z^2*w+4014*x*y*z*w^2+4320*y*z^2*w^2;
       q4 = 5*x*y^4+27*y^4*z+108*x*y^3*w+645*x*y^2*w^2+430*y^3*z*w+720*x*w^4+1338*x*w^3*y+2007*y^2*w^2*z+2880*y*w^3*z;
       q5 = 215*y^3*w^2+27*y^4*w+y^5+669*y^2*w^3+720*y*w^4;
       dtupleideal= ideal(q0,q1,q2,q3,q4,q5);
       segre dtupleideal;
       assert(segreclass==-70*H^3+13*H^2);
       use ZZ/3[x,y,z,w]; 
       q0 = 215*x^3*z^2+27*x^4*z+x^5+669*x^2*z^3+720*x*z^4;
       q1 = 5*x^4*y+27*x^4*w+108*x^3*y*z+430*x^3*z*w+645*x^2*y*z^2+720*y*z^4+1338*y*z^3*x+2007*x^2*z^2*w+2880*x*z^3*w;
       q2 = 10*x^3*y^2+215*x^3*w^2+108*x^3*y*w+162*x^2*y^2*z+1290*x^2*y*z*w+645*x*y^2*z^2+2007*x^2*w^2*z+669*y^2*z^3+2880*y*z^3*w+4014*x*y*z^2*w+4320*x*z^2*w^2;
       q3 = 10*x^2*y^3+215*y^3*z^2+162*x^2*y^2*w+645*x^2*y*w^2+108*x*y^3*z+1290*x*y^2*z*w+669*x^2*w^3+2880*x*w^3*z+2007*y^2*z^2*w+4014*x*y*z*w^2+4320*y*z^2*w^2;
       q4 = 5*x*y^4+27*y^4*z+108*x*y^3*w+645*x*y^2*w^2+430*y^3*z*w+720*x*w^4+1338*x*w^3*y+2007*y^2*w^2*z+2880*y*w^3*z;
       q5 = 215*y^3*w^2+27*y^4*w+y^5+669*y^2*w^3+720*y*w^4;
       dtupleideal= ideal(q0,q1,q2,q3,q4,q5);
       segre dtupleideal;
       assert(segreclass==-58*H^3+11*H^2);
       use ringP2; milnor ideal(y^6+z*x^3*y^2+z^2*x^4);
       assert(fultonclass==-18*H^2+6*H);
       assert(csmclass==6*H);
       assert(milnorclass==18*H^2);
       use ringP3; milnor ideal(y^2*z-x^3-x^2*z);
       assert(fultonclass==9*H^3+3*H^2+3*H);
       assert(csmclass==2*H^3+4*H^2+3*H);
       assert(milnorclass==-7*H^3+H^2);
-- )
   
--*********************************************************************