1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
|
-- -*- coding: utf-8 -*-
newPackage(
"CharacteristicClasses",
Version =>"2.0",
Date => "October 24, 2015",
Authors => {{Name => "Martin Helmer",
Email => "martin.helmer@berkeley.edu",
HomePage => "https://math.berkeley.edu/~mhelmer/"},
{Name => "Christine Jost",
Email => "christine.e.jost@gmail.com"}},
Headline => "CSM and Segre classes and the Euler characteristic for subschemes of smooth complete toric varieties",
Keywords => {"Intersection Theory"},
DebuggingMode => false,
PackageImports => { "Elimination", "PrimaryDecomposition", "NormalToricVarieties"},
Configuration => { "pathToBertini" => ""},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "https://msp.org/jsag/",
"article title" => "Computing characteristic classes and the topological Euler characteristic of complex projective schemes",
"acceptance date" => "5 June 2015",
"published article URI" => "https://msp.org/jsag/2015/7-1/p04.xhtml",
"published article DOI" => "10.2140/jsag.2015.7.31",
"published code URI" => "https://msp.org/jsag/2015/7-1/jsag-v7-n1-x04-CharacteristicClasses.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/CharacteristicClasses.m2",
"release at publication" => "82375d8c668f3acf1d825b8ba991081769fba742", -- git commit number in hex
"version at publication" => "1.1",
"volume number" => "7",
"volume URI" => "https://msp.org/jsag/2015/7-1/"
}
);
-- Check the ~/.Macaulay2/init-CharacteristicClasses.m2 file for the absolute path.
bertini'path = (options CharacteristicClasses).Configuration#"pathToBertini";
if not instance(bertini'path,String) then error "expected configuration option pathToBertini to be a string."
--Exported functions/variables
export{"Segre",
"CSM",
"Euler",
"Chern",
"ChowRing",
"ClassInChowRing",
"ClassInToricChowRing",
"ToricChowRing",
"isMultiHomogeneous",
"MultiProjCoordRing",
"CheckToricVarietyValid",
"Output",
"HashForm",
"HashFormXL",
"ChowRingElement",
"Method",
"InclusionExclusion",
"DirectCompleteInt",
"InputIsSmooth",
"IndsOfSmooth",
"CheckSmooth",
"CompMethod",
"ProjectiveDegree",
"PnResidual",
"bertini",
"bertiniCheck"
}
MultiProjCoordRing=method(TypicalValue=>Ring);
MultiProjCoordRing (Symbol,List):=(x,l)->(
kk:=ZZ/32749;
return MultiProjCoordRing(kk,x,l);
);
MultiProjCoordRing (Ring,List):=(kk,l)->(
x:=symbol x;
return MultiProjCoordRing(kk,x,l);
);
MultiProjCoordRing (List):=(l)->(
x:=symbol x;
kk:=ZZ/32749;
return MultiProjCoordRing(kk,x,l);
);
MultiProjCoordRing (Ring, Symbol,List):=(kk,x,l)->(
if not isField(kk) then(
<<"The coefficient ring must be a field, using the default field kk=ZZ/32749"<<endl;
kk=ZZ/32749;
);
totalDim:=sum(l);
m:=length(l);
numVars:=totalDim+m;
degs:={};
ind:=0;
for n in l do (
for i from 0 to n do(
degs=append(degs,OneAti(m,ind));
);
ind=ind+1;
);
return kk[x_0..x_(numVars-1),Degrees=>degs];
);
ClassInChowRing=method(TypicalValue=>RingElement);
ClassInChowRing (QuotientRing,RingElement) :=(A,f)->(
d:=degree f;
m:=numgens(A);
if not isMultiHomogeneous(f) then error "Requires Homogeneous Input"<<endl;
if length(d)!=m then(
error "The degree length of the input polynomial does not match the input ring"<<endl;
return 0;
);
return sum(m,i->d_i*A_i);
);
ClassInToricChowRing=method(TypicalValue=>RingElement);
ClassInToricChowRing (QuotientRing,RingElement) :=(A,f)->(
return substitute(f,A);
);
---------------------------------------------------------
--This function computes the Chern or Chern Fulton class
--
--Input: An Ideal I, of if the ambient spaces is a Toric variety
--an ideal and a NormalToricVariety. Optionally the
--associated Chow ring, or toric Chow ring may be input so
--that the output is returned in this ring
--
--Output: If V=V(I) (in a applicable toric variety X) is smooth
--the Chern class c(V)=c(TV)*[V] is output,
--if the input is not smooth the Chern-Fulton class (CF) is returned
--
--Computed as CF(V)=c(TX)*s(V,X).
-- (s(V,X) denoting the Segre class of the subscheme V)
--
--Optionally the output may be returned in the form of a MutableHashTable
--using the option: Output=>HashForm
--with the following keys:
--"Segre"=s(V,X)
--::"SegreList"-List for of "Segre"
--"CF"="Chern"=Chern-Fulton class (Chern class if V smooth)
--"G" the class of the 'Projective Degrees', see [7] (or [5])
--::"Glist"-List form of G
--
---------------------------------------------------------
Chern=method(TypicalValue=>RingElement,Options => {CompMethod=>ProjectiveDegree,Output=>ChowRingElement});
Chern (Ideal,Symbol) :=opts->(I,h)->(
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
if degreeLength(ring(I))==1 then(
(chernList, ambientDim):= internalChernClassList(I, CompMethod => opts.CompMethod);
return output (chernList, ambientDim, h);
)
else(
<<"The input computational method is not valid for rings with degree length greater than 1"<<endl;
<<"The standard method will be used instead"<<endl;
);
);
return Chern(ChowRing(ring(I),h),I);
);
Chern (Ideal) :=opts->(I)->(
if (opts.CompMethod==PnResidual or opts.CompMethod==bertini) then(
H:=symbol H;
return Chern(I,H,CompMethod=>opts.CompMethod,Output=>opts.Output);
);
return Chern(ChowRing(ring(I)),I,Output=>opts.Output);
);
Chern (QuotientRing, Ideal) :=opts->(ChRing, I)->(
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
B:=flatten entries sort basis ChRing;
ns:=degree last B;
n:=sum(ns);
m:=length ns;
R:=ring I;
ChernTR:=product(m,i->(1+(basis(OneAti(m,i),ChRing))_0_0)^(ns_i+1));
csm:=0;
if opts.Output==HashForm then(
csm=Segre(ChRing,I,Output=>opts.Output);
csm#"CF"=ChernTR*csm#"Segre";
csm#"Chern"=csm#"CF";
)
else(
csm=ChernTR*Segre(ChRing,I);
);
return csm;
);
Chern (NormalToricVariety,Ideal) :=opts-> (TorVar,I)->(
return Chern(ToricChowRing(TorVar),TorVar,I);
);
Chern (QuotientRing, NormalToricVariety,Ideal) :=opts-> (ChRing, TorVar,I)->(
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
R:=ring I;
ChernTR:=substitute(product(numgens(R),i->(1+R_i)),ChRing);
csm:=0;
if opts.Output==HashForm then(
csm=Segre(ChRing,TorVar,I,Output=>opts.Output);
csm#"CF"=ChernTR*csm#"Segre";
csm#"Chern"=csm#"CF";
)
else(
csm=ChernTR*Segre(ChRing,TorVar,I);
);
return csm;
);
---------------------------------------------------------
--This function checks if the input is a toric variety for
--which the methods described in
--
--Input: A NormalToricVariety
--
--Output: true/false, true if the input if the methods of
-- are applicable, false otherwise.
--
---------------------------------------------------------
CheckToricVarietyValid=method(TypicalValue=>Boolean);
CheckToricVarietyValid NormalToricVariety:=X->(
-- needsPackage "NormalToricVarieties";
Value:=true;
for i from 0 to #(rays(X))-1 do (
if not isNef(X_i) then(
return false;
);
);
if length(primaryDecomposition ideal X)!=(#(rays(X))-dim(X)) then(
Value=false;
);
return Value;
);
---------------------------------------------------------
--This function checks if the input is Homogeneous with
--respect to the grading
--
--Input: An ideal or a polynomial in a polynomial ring R
--
--Output: true/false, true if the input is homogeneous with
--respect to the grading on R
--
---------------------------------------------------------
isMultiHomogeneous=method(TypicalValue=>Boolean);
isMultiHomogeneous Ideal:=I->(
Igens:=flatten entries gens(I);
d:=0;
fmons:=0;
for f in Igens do(
fmons=flatten entries monomials(f);
if length(fmons)>1 then(
d=degree(first(fmons));
for mon in fmons do(
if degree(mon)!=d then(
<<"Input term below is not homogeneous with respect to the grading"<<endl;
<<f<<endl;
return false;
);
);
);
);
return true;
);
isMultiHomogeneous RingElement:=f->(
return isMultiHomogeneous(ideal(f));
);
ToricChowRing=method(TypicalValue=>QuotientRing);
ToricChowRing NormalToricVariety:=TorVar->(
needsPackage "NormalToricVarieties";
assert isSimplicial TorVar;
--First build Chow ring, need Stanley-Reisner Ideal (SR) and the ideal
-- generated by the linear relations of the rays (J)
--See Cox, Little, Schenck Th. 12.5.3 and comments after proof
R:=ring(TorVar);
A:=0;
--For simplical toric var. Lemma 3.5 of Euler characteristic of coherent sheaves on simplicial torics via the Stanley-Reisner ring
-- (and probably other sources) tell us that the SR ideal is the Alexander
--dual of the toric irrelevant ideal
--SR:=dual monomialIdeal TorVar;
P:=primaryDecomposition ideal TorVar;
SR:=ideal for p in P list product flatten entries gens p;
F:=fan TorVar;
Fd:=dim(F);
--Build ideal generated by linear relations of the rays
Jl:={};
for j from 0 to dim(F)-1 do(
Jl=append (Jl,sum(length rays(TorVar), i->(((rays TorVar)_i)_j)*R_i ));
);
J:=ideal(Jl);
--Chow ring
if isSmooth(TorVar) then(
--if smooth our Chow ring should be over ZZ
--C:=QQ[gens R, Degrees=>degrees R, Heft=>heft R];
C:=ZZ[gens R];
A=C/substitute(SR+J,C);
)
else (error "Calculations for subschemes of singular toric varieties are not implemented yet";return 0;);
--Generators (as a ring) of the quotient ring representation of the Chow ring correspond to
--the divisors associated to the rays in the fan Theorem 12.5.3. Cox, Little, Schenck and
--comments above
return A;
);
---------------------------------------------------------
--This function builds the Chow ring of a product of
--projective spaces.
--
--Input: A graded polynomial ring which is the coordinate ring
--of a product of projective spaces
--
--Output: A quotient ring which represents the Chow ring of the
--product of projective spaces P=P^{n_1} x ....xP^{n_m} as
--A=ZZ[h_1,...,h_m]/(h_1^{n_1+a},...,h_m^{n_m+1})
-- with h_j denoting the (pushforward of) the rational equivalence
--class of a hyperplane in the projective space P^{n_j}.
--
--optionally one may choose a different symbol to represent
--the hyperplane classes
---------------------------------------------------------
ChowRing=method(TypicalValue=>QuotientRing);
ChowRing (Ring):=(R)->(
h:=symbol h;
return ChowRing(R,h);
);
ChowRing (Ring,Symbol):=(R,h)->(
Rgens:=gens R;
Rdegs:=degrees R;
degd:=0;
eqs:=0;
ChDegs:=unique Rdegs;
m:=length ChDegs;
C:=ZZ[h_1..h_m,Degrees=>ChDegs];
K:={};
inds:={};
rg:=0;
ns:={};
temp:=0;
for d in ChDegs do(
temp=0;
for a in Rdegs do(
if d==a then temp=temp+1;
);
ns=append(ns,temp);
);
for i from 0 to length(ChDegs)-1 do(
K=append(K,C_(i)^(ns_i));
);
K=substitute(ideal K,C);
A:=C/K;
return A;
);
Euler = method(TypicalValue => RingElement,Options => {Method=>InclusionExclusion,CompMethod=>ProjectiveDegree,InputIsSmooth=>false,Output=>ChowRingElement,IndsOfSmooth=>{}});
Euler Ideal:=opts->I->(
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
if degreeLength(ring(I))==1 then(
return internalEuler(I, CompMethod => opts.CompMethod);
)
else(
<<"The input computational method is not valid for rings with degree length greater than 1"<<endl;
<<"The standard method will be used instead"<<endl;
);
);
A:=ChowRing(ring I);
B:=last flatten entries sort basis A;
csm:=0;
EC:=0;
if opts.InputIsSmooth==true then(
if opts.Output==HashForm then(
EC=Chern(A,I,CompMethod=>opts.CompMethod,Output=>opts.Output);
EC#"Euler"=EC#"CSM"_(B)
)
else(
csm=Chern(A,I,CompMethod=>opts.CompMethod);
EC=csm_(B);
);
)
else (
if opts.Output==HashForm then(
EC=CSM(A,I,Method=>opts.Method,Output=>opts.Output);
EC#"Euler"=EC#"CSM"_(B)
)
else(
csm=CSM(A,I,Method=>opts.Method,IndsOfSmooth=>opts.IndsOfSmooth);
EC=csm_(B);
);
);
return EC;
);
Euler (NormalToricVariety,Ideal):=opts->(TorVar,I)->(
A:=ToricChowRing TorVar;
B:=last flatten entries sort basis A;
csm:=0;
EC:=0;
if opts.InputIsSmooth==true then(
if opts.Output==HashForm then(
EC=Chern(A,TorVar,I,CompMethod=>opts.CompMethod,Output=>opts.Output);
EC#"Euler"=EC#"CSM"_(B)
)
else(
csm=Chern(A,I,CompMethod=>opts.CompMethod);
EC=csm_(B);
);
)
else (
if opts.Output==HashForm then(
EC=CSM(A,TorVar,I,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth);
EC#"Euler"=EC#"CSM"_(B)
)
else(
csm=CSM(A,TorVar,I,Method=>opts.Method,IndsOfSmooth=>opts.IndsOfSmooth);
EC=csm_(B);
);
);
return EC;
);
Euler RingElement:=opts->csm->(
A:=ring csm;
B:=last flatten entries sort basis A;
EC:=csm_(B);
return EC;
);
CSM = method(TypicalValue => RingElement,Options => {CompMethod=>ProjectiveDegree,Method=>InclusionExclusion,CheckSmooth=>true,Output=>ChowRingElement,IndsOfSmooth=>{},InputIsSmooth=>false});
CSM NormalToricVariety :=opts->TorVar->(
A:=ToricChowRing(TorVar);
return CSM(A,TorVar,CheckSmooth=>opts.CheckSmooth);
);
CSM (QuotientRing, NormalToricVariety) :=opts->(A,TorVar)->(
--Generators (as a ring) of the quotient ring representation of the Chow ring correspond to
--the divisors associated to the rays in the fan Theorem 12.5.3. Cox, Little, Schenck and
--comments above
L:=gens(A);
Trays:=rays TorVar;
csm:=1_A;
Rmat:=0;
prodj:=0;
--The following implements the method described
--in Barthel, Brasselet, and Fieseler.
--Lemma 12.5.2 of Cox, Little, Schenck is used to find the Chow ring class of the
--orbit closure from divisors
--if the toric variety is smooth the multiplicity is 1.
Ssets:=0;
indsubsets:=0;
TorVarIsSmooth:=false;
if opts.CheckSmooth==true then TorVarIsSmooth=isSmooth(TorVar);
if TorVarIsSmooth then(
for i from 1 to dim(TorVar) do(
indsubsets=subsets((0..numgens(A)-1),i);
Ssets=for l in indsubsets list L_l;
csm=csm+sum(0..(length(Ssets)-1),j-> product(Ssets_j));
);
)
else(
for i from 1 to dim(TorVar) do(
indsubsets=subsets((0..numgens(A)-1),i);
Ssets=for l in indsubsets list L_l;
--csm=csm+sum(0..(length(Ssets)-1),j-> mult(transpose matrix Trays_(indsubsets_j))*product(Ssets_j));
for j from 0 to length(Ssets)-1 do(
Rmat=transpose matrix Trays_(indsubsets_j);
prodj=product(Ssets_j);
if prodj!=0 then(
csm=csm+ mult(Rmat)*prodj;
);
);
);
);
return csm;
)
CSM (NormalToricVariety, Ideal):= opts->(TorVar,I)->(
needsPackage "NormalToricVarieties";
return CSM(ToricChowRing(TorVar),TorVar,I,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth,InputIsSmooth=>opts.InputIsSmooth);
);
CSM (QuotientRing,NormalToricVariety, Ideal):= opts->(ChRing,TorVar,I)->(
needsPackage "NormalToricVarieties";
KnownCSM:= new MutableHashTable;
return CSM(ChRing,TorVar,I,KnownCSM,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth,InputIsSmooth=>opts.InputIsSmooth);
);
CSM (Ideal, Symbol) := opts -> (I,hyperplaneClass) -> (
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
if degreeLength(ring(I))==1 then(
(csmList, ambientDim):= internalCSMClassList(I, CompMethod => opts.CompMethod);
return output (csmList, ambientDim,hyperplaneClass);
)
else(
<<"The input computational method is not valid for rings with degree length greater than 1"<<endl;
<<"The standard method will be used instead"<<endl;
);
);
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
KnownCSM:=new MutableHashTable;
return CSM(ChowRing(ring(I),hyperplaneClass),I,KnownCSM,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth,InputIsSmooth=>opts.InputIsSmooth);
)
CSM Ideal:=opts->I->(
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
H:=symbol H;
return CSM(I,H,CompMethod=>opts.CompMethod)
);
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
KnownCSM:=new MutableHashTable;
return CSM(ChowRing(ring I),I,KnownCSM,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth,InputIsSmooth=>opts.InputIsSmooth);
);
CSM (QuotientRing,Ideal):=opts->(Chring,I)->(
KnownCSM:=new MutableHashTable;
return CSM(Chring,I,KnownCSM,Method=>opts.Method,Output=>opts.Output,IndsOfSmooth=>opts.IndsOfSmooth,InputIsSmooth=>opts.InputIsSmooth);
);
CSM (QuotientRing,Ideal,MutableHashTable):=opts->(ChRing,I,KnownCSMVals)->(
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
R:=ring I;
if opts.InputIsSmooth==true then(
return Chern(ChRing,I,Output=>opts.Output);
);
B:=flatten entries sort basis ChRing;
ns:=degree last B;
n:=sum(ns);
m:=length ns;
KnownCSMVals#"m"=m;
--R:=ring I;
degs:=unique degrees R;
tempId:={};
PDl:={};
for d in degs do(
tempId={};
for y in gens(R) do(
if degree(y)==d then(
tempId=append(tempId,y);
);
);
PDl=append(PDl,ideal(tempId));
);
ChernTR:=product(m,i->(1+(basis(OneAti(m,i),ChRing))_0_0)^(ns_i+1));
return CSMMain(ChRing,I,{PDl,n,ChernTR},KnownCSMVals,opts.Method,opts.Output,opts.IndsOfSmooth);
);
CSM (QuotientRing,NormalToricVariety,Ideal,MutableHashTable):=opts->(ChRing,TorVar,I,KnownCSMVals)->(
needsPackage "NormalToricVarieties";
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
R:=ring I;
ChernTR:=substitute(product(numgens(R),i->(1+R_i)),ChRing);
irel:=ideal TorVar;
PDl:=primaryDecomposition irel;
n:=dim(TorVar);
KnownCSMVals#"TorVar"=TorVar;
return CSMMain(ChRing,I,{PDl,n,ChernTR},KnownCSMVals,opts.Method,opts.Output,opts.IndsOfSmooth);
);
---------------------------------------------------------
--This function computes the Segre class
--
--Input: An Ideal I, or if the ambient spaces is a Toric variety
--an ideal and a NormalToricVariety. Optionally the
--associated Chow ring, or toric Chow ring may be input so
--that the output is returned in this ring
--
--Output: If V=V(I) (in a applicable toric variety X) is smooth
--the Segre class s(V,X) of the subscheme V is output,
--
-- For most situations computations are performed in the internal method
-- SegreMain, this employs the theoretical method described in [5,7].
-- Optionally CompMthod=>PnResidual or CompMthod=>bertini can be specified
-- in such a case the method described in [1] is used and the computation
-- is performed in the method internalSegre.
--
--Optionally the output may be returned in the form of a MutableHashTable
--using the option: Output=>HashForm
--with the following keys:
--"Segre"=s(V,X)
--::"SegreList"-List for of "Segre"
--"G" the class of the 'Projective Degrees', see [7] (or [5])
--::"Glist"-List form of G
--
---------------------------------------------------------
Segre = method(TypicalValue => RingElement,Options => {Output=>ChowRingElement,CompMethod=>ProjectiveDegree});
Segre (NormalToricVariety, Ideal):= opts->(TorVar,I)->(
return Segre(ToricChowRing(TorVar),TorVar,I,Output=>opts.Output);
);
Segre (QuotientRing,NormalToricVariety, Ideal):= opts->(ChRing,TorVar,I)->(
if not isMultiHomogeneous(I) then error"Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
A:=ChRing;
R:=ring I;
irel:=ideal TorVar;
PDl:=primaryDecomposition irel;
n:=dim(TorVar);
degI:= degrees I;
transDegI:= transpose degI;
len:= length transDegI;
maxDegs:= for i from 0 to len-1 list max transDegI_i;
maxexs:=flatten exponents first flatten entries monomials random(maxDegs,R);
alpha:=sum(numgens(R),i->maxexs_i*substitute(R_i,A));
return SegreMainToric(ChRing,TorVar,I,PDl,{alpha,n},opts.Output);
);
Segre (QuotientRing,Ideal):=opts->(ChRing,I) ->(
R:=ring I;
degs:=unique degrees R;
tempId:={};
PDl:={};
for d in degs do(
tempId={};
for y in gens(R) do(
if degree(y)==d then(
tempId=append(tempId,y);
);
);
PDl=append(PDl,ideal(tempId));
);
Output:=opts.Output;
return(SegreMainProjective(ChRing,I,PDl,Output));
);
Segre (Ideal, Symbol) := opts -> (I,hyperplaneClass) -> (
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
if degreeLength(ring(I))==1 then(
(segreList, ambientDim):= internalSegreClassList(I, CompMethod=> opts.CompMethod));
return output (segreList, ambientDim,hyperplaneClass);
)
else(
<<"The input computational method is not valid for rings with degree length greater than 1"<<endl;
<<"The standard method will be used instead"<<endl;
);
return(Segre(ChowRing(ring(I),hyperplaneClass),I,Output=>opts.Output));
);
Segre Ideal:=opts->I ->(
if opts.CompMethod==PnResidual or opts.CompMethod==bertini then(
H:=symbol H;
return Segre(I,H,CompMethod=>opts.CompMethod)
);
return(Segre(ChowRing(ring(I)),I,Output=>opts.Output));
);
-- There is no test for the above functions using CompMethod=>Bertini as Bertini does not need to
-- be installed on every system that runs Macaulay2. However, the function bertiniCheck()
-- checks whether the commands Segre, Chern, CSM and Euler work when using Bertini
-- instead of symbolic computations.
bertiniCheck = () -> (
setRandomSeed 24;
x := symbol x; y := symbol y; z := symbol z; w := symbol w;
-- smooth example for Segre and ChernClass
R := QQ[x,y,z,w];
I := minors(2,matrix{{x,y,z},{y,z,w}});
totalSegre := Segre(I, CompMethod=>bertini);
assert( totalSegre == 3*( (ring(totalSegre))_0 )^2 - 10*( (ring(totalSegre))_0 )^3 );
totalChern := Chern(I, CompMethod=>bertini);
assert( totalChern == 3*( (ring(totalChern))_0 )^2 + 2 * ((ring(totalChern))_0)^3 );
-- singular example for CSM Class and Euler
S := QQ[x,y,z];
J := ideal(x^3 + x^2*z - y^2*z);
totalCSM := CSM(J, CompMethod=>bertini);
assert( totalCSM == 3*( (ring(totalCSM))_0 ) + 1*( (ring(totalCSM))_0 )^2 );
eulerCharacteristic := Euler(J, CompMethod=>bertini);
assert( eulerCharacteristic == 1 );
print "Test passed for the option CompMethod=>bertini for the commands Chern, Segre, CSM and Euler.";
)
---------------------------
--Internal functions
---------------------------
mult=RayMatrix->(
r:=rank RayMatrix;
return multr(RayMatrix,r);
)
--Find the multiplicity (or index) of a simplicial cone defined by the
-- rays given by the columns of the input RayMatrix pg. 300
-- Cox, Little, Schenck.
--pg 66-68, and others....
--Find the multiplicity (or index) of a simplicial cone defined by the
-- rays given by the columns of the input RayMatrix pg. 300
-- Cox, Little, Schenck.
multr=(RayMatrix,r)->(
m:=RayMatrix;
if m==0 then return 0;
if (numRows(m)==1 or numColumns(m)==1) then( return 1);
--r:=rank m;
if r<numRows(m) then(
m=transpose groebnerBasis(transpose(m), Strategy=>"MGB");
);
if r<numColumns(m) then(
--this shouldn't be reached when using mult in csm/euler calc
m= groebnerBasis(m, Strategy=>"MGB");
);
if numRows(m)==numColumns(m) then(
mymult:=abs(determinant(m,Strategy =>Cofactor));
return mymult;
)
else (
error "multiplicity computation error";
return 0;
);
)
SegreMainToric = (ChRing,TorVar,I,PDl,AlphNList,Output)->(
if not isMultiHomogeneous(I) then error"Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
alpha:=AlphNList_0;
n:=AlphNList_1;
return SegreMain(ChRing,I,PDl,{alpha,n,Output});
);
SegreMainToric2 = (ChRing,TorVar,I,PDl,Output)->(
if not isMultiHomogeneous(I) then error"Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
irel:=ideal TorVar;
n:=dim(TorVar);
A:=ChRing;
R:=ring I;
degI:= degrees I;
transDegI:= transpose degI;
len:= length transDegI;
maxDegs:= for i from 0 to len-1 list max transDegI_i;
maxexs:=flatten exponents first flatten entries monomials random(maxDegs,R);
alpha:=sum(numgens(R),i->maxexs_i*substitute(R_i,A));
return SegreMain(ChRing,I,PDl,{alpha,n,Output});
);
SegreMainProjective=(ChRing,I,PDl,Output)->(
if not isMultiHomogeneous(I) then error "Requires Homogeneous Input, try saturating by the irrelevant ideal"<<endl;
R:=ring I;
A:=ChRing;
B:=flatten entries sort basis A;
degs:=unique degrees R;
n:=numgens(R)-length(degs);
degI:= degrees I;
transDegI:= transpose degI;
len:= length transDegI;
maxDegs:= for i from 0 to len-1 list max transDegI_i;
deg1B:={};
for w in B do if sum(degree(w))==1 then deg1B=append(deg1B,w);
m:=length degs;
alpha:=sum(length deg1B,i->(basis(OneAti(m,i),A))_0_0*maxDegs_i);
return SegreMain(A,I,PDl,{alpha,n,Output});
);
SegreMain = (ChRing,I,PDl,alphaANDn)->(
-- take care of the special cases I = (0) and I = (1)
alpha:=alphaANDn_0;
n:=alphaANDn_1;
Output:=alphaANDn_2;
R:=ring I;
kk:=coefficientRing R;
A:=ChRing;
zdim:=0;
B:=flatten entries sort basis A;
for b in B do(
if sum(flatten(exponents(b)))==n then zdim=b;
);
seg:=0;
gbI:=groebnerBasis(I, Strategy=>"MGB");
codimI:= codim ideal leadTerm gbI;
if ideal(gbI)==ideal(0_R) then return 1_A;
t1:=symbol t1;
S:=kk[gens R, t1];
dimI:=n-codimI;
gensI:= delete(0_R,flatten sort entries gens I);
exmon:=0;
degI:= degrees I;
m:=length unique degrees R;
transDegI:= transpose degI;
len:= length transDegI;
maxDegs:= for i from 0 to len-1 list max transDegI_i;
J:= for i from 1 to n list sum(gensI,g -> g*random(kk)*random(maxDegs-degree(g),R));
RdList:={};
GList:={};
Jd:=0;
JT:=0;
c:={};
v:=0;
ve:=0;
K:=0;
Ls:=0;
LA:=0;
gbWt2:=0;
tall2:=0;
Yiota:=0;
ValuesTable:=new MutableHashTable;
n2:=n;--min(n,numgens(I));
if codimI<=n then(
GList=for iota from 0 to (codimI-1) list alpha^(iota);
for iota from codimI to n2 do(
Jd=substitute(ideal take(J,iota),S);
JT=ideal (1-t1*substitute(sum(gensI,g -> g*random(kk)),S));
c={};
for w in B do if sum(flatten(exponents(w)))==iota then c=append(c,w);
Yiota=0;
for w in c do(
Ls=0;
LA=0;
K=0;
v=zdim//w;
ve=flatten exponents(v);
--In this case we are working with the toric representation
--and may use exponents directly
if length(ve)==numgens(R) then(
for i from 0 to length(ve)-1 do(
if ve_i!=0 then (
Ls=Ls+sum(ve_i,j->ideal(random(degree(R_i),R)));
);
);
)
else(
--Projective representation, exponents associated with degrees ring
for i from 0 to length(ve)-1 do(
if ve_i!=0 then (
Ls=Ls+sum(ve_i,j->ideal(random(OneAti(m,i),R)));
);
);
);
for p in PDl do (
LA=LA+ideal(1-sum(numgens(p),i->random(kk)*p_i));
);
K=Jd+JT+substitute(Ls,S)+substitute(LA,S);
gbWt2 = groebnerBasis(K, Strategy=>"F4");
tall2 = numColumns basis(cokernel leadTerm gbWt2);
Yiota=Yiota+tall2*w;
);
GList=append(GList,Yiota);
);
for l from n2 to n-1 do(
GList=append(GList,0);
);
--the following performs the Aluffi tensor notation comp
--GxOMD:=sum(0..n,i->GList_i//((1+cOMaxDegs)^i));
temp3:=1;
GxOMD:=0;
ValuesTable#"Glist"=GList;
ValuesTable#"G"=sum(GList);
tayAlph:=1;
temp4:=1;
ind:=1;
while temp4!=0 do(
temp4=alpha*temp4;
tayAlph=tayAlph+(-1)^ind*temp4;
ind=ind+1;
);
for i from 0 to n do(
GxOMD=GxOMD+GList_i*(temp3);
temp3=temp3*tayAlph;
);
seg=1-(GxOMD*tayAlph);
ValuesTable#"Segre"=seg;
tseg:=terms(seg);
tot:=0;
use R;
if Output==HashForm then(
segList:={};
for i from 0 to n do(
tot=0_A;
for f in tseg do(
if sum(flatten(exponents(f)))==i then(
tot=tot+f
);
);
segList=append(segList,tot);
);
use R;
ValuesTable#"SegreList"=segList;
return ValuesTable;
)
else (
use R;
return seg
)
)
else(
segList=for i from 0 to n list 0_A;
seg=0_A;
if Output==HashForm then(
use R;
ValuesTable#"SegreList"=segList;
ValuesTable#"Segre"=seg;
ValuesTable#"Glist"=segList;
ValuesTable#"G"=seg;
return ValuesTable;
)
else (
use R;
return seg;
);
);
);
CSMInEx = (ChRing,I,RingInfoList,KnownCSMVals,Output)->(
R:=ring I;
A:=ChRing;
PDl:=RingInfoList_0;
n:=RingInfoList_1;
ChernTR:=RingInfoList_2;
gensI:=flatten entries gens I;
gbI:=groebnerBasis(I, Strategy=>"MGB");
if ideal(gbI)==ideal 1_R then return 0_A;
if ideal(gbI)==ideal 0_R then return ChernTR;
--B:=flatten entries sort basis A;
m:=0;
if KnownCSMVals#?"m" then m=KnownCSMVals#"m";
SegY:=0;
SegV:=0;
SegYH:=0;
V:=0;
K:=0;
J:=0;
csmInput:=false;
csmValsComputed:=new MutableHashTable;
vf:=0;
csm:=0;
f:=0;
csm2:=0;
Isubsets:=delete({},subsets(numgens(I)));
for ind in Isubsets do(
csmInput=false;
if KnownCSMVals#?ind then(
if instance(KnownCSMVals#ind,A) then(
csmInput=true;
);
);
f=gensI_ind;
if csmInput then(
csm=csm+(-1)^(length(f)+1)*KnownCSMVals#ind;
)
else(
K=radical ideal product(f);
J=ideal(delete(0_R,flatten entries jacobian K));
if KnownCSMVals#?"TorVar" then(
vf=flatten exponents first flatten entries monomials K_0;
V=sum(numgens(R),i->vf_i*substitute(R_i,A));
SegYH=SegreMainToric2(A,KnownCSMVals#"TorVar",J,PDl,HashForm);
SegY=SegYH#"SegreList";
if Output==HashFormXL then(
csmValsComputed#("G(Jacobian)"|toString(ind))=SegYH#"G";
csmValsComputed#("Segre(Jacobian)"|toString(ind))=SegYH#"Segre";
);
)
else (
vf=degree K_0;
V=sum(length vf, i-> vf_i*(basis(OneAti(m,i),A))_0_0);
SegYH=SegreMainProjective(A,J,PDl,HashForm);
SegY=SegYH#"SegreList";
if Output==HashFormXL then(
csmValsComputed#("G(Jacobian)"|toString(ind))=SegYH#"G";
csmValsComputed#("Segre(Jacobian)"|toString(ind))=SegYH#"Segre";
);
);
SegV=V//(1+V);
csm2=(-1)^(length(f)+1)*(ChernTR*(SegV+sum(n+1,i->sum(n+1-i,j->binomial(n-i,j)*(-V)^j*(-1)^(n-j-i)*SegY_(n-i-j)))) );
csm=csm+csm2;
csmValsComputed#ind=csm2*(-1)^(length(f)+1);
);
);
csmValsComputed#"CSM"=csm;
use R;
if Output==HashForm or Output==HashFormXL then return csmValsComputed else return csm;
);
CSMCompleteInt= (ChRing,I,RingInfoList,KnownCSMVals,Output,SmoothInds)->(
R:=ring I;
irelId:=irrell(R);
PDl:=RingInfoList_0;
n:=RingInfoList_1;
ChernTR:=RingInfoList_2;
A:=ChRing;
gbI:=groebnerBasis(I, Strategy=>"MGB");
if ideal(gbI)==ideal 1_R then return 0_A;
if ideal(gbI)==ideal 0_R then return ChernTR;
codimI:= codim ideal leadTerm gbI;
J2:=0;
Z:=0;
J:=0;
W:=0;
hyper:=0;
cont2:=false;
Sing:=0;
cont:=true;
SingInds:={};
SegY:=0;
Ssets:={};
gensI:=flatten entries gens I;
r:=length(gensI);
codimJ2:=0;
m:=0;
if KnownCSMVals#?"m" then m=KnownCSMVals#"m";
csm:=0;
if codimI!=length(gensI) then(
<<"The input ideal does not define a complete intersection, the option 'DirectComleteInt' may not be used."<<endl;
<<"Using Inclusion/Exclusion instead."<<endl;
return CSM(ChRing,I);
)
else(
if KnownCSMVals#?"SmoothPart" or KnownCSMVals#?"SingularPart" or (SmoothInds!={}) then(
cont2=true;
if KnownCSMVals#?"SmoothPart" then(
SingInds=toList(set(0..(r-1))-set(KnownCSMVals#"SmoothPart"));
Z=ideal gensI_(KnownCSMVals#"SmoothPart");
)
else if KnownCSMVals#?"SingularPart" then(
SingInds=KnownCSMVals#"SingularPart";
Z=ideal gensI_(toList(set(0..(r-1))-set(SingInds)));
)
else (
SingInds=toList(set(0..(r-1))-set(SmoothInds));
Z=ideal gensI_(SmoothInds);
);
)
else(
for j from 1 to r-1 do(
if cont then (
Ssets=subsets(set(0..(r-1)),r-j);
for s in Ssets do(
W=ideal gensI_(toList(s));
J2=saturate(minors(#s,jacobian W)+W,irelId);
codimJ2:= codim ideal leadTerm groebnerBasis(J2, Strategy=>"MGB");
if codimJ2>n then (
SingInds=toList(set(0..(r-1))-s);
Z=W;
cont=false;
cont2=true;
break;
);
);
)
else(
break;
);
);
);
Sing=gensI_(SingInds);
Ssets=subsets(SingInds)-set{{}};
if cont2 then(
Vlist:={};
dv:=0;
if KnownCSMVals#?"TorVar" then(
for f in gensI do(
dv=flatten exponents first flatten entries monomials f;
Vlist=append(Vlist,sum(numgens(R), i-> dv_i*substitute(R_i,A)));
);
)
else(
for f in gensI do(
dv=degree f;
Vlist=append(Vlist,sum(length dv, i-> dv_i*(basis(OneAti(m,i),A))_0_0));
);
);
CE:=product(r,j->(1+Vlist_j));
Vr:=0;
V2:=0;
for s in Ssets do(
hyper=product(gensI_(toList s));
J=saturate(minors(numgens(Z)+1,jacobian(Z+ideal(hyper)))+Z+ideal(hyper),irelId);
if KnownCSMVals#?"TorVar" then(
dv=flatten exponents first flatten entries monomials Sing_0;
Vr=sum(numgens(R), i-> dv_i*substitute(R_i,A));
SegY=(SegreMainToric2(A,KnownCSMVals#"TorVar",J,PDl,HashForm))#"SegreList";
)
else(
dv=degree Sing_0;
Vr=sum(length dv, i-> dv_i*(basis(OneAti(m,i),A))_0_0);
SegY=(SegreMainProjective(A,J,PDl,HashForm))#"SegreList";
);
V2=product(r,j->Vlist_j);
if r==1 then return (ChernTR*V2)//CE;
CEotimesL:=sum(0..r,i->(-1)^i*(1+Vr)^(r-i)*sum(select(terms CE, q->sum(degree(q))==i)));
segstuff:=sum(0..n,i->((-1)^i*SegY_(i))//( (1+Vr)^i) );
cfj:=(ChernTR//CE)*V2;
milnor:=(ChernTR//CE)*(-1)^(r+1)*CEotimesL*(segstuff);
csm=csm+(-1)^(#(s)+1)*(cfj+milnor);
);
use R;
return csm;
)
else(
<<"Input does not satisfy assumptions, using inclusion/exclusion instead"<<endl;
CSM(ChRing,I);
);
);
);
CSMMain = (ChRing,I,RingInfoList,KnownCSMVals,Methd,Output,SmoothInds)->(
if not instance(SmoothInds,List) then(
<<"The given input option IndsOfSmooth will be ignored"<<endl
<<"The input option IndsOfSmooth must be of type list"<<endl;
SmoothInds={};
);
if Methd==DirectCompleteInt and (numgens(I)>1) then(
return CSMCompleteInt(ChRing,I,RingInfoList,KnownCSMVals,Output,SmoothInds);
)
else (
return CSMInEx(ChRing,I,RingInfoList,KnownCSMVals,Output);
);
)
OneAti=(dl,i)->(
vec:={};
for j from 0 to dl-1 do(
if j==i then vec=append(vec,1) else vec=append(vec,0);
);
return vec;
)
irrell=R->(
Rgens:=gens R;
Rdegs:=degrees R;
bloks:=unique Rdegs;
irId:=ideal 1_R;
elList:={};
for a in bloks do(
elList={};
for r in Rgens do(
if degree(r)==a then(
elList=append(elList,r);
);
);
irId=irId*ideal(elList)
);
return irId;
)
-- The functions internalSegreClassList, internalChernClassList and internalCSMClassList call
-- other internal functions which do the actual work.
internalSegreClassList = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- check that the input is a homogeneous ideal in a polynomial ring over a field
checkUserInput(I, opts.CompMethod);
-- trim the ideal and make it an ideal over a ring only used internally
localI := prepare I;
-- compute the Segre classes
return internalSegre(localI, CompMethod => opts.CompMethod);
)
internalChernClassList = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- check that the input is a homogeneous ideal in a polynomial ring over a field
checkUserInput(I,opts.CompMethod);
-- trim the ideal and make it an ideal over a ring only used internally
localI := prepare I;
-- compute the Chern classes
return internalChern(localI, CompMethod => opts.CompMethod);
)
internalCSMClassList = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- check that the input is a homogeneous ideal in a polynomial ring over a field
checkUserInput(I,opts.CompMethod);
-- trim the ideal and make it an ideal over a ring only used internally
localI := prepare I;
-- compute the Chern-Schwartz-MacPherson classes
return internalCSM(localI, CompMethod => opts.CompMethod);
)
-- The function internalEuler checks and prepares the input, just as for example
-- internalSegreClassList. It then computes the Chern-Schwartz-MaxPherson-classes
-- of the input using internalCSM and returns the top Chern-Schwartz-MacPherson-
-- class, which equals the topological Euler characteristic
internalEuler = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- check that the input is a homogeneous ideal in a polynomial ring over a field
checkUserInput(I,opts.CompMethod);
-- trim the ideal and make it an ideal over a ring only used internally
localI := prepare I;
-- compute the Chern-Schwartz-MacPherson classes and return the degree of the top class
return last first internalCSM(localI, CompMethod => opts.CompMethod);
)
-- The function internalSegre is one of the two main functions in this package which do the actual
-- computation of the Segre classes. It uses the algorithm described in [1].
-- Computing the degrees of the residuals as defined in [1] is the heart of the algorithm. This
-- is done by the subroutine residualDegs.
-- Notation: This algorithm computes the degrees of the Segre classes s_0(Z,P^k), ..., s_n(Z,P^k) of an
-- n-dimensional closed subscheme Z of P^k. The subscheme Z is given by a homogeneous ideal I in the
-- polynomial ring R.
-- Input: I, a homogeneous ideal in a polynomial ring over a field
-- Output: segreList, a list containing the degrees of the Segre classes of Proj(R/I) = Z
-- ambientDim, the dimension k of the ambient space Proj(R)=P^k
internalSegre = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- Obtain:
-- the ring R
-- the dimension of the ambient space and
-- the dimension n of Z
R := ring I;
ambientDim := dim Proj R;
dimension := dim Proj(R/I) ;
-- initialize segreList as an empty list
segreList:= {};
-- take care of the special cases I = (0) and I = (1)
if I == ideal(0_R) then (
segreList = {1} | toList( ambientDim:0 );
return (segreList,ambientDim);
);
if I == ideal(1_R) then (
segreList = {};
return (segreList,ambientDim);
);
-- For the nonspecial cases, obtain:
-- a list of the generators of I sorted by degree
-- the maximal degree of the generators of I and
-- a generator of I with minimal degree
gensI := flatten entries sort gens I;
maxDeg := first max degrees I;
minDegGen := first gensI;
if(opts.CompMethod==ProjectiveDegree) then (
S:=ring I;
m:=numgens I;
kk:=coefficientRing S;
n:=numgens S-1;
h := symbol h;
ChowRingPn:=ZZ[h]/(h^(n+1));
d:=first max degrees I;
use(ChowRingPn);
g:=internalProjectiveDegree(I);
poly:=sum(0..n,s->g_s*h^s*(1+d*h)^(n-s));
segreclass:=1 - poly * sum(0..n,i->binomial(n+i,i)*(-d*h)^i);
for a in listForm segreclass do (segreList={a_1}|segreList );
)
else (
-- Pick random elements in I of degree maxdeg, one more than the dimension of the ambient space, store in the list f.
f := for i from 1 to (ambientDim + 1) list sum( gensI, g -> g * random(maxDeg - first(degree(g)), R) );
-- Compute the degree of the residual of Z in the intersection of d hypersurfaces, where d = codimension of Z, ... , dimension of the ambient space.
-- Depends on the strategy (ResidualSymbolic/Bertini).
degR := residualDegs(f, ambientDim, dimension, minDegGen, CompMethod => opts.CompMethod);
-- The for loop computes the degrees of the Segre classes of Z using the degrees of the residuals
for d from (ambientDim - dimension) to ambientDim do (
-- Using the degree of the residual, compute the degree of the pth Segre class, where p = d - codimension of Z.
p := d - (ambientDim - dimension);
degSegreClass := maxDeg^d - degR_(d - ambientDim + dimension) - sum( 0..(p-1), i -> binomial(d,p-i)*maxDeg^(p-i)*segreList_i );
segreList = append(segreList, degSegreClass);
); );
return (segreList, ambientDim);
)
-- The function residualDegs is the other one of the two main functions in this package which do the actual
-- computation of the Segre classes. It computes the degrees of the residuals as defined in [1].
-- The option CompMethod determines which method is used to compute the degrees of the residuals.
-- ResidualSymbolic uses Groebner bases to compute the saturation of ideals.
-- Bertini uses the regenerative cascade as developed in [3] and implemented in Bertini [2].
residualDegs = {CompMethod => ProjectiveDegree} >> opts -> (f, ambientDim, dimension,minDegGen) -> (
R := ring first f;
degR :={};
if (opts.CompMethod == PnResidual) then (
for d from (ambientDim - dimension) to ambientDim do (
-- Obtain the ideal J of the intersection of d hypersurfaces containing Z, where d = codimension of Z, ..., dimension of the ambient space.
J := ideal(take(f,d));
-- Compute the residual of Z in the intersection of the d hypersurfaces, using saturation. Compute the degree of the residual.
-- Remark: Instead of saturating with the ideal I of the scheme Z, we saturate with a hypersurface containing Z of minimal degree.
-- This gives the same result with sufficiently high probability and speeds up calculations considerably.
residual := saturate(J,minDegGen);
-- Take care of the special case where the residual is the irrelevant ideal when computing the degree
degR = append(degR, if residual != ideal vars R then degree residual else 0);
)
);
if (opts.CompMethod == bertini) then (
-- write Bertini input file
-- configuration
outConfig := "CONFIG \n" | "OUTPUTLEVEL: 0; \n" | "TRACKTYPE: 1; \n" | "USEREGENERATION: 1; \n" | "MAXNORM: 1e8; \n" | "SECURITYMAXNORM: 1e8; \n" |"END; \n \n";
outVarGroup := "hom_variable_group ";
-- variables
variables := flatten entries vars R;
for i from 0 to (length(variables)-2) do outVarGroup = outVarGroup | toString(variables_i) | ", ";
outVarGroup = outVarGroup | toString(last variables) | "; \n";
-- functions
outFunctionDecl := "function ";
for i from 0 to (length(f)-2) do outFunctionDecl = outFunctionDecl | "f" | toString(i) | ", ";
outFunctionDecl = outFunctionDecl | "f" | toString(length(f)-1) | "; \n \n";
outFunctions := "";
for i from 0 to (length(f)-1) do outFunctions = outFunctions | "f" | toString(i) | "=" | replace("ii","I", toString(f_i) ) | "; \n";
outInput := "INPUT \n" | outVarGroup | outFunctionDecl | outFunctions | "END; \n";
out := outConfig | outInput;
-- create input file, write it
filename := getFilename();
g := openOut(filename);
g << out;
close g;
-- run Bertini
execstr := "cd /tmp ;" | bertini'path | "bertini " | filename | " > " | getFilename();
ret := run(execstr);
if ret =!= 0 then error("error occurred while executing external program Bertini. Make sure that Bertini v1.3 or higher is installed and configured.");
-- Read output file "regenSummary". Remove the first two lines and the last one.
-- Furthermore remove the lines corresponding to codimensions less than the codimension of the variety,
-- these are not relevant. The degrees of the residuals are then the numbers in the 5th column.
degR = apply(drop(drop(lines(get "/tmp/regenSummary"),1 + ambientDim-dimension),-1), myString->value( (separate(" ", myString))_5 ) );
-- If some the residuals are empty, we have to add zeros manually.
for i from 1 to dimension + 1 - #degR do degR = degR | {0};
);
degR
);
getFilename = () -> (
filename := temporaryFileName();
while fileExists filename do filename = temporaryFileName();
rootPath | filename)
-- The function internalChern calls internalSegre to compute the Segre classes of the given subscheme of P^k. From these it computes the
-- Chern-Fulton classes using a simple formula (see for example [1]). The Chern-Fulton classes are identical to the Chern classes if the scheme
-- is a smooth variety.
-- Input: I, a homogeneous ideal in a polynomial ring over a field
-- Output: chernList, a list containing the degrees of the Chern classes of Proj(R/I)
-- ambientDim, the dimension k of the ambient space Proj(R)=P^k
internalChern = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- Obtain:
-- the ring R
-- the dimension of the ambient space and
-- the dimension n of Z
R := ring I;
ambientDim := dim Proj R;
dimension := dim Proj(R/I) ;
-- take care of the special cases I = (0) and I = (1)
if I == ideal(0_R) then (
chernList := apply(0..dimension, i-> binomial(dimension+1, i));
return (chernList,ambientDim);
);
if I == ideal(1_R) then (
chernList = {};
return (chernList,ambientDim);
);
(segreList,ambientDimDummy) := internalSegre(I, CompMethod => opts.CompMethod);
chernList = for i from 0 to dimension list sum( 0..i, p -> binomial( ambientDim + 1, i-p )*segreList_p );
return (chernList, ambientDim)
)
-- The function internalCSM computes the Chern-Schwartz-MacPherson class of a projective variety given by
-- an ideal I, using an exclusion-inclusion principle and the function internalCSMhyp, which computes the
-- Chern-Schwartz-MacPherson classes of a hypersurface.
-- Input: I, a homogeneous ideal in a polynomial ring over a field
-- Output: csmList, a list containing the degrees of the Chern-Schwartz-MacPherson classes of Proj(R/I)
-- ambientDim, the dimension k of the ambient space Proj(R)=P^k
internalCSM = {CompMethod => ProjectiveDegree} >> opts -> I -> (
-- Compute the dimension of the ambient space
-- and the codimension of V(I)
ambientDim := numgens ring I - 1;
coDimension := ambientDim - (dim I - 1);
-- obtain ring of ambient space and the dimension of I
R := ring I;
dimension := dim Proj(R/I) ;
-- take care of the special cases I = (0) and I = (1)
if I == ideal(0_R) then (
csmList := apply(0..dimension, i-> binomial(dimension+1, i));
return (csmList,ambientDim);
);
if I == ideal(1_R) then (
csmList = {};
return (csmList,ambientDim);
);
-- compute the Chern-Schwartz-MacPherson class of V(I) from the Chern-Schwartz-MacPherson classes of
-- hypersurfaces containing V(I), with the help of exclusion-inclusion
csmList = toList( ambientDim+1:0 );
for subset in drop(subsets first entries gens I, 1) do (
csmList = csmList + (-1)^(length subset - 1) * (internalCSMhyp( product subset, CompMethod=>opts.CompMethod) );
);
-- remove leading zeros
csmList = drop(csmList, coDimension);
return (csmList, ambientDim)
)
--The main calculation is done here
-- Input:
-- I - homogeneous polynomial ideal defining a scheme in Proj(R)=P^k
--
-- Output:
-- A sequence of projective degrees (g_0,...,g_k)
internalProjectiveDegree = (I) -> (
S:=ring I;
m:=numgens I;
kk:=coefficientRing S;
n:=numgens S-1;
gbI:=MyGb(I,"MGB");
dimI := dim ideal leadTerm gbI - 1;
t:=symbol t;
R3:=kk[gens S,t];
J:=substitute(I,R3) ;
njac:=numgens J;
g:=new MutableList from {0..n};
g#0=1;
Pol:=0;
d:=first max degrees I;
Xs:=0;
EqT:=0;
Wt:=0;
Wg:=0;
Affx:=0;
tall:=0;
Sgens := (gens R3)_{0..n};
val:=n-dimI;
gbWt:=0;
for k from 1 to n do (
if k<val then (g#k=(d)^k) else (
Pol=sum ( k,jj-> ideal sum(njac,i->random(kk)*J_i*substitute(random(d-(degree(J_i))_0,S),R3)));
Xs=sum((n-k),jj->ideal sum(numgens S,i->random(kk)*Sgens_i));
Affx=ideal( sum(numgens S,i->random(kk)*Sgens_i)-1);
EqT=ideal( sum((numgens J),i->(1-t*random(kk)*J_i)));
Wt=Pol+Xs+Affx+EqT;
gbWt = MyGb(Wt,"F4");
tall= numColumns basis(cokernel leadTerm gbWt);
g#k=tall;
);
);
ProjSeq:= toSequence g;
return ProjSeq
)
-- The function internalCSMhyp computes the Chern-Schwartz-MacPherson class of a hypersurface
-- using the algorithm from [4].
-- Input: p, a homogeneous element of a polynomial ring over a field
-- Output: csmList, a list containing the degrees of the Chern-Schwartz-MacPhersn classes of Proj(R/ideal(p))
internalCSMhyp = {CompMethod => ProjectiveDegree} >> opts -> p -> (
-- Compute:
-- the ideal singP of the singular locus of V(p)
-- the dimension of the ambient space,
-- the dimension of the singular locus and
-- the maximal degree maxDegSingP of its generators
singP := ideal jacobian ideal p;
ambientDim := numgens ring singP - 1;
dimension := dim singP - 1;
maxDegSingP := first max degrees singP;
g := {};
singP=prepare singP;
-- compute the integers s tilde related to the Segre classes of singP
-- if projective degree call projective degree
if(opts.CompMethod==ProjectiveDegree) then (
gensI := flatten entries sort gens singP;
minDegGen := first gensI;
gs:=internalProjectiveDegree(singP);
g=toList gs;
)
--if residual Jost do this
else(
(s, ambientDimDummy) := internalSegre(singP, CompMethod => opts.CompMethod);
stilde := {-1} | toList( (ambientDim - dimension - 1):0 ) | s;
for i from 0 to ambientDim do
g = g | {- stilde#i - sum(0..(i-1), j -> binomial(i,j) * (-maxDegSingP)^(i-j) * g_j) };
);
-- compute the shadow of the graph of singP
-- compute the Chern-Schwartz-MacPherson classes of V(p) from the shadow of the graph of singP
for i from 0 to ambientDim list
binomial(ambientDim+1, i) - sum(0..i, j-> (-1)^j * g#j * binomial(ambientDim-j, i-j))
)
-- The function checkUserInput checks that the given ideal I is a homogeneous ideal in a polynomial ring over a field, with a suitable coefficient field.
checkUserInput = (I,CompMethod) -> (
-- Is the ring a polynomial ring?
if not isPolynomialRing ring I then error "the ideal needs to be defined over a polynomial ring.";
-- Is the ideal homogeneous?
if not isHomogeneous I then error "the ideal has to be homogeneous.";
-- Is the coefficient ring a field (to make dimension command work)?
if not isField coefficientRing ring I then error "the coefficient ring needs to be a field.";
-- The saturation part of the ResidualSymbolic version will not work with real or complex coefficients.
if (CompMethod == PnResidual or CompMethod ==ProjectiveDegree)and any( {ComplexField,RealField}, myField -> instance( coefficientRing ring I, myField ) ) then error "the Symbolic algorithms (ResidualSymbolic and ProjectiveDegree) do not work with real or complex coefficients.";
-- The numeric version only works with rational, real or complex coefficients.
if CompMethod == bertini and not( coefficientRing ring I === QQ or any( {ComplexField,RealField}, myField -> instance( coefficientRing ring I, myField ) ) ) then error "the numeric algorithm only works with rational or complex coefficients.";
)
-- The function prepare does two things to prepare the later computations. At first, it trims the ideal I, taking away
-- unnecessary generators. Then it creates a ring only used internally and an ideal in it isomorphic to I and returns this ideal. This
-- step is done to avoid possible later conflicts in the choice of variables.
prepare = I -> (
--trim I
localI := trim I;
-- rename variables
numGen := numgens ring localI;
coeffRing := coefficientRing ring localI;
z := symbol z;
internalR := coeffRing[z_1 .. z_numGen];
renamingMap := map(internalR, ring localI, {z_1 .. z_numGen});
return renamingMap localI;
)
-- The function output turns a list of degrees of characteristic classes into a polynomial in the Chow ring of the ambient space P^k.
-- This ring is generated by the hyperplane class.
-- Input: segreList, a list {deg s_0, ..., deg s_n} of integers
-- ambientDim, the dimension k of ambient space P^k
-- hyperplaneClass, the symbol for the hyperplane class
-- Output: the polynomial (deg s_0)*hyperplaneClass^ambientDim + ... + (deg s_n)*hyperplaneClass^(ambientDim - n)
output = (segreList,ambientDim,hyperplaneClass) -> (
-- produce the Chow ring ZZ[hyperplaneClass]/(hyperplaneClass^ambientDim+1)
tempRing := ZZ[hyperplaneClass];
outputRing := tempRing / ideal((tempRing_0)^(ambientDim+1));
-- obtain the dimension n
dimension := #segreList-1;
-- create the polynomial (deg s_0)*hyperplaneClass^ambientDim + ... + (deg s_n)*hyperplaneClass^(ambientDim - n)
return sum(0..dimension, i -> segreList_i * (outputRing_0)^(ambientDim - dimension + i))
)
-*
MyGb is a wrapper function for the M2 groebner basis command which
uses the fastest available GB algorithm depending on the users system and on the field over which they are working
*-
MyGb =(I,stdgy)->(
gbI:=0;
try (gbI = groebnerBasis(I, Strategy=>stdgy)) else ( gbI= groebnerBasis(I));
return gbI;
)
----------------------------------------------
-- Documentation
---------------------------------------------
beginDocumentation()
doc ///
Key
CharacteristicClasses
Headline
Chern classes and other characteristic classes of subschemes of certain smooth toric varieties, including products of projective spaces
Description
Text
The package CharacteristicClasses provides commands to compute the Chern class, Chern-Schwartz-MacPherson class Segre class and
Euler characteristic of closed subschemes of certain smooth complete varieties, including products of projective
spaces \PP^{n_1} x ... x \PP^{n_m}. In particular the methods of this package are applicable for toric varieties for which all Cartier divisors
are numerically effective (nef), see [7] for details. For simplicity a method (@TO CheckToricVarietyValid@) is provided which allows the user
to determine if these methods can be applied to a given object of class NormalToricVariety. Note that to perform computations involving toric
varieties it is required that the package NormalToricVarieties is also loaded.
More precisely the CharacteristicClasses package computes the pushforward of the respective classes to the Chow ring of either a product
of projective space or of the appropriate toric variety. In the case where the input is an ideal I (in the appropriate graded coordinate ring)
defining a subscheme V of \PP^{n_1} x ... x \PP^{n_m} the characteristic class is returned as an element of the Chow ring
A^*(\PP^{n_1} x ... x \PP^{n_m})=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}); here h_i represents (the pullback of) the rational equivalence
class of a hyperplane in \PP^i. In the case where V is a subscheme of a smooth toric variety X_{\Sigma} with total coordinate ring (that is Cox ring) R
the characteristic classes will be represented as elements of the Chow ring of X, A^*(X_{\Sigma})=R/(I+J) where I is the Stanley-Reisner Ideal of the
fan \Sigma and J is the ideal defined by linear relations among the rays. See Theorem 12.5.3 of "Toric varieties" by Cox, Little and Schenck.
If V is smooth, then by definition the (total) Chern classes of V is the Chern classes of the tangent bundle T_V, that is c(V)=c(T_V)\cap [V].
The Chern classes are cycles in the Chow ring of V, i.e., linear combinations of subvarieties of V modulo rational equivalence.
In practice all cycle classes will be represented in terms of integers multiplied by hyperplane classes. Consider, for example, a hypersurface
V=V(f) in \PP^{n_1} x ... x \PP^{n_m} where f has multi-degree (d_1,...,d_m), then [V]=d_1h_1+...+d_mh_m. This extends linearly to linear
combinations of cycles. Computing the Chern class of V is equivalent to computing the pushforward of the Chern classes to
the Chow ring of the ambient space. Also by definition, the Segre classes of V a subscheme of X are the Segre classes
of V in X, that is the Segre classes of the normal cone to V in X, C_VX. For definitions of the concepts used so far see, for example,
"Intersection Theory" by W. Fulton. Chern-Schwartz-MacPherson (CSM) classes are a generalization of Chern classes of smooth schemes to possibly
singular schemes with nice functorial properties including the a relation to the Euler characteristic.
The functions computing characteristic classes in this package can have several different types of output, with the default form being objects of type QuotientRingElelement, that is elements in the appropriate Chow ring. See the function documentation for more details.
This implementation offers several different algorithms to compute characteristic classes. For the general case of subschemes of smooth
toric varieties or the case of products of projective spaces \PP^{n_1} x ... x \PP^{n_m} (with m>1) the computational method used is
CompMethod=>ProjectiveDegree. These methods, in the toric case, are described in [7]. In the case of projective space see also [5].
The main computational step of this approach is the computation of the projective degrees. This can be done symbolically, using
Gröbner bases, or numerically using a package such as Bertini, however only the symbolic implementation is offered at present.
To compute the CSM class the default method is inclusion-exclusion, which uses the inclusion-exclusion property of CSM classes to compute the CSM
class for codimension greater than one (this is the option Method=>InclusionExclusion). When V is a complete intersection subscheme of an applicable
toric variety then CSM(V) may also be computed Method=>DirectCompleteInt may also be used; this method is described in [6] and [7] and may offer a
performance improvement in some applicable cases, particularly in projective space.
In the special case where the ambient space is \PP^n the computational methods CompMethod=>PnResidual and CompMethod=>bertini may be used. These
methods are described in [1, 2, 8]. The main step in this approach is the computation of the residuals. This can be done
symbolically, using Gröbner bases, and numerically, using the regenerative cascade implemented in Bertini. The regenerative
cascade is described in [3].
All algorithms are probabilistic but will succeed with high probability. In the case of the symbolic implementation of the ProjectiveDegree method
practical experience and algorithm testing indicate that a finite field with over 25000 elements is more than sufficient, i.e.
using the finite field kk=ZZ/25073 the experimental chance of failure with the ProjectiveDegree algorithm on a variety of examples
was less than 1/2000. Using kk=ZZ/32749 resulted in no failures in over 10000 attempts of several different examples.
Read more under @TO "probabilistic algorithm"@.
References: \break
[1] David Eklund, Christine Jost, Chris Peterson. A method to compute Segre classes, Journal of Algebra and Its Applications 12(2), 2013 \break
[2] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, Charles W. Wampler. Bertini: Software for Numerical Algebraic Geometry, available at http://www.nd.edu/~sommese/bertini \break
[3] Jonathan D. Hauenstein, Andrew J. Sommese, Charles W. Wampler. Regenerative cascade homotopies for solving polynomial systems, Applied Mathematics and Computation 218(4), 2011 \break
[4] Christine Jost. An algorithm for computing the topological Euler characteristic of complex projective varieties, submitted, arXiv:1301.4128 [math.AG] \break
[5] Martin Helmer. Algorithms to compute the topological Euler characteristic, Chern-Schwartz-Macpherson class and Segre class of projective varieties. Journal of Symbolic Computation, 2015. Preprint on arXiv at arXiv:1402.2930. \break
[6] Martin Helmer. A Direct Algorithm to Compute the Topological Euler Characteristic and Chern-Schwartz-MacPherson Class of Projective Complete Intersection Varieties. (2014). arXiv preprint arXiv:1410.4113. \break
[7] Martin Helmer. An Algorithm to Compute the Topological Euler Characteristic, the Chern-Schwartz-MacPherson Class and the Segre class of Subschemes of Some Smooth Complete Toric Varieties. (2015). arXiv preprint arXiv:1508.03785 \break
[8]Sandra Di Rocco, David Eklund, Chris Peterson, and Andrew J. Sommese. Chern numbers of smooth varieties via homotopy continuation and intersection theory. Journal of symbolic computation 46, no. 1 (2011): 23-33.
///
doc ///
Key
Segre
[Segre, Output, CompMethod]
(Segre,Ideal)
(Segre,QuotientRing, Ideal)
(Segre, NormalToricVariety,Ideal)
(Segre, QuotientRing, NormalToricVariety,Ideal)
(Segre, Ideal, Symbol)
Headline
The Segre class of a subscheme
Usage
Segre I
Segre(A,I)
Segre(X,J)
Segre(Ch,X,J)
Inputs
I:Ideal
a multi-homogeneous ideal in a graded polynomial ring over a field defining a closed subscheme V of \PP^{n_1}x...x\PP^{n_m}
A:QuotientRing
A=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}) quotient ring representing the Chow ring of \PP^{n_1}x...x\PP^{n_m}, this ring should be
built using the @TO ChowRing@ command
J:Ideal
in the graded polynomial ring which is coordinate ring of the Normal Toric Variety X
X:NormalToricVariety
which is the ambient space which contains V(J)
Ch:QuotientRing
the Chow ring of the toric variety X, Ch=(ring J)/(SR+LR) where SR is the Stanley-Reisner ideal of the fan defining X and LR is the linear relations
ideal, this ring should be built using the @TO ToricChowRing@ command
CompMethod=>"ProjectiveDegree"
this algorithm may be used for subschemes of any applicable toric variety (this may be checked using the @TO CheckToricVarietyValid@ command)
CompMethod=>"PnResidual"
this algorithm may be used for subschemes of \PP^n only
Output=>"ChowRingElement"
returns a RingElement in the Chow ring of the appropriate ambient space
Output=>"HashForm"
HashForm returns a MutableHashTable containing the following keys: "G" (the polynomial with coefficients of the hyperplane classes representing the projective degrees), "Glist" (the list form of "G") , "Segre" (the total Segre class of the input),"SegreList" (the list form of "Segre")
Outputs
:RingElement
the pushforward of the total Segre class of the scheme V defined by the input ideal to the appropriate Chow ring
Description
Text
For a subscheme V of an applicable toric variety X this command computes the push-forward of the total Segre class s(V,X) of V in X to the Chow ring of X.
Example
setRandomSeed 72;
R = ZZ/32749[w,y,z]
Segre(ideal(w*y),CompMethod=>PnResidual)
A=ChowRing(R)
Segre(A,ideal(w^2*y,w*y^2))
Text
Now consider an example in \PP^2 \times \PP^2, if we input the Chow ring A the output will be returned in the same ring. To ensure proper function of the methods we build the Chow ring using the @TO ChowRing@ command. We may also return a MutableHashTable.
Example
R=MultiProjCoordRing({2,2})
r=gens R
A=ChowRing(R)
I=ideal(r_0^2*r_3-r_4*r_1*r_2,r_2^2*r_5)
Segre I
s1=Segre(A,I)
SegHash=Segre(A,I,Output=>HashForm)
peek SegHash
s1==SegHash#"Segre"
Text
In the case where the ambient space is a toric variety which is not a product of projective spaces we must load the NormalToricVarieties package and must also input the toric variety. If the toric variety is a product of projective space it is recommended to use the form above rather than inputting the toric variety for efficiency reasons.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
CheckToricVarietyValid(X)
R=ring(X)
I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)
Segre(X,I)
Ch=ToricChowRing(X)
s3=Segre(Ch,X,I)
Text
All the examples were done using symbolic computations with Gr\"obner bases. Changing the
option @TO CompMethod@ to bertini will do the main computations numerically, provided
Bertini is @TO2 {"configuring Bertini", "installed and configured"}@. Note that the bertini option
is only available for subschemes of \PP^n.
Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under
@TO "probabilistic algorithm"@.
///
doc ///
Key
Chern
[Chern, Output, CompMethod]
(Chern,Ideal)
(Chern,QuotientRing, Ideal)
(Chern, NormalToricVariety,Ideal)
(Chern, QuotientRing, NormalToricVariety,Ideal)
(Chern, Ideal, Symbol)
Headline
The Chern class
Usage
Chern I
Chern(A,I)
Chern(X,J)
Chern(Ch,X,J)
Inputs
I:Ideal
a multi-homogeneous ideal in a graded polynomial ring over a field defining a closed subscheme V of \PP^{n_1}x...x\PP^{n_m}
A:QuotientRing
A=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}) quotient ring representing the Chow ring of \PP^{n_1}x...x\PP^{n_m}, this ring should be
built using the @TO ChowRing@ command
J:Ideal
in the graded polynomial ring which is coordinate ring of the Normal Toric Variety X
X:NormalToricVariety
which is the ambient space that we are working in
Ch:QuotientRing
the Chow ring of the toric variety X, Ch=(ring J)/(SR+LR) where SR is the Stanley-Reisner ideal of the fan defining X and LR is the linear relations
ideal, this ring should be built using the @TO ToricChowRing@ command
CompMethod=>"ProjectiveDegree"
this algorithm may be used for subschemes of any applicable toric variety (this may be checked using the @TO CheckToricVarietyValid@ command)
CompMethod=>"PnResidual"
this algorithm may be used for subschemes of \PP^n only, see @TO CompMethod@
Output=>"ChowRingElement"
returns a RingElement in the Chow ring of the appropriate ambient space
Output=>"HashForm"
returns a MutableHashTable containing the following keys: "Chern" (the Total Chern class),"G" (the polynomial with coefficients of the hyperplane classes representing the projective degrees), "Glist" (the list form of "G") , "Segre" (the total Segre class of the input),"SegreList" (the list form of "Segre") , "CF" (the total Chern-Fulton class)
Outputs
:RingElement
the pushforward of the total Chern class of the input to the Chow ring of the appropriate ambient space
Description
Text
For a non-singular n-dimensional subscheme V of an applicable toric variety X, this command computes the push-forward of the total Chern class of V to the Chow ring of X. The output is an element of the Chow ring of X, that is a polynomial in the hyperplane classes h_1,...,h_m if X=\PP^{n_1}\times... \times \PP^{n_m} is a product of projective space. Otherwise it is a polynomial in R/(SR+LR) where R is the Cox ring, SR the Stanely-Reilser Ideal and LR the ideal generated by linear relations among the rays.
Example
setRandomSeed 438;
R = QQ[v,y,z,w]
B = matrix{{v,y,z},{y,z,w}}
Chern minors(2,B)
Chern(minors(2,B),CompMethod=>PnResidual)
Text
The 2x2-minors of the matrix A form the ideal of the twisted cubic. It is well-known that its degree is 3 and its genus is 0. The calculations confirm that deg c_1 = 2-2g = 2 and deg c_0 = 3.
It is also possible to input the Chow ring of \PP^3 so that the answers are returned in this ring allowing us to check equality:
Example
A=ChowRing(R)
c1=Chern(A, minors(2,B))
cHash=Chern(A,minors(2,B),Output=>HashForm)
peek cHash
c1==cHash#"Chern"
Text
Now consider an example in \PP^2 \times \PP^2, if we input the Chow ring A the output will be returned in the same ring. We may also return a MutableHashTable.
Example
R=MultiProjCoordRing({2,2})
r=gens R
I=ideal(r_0^2*r_3-r_4*r_1*r_2,r_2^2*r_5)
Chern I
Text
In the case where the ambient space is a toric variety which is not a product of projective spaces we must load the NormalToricVarieties package and must also input the toric variety. If the toric variety is a product of projective space it is recommended to use the form above rather than inputting the toric variety for efficiency reasons. Below we verify that the Chern-Fulton class equals the Chern class for this smooth subvariety.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
CheckToricVarietyValid(X)
R=ring(X)
I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)
Chern(X,I)
Ch=ToricChowRing(X)
s3=Chern(Ch,X,I)
s3==(product(gens(Ch),a->a+1)*Segre(Ch,X,I))
Text
All the examples were done using symbolic computations with Gr\"obner bases. Changing the
option @TO CompMethod@ to bertini will do the main computations numerically, provided
Bertini is @TO2 {"configuring Bertini", "installed and configured"}@. Note that the bertini and PnResidual options may
only be used for subschemes of \PP^n.
The command Chern actually computes the push-forward of the total @EM {"Chern-Fulton class"}@ of the subscheme V of an applicable toric variety X. The Chern-Fulton class is one of several generalizations of Chern classes to possibly singular subschemes. It is defined as c_{CF}(V) = c(T_{X}|_V) \cap s(V,X). For non-singular schemes, the Chern-Fulton class coincides with the Chern class of the tangent bundle. So for non-singular input, the command will compute just the usual Chern class.
Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under
@TO "probabilistic algorithm"@.
///
doc ///
Key
ChowRing
(ChowRing,Ring)
(ChowRing,Ring,Symbol)
Headline
Computes the Chow ring of a product of projective spaces m projective spaces given the coordinate ring
Usage
ChowRing R
Inputs
R:Ring
the graded coordinate ring of the product of projective spaces \PP^{n_1}\times \cdots \times \PP^{n_m}
Outputs
:QuotientRing
the Chow ring A=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}) of a product of projective spaces \PP^{n_1}\times \cdots \times\PP^{n_m}
Description
Text
This method computes the Chow ring A=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}) of a product of projective spaces \PP^{n_1}\times \cdots \times\PP^{n_m}. It is needed for input into the methods @TO Segre@, @TO Chern@ and @TO CSM@ to ensure that these methods return results in the same ring. We give an example of the use of this method to work with elements of the Chow ring of \PP^3x\PP^4.
Example
R=MultiProjCoordRing({3,4})
A=ChowRing(R)
I=ideal(random({1,0},R));
K=ideal(random({1,1},R));
c=Chern(A,I)
s=Segre(A,K)
s-c
s*c
Text
We may also specify the variable to be used for the Chow ring.
Example
A2=ChowRing(R,symbol v)
describe A2
///
doc ///
Key
ClassInChowRing
(ClassInChowRing,QuotientRing, RingElement)
Headline
Gives the class of a hypersurface in the associated Chow ring of a product of projective spaces
Usage
ClassInToricChowRing(A,f)
Inputs
A:QuotientRing
the Chow ring of \PP^{n_1} x...x\PP^{n_1}
f:RingElement
an element of the coordinate ring of \PP^{n_1} x...x\PP^{n_1}
Outputs
:RingElement
the class of V(f), [V(f)] in the Chow ring of \PP^{n_1} x...x\PP^{n_1}
Description
Text
This method finds the class [V(f)] of the hypersurface V(f) where f is a polynomial in the graded coordinate ring of \PP^{n_1} x...x\PP^{n_1}. The class [V(f)] is an element of the Chow ring of \PP^{n_1} x...x\PP^{n_1}. Consider \PP^3x\PP^4x\PP^1
Example
R=MultiProjCoordRing({3,4,1})
A=ChowRing(R)
f=random({1,1,1},R);
ClassInChowRing(A,f)
///
doc ///
Key
ToricChowRing
(ToricChowRing,NormalToricVariety)
Headline
Computes the Chow ring of a normal toric variety
Usage
ToricChowRing X
Inputs
R:NormalToricVariety
A normal toric variety
Outputs
:QuotientRing
Description
Text
Let X be a toric variety with total coordinate ring (Cox ring) R. This method computes the Chow ring Chow ring Ch=R/(SR+LR) of X; here SR is the Stanley-Reisner ideal of the corresponding fan and LR is the ideal of linear relations amount the rays. It is needed for input into the methods @TO Segre@, @TO Chern@ and @TO CSM@ in the cases where a toric variety is also input to ensure that these methods return results in the same ring. We give an example of the use of this method to work with elements of the Chow ring of a toric variety
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
R=ring X
Ch=ToricChowRing(X)
describe Ch
r=gens R
I=ideal(random({1,0},R))
K=ideal(random({1,1},R))
c=Chern(Ch,X,I)
s=Segre(Ch,X,K)
s-c
s*c
///
doc ///
Key
ClassInToricChowRing
(ClassInToricChowRing,QuotientRing, RingElement)
Headline
Gives the class of a hypersurface in the associated Chow ring of a toric variety
Usage
ClassInToricChowRing(Ch,f)
Inputs
Ch:QuotientRing
the Chow ring of a normal toric variety X
f:RingElement
an element of the coordinate ring of the toric variety X
Outputs
:RingElement
the class of V(f), [V(f)] in the Chow ring of X
Description
Text
This method finds the class [V(f)] of the hypersurface V(f) where f is a polynomial in the graded coordinate ring of a toric variety X. The class [V(f)] is an element of the Chow ring of X.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
R=ring X
Ch=ToricChowRing(X)
f=random({1,0},R)
ClassInToricChowRing(Ch,f)
///
doc ///
Key
isMultiHomogeneous
(isMultiHomogeneous,Ideal)
(isMultiHomogeneous,RingElement)
Headline
Checks if an ideal is homogeneous with respect to the grading on its ring (i.e. multi-homogeneous in the multi-graded case)
Usage
isMultiHomogeneous I
isMultiHomogeneous f
Inputs
I:Ideal
an ideal in a graded or multi-graded ring
f:RingElement
a element in a graded or multi-graded ring
Outputs
:Boolean
Description
Text
Tests if the input Ideal or RingElement is Homogeneous with respect to the grading on the ring. Homogeneous input is required for all methods to compute characteristic classes.
Text
This method works for ideals in the graded coordinate rings of toric varieties, and hence for products of projective spaces. These can be created directly, or using methods the @TO MultiProjCoordRing@ method of this package, or with methods from the NormalToricVarieties Package.
Example
R=MultiProjCoordRing({1,2,1})
x=gens(R)
I=ideal(x_0^2*x_3-x_1*x_0*x_4,x_6^3)
isMultiHomogeneous I
isMultiHomogeneous ideal(x_0*x_3-x_1*x_0*x_4,x_6^3)
Text
Note that for an ideal to be multi-homogeneous the degree vector of all monomials in a given generator must be the same.
///
doc ///
Key
MultiProjCoordRing
(MultiProjCoordRing,List)
(MultiProjCoordRing,Ring,List)
(MultiProjCoordRing,Symbol,List)
(MultiProjCoordRing,Ring,Symbol,List)
Headline
A quick way to build the coordinate ring of a product of projective spaces
Usage
MultiProjCoordRing Dims
MultiProjCoordRing (CoeffRing,Dims)
MultiProjCoordRing (var,Dims)
MultiProjCoordRing (CoeffRing,var,Dims)
Inputs
Dims:List
representing the dimensions of the projective spaces, i.e. {n_1,...,n_m} corresponds to \PP^{n_1} x.... x \PP^{n_m}
CoeffRing:Ring
the coefficient ring of the graded polynomial ring to be built by the method, by default this is \ZZ/32749
var:Symbol
to be used for the intermediates of the graded polynomial ring to be built by the method
Outputs
:Ring
the graded coordinate ring of the \PP^{n_1} x.... x \PP^{n_m} where {n_1,...,n_m} is the input list of dimensions
Description
Text
Computes the graded coordinate ring of the \PP^{n_1} x.... x \PP^{n_m} where {n_1,...,n_m} is the input list of dimensions. This method is used to quickly build the coordinate ring of a product of projective spaces for use in computations.
Example
S=MultiProjCoordRing(QQ,symbol z,{1,3,3})
degrees S
R=MultiProjCoordRing {2,3}
coefficientRing R
describe R
A=ChowRing R
describe A
Segre(A,ideal random({1,1},R))
///
doc ///
Key
CheckToricVarietyValid
(CheckToricVarietyValid,NormalToricVariety)
Headline
Checks if the input normal toric variety X is a valid choice for an ambient space when computing characteristic classes of subschemes V of X
Usage
CheckToricVarietyValid X
Inputs
X:NormalToricVariety
a normal toric variety which is a candidate for an ambient space in which to perform characteristic class computations
Outputs
:Boolean
Description
Text
Note that if you are working with subvarieties of some product of projective spaces \PP^{n_1}\times \cdots \times \PP^{n_m} then the ambient space is a valid choice for use with the ChacteristicsClasses package and there is no need to load the NormalToricVarieties Package or to check validity. For other cases the CheckToricVarietyValid method returns true if the input toric variety X may be used as an ambient space for other characteristic class computations, i.e. if this method returns true we may use methods such as CSM(X,I), Chern(X,I) and Segre(X,I) for I an ideal in the coordinate ring of X. We will see an example of a valid toric variety which is not a product of projective spaces and a smooth toric variety which is not valid.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
CheckToricVarietyValid(X)
R=ring(X)
I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)
Segre(X,I)
W = smoothFanoToricVariety(4,123)
CheckToricVarietyValid(W)
Text
Even if we can not perform computations on subschemes we may still compute the CSM class of the toric variety itself using the @TO CSM@ command.
Example
Ch=ToricChowRing W
CSM W
CSM(Ch,W)
///
doc ///
Key
CSM
[CSM, Output, CompMethod,Method,CheckSmooth,IndsOfSmooth,InputIsSmooth]
(CSM,Ideal)
(CSM,QuotientRing, Ideal)
(CSM,QuotientRing, Ideal,MutableHashTable)
(CSM, NormalToricVariety,Ideal)
(CSM, QuotientRing, NormalToricVariety,Ideal)
(CSM, QuotientRing, NormalToricVariety,Ideal,MutableHashTable)
(CSM, Ideal, Symbol)
(CSM,NormalToricVariety)
(CSM,QuotientRing,NormalToricVariety)
[CSM, CompMethod]
[CSM, Method]
[CSM, CheckSmooth]
[CSM, InputIsSmooth]
[CSM, IndsOfSmooth]
Headline
The Chern-Schwartz-MacPherson class
Usage
CSM I
CSM(A,I)
CSM(A,I,M)
CSM(X,J)
CSM(Ch,X,J)
CSM(Ch,X,J,M)
CSM X
CSM(Ch,X)
CSM(I,h)
Inputs
I:Ideal
a multi-homogeneous ideal in a graded polynomial ring over a field defining a closed subscheme V of \PP^{n_1}x...x\PP^{n_m}
A:QuotientRing
A=\ZZ[h_1,...,h_m]/(h_1^{n_1+1},...,h_m^{n_m+1}) quotient ring representing the Chow ring of \PP^{n_1}x...x\PP^{n_m}, this ring should be
built using the @TO ChowRing@ command
J:Ideal
an ideal in the graded polynomial ring which is coordinate ring of the Normal Toric Variety X
X:NormalToricVariety
which is the ambient space containing V(J)
Ch:QuotientRing
the Chow ring of the toric variety X, Ch=(ring J)/(SR+LR) where SR is the Stanley-Reisner ideal of the fan defining X and LR is the linear relations
ideal, this ring should be built using the @TO ToricChowRing@ command
h:Symbol
to be used as the intermediate for the Chow ring (this may only be used for subschemes of \PP^{n_1}x...x\PP^{n_m})
M:MutableHashTable
containing known CSM classes of hypersurfaces appearing in the inclusion-exclusion procedure
CompMethod => "ProjectiveDegree"
this is the default algorithm used for the main computational steps in the computation
CompMethod => "PnResidual"
this algorithm may be used for subschemes of \PP^n only
Method => "InclusionExclusion"
this is the default method and is applicable for all inputs
Method => "DirectCompleteInt"
this method may provide a performance improvement when the input is a complete intersection, if the input is not a complete intersection a warning will be given and the InclusionExclusion option will be used instead
CheckSmooth =>
this option is only used when computing the CSM class of a input toric variety X (not of a subscheme), if true it checks if the toric variety is smooth before computing its CSM class, this will lead to faster computation in the smooth cases
InputIsSmooth=>
this option has values true/false and tells the method whether to assume the input ideal defines a smooth scheme, and hence to call the method Chern instead for reduced run time, alternatively the Chern function can be used directly
Output=>"ChowRingElement"
the type of output to return, "ChowRingElement" is default and returns a RingElement in the Chow ring of the appropriate ambient space
Output=>"HashForm"
the type of output to return, HashForm returns a MutableHashTable containing the key "CSM" (the CSM class), and keys of the form \{0\},\{1\},\{2\},...,\{0,1\},\{0,2\} ....\{0,1,2\}... and so on which correspond to the indices of the possible subsets of the generators of the input ideal, for each set of indices the CSM class of the hypersurface given by the product of all polynomials in the corresponding set of generators is stored, there is no extra cost to using this option
IndsOfSmooth=>
this option may speed up the run time when using the DirectCompleteInt Method if the user knows additional information about the input ideal, see @TO IndsOfSmooth@
Outputs
:RingElement
the pushforward of the CSM class to the Chow ring of the appropriate ambient space
Description
Text
For a non-singular n-dimensional subscheme V of an applicable toric variety X, this command computes the push-forward of the total Chern class of V to the Chow ring of X. The output is an element of the Chow ring of X, that is a polynomial in the hyperplane classes h_1,...,h_m if X=\PP^{n_1}\times\PP^{n_m} is a product of projective space. Otherwise it is a polynomial in R/(SR+LR) where R is the Cox ring, SR the Stanely-Reilser Ideal and LR the ideal generated by linear relations among the rays.
Example
kk=ZZ/32749;
R=kk[x_0..x_4]
I=ideal(random(1,R),random(2,R),x_0*x_2-x_3*x_0);
CSM(ideal I_0,CompMethod=>PnResidual)
csmI=CSM(I)
A=ring csmI
csmIHash=CSM(A,I,Output=>HashForm);
csmIHash#{0,1}==CSM(A,ideal(I_0*I_1))
Text
Note that the ideal above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method.
Example
csmI==CSM(A,I,Method=>DirectCompleteInt)
CSM(A,I,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
Text
Now consider an example in \PP^2 \times \PP^2, if we input the Chow ring A the output will be returned in the same ring. We may also return a MutableHashTable.
Example
R=MultiProjCoordRing({2,2})
A=ChowRing(R)
r=gens R
K=ideal(r_0^2*r_3-r_4*r_1*r_2,r_2^2*r_5)
time csmK=CSM(A,K)
csmKHash= CSM(A,K,Output=>HashForm)
csmK==csmKHash#"CSM"
CSM(A,ideal(K_0))==csmKHash#{0}
Text
Suppose we have already computed some of CSM classes of hypersurfaces involved in the inclusion-exclusion procedure, then we may input these to be used by the CSM function. In the example below we input the CSM class of V(K_0) (that is of the hypersurface defined by the first polynomial generating K) and the CSM class of the hypersurface defined by the product of the generators of K.
Example
m=new MutableHashTable;
m#{0}=csmKHash#{0}
m#{0,1}=csmKHash#{0,1}
time CSM(A,K,m)
Text
In the case where the ambient space is a toric variety which is not a product of projective spaces we must load the NormalToricVarieties package and must also input the toric variety. If the toric variety is a product of projective space it is recommend to use the form above rather than inputting the toric variety for efficiency reasons.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
csmX=CSM X
Ch=ring csmX
CheckToricVarietyValid(X)
R=ring(X)
I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)
CSM(X,I)
CSM(Ch,X,I)
Text
This function may also compute the CSM class of a normal toric variety defined by a fan. In this case a combinatorial method is used. This method is accessed with the usual CSM command with either only a toric variety or a toric variety and a Chow ring as input. In this case we only require that the input toric variety is complete and simplicial (in particular we do not need it to be smooth).
Example
needsPackage "NormalToricVarieties"
U = hirzebruchSurface 7
Ch=ToricChowRing(U)
CSM U
csm1=CSM(Ch,U)
Text
All the examples were done using symbolic computations with Gr\"obner bases. Changing the
option @TO CompMethod@ to bertini will do the main computations numerically, provided
Bertini is @TO2 {"configuring Bertini", "installed and configured"}@. Note that the bertini and PnResidual options may
only be used for subschemes of \PP^n.
Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under
@TO "probabilistic algorithm"@.
///
doc ///
Key
Euler
[Euler, Output, CompMethod,Method,CheckSmooth,IndsOfSmooth,InputIsSmooth]
(Euler,Ideal)
(Euler, NormalToricVariety,Ideal)
(Euler, RingElement)
Headline
The Euler Characteristic
Usage
Euler I
Euler(X,J)
Euler csm
Inputs
I:Ideal
a multi-homogeneous ideal in a graded polynomial ring over a field defining a closed subscheme V of \PP^{n_1}x...x\PP^{n_m}
J:Ideal
an ideal in the graded polynomial ring which is coordinate ring of the Normal Toric Variety X
X:NormalToricVariety
a normal toric variety which is the ambient space that we are working in
csm:RingElement
the CSM class of some variety V
CompMethod => "ProjectiveDegree"
applicable for all cases where the methods in the package may be used
CompMethod => "PnResidual"
this algorithm may be used for subschemes of \PP^n only
Method => "InclusionExclusion"
applicable for all inputs
Method => "DirectCompleteInt"
this method may provide a performance improvement when the input is a complete intersection, if the input is not a complete intersection inclusion/exclusion it will return an error
InputIsSmooth=>
this option has values true/false and tells the method whether to assume the input ideal defines a smooth scheme, and hence to call the method Chern instead for reduced run time, alternatively the Chern function can be used directly
Output=>
the type of output to return the default output is an integer
Output=>"HashForm"
the type of output to return, HashForm returns a MutableHashTable containing the key "CSM" (the CSM class), and keys of the form \{0\},\{1\},\{2\},...,\{0,1\},\{0,2\} ....\{0,1,2\}... and so on which correspond to the indices of the possible subsets of the generators of the input ideal, for each set of indices the CSM class of the hypersurface given by the product of all polynomials in the corresponding set of generators is stored, there is no extra cost to using this option
IndsOfSmooth=>
this option may speed up the run time when using the DirectCompleteInt Method if the user knows additional information about the input ideal, see @TO IndsOfSmooth@
Outputs
:RingElement
the Euler characteristic
Description
Text
For a subscheme V of an applicable toric variety X, this command computes the Euler characteristic
Example
kk=ZZ/32749;
R=kk[x_0..x_4]
I=ideal(random(1,R),random(2,R))
time Euler(I,InputIsSmooth=>true)
time Euler I
EulerIHash=Euler(I,Output=>HashForm);
A=ring EulerIHash#"CSM"
EulerIHash#{0,1}==CSM(A,ideal(I_0*I_1))
J=I+ideal(x_0*x_2-x_3*x_0)
Text
Note that the ideal J above is a complete intersection, thus we may change the method option which may speed computation in some cases. We may also note that the ideal generated by the first 2 generators of I defines a smooth scheme and input this information into the method. This may also improve computation speed.
Example
time Euler(J,Method=>DirectCompleteInt)
time Euler(J,Method=>DirectCompleteInt,IndsOfSmooth=>{0,1})
Text
Now consider an example in \PP^2 \times \PP^2.
Example
R=MultiProjCoordRing({2,2})
r=gens R
K=ideal(r_0^2*r_3-r_4*r_1*r_2,r_2^2*r_5)
EulerK=Euler(K)
csmK= CSM(K)
EulerK==Euler(csmK)
Text
In the case where the ambient space is a toric variety which is not a product of projective spaces we must load the NormalToricVarieties package and must also input the toric variety. If the toric variety is a product of projective space it is recommended to use the form above rather than inputting the toric variety for efficiency reasons.
Example
needsPackage "NormalToricVarieties"
Rho = {{1,0,0},{0,1,0},{0,0,1},{-1,-1,0},{0,0,-1}}
Sigma = {{0,1,2},{1,2,3},{0,2,3},{0,1,4},{1,3,4},{0,3,4}}
X = normalToricVariety(Rho,Sigma,CoefficientRing =>ZZ/32749)
CheckToricVarietyValid(X)
R=ring(X)
I=ideal(R_0^4*R_1,R_0*R_3*R_4*R_2-R_2^2*R_0^2)
csmI=CSM(X,I)
EulerI=Euler(X,I)
Euler(csmI)==EulerI
Text
All the examples were done using symbolic computations with Gr\"obner bases. Changing the
option @TO CompMethod@ to bertini will do the main computations numerically, provided
Bertini is @TO2 {"configuring Bertini", "installed and configured"}@. Note that the bertini and PnResidual options may
only be used for subschemes of \PP^n.
Observe that the algorithm is a probabilistic algorithm and may give a wrong answer with a small but nonzero probability. Read more under
@TO "probabilistic algorithm"@.
///
doc ///
Key
"configuring Bertini"
Description
Text
Using the numeric version of any command in the package CharacteristicClasses needs version 1.3 or higher of Bertini
to be installed. Download and installation of Bertini are explained at the @HREF {"http://www.nd.edu/~sommese/bertini/","Bertini homepage"}@.
Bertini should be installed in a directory in the user's PATH. As an alternative you can tell
the package how to find Bertini. Usually, when the package is installed, a file called {\tt init-CharacteristicClasses.m2} is created automatically in the user's
@TO2 {"applicationDirectory", "application directory"}@. See also the option {\tt Configuration} under @TO "newPackage"@.
In the file {\tt init-CharacteristicClasses.m2}, replace {\tt ""} in the line {\tt "pathToBertini" => ""}
by the path to Bertini in quotation marks, for example {\tt "pathToBertini" => "/usr/local/BertiniLinux64_v1.3.1/"}. The / at the end is important.
Windows users should use the path relative to the cygwin directory, for example {\tt "/usr/local/BertiniWindows32_v1.3.1/"} if Bertini is installed under
{\tt pathToTheCygwinDirectory\cygwin\usr\local\BertiniWindows32_v1.3.1 }.
To check whether Bertini is working properly with the functions in the package CharacteristicClasses, use @TO "bertiniCheck"@.
///
doc ///
Key
bertiniCheck
Headline
Checks whether the numerical version of the algorithms using Bertini works
Usage
bertiniCheck()
Description
Text
The functions @TO Chern@, @TO Segre@, @TO CSM@ and @TO Euler@ have the option @TO CompMethod@,
which can be any of @TO ProjectiveDegree@, @TO PnResidual@, or @TO bertini@. The option "bertini" uses the external program Bertini, which might not
be installed on the user's system. The function bertiniCheck checks whether Bertini is properly installed and configured. See
also @TO "configuring Bertini"@.
///
doc ///
Key
"probabilistic algorithm"
Description
Text
The algorithms used for the computation of characteristic classes are probabilistic. Theoretically, they calculate the classes
correctly for a general choice of certain polynomials. That is, there is an open
dense Zariski set for which the algorithm yields the correct class, i.e., the correct class is calculated with probability 1.
However, since the implementation works over a discrete probability space there is a very small, but non-zero, probability of not
computing the correct class.
Skeptical users should repeat calculations several times to increase the probability of computing the correct class.
In the case of the symbolic implementation of the ProjectiveDegree method practical experience and algorithm testing indicate that a finite field with over 25000 elements is more than sufficient to expect a correct result with high probability, i.e.
using the finite field kk=ZZ/25073 the experimental chance of failure with the ProjectiveDegree algorithm on a variety of examples
was less than 1/2000. Using the finite field kk=ZZ/32749 resulted in no failures in over 10000 attempts of several different examples.
We illustrate the probabilistic behaviour with an example where the chosen random seed leads to a wrong result in the first calculation.
Example
setRandomSeed 121;
R = QQ[x,y,z,w]
I = minors(2,matrix{{x,y,z},{y,z,w}})
Chern (I,CompMethod=>PnResidual)
Chern (I,CompMethod=>PnResidual)
Chern (I,CompMethod=>PnResidual)
Chern(I,CompMethod=>ProjectiveDegree)
///
doc ///
Key
CompMethod
ProjectiveDegree
PnResidual
bertini
Description
Text
The option CompMethod determines which algorithm is used for the main computational steps of the calculation. This option map be used with methods @TO CSM@, @TO Segre@, @TO Chern@ , and @TO Euler@. Note, however, that CompMethod can only be set to PnResidual and bertini when the input ideal defines a subscheme of a projective space \PP^n. In all other cases this option will be ignored and ProjectiveDegree will be used automatically.
Example
R = ZZ/32749[r,y,z,w];
Chern( minors(2,matrix{{r,y,z},{y,z,w}}), CompMethod=>ProjectiveDegree)
Text
There are three algorithms which can be used, ProjectiveDegree, PnResidual, and Bertini. When choosing the ProjectiveDegree
option, the main step is the computation of projective degrees, for which Gr\"obner basis methods will be used. When choosing
ResidualSymbolic, Gr\"obner basis methods will be used to compute so-called residuals. These computations can also be done
numerically using the regenerative cascade implemented in Bertini. This is done by choosing the option bertini, provided
Bertini is @TO2 {"configuring Bertini", "installed and configured"}@.
Example
R=ZZ/32749[v_0..v_5];
I=ideal(4*v_3*v_1*v_2-8*v_1*v_3^2,v_5*(v_0*v_1*v_4-v_2^3));
time CSM(I,CompMethod=>ProjectiveDegree)
time CSM(I,CompMethod=>PnResidual)
codim I
S=QQ[s_0..s_3];
K=ideal(4*s_3*s_2-s_2^2,(s_0*s_1*s_3-s_2^3));
time CSM(K,CompMethod=>ProjectiveDegree)
time CSM(K,CompMethod=>PnResidual)
Text
The options PnResidual and bertini may only be used for subschemes of a single projective space of fixed dimension. For subschemes of products of projective spaces and for subschemes of toric varieties only the ProjectiveDegree option is available and other options will be ignored by the methods @TO Segre@, @TO CSM@, @TO Chern@ and @TO Euler@.
Example
R=MultiProjCoordRing({1,2,2})
I=ideal(R_0*R_1*R_3-R_0^2*R_2)
Segre I
Segre(I,CompMethod=>ProjectiveDegree)
///
doc ///
Key
Method
InclusionExclusion
DirectCompleteInt
Description
Text
The option Method is only used by the commands @TO CSM@ and @TO Euler@ and only in combination with @TO CompMethod@=>ProjectiveDegree. The Method InclusionExclusion will always be used with @TO CompMethod@ PnResidual or bertini. When the input ideal is a complete intersection one may, potentially, speed up the computation by setting Method=> DirectCompleteInt. The option Method is only used by the commands @TO CSM@ and @TO Euler@ and only in combination with @TO CompMethod@=>ProjectiveDegree. The Method InclusionExclusion will always be used with @TO CompMethod@ PnResidual or bertini.
Example
R = ZZ/32749[x_0..x_6]
I=ideal(random(2,R),random(1,R),R_0*R_1*R_6-R_0^3);
time CSM I
time CSM(I,Method=>DirectCompleteInt)
Text
When using the DirectCompleteInt method one may potentially further speed up computation time by specifying what subset of the generators of the input ideal define a smooth subscheme (if this is known), see @TO IndsOfSmooth@.
///
doc ///
Key
Output
ChowRingElement
HashForm
HashFormXL
Description
Text
The option Output is only used by the commands @TO CSM@, @TO Segre@, @TO Chern@ and @TO Euler@ to specify the type of output to be returned to the used. This option will be ignored when used with @TO CompMethod@ PnResidual or bertini. The option will also be ignore when @TO Method@=>DirectCompleteInt is used. The default output for all these methods is ChowRingElelment which will return an element of the appropriate Chow ring. All methods also have an option HashForm which returns additional information computed by the methods during their standard operation.
Example
R = ZZ/32749[x_0..x_6]
A=ChowRing(R)
I=ideal(random(2,R),R_0*R_1*R_6-R_0^3);
csm=CSM(A,I,Output=>HashForm)
peek csm
CSM(A,ideal I_0)==csm#{0}
CSM(A,ideal(I_0*I_1))==csm#{0,1}
c=Chern( I, Output=>HashForm)
peek c
seg=Segre( I, Output=>HashForm)
peek seg
eu=Euler( I, Output=>HashForm)
peek eu
Text
The MutableHashTable returned with the option Output=>HashForm contains different information depending on the method with which it is used. Additionally if the option @TO InputIsSmooth@ is used then the hash table returned by the methods Euler and CSM will be the same as that returned by Chern. When using the @TO CSM@ command in the default configurations (that is @TO Method@=>InclusionExclusion, @TO CompMethod@=>ProjectiveDegree) there is the additional option to set Output=>HashFormXL. This returns all the usual information that Output=>HashForm would for this configuration with the addition of the projective degrees and Segre classes of singularity subschemes generated by the hypersurfaces considered in the inclusion/exclusion procedure, that is in finding the CSM class of all hypersurfaces generated by taking a product of some subsets of generators of the input ideal. Note that, since the CSM class of a subscheme equals the CSM class of its reduced scheme, or equivalently for us the CSM class corresponding to an ideal I equals the CSM class of the radical of I, then internally we always work with radical ideals (for efficiency reasons). Hence the projective degrees and Segre classes computed internally will be those of the radical of an ideal defined by a polynomial which is a product of some subset of the generators. We illustrate this with an example below.
Example
csmXLhash=CSM(A,I,Output=>HashFormXL)
peek csmXLhash
K=ideal I_0*I_1;
CSM(A,radical K)==CSM(A,K)
J=ideal jacobian radical K;
segJ=Segre(A,J,Output=>HashForm)
csmXLhash#("G(Jacobian)"|toString({0,1}))==segJ#"G"
csmXLhash#("Segre(Jacobian)"|toString({0,1}))==segJ#"Segre"
///
doc ///
Key
IndsOfSmooth
Description
Text
The option IndsOfSmooth is only used by the commands @TO CSM@, and @TO Euler@ in combination with the option Method=>DirectCompletInt. When used this option may allow the user to speed up the computation by telling giving the method a list of indices for the generators of the input ideal that, when taken together, define a smooth subscheme of the ambient space. This option will be ignored otherwise.
Example
R = MultiProjCoordRing({2,2})
I=ideal(R_0*R_1*R_3-R_0^2*R_3,random({0,1},R),random({1,2},R));
time CSM(I,Method=>DirectCompletInt)
time CSM(I,Method=>DirectCompletInt,IndsOfSmooth=>{1,2})
///
doc ///
Key
InputIsSmooth
Description
Text
The option InputIsSmooth is only used by the commands @TO CSM@, and @TO Euler@. If the input ideal is known to define a smooth subscheme setting this option to true will speed up computations (it is set to false by default).
Example
R = ZZ/32749[x_0..x_4];
I=ideal(random(2,R),random(2,R),random(1,R));
time CSM I
time CSM(I,InputIsSmooth=>true)
Text
Note that one could, equivalently, use the command @TO Chern@ instead in this case.
Example
time Chern I
///
doc ///
Key
CheckSmooth
Description
Text
The option CheckSmooth is only used by the commands @TO CSM@ and only when computing the CSM class of a toric variety. It is set to true by default. When true it will check if the toric variety is smooth before proceeding, if it is this will speed up computation; however checking for smoothness does take some time.
Example
needsPackage "NormalToricVarieties"
U = toricProjectiveSpace 7
time CSM U
time CSM(U,CheckSmooth=>false)
///
--------------------------------------------------------
-- Tests
--------------------------------------------------------
TEST ///
setRandomSeed 24;
R = QQ[v,y,z,w];
I = minors(2,matrix{{v,y,z},{y,z,w}});
totalSegre = Segre(I,CompMethod=>PnResidual);
assert( totalSegre == 3*( (ring(totalSegre))_0 )^2 - 10*( (ring(totalSegre))_0 )^3 );
totalChern = Chern(I,CompMethod=>PnResidual);
assert( totalChern == 3*( (ring(totalChern))_0 )^2 + 2 * ((ring(totalChern))_0)^3 );
///
TEST ///
-*
no-check-flag #2162
restart
needsPackage "CharacteristicClasses"
*-
R = ZZ/32749[x_0..x_4];
I = ideal(random(1,R),random(1,R),x_0^2*x_3-x_4*x_1*x_0);
A=ChowRing(R);
csm1 = CSM(A,I);
csm2=CSM(A,I,Method=>DirectCompleteInt);
assert( csm1== csm2 );
///
TEST ///
-*
no-check-flag #2162
restart
needsPackage "CharacteristicClasses"
*-
n=4;
kk=ZZ/32749;
R=kk[x_0..x_n];
A=ChowRing(R);
I = ideal random(R^1, R^{-2,-2});
csm = CSM(I);
A = ring csm;
seg = Segre(A,I);
assert((1+A_0)^(n+1) * seg == csm);
assert(Euler(csm) == 8);
--FORMULA FROM FULTON FOR SEGRE
segCI= product(0..numgens(I)-1,i->((degree(I_i))_0*A_0//(1+(degree(I_i))_0*A_0)));
assert(seg==segCI);
///
TEST ///
-*
no-check-flag #2162
restart
needsPackage "CharacteristicClasses"
installPackage "CharacteristicClasses"
*-
R=MultiProjCoordRing({2,2});
A=ChowRing(R);
I=ideal(random({1,1},R),R_0*R_3^2-R_1*R_4*R_3);
csmH=CSM(A,I,Output=>HashForm);
csmD=CSM(A,I,Method=>DirectCompleteInt,IndsOfSmooth=>{0});
m=new MutableHashTable;
m#{1}=csmH#{1};
m#{0,1}=csmH#{0,1};
V=ClassInChowRing(A,I_0);
seg=Segre(A,ideal(I_0));
assert(csmD==csmH#"CSM");
assert(csmH#"CSM"==CSM(A,I,m));
assert(Euler(csmH#"CSM")==7);
assert(csmH#{0}==Chern(A,ideal(I_0)));
assert(seg==(V//(1+V)));
///
-------------------------------------------------------
-- References
------------------------------------------------------
-- [1] David Eklund, Christine Jost, Chris Peterson. A method to compute Segre classes, Journal of Algebra and Its Applications 12(2), 2013
-- [2] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, Charles W. Wampler. Bertini: Software for Numerical Algebraic Geometry, available at http://www.nd.edu/~sommese/bertini
-- [3] Jonathan D. Hauenstein, Andrew J. Sommese, Charles W. Wampler. Regenerative cascade homotopies for solving polynomial systems, Applied Mathematics and Computation 218(4), 2011
-- [4] Christine Jost. An algorithm for computing the topological Euler characteristic of complex projective varieties, submitted, arXiv:1301.4128 [math.AG]
-- [5] Martin Helmer. Algorithms to compute the topological Euler characteristic, Chern-Schwartz-Macpherson class and Segre class of projective varieties. Journal of Symbolic Computation, 2015. Preprint on arXiv at arXiv:1402.2930.
-- [6] Martin Helmer. A Direct Algorithm to Compute the Topological Euler Characteristic and Chern-Schwartz-MacPherson Class of Projective Complete Intersection Varieties. (2014). arXiv preprint arXiv:1410.4113.
-- [7] Martin Helmer. An Algorithm to Compute the Topological Euler Characteristic, the Chern-Schwartz-MacPherson Class and the Segre class of Subschemes of Some Smooth Complete Toric Varieties. (2015). arXiv preprint arXiv:1508.03785
----------------------------------------------------------------------------------------------
|