File: testsubring.m2

package info (click to toggle)
macaulay2 1.21%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 133,096 kB
  • sloc: cpp: 110,377; ansic: 16,306; javascript: 4,193; makefile: 3,821; sh: 3,580; lisp: 764; yacc: 590; xml: 177; python: 140; perl: 114; lex: 65; awk: 3
file content (167 lines) | stat: -rw-r--r-- 4,952 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
-- Copyright 1996 by Michael E. Stillman, David Eisenbud
-- based on David Eisenbud's
-- subring and push_forward1 scripts for Macaulay

-- Tests of the subring and pushForward code

-- pushForward1 has been removed, but we can simulate it:

pushforward1 = method(Options => options pushForward)
pushforward1(RingMap, Module) := opts -> (f,M) -> (
     S := source f;
     g := gens M;
     N := source g;
     assert( isFreeModule N );
     N':= S^(- degrees N);
     gens kernel map(M,N',f,id_N))

test1 = () -> (
    -- One of the simplest: the rational quartic curve
    R = ZZ/101[s,t];
    S = ZZ/101[a..d];
    f = map(R,S,matrix{{s^4,s^3*t,s*t^3,t^4}});
    time J0 = generators kernel f;
    time J2 = pushforward1(f,R^1);
    assert(image J0 == image J2);
    )

test1a = () -> (
    R = ZZ/101[s,t];
    S = ZZ/101[a..d];
    f = map(R,S,matrix{{s^4,s^3*t,s*t^3,t^4}});
    J0 = pushforward1(f,R^1,DegreeLimit=>5);
    )

test2 = () -> (
    -- image of an elliptic curve on the Veronese
    -- tests the quotient ring case
    R = ZZ/101[symbol x, symbol y, symbol z]/(y^2*z - x*(x+z)*(x-z));
    S = ZZ/101[symbol a..symbol f];
    F = map(R,S,symmetricPower(2,vars R));
    time J0 = generators kernel F;
    time J2 = pushforward1(F,R^1);
    assert(image J0 == image J2);
    )

test3 = () -> (
    -- The middle monomial ribbon of genus 5
    R = ZZ/101[symbol s, symbol t, symbol y]/(y^2);
    S = ZZ/101[vars(0..4)];
    f = map(R,S,matrix{{t^4, t^3*s, t^2*s^2, t*s^3-t^3*y, s^4-2*s*t^2*y}});
    time J0 = generators kernel f;
    time J2 = pushforward1(f,R^1);
    assert(image J0 == image J2);
    )

test4 = () -> (
    -- a simple example where one of the image values is 0
    R = ZZ/101[symbol a, symbol b];
    f = map(R,R,map(R^1, R^{-1,-1}, {{a,0}}));
    time J0 = generators kernel f;
    time J2 = pushforward1(f,R^1);
    assert(image J0 == image J2);
    -- assert(image J1 == image J2);
    )

test5 = () -> (
    -- a simple example where the entries are not linear independent
    R = ZZ/101[symbol a, symbol b, symbol c];
    f = map(R,R,matrix{{a,b,a-b}});
    time J0 = generators kernel f;
    time J2 = pushforward1(f,R^1);
    assert(image J0 == image J2);
    )
    
test6 = () -> (
    -- a simple example which caused a bug in Macaulay classic
    R = ZZ/101[symbol a]/(a^4);
    S = ZZ/101[symbol a];
    use R;
    f = map(R,S,matrix{{a}});
    time J0 = generators kernel f;
    time J2 = pushforward1(f,R^1);
    assert(image J0 == image J2);
    )

test7 = () -> (
    -- sheaves on P1 x P1
    x = symbol x;
    y = symbol y;
    z = symbol z;
    R = ZZ/32003[x_0, x_1, y_0, y_1];
    S = ZZ/32003[z_0 .. z_3];
    f = map(R,S,matrix{{x_0,x_1}} ** matrix{{y_0,y_1}});
    I = matrix{{x_0,y_0}};   -- a point
    J = matrix{{x_0,x_1}};   -- the empty set
    K = matrix{{x_0*y_0^2 + x_1*y_1^2}};  -- a twisted cubic (i.e. of type (1,2))
    time J0 = pushforward1(f,cokernel I);
    time J1 = pushforward1(f,cokernel J);
    time J2 = pushforward1(f,cokernel K);
    assert(image J0 == image matrix{{z_0,z_1,z_2}});
    assert(image J1 == image matrix{{z_0,z_1,z_2,z_3}});
    assert(image J2 == image matrix{{z_1*z_2-z_0*z_3, z_0*z_2+z_3^2, z_0^2+z_1*z_3}});
    )

test8 = () -> (
    -- A hard example
    S = ZZ/32003[vars(0..3)];
    R = ZZ/32003[vars(0..4)];
    I = matrix{{a^5 + b^5 + c^5 + d^5 + e^5 - 5*a*b*c*d*e,
               e*a^3*b + a*b^3*c + b*c^3*d + c*d^3*e + d*e^3*a,
               e^2*a*b^2 + a^2*b*c^2 + b^2*c*d^2 + c^2*d*e^2 + d^2*e*a^2}};
    f = map(R,S,matrix{{a+b,2*a+c,3*a+d,4*a+e}});
    -- gbTrace = 3;
    time J2 = pushforward1(f, cokernel I,MonomialOrder=>ProductOrder);
    )

testx = () -> (
    -- test the newCoordinateSystem routine, and give an example as to how it gets used
    R = ZZ/101[vars(0..7)];
    y = matrix{{a+b+c}};
    J = matrix{{a-c+d, b-e}};
    fg1 = newCoordinateSystem(R, y);
    f1 = fg1#0; 
    g1 = fg1#1;
    J1 = f1 J;
    J2 = g1 J1;
    assert(J == J2);

    fg2 = newCoordinateSystem(R, J);
    f2 = fg2#0;
    g2 = fg2#1;
    J3 = f2 y;
    J4 = g2 J3;
    assert(J4 == y);
    )

testx1 = () -> (
    -- test the newCoordinateSystem routine, and give an example as to how it gets used
    -- Start with a non-saturated ideal, in a ring using an order other than
    -- reverse lex.
    -- see also 'sat1'.
    S = ZZ/101[vars(0..3)];
    R = ZZ/101[vars(0..3),MonomialOrder=>Eliminate 2];
    I = intersect(
	 image matrix{{a+b, c^3, a*b^2}}, 
	 image matrix{{b^2 - c^2, c^3 - d^3}});
    fg = newCoordinateSystem(S, matrix{{a+b}});
    Fto = fg#0;
    Fback = fg#1;
    J1 = mingens image Fback (divideByVariable(generators gb Fto generators I,S_3))#0;
    assert(image J1 == image matrix{{b^2 - c^2, c^3 - d^3}});
    )

test1()
test2()
test3()
--test4()
test5()
test6()
test7()
test8()
testx()
testx1()

-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/packages/Macaulay2Doc/test testsubring.out"
-- End: