1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
|
-- -*- coding: utf-8 -*-
-*
Copyright (C) 2021 Taylor Ball, Eduardo Camps, Henry Chimal-Dzul,
Delio Jaramillo-Velez, Hiram H. Lopez, Nathan Nichols, Matthew Perkins,
Ivan Soprunov, German Vera, Gwyn Whieldon
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*-
newPackage(
"CodingTheory",
Version => "1.0",
Date => "May 25, 2020",
Authors => {
{Name => "Taylor Ball", Email => "trball13@gmail.com"},
{Name => "Eduardo Camps", Email => "camps@esfm.ipn.mx"},
{Name => "Henry Chimal-Dzul", Email => "hc118813@ohio.edu"},
{Name => "Delio Jaramillo-Velez", Email => "djaramillo@math.cinvestav.mx"},
{Name => "Hiram H. Lopez", Email => "h.lopezvaldez@csuohio.edu"},
{Name => "Nathan Nichols", Email => "nathannichols454@gmail.com"},
{Name => "Matthew Perkins", Email => "m.r.perkins73@vikes.csuohio.edu"},
{Name => "Ivan Soprunov", Email => "i.soprunov@csuohio.edu"},
{Name => "German Vera", Email => "gveram1100@alumno.ipn.mx"},
{Name => "Gwyn Whieldon", Email => "gwyn.whieldon@gmail.com"}
},
HomePage => "https://academic.csuohio.edu/h_lopez/",
Headline => "tools for coding theory",
AuxiliaryFiles => false, -- set to true if package comes with auxiliary files,
Configuration => {},
DebuggingMode => false,
PackageImports => {
"SRdeformations",
"Polyhedra",
"NAGtypes",
"RationalPoints",
"Matroids",
"PrimaryDecomposition"
},
PackageExports => {
"Graphs"
},
Keywords => { "Coding Theory" },
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "https://msp.org/jsag/",
"article title" => "Coding theory package for Macaulay2",
"acceptance date" => "10 August 2021",
"published article URI" => "https://msp.org/jsag/2021/11-1/p11.xhtml",
"published article DOI" => "10.2140/jsag.2021.11.113",
"published code URI" => "https://msp.org/jsag/2021/11-1/jsag-v11-n1-x11-CodingTheory.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/CodingTheory.m2",
"release at publication" => "9224486f3fc4b8e00e883570756ab969be351009", -- git commit number in hex
"version at publication" => "1.0",
"volume number" => "11",
"volume URI" => "https://msp.org/jsag/2021/11-1/"
}
)
-- Any symbols or functions that the user is to have access to
-- must be placed in one of the following two lists
export {
-- helper/conversion methods
"generatorToParityCheck",
"parityCheckToGenerator",
"reducedMatrix",
-- Linear Code
-- Types and Constructors
"LinearCode",
"linearCode",
"AmbientModule",
"BaseField",
"Generators",
"GeneratorMatrix",
"ParityCheck",
"ParityCheckRows",
"ParityCheckMatrix",
"Code",
"chooseStrat",
-- Evaluation Code
-- Types and Constructors
"EvaluationCode",
"VanishingIdeal",
"PolynomialSet",
"ExponentsMatrix",
-- "IncidenceMatrix",
"Sets",
"evaluationCode",
"toricCode",
"evCodeGraph",
"cartesianCode",
"reedMullerCode",
"orderCode",
"reedSolomonCode",
-- Families of Codes
"zeroCode",
"universeCode",
"repetitionCode",
"zeroSumCode",
"cyclicMatrix",
"quasiCyclicCode",
"hammingCode",
"cyclicCode",
"randomCode",
-- LRC codes
"locallyRecoverableCode",
"getLRCencodingPolynomial",
-- Methods
"field",
"vectorSpace",
"ambientSpace",
"informationRate",
"dualCode",
"alphabet",
"messages",
"codewords",
"genericCode",
"bitflipDecode",
"shorten",
"vNumber",
"footPrint",
"hyp",
"genMinDisIdeal",
"vasconcelosDegree",
"tannerGraph",
"randNoRepeats",
"randLDPC",
"syndromeDecode",
"shortestPath",
"minimumWeight",
"Strat",
-- "matroidPartition",
"weight",
"enumerateVectors"
}
exportMutable {}
------------------------------------------
------------------------------------------
-- Linear Code Data Types and Constructors
------------------------------------------
------------------------------------------
------------------------------------------
-- Helper functions for constructors:
------------------------------------------
findPivots = method(TypicalValue => List)
findPivots(Matrix) := List => M -> (
-- if the reduced basis for the code does NOT
-- have an identity matrix on the right,
-- find positions of each column.
colsOfM := entries transpose M;
-- extract (ordered) positions of standard basis vectors.
apply(entries id_(M.target), col -> position(colsOfM, colM -> colM == col))
)
permuteMatrixColumns = method(TypicalValue => Matrix)
permuteMatrixColumns(Matrix,List) := (M,P) -> (
-- given a list P representing a permutation,
-- permute the columns via P.
transpose matrix((entries transpose M)_P)
)
permuteMatrixRows = method(TypicalValue => Matrix)
permuteMatrixRows(Matrix,List) := (M,P) -> (
-- given a list P representing a permutation,
-- permute the columns via P.
matrix((entries M)_P)
)
permuteToStandardForm = method()
permuteToStandardForm(Matrix) := M -> (
-- input: matrix M.
-- output: matrix P*M (permuted to move pivots to right identity block) and permutation P used.
pivotPositions := findPivots(M);
P := select(toList(0..rank M.source -1), i-> not member(i,pivotPositions)) | pivotPositions;
{permuteMatrixColumns(M, P), P}
)
generatorToParityCheck = method(TypicalValue => Matrix)
generatorToParityCheck(Matrix) := Matrix => M -> (
-- produce canonical form of the generating matrix.
G := transpose groebnerBasis transpose M;
-- save permutation of G to standard form and permutation used.
GandP := permuteToStandardForm(G);
-- update G to use this correct version, save P to variable.
Gred := GandP_0;
P := GandP_1;
-- take (n-k) columns of standard generating matrix above.
redG := Gred_{0..(rank Gred.source - rank Gred -1)};
-- take the Galois Field over which G is defined.
F := ring G.source;
-- take the rank of redG.
nk := rank redG.source;
-- vertically concatenate an identity matrix of rank (n-k),
-- then transpose.
permuteMatrixColumns(transpose (id_(F^nk) || -redG),inversePermutation(P))
)
parityCheckToGenerator = method(TypicalValue => Matrix)
parityCheckToGenerator(Matrix) := Matrix => M -> (
transpose generators kernel M
)
-- If the generator matrix or the parity check matrix is not of full rank,
-- choose a subset of rows that are generators.
reducedMatrix = method(TypicalValue => Matrix)
reducedMatrix(Matrix) := Matrix => M -> (
transpose groebnerBasis transpose M
)
reduceRankDeficientMatrix = method(TypicalValue => Matrix)
reduceRankDeficientMatrix(Matrix) := Matrix => M -> (
-- check if matrix is of full rank, otherwise return reduced.
if (rank M == min(rank M.source,rank M.target)) then (
M
) else (
reducedMatrix M
)
)
-- Internal function to validate user's input.
wellDefinedInput = method(TypicalValue => List)
wellDefinedInput(List) := UserInput -> (
-- UserInput = {GaloisField or Ring, lengthCode, ListGenerators}
-- or UserInput = {GaloisField or Ring, lengthCode,ListParityCheckRows}
-- Check if "baseField" is a Galois field, throw an error otherwise.
if not isField UserInput_0 then(
error "Codes over non-fields are not supported.";
);
if UserInput_2 == {} then(
return UserInput_2;
);
-- check that the length of all generating codewords equals the rank of AmbientModule.
if not all(UserInput_2,codeword -> (length codeword) == UserInput_1) then (
error "Expected codewords all to be the same length and equal to the rank of the module";
);
-- If possible, coerce generators into base field. Otherwise, throw an error.
try(
apply(UserInput_2, codeword -> apply(codeword, entry -> sub(entry, UserInput_0)))
) else (
error "Entries of codewords do not live in base field/ring.";
)
)
------------------------------------------
-- Linear Code Type and constructors:
------------------------------------------
-- Use this section to add basic types and
-- constructors for error correcting codes
LinearCode = new Type of HashTable
-- internal function to validate inputs:
rawLinearCode = method()
rawLinearCode(List) := LinearCode => (inputVec) -> (
-- use externally facing functions to create list:
-- { AmbientModule, BaseField, Generators, ParityCheckRows}
if inputVec_2 != {} then {
-- save generators into new variable.
newGens := inputVec_2;
newGenMat := matrix(newGens);
} else {
-- if generators and generator matrix were undefined.
newGens = {};
newGenMat = matrix({newGens});
};
if inputVec_3 != {} then {
-- save generators into new variable.
newParRow := inputVec_3;
newParMat := matrix(newParRow);
} else {
newParMat = generatorToParityCheck(newGenMat);
newParRow = entries newParMat;
};
-- compute generating matrix from parity check matrix, if not already set.
if newGens == {} then {
newGenMat = parityCheckToGenerator(newParMat);
newGens = entries newGenMat;
};
codeSpace := image transpose newGenMat;
new LinearCode from {
symbol AmbientModule => inputVec_0,
symbol BaseField => inputVec_1,
symbol Generators => newGens,
symbol GeneratorMatrix => newGenMat,
symbol ParityCheckRows => newParRow,
symbol ParityCheckMatrix => newParMat,
symbol Code => codeSpace,
symbol cache => new CacheTable
}
)
-- by default, assume that inputs are generators or generating matrices
-- set ParityCheck => true to have inputs be rows of parity check matrix.
linearCode = method(Options => {symbol ParityCheck => false})
linearCode(Module,List) := LinearCode => opts -> (M,L) -> (
-- constructor for a linear code.
-- input: ambient vector space/module S, list of generating codewords.
-- outputs: code defined by submodule given by span of elements in L.
-- first, check whether user's input is valid or not.
newL := wellDefinedInput {M.ring,rank M,L};
-- { AmbientModule, BaseField, Generators, GeneratorMatrix, ParityCheckRows, ParityCheckMatrix}
if opts.ParityCheck then {
outputVec := {M, M.ring, {}, newL};
} else {
outputVec = {M, M.ring, newL , {}};
};
rawLinearCode outputVec
)
linearCode(GaloisField,ZZ,List) := LinearCode => opts -> (F,n,L) -> (
-- input: field, ambient dimension, list of generating codewords.
-- outputs: code defined by module given by span of elements in L.
if n>0 then {
-- first, check whether user's input is valid or not.
newL := wellDefinedInput {F,n,L};
-- ambient module F^n.
M := F^n;
if opts.ParityCheck then {
outputVec := {F^n, F, {}, newL};
} else {
outputVec = {F^n, F, newL , {}};
};
} else {
error "The length of the code should be positive."
};
rawLinearCode outputVec
)
linearCode(GaloisField,List) := LinearCode => opts -> (F,L) -> (
-- input: field, list of generating codewords.
-- outputs: code defined by module given by span of elements in L.
-- calculate length of code via elements of L.
n := # L_0;
--check whether user's input is valid or not.
newL := wellDefinedInput {F,n,L};
if opts.ParityCheck then {
outputVec := {F^n, F, {}, newL};
} else {
outputVec = {F^n, F, newL , {}};
};
rawLinearCode outputVec
)
linearCode(ZZ,ZZ,ZZ,List) := LinearCode => opts -> (p,q,n,L) -> (
-- Constructor for codes over Galois fields.
-- input: prime p, exponent q, dimension n, list of generating codewords L.
-- output: code defined by module given by span of elements in L.
-- Galois Field.
F := GF(p,q);
if n>0 then {
--check whether user's input is valid or not.
newL := wellDefinedInput {F,n,L};
if opts.ParityCheck then {
outputVec := {F^n, F, {}, newL};
} else {
outputVec = {F^n, F, newL , {}};
};
return rawLinearCode(outputVec)
} else {
error "The length of the code should be positive."
};
)
linearCode(Module) := LinearCode => opts -> V -> (
-- constructor for a linear code.
-- input: some submodule V of S.
-- outputs: if ParityCheck => false then code defined by submodule V.
-- if ParityCheck => true then code defined as the dual
-- of the code defined by V.
-- produce a set of generators for the specified submodule V.
GorP := transpose generators V;
--obtaining the base ring.
R := GorP.ring;
--check whether the base ring is a GaloisField.
if not isField R then error "Codes over non-fields are not defined in this version yet.";
if opts.ParityCheck then {
outputVec := {GorP.source,R,{}, entries GorP};
} else {
outputVec = {GorP.source,R,entries GorP,{}};
};
rawLinearCode outputVec
)
linearCode(Matrix) := LinearCode => opts -> M -> (
-- constructor for a linear code.
-- input: a generating matrix for a code.
-- output: if ParityCheck => true then code defined by kernel of M.
-- if ParityCheck => false then code defined by rows of M.
--check whether the base ring is a GaloisField.
if not isField M.ring then error "Codes over non-fields are not defined in this version yet.";
if opts.ParityCheck then {
outputVec := {M.source, M.ring, {}, entries M};
} else {
outputVec = {M.source, M.ring, entries M, {}};
};
rawLinearCode outputVec
)
--net LinearCode := c -> (
-- "Code with Generator Matrix: " | net c.GeneratorMatrix)
toString LinearCode := c -> toString c.Generators
-----------------------------------------------
-----------------------------------------------
--Minimum Weight Algorithm---------------------
-----------------------------------------------
-----------------------------------------------
--Perform BFS to find shortest path between a vertex and a set of
--vertices in a digraph.
shortestPath = method(TypicalValue => List)
shortestPath (Digraph, Thing, List) := List => (D,start,finishSet) -> (
V := vertexSet(D);
assert(member(start, V));
r := length vertexSet(D);
--just pick some dummy variable to initialize predecessor array
local dummy;
dummy = symbol dummy;
pred := new MutableHashTable from apply(V,i-> i=>dummy);
dist := new MutableHashTable from apply(V,i-> i=>infinity);
visited := new MutableHashTable from apply(V,i-> i=>false);
dist#start = 0;
visited#start = true;
queue := {start};
while not queue == {} do (
v := first queue;
queue = drop(queue,1);
for u in elements children(D,v) do (
if (visited#u) == false
then (
visited#u = true;
dist#u = (dist#v) + 1;
pred#u = v;
queue=append(queue,u);
if member(u, finishSet)
then (
P := {u};
back := u;
while(not (pred#back) === dummy) do (
P = prepend(pred#back,P);
back = pred#back;
);
return P;
);
);
);
);
{}
)
--input: A list of matroids with the same ground set.
--output: A partition if possible. Otherwise, the emptylist.
matroidPartition = method(TypicalValue => List)
matroidPartition List := List => mls -> (
--check to make sure list of matroids with same ground set.
r := length mls;
assert(all(0..r-1, i-> instance(mls_i,Matroid)));
E := (mls_0).groundSet;
assert(all(0..r-1, i->((mls_i).groundSet)===E));
--set up initial values: special symbols z and list of lists that'll hopefully become our partition
local z;
Z := apply(new List from 1..r, i -> symbol z_i);
Els := new MutableList from prepend(elements(E),apply(new List from 1..r, i->{}));
--function to make relation for the digraph.
arrow := (x,y) -> (
if (member(y,Els#0) or member(x,Z) or x===y) then return 0;
if member(y,Z)
then if (not isDependent(mls_(((baseName y)#1)-1),append(Els#((baseName y)#1),x)))
then return 1
else return 0
else (
j := first select(1..r, i->member(y,Els#i));
if not isDependent(mls_(j-1),append(delete(y,Els#j),x))
then return 1
else return 0
)
);
--Once shortest path is found between x and z_j, update the partition.
repaint := (P,Els) -> (
l := (length P)-2;
for i from 1 to l do (
--We are traversing the path a 2-tuple at a time starting with (P_0,P_1)
--We want to replace P_i from its current set of partition with P_(i-1) until we get to some element of Z
j1 := first select(0..r,k->member(P_(i-1),Els#k));
j2 := first select(0..r,k->member(P_i,Els#k));
Els#j1 = delete(P_(i-1),Els#j1);
Els#j2 = append(Els#j2,P_(i-1));
);
--P_(i-1) is a z_j, so just rip off index.
j1 := first select(0..r,k->member(P_l,Els#k));
Els#j1 = delete(P_l,Els#j1);
Els#((baseName P_(l+1))#1) = append(Els#((baseName P_(l+1))#1),P_l);
);
--unless we've exhausted elements, try to make a partition.
while not (Els#0) == {} do (
newVertex := first first Els;
constructed := mingle drop(Els,1);
V := join({newVertex},constructed, Z);
M := matrix for x in V list for y in V list arrow(x,y);
D := digraph(V,M);
if any(1..r, i->isReachable(D,Z_(i-1),newVertex)) then (
repaint(shortestPath(D,newVertex,Z),Els)
) else (
--WOMP. No partition.
return {};
)
);
--We found a partition! Now sort it by length, largest to smallest.
apply(rsort apply(new List from drop(Els,1),i->(#i,i)),i->i_1)
)
weight = method(TypicalValue => Number)
weight BasicList := Number => c -> (
sum(new List from (apply(0..length c-1, i-> if c_i == 0 then 0 else 1)))
)
subsetToList := (n, subset) -> (
for i from 0 to (n-1) list(
if member(i, subset) then 1 else 0
)
);
-- A brute force implementation of minimum distance.
minDistBrute = method(TypicalValue => Number)
minDistBrute LinearCode := Number => C -> (
X := messages(C);
G := C.GeneratorMatrix;
words := apply(select(X, i -> (weight i) > 0), x -> (matrix({x}))*G);
words = apply(words, i -> weight first entries i);
minWeightC := min words;
C.cache#"minWeight" = minWeightC;
minWeightC
)
minDistOneInfoSet = method(TypicalValue => Number)
minDistOneInfoSet LinearCode := ZZ => C -> (
genMat := stdForm C.GeneratorMatrix;
k := rank genMat;
n := numcols genMat;
dlb := 1;
dub := n - k + 1;
w := 1;
while w <= k and dlb < dub do(
--print("-----------------------------------------------");
--print("Current weight: "|toString(w)|" / "|toString(k));
--print("Current lower bound:"|toString(dlb));
--print("Current upper bound:"|toString(dub));
-- Set msgsK to a list of all weight k messages.
msgsK := apply(subsets(k,w), x -> subsetToList(k,x));
msgsK = flatten apply(msgsK, x -> enumerateVectors(ring(C), x));
-- Encode the messages in msgsK.
codewordsK := apply(msgsK, u -> flatten entries ((matrix({toList u}))*genMat));
-- Update the lower/upper bounds.
dub = min(append(apply(codewordsK, i->weight i),dub));
dlb = w + 1;
w = w + 1;
);
C.cache#"minWeight" = dub;
dub
)
-- Calculate minimum distance using the matroid partition algorithm.
minDistMatroidPart = method(TypicalValue => Number)
minDistMatroidPart LinearCode := ZZ => C -> (
M := matrix C.Generators;
k := rank reducedMatrix(C.GeneratorMatrix);
n := length C;
l := ceiling(n/k);
D := l; --D could probably be modified to be better
w := 1;
j := 1;
--Partition columns of LinearCode into information sets.
cMatroid := matroid(M);
cMatroids := apply(toList(1..l),i->cMatroid);
T := matroidPartition(cMatroids);
if T == {} then(
-- No matroid partition exists.
-- Not sure if there is a better option in this case.
return minDistOneInfoSet C;
);
r := {}; --list of relative ranks
currentUnion := set();
for i from 0 to length T-1 do (
r = append(r,#(T_i-currentUnion));
currentUnion = currentUnion + set(T_i);
);
dupper := n-k+1; --Start with Singleton Bound
dlower := 0;
while(true) do (
--print("-----------------------------------------------");
--print("Current weight: "|toString(w)|" / "|toString(k));
--print("Current information set: "|toString(j)|" / "|toString(D));
--print("Current lower bound:"|toString(dlower));
--print("Current upper bound:"|toString(dupper));
permutation := join(T_(j-1),toList(0..n-1)-set(T_(j-1)));
G := reducedMatrix(M_permutation);
sameWeightWords := apply(subsets(k,w), x -> subsetToList(k,x));
sameWeightWords = flatten apply(sameWeightWords, x -> enumerateVectors(ring(C), x));
specialCodewords := apply(sameWeightWords, u -> flatten entries ((matrix({toList u}))*G));
dupper = min(append(apply(specialCodewords, i->weight i),dupper));
dlower = sum(toList apply(1..j,i->max(0,w-k+r_(i-1))));
dlower = dlower + sum(toList apply(j+1..D,i->max(0,w-k+r_(i-1))));
if dlower >= dupper then (
C.cache#"minWeight" = dupper;
--print("-----------------------------------------------");
--error "stop";
return dupper;
);
if j < D then (
j = j + 1;
) else(
w = w + 1;
);
-- This error is a failsafe to prevent an infinite loop.
if w > k then error "No minimum weight found. (This is a bug, try using a different strategy.)";
)
)
-- Unlike the function reducedMatrix, this function may change the actual vector
-- space that defines the linear code. However, the minimum distance is preserved.
stdForm = M -> (
M = reducedMatrix M;
-- remove the columns equal to zero
M = submatrix'(M, toList select(0..(numcols M)-1, x -> M_x == M_x - M_x));
first permuteToStandardForm M
);
-- Estimate the best strategy for a given linear code.
-- The reason this is a separate function is because it is sometimes desirable to know what
-- strategy minimumDistance chooses. For example, during debugging, development and testing.
chooseStrat = method(TypicalValue => String)
chooseStrat LinearCode := C -> (
M := matrix C.Generators;
k := rank reducedMatrix(C.GeneratorMatrix);
-- The number of matrix multiplications needed to perform the brute force algorithm.
R := ring C;
numCodewords := (R.order)^k;
-- The number of (k x k) matrices it will need to compute the rank of.
-- This computation takes place in the matroid constructor, matroid(Matrix).
numMatrices := binomial(numcols M, k);
-- This estimation is such that the only way that it can choose to use the
-- brute force algorithm when it should have used the matroid partition
-- algorithm is if the code in the Matroids package changes. (This assumes that
-- a call to "rank" on a (k x k) matrix and a message encoding of C take about the
-- same amount of time. Also, it assumes that this function actually does call "matroid"
-- on the generator matrix of C).
if numMatrices > numCodewords then(
-- The "OneInfoSet" strategy is a direct improvement over "BruteForce."
"OneInfoSet"
)else(
"MatroidPartition"
)
);
minimumWeight = method(TypicalValue => ZZ, Options => {Strat=>""})
minimumWeight LinearCode := ZZ => opts -> C -> (
if C.cache#?("minWeight") then(
return C.cache#"minWeight";
);
if opts.Strat == "MatroidPartition" then (
return minDistMatroidPart C;
);
if opts.Strat == "BruteForce" then(
return minDistBrute C;
);
if opts.Strat == "OneInfoSet" then(
return minDistOneInfoSet C;
);
if opts.Strat != "" then(
error "Strategy '"|toString(opts.Strat)|"' not recognized.";
);
-- If no strategy specified, try to guess which one to use.
minimumWeight(C, Strat=>(chooseStrat C) )
)
-----------------------------------------------
-----------------------------------------------
-- Evaluation Code Data Types and Constructors
-----------------------------------------------
-----------------------------------------------
-*
new EvaluationCode from{
symbol Points => P, --- a set of points of F^m
symbol VanishingIdeal => I, --the vanishing ideal of polynomials in m variables
symbol ExponentsMatrix => LL, -- the matrix of exponents, exponent vectors are rows
symbol IncidenceMatrix => M, -- the incidence matrix of a graph
symbol PolynomialSet => S, --- a set of polynomials
symbol LinearCode => linearCode(G), -- the linear code associated with the evaluation code
symbol Sets => S, -- the collection of subsets used for constructing a Cartesian code
symbol AmbientModule => F^(#P), --- the ambient space for an evaluation code
symbol cache => new CacheTable
}
*-
EvaluationCode = new Type of HashTable
evaluationCode = method(Options => {})
evaluationCode(Ring,List,List) := EvaluationCode => opts -> (F,P,S) -> (
-- constructor for the evaluation code.
-- input: a field F, a list of points in F^m, a set of polynomials over F in m variables.
-- outputs: The list of points, the list of polynomials, the vanishing ideal and the linear code, the linear code.
m := # P#0;
if class(ring ideal S) === PolynomialRing then R:=(ring ideal S) else (t := getSymbol "t", R=F[t_1..t_m], S=apply(S,i->promote(i,R)));
I := intersect apply(P,i->ideal apply(numgens R,j->R_j-i#j)); -- Vanishing ideal of the set of points.
G := transpose matrix apply(P,i->flatten entries sub(matrix(R,{S}),matrix(F,{i}))); -- Evaluate the elements in S over the elements on P.
new EvaluationCode from{
symbol VanishingIdeal => I,
symbol Points => P,
symbol PolynomialSet => S,
symbol LinearCode => linearCode G, -- the linear code produced by the evaluation code construction
symbol cache => new CacheTable
}
)
evaluationCode(Ring,List,Matrix) := EvaluationCode => opts -> (F,P,M) -> (
-- Constructor for a evaluation (monomial) code.
-- inputs: a field, a list of points (as a tuples) of the same length and a matrix of exponents.
-- outputs: a F-module.
-- We should check if all the points of P are in the same F-vector space.
m := numgens image M; -- number of monomials.
t := getSymbol "t";
R := F[t_0..t_(m-1)];
S := apply(entries M, i -> vectorToMonomial(vector i,R));
evaluationCode(F,P,S)
)
--net EvaluationCode := c -> (
-- c.LinearCode)
dualCode = method()
dualCode(LinearCode) := LinearCode => C -> (
-- creates dual code to code C.
-- defn: the dual C^ is the code given by all c'.
-- such that c'.c == 0 for all c in C.
linearCode(dual cokernel gens C.Code)
)
------------------------------------------
-- Evaluation Code constructors:
------------------------------------------
toricCode = method(Options => {})
toricCode(Ring,Matrix) := EvaluationCode => opts -> (F,M) -> (
-- Constructor for a toric code.
-- inputs: a Galois field, an integer matrix.
-- outputs: the evaluation code defined by evaluating all monomials corresponding to integer
--- points in the convex hull (lattice polytope) of the rows of M at the points of the algebraic torus (F*)^n.
z:=F_0; --- define the primitive element of the field.
q:=F.order; --- define the size of the field.
s:=set apply(q-1,i->z^i); -- set of non-zero elements in the field.
m:=numgens target transpose M; --- the length of the exponent vectors, i.e., number of variables for monomials, i.e., the dim of the ambient space containing the polytope.
ss:=s;
for i from 1 to m-1 do (
ss=set toList ss/splice**s;
);
P:=toList ss/splice; -- the loop above creates the list of all m-tuples of non-zero elements of F, i.e., the list of points in the algebraic torus (F*)^m.
Polytop:=convexHull transpose M; -- the convex hull of the rows of M.
L:=latticePoints Polytop; -- the list of lattice points in Polytop.
LL:=matrix apply(L, i-> first entries transpose i); --converts the list of lattice points to a matrix of exponents.
G:=matrix apply(entries LL,i->apply(P,j->product apply(m,k->(j#k)^(i#k)))); -- the matrix of generators; rows form a generating set of codewords.
t := getSymbol "t";
R:=F[t_1..t_m]; --- defines the ring containing monomials corresponding to exponents.
I := ideal apply(m,j->R_j^(q-1)-1); -- the vanishing ideal of (F*)^m.
new EvaluationCode from{
symbol Points => P, --- the points of (F*)^m.
symbol VanishingIdeal => I, --the vanishing ideal of (F*)^m.
symbol ExponentsMatrix => LL, -- the matrix of exponents, exponent vectors are rows.
symbol LinearCode => linearCode(G), -- the linear code.
symbol cache => new CacheTable
}
)
----------Reed–Muller-type code of degree d over a graph using our the algorithm of evaluationCode.
evCodeGraph = method(Options => {});
evCodeGraph (Ring,Matrix,List) := evCodeGraph => opts -> (F,M,S) -> (
-- input: a field, Incidence matrix of the graph , a set of polynomials.
-- outputs: a monomial code over the list of points.
-- We should check if all the points live in the same F-vector space.
-- Should we check if all the monomials live in the same ring?
P := entries transpose M;
R := ring S#0; --- MAY NOT WORK if the first element of S is a constant polynomial!
I := intersect apply(P,i->ideal apply(numgens R-1,j->R_j-i#j)); -- Vanishing ideal of the set of points.
S = toList apply(apply(S,i->promote(i,R/I)),j->lift(j,R))-set{0*S#0}; -- Drop the elements in S that was already in I.
G := matrix apply(P,i->flatten entries sub(matrix(R,{S}),matrix(F,{i}))); -- Evaluate the elements in S over the elements on P.
new EvaluationCode from{
symbol AmbientModule => F^(#P),
symbol Points => P,
symbol VanishingIdeal => I,
symbol PolynomialSet => S,
symbol LinearCode => linearCode(G),
symbol cache => new CacheTable
}
)
-------Reed–Muller-type code of degree d over a graph using the function evaluate from package "NAGtypes"---------------
cartesianCode = method(Options => {})
cartesianCode(Ring,List,List) := EvaluationCode => opts -> (F,S,M) -> (
--constructor for a cartesian code.
--input: a field, a list of subsets of F and a list of polynomials.
--outputs: The evaluation code using the cartesian product of the elements in S and the polynomials in M.
m := #S;
if class(ring ideal M) === PolynomialRing then R:=(ring ideal M) else (t := getSymbol "t", R=F[t_1..t_m], M=apply(M,i->promote(i,R)));
I := ideal apply(m,i->product apply(S#i,j->R_i-j));
P := set S#0;
for i from 1 to m-1 do P=P**set S#i;
if m==1 then {P = apply(toList(P/deepSplice),i->{i})} else
{P = apply(toList(P/deepSplice),i->toList i)};
G := transpose matrix apply(P,i->flatten entries sub(matrix(R,{M}),matrix(F,{i})));
new EvaluationCode from{
symbol Sets => S,
symbol Points => P,
symbol VanishingIdeal => I,
symbol PolynomialSet => M,
symbol LinearCode => linearCode(G),
symbol cache => new CacheTable
}
)
cartesianCode(Ring,List,ZZ) := EvaluationCode => opts -> (F,S,d) -> (
-- Constructor for cartesian codes.
-- inputs: A field F, a set of tuples representing the subsets of F and the degree d.
-- outputs: the cartesian code of degree d.
m := #S;
t := getSymbol "t";
R := F[t_0..t_(m-1)];
M := apply(flatten entries basis(R/monomialIdeal basis(d+1,R)),i->lift(i,R));
cartesianCode(F,S,M)
)
cartesianCode(Ring,List,Matrix) := EvaluationCode => opts -> (F,S,M) -> (
-- constructor for a monomial cartesian code.
-- inputs: a field, a list of sets, a matrix representing as rows the exponents of the variables.
-- outputs: a cartesian code evaluated with monomials.
-- Should we add a second version of this function with a third argument an ideal? For the case of decreasing monomial codes.
m := #S;
t := getSymbol "t";
R := F[t_0..t_(m-1)];
T := apply(entries M,i->vectorToMonomial(vector i,R));
cartesianCode(F,S,T)
)
reedMullerCode = method(TypicalValue => EvaluationCode)
reedMullerCode(ZZ,ZZ,ZZ) := EvaluationCode => (q,m,d) -> (
-- Constructor for a Reed-Muller code.
-- Inputs: A prime power q (the order of the finite field), m the number of variables in the defining ring and an integer d (the degree of the code).
-- outputs: The cartesian code of the GRM code.
F := GF(q);
S := apply(q-1, i->F_0^i)|{0*F_0};
S = apply(m, i->S);
cartesianCode(F,S,d)
)
reedSolomonCode = method(TypicalValue => EvaluationCode)
reedSolomonCode(Ring,List,ZZ) := EvaluationCode => (F,S,d) -> (
-- Constructor for a Reed-Solomon code.
-- Inputs: Field, subset of the field and an integer d (polynomials of degree less than d will be evaluated).
cartesianCode(F,{S},d-1)
)
orderCode = method(Options => {})
orderCode(Ring,List,List,ZZ) := EvaluationCode => opts -> (F,P,G,l) -> (
-- Order codes are defined through a set of points and a numerical semigroup.
-- Inputs: A field, a list of points P, the minimal generating set of the semigroup (where G_1<G_2<...) of the order function, a bound l.
-- Outputs: the evaluation code evaluated in P by the polynomials with weight less or equal than l.
-- We should add a check to way if all the points are of the same length.
m := length P#0;
t := getSymbol "t";
R := F[t_0..t_(m-1), Degrees=>G];
M := matrix apply(toList sum apply(l+1, i -> set flatten entries basis(i,R)),j->first exponents j);
evaluationCode(F,P,M)
)
orderCode(Ideal,List,List,ZZ) := EvaluationCode => opts -> (I,P,G,l) -> (
-- If we know the defining ideal of the finite algebra associated to the order function, we can obtain the generating matrix.
-- Inputs: The ideal I that defines the finite algebra of the order function, the points to evaluate over, the minimal generating set of the semigroups associated to the order function and the bound.
-- Outputs: an evaluation code.
m := #flatten entries basis(1,I.ring);
t := getSymbol "t";
R := (coefficientRing I.ring)[t_1..t_m, Degrees=>G, MonomialOrder => (reverse apply(flatten entries basis(1,I.ring),i -> Weights => first exponents i))];
J := sub(I,matrix{gens R});
S := R/J;
M := matrix apply(toList sum apply(l+1,i->set flatten entries basis(i,S)),i->first exponents i);
evaluationCode(coefficientRing I.ring, P, M)
)
orderCode(Ideal,List,ZZ) := EvaluationCode => opts -> (I,G,l) -> (
-- The same as before, but taking P as the rational points of I.
P := rationalPoints I;
orderCode(I,P,G,l)
)
------------------------------------------
------------------------------------------
-- Basic Code Types
------------------------------------------
------------------------------------------
zeroCode = method()
zeroCode(GaloisField,ZZ) := LinearCode =>(F,n)->(
-- Generates the zero code in F^n.
-- check n is positive.
if n >0 then {
GenMat := matrix {apply(toList(0..n-1),i->0)};
GenRow := {{}};
ParMat := generators F^n;
ParRows := entries ParMat;
return new LinearCode from {
symbol AmbientModule => F^n,
symbol BaseField => F,
symbol Generators => GenRow,
symbol GeneratorMatrix => GenMat,
symbol ParityCheckMatrix => ParMat,
symbol ParityCheckRows => ParRows,
symbol cache => new CacheTable
}
} else {
error "The length of the code should be positive."
};
)
universeCode = method()
universeCode(GaloisField,ZZ) := LinearCode => (F,n) -> (
-- construct the universe code F^n.
-- check n is positive.
if n>0 then {
GenMat := generators F^n;
GenRow := entries GenMat;
ParMat := matrix {apply(toList(0..n-1),i->0)};
ParRows := {{}};
return new LinearCode from {
symbol AmbientModule => F^n,
symbol BaseField => F,
symbol Generators => GenRow,
symbol GeneratorMatrix => GenMat,
symbol ParityCheckMatrix => ParMat,
symbol ParityCheckRows => ParRows,
symbol cache => new CacheTable
}
} else {
error "The length of the code should be positive."
};
)
repetitionCode = method()
repetitionCode(GaloisField,ZZ) := LinearCode => (F,n) -> (
--construct the repetition code of length n over F.
--check n is positive.
if n > 0 then {
l := {apply(toList(0..n-1),i-> sub(1,F))};
return linearCode(F,n,l)
} else {
error "The length of the code should be positive."
};
)
zeroSumCode = method ()
zeroSumCode(GaloisField,ZZ):= LinearCode => (F,n) -> (
-- construct the dual of the repetition code of length n over F.
--check n is positive.
if n>0 then {
l := {apply(toList(0..n-1),i-> sub(1,F))};
return linearCode(F,n,l,ParityCheck => true)
} else {
error "The length of the code should be positive."
}
)
------------------------------------------
------------------------------------------
-- Binary Operations
------------------------------------------
------------------------------------------
-- mathematical equality of linear codes
LinearCode == LinearCode := (C,D) -> (
MC := matrix apply(C.Generators, a -> vector a );
MD := matrix apply(D.Generators, a -> vector a );
image MC == image MD
)
------------------------------------------
------------------------------------------
-- Families of Codes
------------------------------------------
------------------------------------------
-- Use this section to add methods that
-- construct families of codes
------------------------------------------------------
-- Added helper functions to produce cyclic matrices:
------------------------------------------------------
cyclicMatrix = method(TypicalValue => Matrix)
cyclicMatrix(List) := Matrix => v -> (
-- constructs the cyclic matrix with first
-- row given by v.
-- calculate number of rows/columns.
ndim := # v;
-- produce cyclic matrix of right-shifts with
-- first row given by v.
matrix(apply(toList(0..ndim-1), i -> apply(toList(0..ndim-1),j -> v_((j-i)%ndim))))
)
cyclicMatrix(GaloisField,List) := Matrix => (F,v) -> (
-- constructs the cyclic matrix with first
-- row given by v, coercing elements into F.
try {
-- attempt to coerce all entries into
-- same field, if necessary.
newV := apply(v, entry -> sub(entry,F));
} else {
-- otherwise, throw error.
error "Elements of input cannot be coerced into same field.";
};
cyclicMatrix newV
)
quasiCyclicCode = method(TypicalValue => LinearCode)
quasiCyclicCode(GaloisField,List) := LinearCode => (F,V) -> (
-- produce cyclic matrices with each v in V as first row.
cyclicMatrixList := apply(V, v-> cyclicMatrix(F,v));
-- vertically concatenate all of the codewords in blocks
-- of our quasi-cyclic code.
linearCode(fold((m1,m2) -> m1 || m2, cyclicMatrixList))
)
quasiCyclicCode(List) := LinearCode => V -> (
-- constructs a cyclic code from a
-- list of lists of elements in some field F.
-- check field that elements live over.
baseField := class V_0_0;
try quasiCyclicCode(baseField,V) else error "Entries not over a field."
)
-*
F = GF(5)
L = apply(toList(1..2),j-> apply(toList(1..4),i-> random(F)))
C=quasiCyclicCode(L)
*-
hammingCode = method(TypicalValue => LinearCode)
hammingCode(ZZ,ZZ) := LinearCode => (q,r) -> (
-- produce Hamming code
-- q is the size of the field.
-- r is the dimension of the dual.
K := GF(q);
-- setK is the set that contains all the elements of the field.
setK := set( {0}| apply(toList(1..q-1),i -> K_1^i));
-- C is the transpose of the parity check matrix of the code. Its rows are the points of the
-- projective space P(r-1,q).
j := 1;
C := matrix(apply(toList(1..q^(r-j)), i -> apply(toList(1..1),j -> 1))) | matrix apply(toList(toList setK^**(r-j)/deepSplice),i->toList i);
for j from 2 to r do (
C = C || (matrix(apply(toList(1..q^(r-j)), i -> apply(toList(1..(j-1)),j -> 0))))
| (matrix(apply(toList(1..q^(r-j)), i -> apply(toList(1..1),j -> 1))))
| (matrix apply(toList(toList setK^**(r-j)/deepSplice),i->toList i));
);
-- The Hamming code is defined by its parity check matrix.
linearCode(transpose C, ParityCheck => true)
);
-*
Example:
hammingCode(2,3)
ParityCheckMatrix => | 1 1 1 1 0 0 0 |
| 0 1 0 1 1 1 0 |
| 0 1 1 0 0 1 1 |
*-
cyclicCode = method (TypicalValue => LinearCode)
cyclicCode(GaloisField ,RingElement, ZZ) := LinearCode => (F,G,n) -> (
--Constructor for Cyclic Codes generated by a polynomial.
-- input: The generating polynomial and the length of the code.
--outputs: a cyclic code defined by the initial polynomial.
-- We should make a list of the coefficients of the polynomial.
ring G;
x:=(gens ring G)#0;
f:=x^n-1;
t:=quotientRemainder(G,f);
g:=t#1;
if (quotientRemainder(f,g))#1==0 then (
r:=toList apply(0.. (n-1),i->first flatten entries sub(matrix{{g//x^i}}, x=>0 ));
-- Generate the generating matrix using the function cyclicMatrix.
R:=toList apply(toList(0..n-1-(degree g)#0), i -> apply(toList(0..n-1),j -> r_((j-i)%n)));
linearCode(coefficientRing (ring G),R)
) else (
l := toList apply(0.. (n-1),i->first flatten entries sub(matrix{{g//x^i}}, x=>0 ));
-- Generate the generating matrix using the function cyclicMatrix.
L := toList apply(toList(0..n-1), i -> apply(toList(0..n-1),j -> l_((j-i)%n)));
linearCode(coefficientRing (ring G),L)
)
)
cyclicCode(GaloisField, ZZ, ZZ) := LinearCode => (F,G,n) -> (
a := promote(G,F);
if a==0 then (
zeroCode(F,n)
)else(
universeCode(F,n)
)
)
-*
EXAMPLE:
GF(7)[x]
cyclicCode(GF(7),1,5)
cyclicCode(GF(7),(x+3)*(x-1)*(x^3-2),9)
cyclicCode(GF(7),5,4)
*-
------------------------ -------------
-- Helper functions for constructing
-- LRC CODES
-------------------------------
locallyRecoverableCode = method(TypicalValue => LinearCode)
locallyRecoverableCode(List,List,RingElement) := LinearCode => (L,A,g) -> (
-- generate a linear Locally Recoverable Code.
-- input: L={q,n,k,r} alphabet size q, target code length n, dimension k, and locality r.
-- A is a partition of n symbols from the alphabet,
-- g is a polynomial that is constant on each subset of A (a "good" polynomial).
-- output: a linear code for which given a symbol c_i in a codeword, there exists
-- "r" other symbols in the codeword c_j such that f(c_i)=f(c_j).
-- R: is the polynomial ring generated by g.
-- informationSpaceGenerators: is a list of generators for the information space (ZZ/q)^k where k is the target dimension.
-- encodingPolynomials: is a list of the encoding polynomials, where each polynomial corresponds to a generator of (ZZ/q)^k.
-- codeGenerators: contains the set of generators for the code, which are obtained by evaluation each element of the subsets of A at the encoding polynomials.
q := L#0;
n := L#1;
k := L#2;
r := L#3;
-- note: check that n less than or equal to q and if the symbols of A lie in F.
if not n<=q then (
error "Warning: construction requires that target length <= field size.";
);
--verify that target dimension is divisible by locality.
if not k%r==0 then(
error "target dimension is not divisible by target locality";
);
R := ring g;
informationSpaceGenerators := entries gens (ZZ/q)^k;
encodingPolynomials := apply(informationSpaceGenerators,i-> (getLRCencodingPolynomial(k, r, i, g)));
codeGenerators := apply(encodingPolynomials, polyn -> (apply( (flatten A), sym -> ( polyn[sym]%(q) ) ) ) );
linearCode(GF(q),codeGenerators)
)
---------------------------------------------
-- ENCODING POLYNOMIAL FOR LRC CODES --
---------------------------------------------
getLRCencodingPolynomial = method(TypicalValue => RingElement)
getLRCencodingPolynomial(ZZ,ZZ,List,RingElement) := RingElement => (k,r,informationList,g) -> (
-- generates the encoding polynomial for an LRC code.
-- input: p is a HashTable of the target parameters,
-- informationList is a list of generators for the information space (ZZ/q)^k,
-- g is a good polynomial for some partition of symbols in (ZZ/q).
-- output: the encoding polynomial for an information vector in F^k.
-- R: is the polynomial ring generated by g.
-- x: is the variable(s) in the ring R.
-- i: is a set of limits for the summation in the formula for an encoding polynomial.
R := ring g;
x := (gens R)#0;
g1 := sub(g,R);
i := toList(0..(r-1));
-- f: generates the coefficient polynomial for an LRC code.
-- input: p is a HashTable of the target parameters,
-- informationList is a list of generators for the information space (ZZ/q)^k,
-- g is a good polynomial for some partition of symbols in (ZZ/q)
-- i is the row index of the matrix a_ij in the formula for a coefficient polynomial.
-- output: the coefficient polynomial for an information vector in F^k.
-- j: is the column index of the matrix a_ij in the formula for a coefficient polynomial.
f:=(k, r, informationList, g, i) -> (
j := toList(0..(k//r-1));
sum apply(j,inc -> ( (informationList_{i*2+inc}_0) * (g^inc) ))
);
sum apply(i,inc -> ( (f(k, r, informationList, g1, inc))*((x^inc) ) ))
)
-* example
needsPackage("CodingTheory")
p=targetParameters(13,9,4,2)
A={{1,3,9},{2,6,5},{4,12,10}}
R=p.BaseField[x]
g=x^3
locallyRecoverableCode(p,A,g)
*-
------------------------- END MATT --------------------------------------------
------------------------------------------
------------------------------------------
-- Linear Code Methods
------------------------------------------
------------------------------------------
-- Use this section to add methods that
-- act on codes. Should use this section for
-- writing methods to convert between
-- different types of codes
-- Overloading the ring function to return the base field of a LinearCode.
-- This will work even when AmbientModule and BaseField are not properly defined.
ring LinearCode := Ring => C -> (
ring(C.GeneratorMatrix)
)
--input: A linear code C.
--output: The field C is a code over.
--description: Given a linear code, the function returns the field C is a code over:
field = method(TypicalValue => Ring)
field LinearCode := Ring => C -> (
C.BaseField
)
--input: A linear code C.
--output: The vector space spanned by the generators of C.
vectorSpace = method(TypicalValue => Module)
vectorSpace LinearCode := Module => C -> (
C.Code
)
--input: A linear code C.
--output: The ambient vector space the code is a subspace of:
ambientSpace = method(TypicalValue => Module)
ambientSpace LinearCode := Module => C -> (
C.AmbientModule
)
--input: A linear code C.
--output: The vector space dimension of the ambient vector space
--C is a subspace of:
length LinearCode := ZZ => C -> (
rank(C.AmbientModule)
)
--input: A linear code C.
--output: The vector space dimension of the subspace given by the
--span of the generators of C:
dim LinearCode := Number => C -> (
rank (C.Code)
)
--input: A linear code C.
--output: The ratio (dim C)/(length C).
informationRate = method(TypicalValue => QQ)
informationRate LinearCode := QQ => C -> (
(dim C)/(length C)
)
--input: A linear code C.
--output: the number of codewords in C.
size LinearCode := ZZ => C -> (
(C.BaseField.order)^(dim C)
)
alphabet = method(TypicalValue => List)
alphabet(LinearCode) := List => C -> (
-- "a" is the multiplicative generator of the
-- field that code C is over:
-- check if "base ring" is ZZ/q.
if C.BaseField.baseRings === {ZZ} then {
a := sub(1,C.BaseField);
-- generate elements additively.
alphaB := apply(toList(1..(C.BaseField.order)), i-> i*a)
} else {
a = C.BaseField.generators_0;
-- take 0, and compute non-zero elements of C.BaseField.
alphaB = {sub(0,C.BaseField)} | apply(toList(1..(C.BaseField.order-1)), i-> a^i);
};
alphaB
)
genericCode = method(TypicalValue => LinearCode)
genericCode(LinearCode) := LinearCode => C -> (
linearCode(C.AmbientModule)
)
-- method to generate all message words in code.
messages = method(TypicalValue => List)
messages(LinearCode) := List => C -> (
k := dim C ;
A := alphabet C;
messageSpace := apply(toList((set A)^**k) / deepSplice, c -> toList(c));
messageSpace
)
-- method to compute the set of q^k codewords in an [n,k]-code.
codewords = method(TypicalValue => List)
codewords(LinearCode) := List => C -> (
-- save generator matrix as G.
G := reducedMatrix(C.GeneratorMatrix);
-- convert message vectors as lists into matrices.
M := apply(messages C, m-> matrix({m}));
-- map m -> mG to compute codewords.
flatten apply(M, m -> entries (m*G))
)
-- input: An [n,k] linear code C and a set S of distinct integers { i1, ..., ir} such that 1 <= ik <= n.
-- output: A new code from C by selecting only those codewords of C having a zeros in each of the coordinate
-- positions i1, ..., ir, and deleting these components. Thus, the resulting
-- code will have length n - r.
shorten = method(TypicalValue => LinearCode)
shorten ( LinearCode, List ) := LinearCode => ( C, L ) -> (
local newL; local codeGens; local F;
C = linearCode(matrix (codewords C));
F = C.BaseField;
codeGens = C.Generators;
newL = delete(0, apply( codeGens, c -> (
if sum apply( L, l -> if c#l == 0_F then 0_ZZ else 1_ZZ ) == 0_ZZ
then c
else 0
)));
if newL == {} then(
C
) else (
newL = entries submatrix'(matrix newL, L);
linearCode(C.BaseField, newL)
)
)
-*
shorten ( LinearCode, List ) := LinearCode => ( C, L ) -> (
local newL; local codeGens;
codeGens = C.Generators;
newL = delete(0, apply( codeGens, c -> (
if sum apply( L, l -> c#l ) == 0
then c
else 0
)));
if newL == {} then return C else (
newL = entries submatrix' ( matrix newL, L );
return linearCode ( C.BaseField , newL );
)
)
*-
-- input: An [n,k] linear code C and an integer i such that 1 <= i <= n.
-- output: A new code from C by selecting only those codewords of C having a zero as their
-- i-th component and deleting the i-th component from these codewords. Thus, the resulting
-- code will have length n - 1.
shorten ( LinearCode, ZZ ) := LinearCode => ( C, i ) -> (
shorten(C, {i})
)
-- input: A module as the base field/ring, an integer n as the code length, and an integer
-- k as the code dimension.
-- output: a random codeword with AmbientModule M^n of dimension k.
--random (Module, ZZ, ZZ) := LinearCode => (M, n, k) -> (
-- linearCode( M, apply(toList(1..n),j-> apply(toList(1..k),i-> random(M))) )
-- )
randomCode = method(TypicalValue => LinearCode);
randomCode (GaloisField,ZZ,ZZ) := (LinearCode) => (F, n, k) -> (
linearCode(F, n, apply(toList(1..k), j-> apply(toList(1..n),i-> random(F))))
)
randomCode (QuotientRing,ZZ,ZZ) := (LinearCode) => (R, n, k) -> (
linearCode(matrix apply(toList(1..k), j-> apply(toList(1..n),i-> random(R))))
)
-----------------------Generalized functions in coding theory---------------------
--------------------------------------------------------------
--================= v-number function ========================
vNumber = method(TypicalValue => ZZ);
vNumber (Ideal) := (I) -> (
L := ass I;
G := apply(0..#L-1,i->flatten flatten degrees mingens(quotient(I,L#i)/I));
N := apply(G,i->toList(set i-set{0}));
min flatten N
)
-----------------------------------------------------------
--****************** Footprint Function ********************
footPrint = method(TypicalValue => ZZ);
footPrint (ZZ,ZZ,Ideal) := (d,r,I) ->(
var1 := subsets(flatten entries basis(d,coker gens gb I),r);
var2 := apply(var1,toSequence);
var3 := apply(var2,ideal);
var4 := apply(var3,x->if not quotient(ideal(leadTerm gens gb I),x)==ideal(leadTerm gens gb I) then
degree coker gens gb ideal(ideal(leadTerm gens gb I),x)
else 0 );
degree coker gens gb I - max var4
)
-----------------------------------------------------------
--****************** GMD Functions ********************
--------------------------------------------------------
--=====================hyp function======================
hyp = method(TypicalValue => ZZ);
hyp (ZZ,ZZ,Ideal) := (d,r,I) ->(
var1 := apply(toList (set(0..char ring I-1))^**(hilbertFunction(d,coker gens gb I))
-(set{0})^**(hilbertFunction(d,coker gens gb I)),toList);
var2 := apply(var1,x -> basis(d,coker gens gb I)*vector deepSplice x);
var3 := apply(var2,z->ideal(flatten entries z));
var4 := subsets(var3,r);
var5 := apply(var4,ideal);
var6 := apply(var5,x -> if #set flatten entries mingens ideal(leadTerm gens x)==r and not quotient(I,x)==I
then degree(I+x)
else 0);
max var6
)
------------------------GMD Function--------------------------------
genMinDisIdeal = method(TypicalValue => ZZ);
genMinDisIdeal (ZZ,ZZ,Ideal) := (d,r,I) ->(
degree(coker gens gb I)-hyp(d,r,I)
)
--------------------------------------------------------------
--===================== Vasconcelos Function ================
vasconcelosDegree = method(TypicalValue => ZZ);
vasconcelosDegree (ZZ,ZZ,Ideal) := (d,r,I) ->(
var1:=apply(toList (set(0..char ring I-1))^**(hilbertFunction(d,coker gens gb I))
-(set{0})^**(hilbertFunction(d,coker gens gb I)),toList);
var2:=apply(var1,x -> basis(d,coker gens gb I)*vector deepSplice x);
var3:=apply(var2,z->ideal(flatten entries z));
var4:=subsets(var3,r);
var5:=apply(var4,ideal);
var6:=apply(var5, x -> if #set flatten entries mingens ideal(leadTerm gens x)==r and not quotient(I,x)==I
then degree(coker gens gb quotient(I,x))
else degree(coker gens gb I)
);
min var6
)
----------------------------------------------------------------------------------
-*
Bitflip decode the codeword v relative to the parity check matrix H.
Example:
R=GF(2);
H := matrix(R, {
{1,1,0,0,0,0,0},
{0,1,1,0,0,0,0},
{0,1,1,1,1,0,0},
{0,0,0,1,1,0,0},
{0,0,0,0,1,1,0},
{0,0,0,0,1,0,1}});
v := vector transpose matrix(R, {{0,1,0,0,1,0,0}});
print(bitflipDecode(H,v,100));
*-
bitflipDecode = method(TypicalValue => List)
bitflipDecode(Matrix, Vector, ZZ) := (H, v, maxI) -> (
w := v;
if(H*w == 0_(target H)) then(
return entries w;
);
for iteration from 0 to maxI-1 do(
n := rank target H;
fails := positions(entries (H*w), i -> i==1);
failsRows := select(pairs entries H, i -> member(first i, set(fails)));
-- matrix representing only the homogeneous eqns that fail.
failSubgraph := lift(matrix toList(apply(failsRows, i -> last i)),ZZ);
oneVec := vector apply(entries (0_(target failSubgraph)), i -> 1);
-- number of times each variable appears in a failing equation.
numFails := entries (transpose(failSubgraph)*oneVec);
toFlip := positions(numFails, n -> n == (max numFails));
flipVec := sum apply(toFlip, i -> vector ((entries basis source H)#i));
w = flipVec+w;
if(H*w == 0_(target H)) then(
return entries w;
);
);
{}
);
tannerGraph = method(TypicalValue => Graphs$Graph)
tannerGraph(Matrix) := H -> (
R := ring(H);
cSym := getSymbol "c";
rSym := getSymbol "r";
symsA := toList (cSym_0..cSym_((numgens source H)-1));
symsB := toList (rSym_0..rSym_((numgens target H)-1));
-- The vertex sets of the bipartite graph.
tannerEdges := for i from 0 to (numgens source H)-1 list(
for j from 0 to (numgens target H)-1 list(
if H_(j,i) != 0 then(
{symsA#i, symsB#j}
)else(
continue;
)
)
);
Graphs$graph(symsA|symsB, flatten tannerEdges)
);
randNoRepeats = method(TypicalValue => List)
randNoRepeats (ZZ, ZZ) := (a, k) -> (
if a < 0 or k < 1 then (
error "Invalid arguments for randNoRepeats.";
);
-- we want it to work in cases like a=0, k=1.
if k > a+1 then(
error "Argument k to randNoRepeats is too large.";
);
n := a;
population := toList(0..n);
result := new MutableList from (toList (0..(k-1)));
pool := new MutableList from population;
for i from 0 to k-1 do(
j := random(0, n-i);
result#i = pool#j;
-- Move the non-selected item to a place where it can be selected.
pool#j = pool#(n-i);
);
toList result
);
randLDPC = method(TypicalValue => Matrix)
randLDPC(ZZ, ZZ, RR, ZZ) := (n, k, m, b) -> (
if(n <= k) then(
error "n must be less than k.";
);
popcount := floor(n*m + b);
if popcount > n*(n-k) then(
popcount = n*(n-k);
);
R := GF(2);
H := new MutableList from for i from 1 to n*(n-k) list(0_R);
ones := randNoRepeats( ((n-k)*n)-1, popcount);
for i from 0 to (length ones)-1 do(
H#(ones#i) = 1_R;
);
matrix(R, pack(toList H, n))
);
-- Given a 0,1 valued list errorBinary, return a list of all the possible ways to replace the
-- one values in errorBinary with a nonzero element of the finite field R.
enumerateVectors = method(TypicalValue => List)
enumerateVectors(Ring, List) := (R, errorBinary) -> (
elts := for i from 1 to (R.order)-1 list( (first gens R)^i);
ones := positions(errorBinary, x -> x == 1);
prim := first gens R;
if length ones == 0 then return {errorBinary};
-- I would use fold here, but I can't figure out how to pass fold a function I don't
-- know how to write in prefix notation (instead of infix notation).
-- (I.e., how do you use fold when you know the operator but not the identifier?)
ugly := set(elts);
for i from 1 to (length ones)-1 do(ugly = ugly ** set(elts));
for i from 1 to (length ones)-1 do(ugly = ugly/splice);
ugly = apply(toList ugly, x -> toList x);
-- ugly now contains lists of symbols we need to substitute in errorBinary.
current := new MutableList from errorBinary;
for i from 0 to (length ugly)-1 list(
possibility := ugly#i;
for j from 0 to (length ones)-1 do(
current#(ones#j) = possibility#j;
);
apply(toList current, x -> promote(x, R))
)
);
syndromeDecode = method(TypicalValue => List)
syndromeDecode(LinearCode, Matrix, ZZ) := (C, v, minDist) -> (
R := ring(v);
if(minDist <= 0) then error "cannot have minimum distance less than 0.";
H := C.ParityCheckMatrix;
syndrome := H*v;
if (C.cache#?("syndromeLUT")) then(
syndromeLUT := C.cache#"syndromeLUT";
return v + (syndromeLUT#(syndrome));
);
-- The idea is to associate all possible error vectors with their corresponding coset.
numErrors := floor((minDist-1)/2);
ground := toList(0..((length C)-1));
lookupTable := flatten for i from 0 to numErrors list(subsets(ground, i));
lookupTable = apply(lookupTable, x ->
for i from 0 to (length C)-1 list(
if member(i, x) then 1 else 0
)
);
lookupTable = flatten apply(lookupTable, x -> enumerateVectors(R, x));
lookupTable = apply(lookupTable, x -> transpose matrix(R, {x}));
lookupTable = apply(lookupTable, x -> {H*x,x});
lookupHash := new HashTable from lookupTable;
C.cache#"syndromeLUT" = lookupHash;
coset := lookupHash#(syndrome);
v + coset
);
------------------------------------------
------------------------------------------
-- Tests
------------------------------------------
------------------------------------------
-----------------------------------------------
-----------------------------------------------
-- Use this section for LinearCode tests:
-----------------------------------------------
-----------------------------------------------
TEST ///
-- minimumWeight test
-- This example is not over GF(2) and takes the matroid partition algorithm path.
M := {{1,1,1,1,1,1},{1,0,1,0,1,0},{0,0,0,1,0,0}};
C := linearCode(GF(5),M);
assert(minimumWeight(C) == 1);
-- The binary golay code (has a minimum weight of 8).
-- This example takes the brute force path.
G:={{1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1},
{0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0},
{0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,0,1,1},
{0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,0},
{0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,0,0,1},
{0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,0,1},
{0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,1},
{0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0},
{0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,1},
{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,1}};
C = linearCode(matrix(GF(2),G));
assert(minimumWeight(C) == 8);
///
TEST ///
-- shortestPath.
D = digraph ({{1,2},{2,3},{3,4},{1,4},{3,5}}, EntryMode => "edges");
assert(length shortestPath (D,1,{3,5}) ==3)
///
TEST ///
-- syndromeDecode test.
R := GF(2);
-- The binary Golay code. It can correct 3 errors.
G:={{1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1},
{0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0},
{0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,0,1,1},
{0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,0},
{0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,0,0,1},
{0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,0,1},
{0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,0,1,1,1},
{0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0},
{0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,1},
{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,1}};
G = matrix(R,G);
C := linearCode G;
for i from 1 to 1 do(
message := transpose matrix {(for n from 1 to numgens target G list(random(R)))};
codeword := (transpose G)*message;
errors := sum take(random entries basis target codeword, 3);
errors = transpose matrix({errors});
received := codeword+errors;
decoded := syndromeDecode(C, received, 8);
assert(decoded == codeword);
);
///
TEST ///
-- linearCode(Module,List)
R := GF 4;
M := R^4;
L := {{1,0,1,0},{1,0,1,0}};
C := linearCode(M,L);
assert(C.AmbientModule == M)
m := matrix apply(L,generator->apply(generator,entry->sub(entry,R)));
assert(C.GeneratorMatrix == m)
H := C.ParityCheckMatrix;
z := matrix apply(toList(1..rank H),i -> apply(toList(1..#L), j->sub(0,R)));
assert(H*(transpose C.GeneratorMatrix)==z)
///
TEST ///
-- linearCode(GaloisField,ZZ,List)
R := GF 2;
n := 4;
L := {{1,0,1,0},{0,1,0,1}};
C := linearCode(R,n,L);
assert(C.AmbientModule == R^n)
newL := apply(L,generator->apply(generator,entry->sub(entry,R)));
assert(C.Generators == newL)
G := matrix newL;
assert(C.GeneratorMatrix == G)
H := C.ParityCheckMatrix;
z := matrix apply(toList(1..rank H),i -> apply(toList(1..#L), j->sub(0,R)));
assert(H*(transpose C.GeneratorMatrix) == z)
///
TEST ///
-- linearcode(GaloisField,List)
R := GF(8,Variable =>a);
n := 4;
L := {{1,0,a,0},{0,a,0,a+1}};
C := linearCode(R,n,L);
assert(C.AmbientModule == R^n)
newL := apply(L,generator->apply(generator,entry->sub(entry,R)));
assert(C.Generators == newL)
G := matrix newL;
assert(C.GeneratorMatrix == G)
H := C.ParityCheckMatrix;
z := matrix apply(toList(1..rank H),i -> apply(toList(1..#L), j->sub(0,R)));
assert(H*(transpose C.GeneratorMatrix) == z)
///
TEST ///
-- linearCode(ZZ,ZZ,ZZ,List)
p := 2;
n := 3;
l := 4;
R := GF(p,n);
L := {{1,1,0,0},{0,0,1,1}};
C := linearCode(p,n,l,L);
assert(C.Generators == L)
assert(C.GeneratorMatrix == C.ParityCheckMatrix)
///
TEST ///
-- linearCode(Module)
R = GF 2;
M = transpose matrix {apply({1,1,1,1},entry -> sub(entry,R))};
V = image M;
C = linearCode(V);
assert(C.AmbientModule == R^4)
assert(C.GeneratorMatrix == transpose M)
H = C.ParityCheckMatrix;
z = transpose matrix {apply({0,0,0},entry ->sub(entry,R))};
assert(H*(transpose C.GeneratorMatrix) == z)
///
TEST ///
-- linearCode(Matrix)
R = GF 4;
L = apply({{1,0,1,0},{0,1,1,1}},codeword ->apply(codeword,entry->sub(entry,R)));
M = matrix L;
C = linearCode(M);
assert(C.AmbientModule == R^4)
assert(C.Generators == L)
G = C.GeneratorMatrix;
assert(G == M)
H = C.ParityCheckMatrix;
z = matrix apply(toList(1..rank H),i -> apply(toList(1..rank G), j->sub(0,R)))
assert(H*(transpose G) == z)
///
TEST ///
-- generatorToParityCheck constructor
F = GF(8,Variable => a);
G = matrix {{1,0,0,a,0,1,1,a},{0,0,0,1,1,1,1,0},{1,1,0,0,0,1,0,0},{1,0,1,0,0,1,1,0}};
H = generatorToParityCheck G;
z = matrix apply(toList(1..rank H),i -> apply(toList(1..rank G), j->sub(0,F)));
assert (rank(G.source) - rank G == rank H)
assert (H* (transpose G) == z)
///
TEST ///
--parityCheckToGenerator
F = GF 2
H = matrix apply({{1,1,1,0}},l->apply(l,entry -> sub(entry,F)))
G = parityCheckToGenerator H
z = matrix apply(toList(1..rank H),i -> apply(toList(1..rank G), j->sub(0,F)))
assert (rank(H.source) == rank H + rank G)
assert (H* (transpose G) == z)
K = GF(8,Variable => a)
H = matrix {{1,0,0,0,1,1,0,0},{0,1,0,0,0,1,1,0},{0,0,1,0,1,0,1,a^2+1},{0,0,0,1,1,0,0,1}}
G = parityCheckToGenerator H
z = matrix apply(toList(1..rank H),i -> apply(toList(1..rank G), j->sub(0,K)))
assert (rank(H.source) == rank H + rank G)
assert (H* (transpose G) == z)
///
TEST ///
-- zeroCode constructor
F = GF 2
n = 7
C = zeroCode(F,n)
assert (length C == 7)
///
TEST ///
--universeCode constructor
F = GF(2,3)
n = 7
C = universeCode(F,n)
assert (length C == 7)
///
TEST ///
--repetitionCode constructor
F = GF 9
n = 5
C=repetitionCode(F,n)
assert (length C == 5)
///
TEST ///
--zeroSumCode constructor
C = zeroSumCode(GF 3,5)
assert (length C == 5)
///
TEST ///
-- randLDPC test
for i from 0 to 1 do(
n := random(10, 20);
k := random(1, n-1);
H := randLDPC(n, k, 3.0, 0);
assert(numgens target H == (n-k));
assert(numgens source H == n);
);
///
TEST ///
-- randNoRepeats test
assert(randNoRepeats(0,1) == {0});
for i from 0 to 1 do(
a := random(0,100);
k := random(1,a+1);
assert(set(randNoRepeats(a, a+1)) == set(toList(0..a)));
-- check it actually has no repeats.
test := randNoRepeats(a, k);
assert(length test == #(set(test)))
);
///
TEST ///
-- tannerGraph test
R := GF(2);
for i from 1 to 1 do(
H := random(R^10, R^10);
G := tannerGraph H;
-- Edges correspond 1:1 with ones in H.
assert(length (Graphs$edges G) == sum flatten entries (lift(H,ZZ)));
);
///
TEST ///
-- Mathematical Equality Test.
F = GF(2)
codeLen = 10
codeDim = 4
L = apply(toList(1..codeDim),j-> apply(toList(1..codeLen),i-> random(F)))
H = L|L
C = linearCode(F,codeLen,H)
D = linearCode(F,codeLen,L)
assert( C == D)
///
-- TEST ///
-- bitflipDecode
-- Make sure that it only outputs codewords.
-- R := GF(2);
-- H := random(R^10, R^15)
-- for i from 1 to 1 do(
-- v := vector (for i from 1 to 15 list(random(R)));
-- w := bitflipDecode(H, v);
-- if(w != {}) then (
-- assert(H*(vector w) == 0_(target H));
-- );
-- );
-- ///
TEST///
-- shorten test, integer.
F = GF(2)
codeLen = 10
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1, 1}}
H = L|L
C2 = linearCode(F,codeLen,H)
C3 = linearCode(F,codeLen,L)
shortL = {{0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 1, 0}}
assert( numColumns ( C2.GeneratorMatrix ) == numColumns (shorten( C2, 3)).GeneratorMatrix + 1 )
assert( numColumns ( C3.GeneratorMatrix ) == numColumns (shorten( C3, 3)).GeneratorMatrix + 1 )
assert( shorten( C2, 3 ) == linearCode(F, shortL) )
assert( shorten( C3, 3 ) == linearCode(F, shortL) )
///
TEST///
-- shorten test, list.
F = GF(2)
codeLen = 10
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1, 1}}
H = L|L
C2 = linearCode(F,codeLen,H)
C3 = linearCode(F,codeLen,L)
K = {3,6,8,9}
shortL = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 1, 1}}
assert( numColumns ( C2.GeneratorMatrix ) == numColumns (shorten( C2, K)).GeneratorMatrix + 4 )
assert( numColumns ( C3.GeneratorMatrix ) == numColumns (shorten( C3, K)).GeneratorMatrix + 4 )
assert( shorten( C2, K ) == linearCode(F, shortL) )
assert( shorten( C3, K ) == linearCode(F, shortL) )
///
TEST ///
-- vNumner of the ideal I=ideal(t1*t2^2-t1^2*t2,t1*t3^3-t1^3t3,t2*t3^3-t2^3*t3).
K=ZZ/3
R=K[t3,t2,t1,MonomialOrder=>Lex]
I=ideal(t1*t2^2-t1^2*t2,t1*t3^3-t1^3*t3,t2*t3^3-t2^3*t3)
vNumber(I)
assert(vNumber(I) == (regularity coker gens gb I)-1)
///
TEST ///
-- footPrint function of the ideal I=ideal(t1^3,t2*t3) with parameters d=2, r=3.
K=QQ
R=K[t1,t2,t3]
I=ideal(t1^3,t2*t3)
footPrint(3,4,I)
assert(footPrint(3,4,I)==4)
///
TEST ///
-- hyp of the ideal I=ideal(t1*t6-t3*t4,t2*t6-t3*t5) with parameters d=1, r=1.
K=ZZ/3
R=K[t1,t2,t3,t4,t5,t6]
I=ideal(t1*t6-t3*t4,t2*t6-t3*t5)
hyp(1,1,I)
assert(hyp(1,1,I)==1)
///
TEST ///
-- genMinDisIdeal of the ideal I=ideal(t1*t6-t3*t4,t2*t6-t3*t5) with parameters d=1, r=1.
K=ZZ/3
R=K[t1,t2,t3,t4,t5,t6]
I=ideal(t1*t6-t3*t4,t2*t6-t3*t5)
genMinDisIdeal(1,1,I)
assert(genMinDisIdeal(1,1,I)==3)
///
TEST ///
-- vasconcelosDegree of the ideal I=ideal(t1^2,t1*t2,t2^2) with parameters d=1, r=1.
K=ZZ/3
R=K[t1,t2]
I=ideal(t1^2,t1*t2,t2^2)
vasconcelosDegree(1,1,I)
assert(vasconcelosDegree(1,1,I)==1)
///
TEST ///
-- random test.
F = GF(2, 4)
n = 5
k = 3
C = randomCode (F,n,k)
assert( length C == 5 )
QR = ZZ/3
n = 5
k = 3
C = randomCode (QR,n,k)
assert( length C == n)
///
TEST ///
-- Hamming code over GF(2) and dimension of the dual 3.
C1= hammingCode(2,3)
assert( length C1 == 7)
///
TEST ///
-- Hamming code over GF(2) and dimension of the dual 4.
C2= hammingCode(2,4)
assert( length C2 == 15)
///
TEST ///
-- Cyclic codes.
C=cyclicCode(GF(7),1,5)
assert( length C == 5)
///
TEST ///
-- Cyclic codes.
GF(7)[x]
C=cyclicCode(GF(7),(x+3)*(x-1)*(x^3-2),9)
assert( length C == 9)
///
TEST ///
-- alphabet.
F=GF 4
C=linearCode(random(F^3,F^5))
A={sub(0,F)}|apply(3,i->F_0^i)
assert(set alphabet C == set A)
///
TEST ///
-- ambient space.
F=GF(4)
C=linearCode(random(F^3,F^5))
assert(ambientSpace C == F^5)
///
TEST ///
-- codewords.
F=GF(4,Variable=>a)
C=linearCode(matrix{{1,a,0},{0,1,a}})
cwt={{0,0,0},{0,1,a},{0,a,a+1},{0,a+1,1},{1,a,0},{1,a+1,a},{1,0,a+1},{1,1,1},{a,a+1,0},{a,1,a+1},{a,0,1},{a,a,a},{a+1,1,0},{a+1,a,1},{a+1,0,a},{a+1,a+1,a+1}}
cwt=apply(cwt,i->apply(i,j->sub(j,F)))
assert(set cwt == set codewords C)
///
TEST ///
-- cyclic matrix.
F=GF(3)
v={0,1,0,2}
M=matrix{{0,1,0,2},{2,0,1,0},{0,2,0,1},{1,0,2,0}}
M=sub(M,F)
assert( M == cyclicMatrix(F,v))
///
TEST ///
-- dual Code.
F=GF(4)
C=linearCode(matrix{{1,0,1,a,a},{0,1,a,a+1,1}})
D=linearCode(matrix{{1,a,1,0,0},{a,a+1,0,1,0},{a,1,0,0,1}})
assert( dualCode(C)==D)
///
TEST ///
-- field.
F=GF(4)
C=linearCode(random(F^3,F^5))
assert(field C===F)
///
TEST ///
-- toString.
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1, 1}}
C = linearCode(GF(2),L)
assert(length toString C == 128)
///
TEST ///
-- genericCode.
F=GF(4)
C=linearCode(random(F^3,F^5))
assert(genericCode(C)==linearCode(F^5))
///
TEST ///
-- dimension of a linear code.
F = GF(4);
C= linearCode(F,{{1,1,0,0},{0,0,1,1}});
assert(dim C == 2)
///
TEST ///
-- informationRate.
R = GF(5);
L = {{1,1,1,1},{2,2,2,2}};
C = linearCode(R,L);
assert(informationRate(C) == 1/4)
C = hammingCode(2,3);
assert(informationRate(C) == 4/7)
///
TEST ///
-- size of a code.
F = GF(2); L = {{1,1,1,1}};
C = linearCode(F,L);
assert (size(C) == 2)
F = GF(8); L = {{1,1,1,1,1}}
C = linearCode(F,L);
assert(size(C) == 8);
F = GF(4); L = {{1,1,1,1,1}};
C = linearCode(F,L,ParityCheck => true);
assert(size(C) == 4^4)
///
TEST ///
-- length of a code.
F = GF(2); L = {{1,1,1,1}};
C = linearCode(F,L);
assert (length(C) == 4)
F = GF(8); L = {{1,1,1,1,1}}
C = linearCode(F,L);
assert(length(C) == 5);
C = hammingCode(2,3);
assert(length(C) == 7)
///
TEST ///
-- vectorSpace.
F = GF(8);
L = apply({{1,1,1,1,1}},codeword->apply(codeword,entry->sub(entry,F)));
C = linearCode(F,L);
M = matrix(L);
D = image transpose M;
assert(vectorSpace(C) == D)
///
TEST ///
-- messages.
F = GF(4,Variable => a); L = {{1,1,1,1,1}};
C = linearCode(F,L);
m = set apply({{0},{1},{a},{a+1}}, me -> apply(me,entry -> sub(entry,F)));
mm = set messages(C);
assert(mm == m)
H = hammingCode(2,3);
m = {{0,0,0,0},{0,0,0,1},{0,0,1,0},{0,0,1,1},{0,1,0,0},{0,1,0,1},{0,1,1,0},{0,1,1,1},{1,0,0,0},{1,0,0,1},{1,0,1,0},{1,0,1,1},{1,1,0,0},{1,1,0,1},{1,1,1,0},{1,1,1,1}};
Lmessage = set apply(m,plain -> apply(plain,entry->sub(entry,H.BaseField)));
hmessage = set messages(H);
assert(hmessage == Lmessage)
///
TEST ///
--quasi-cyclic Codes.
F = GF(5)
L = apply(toList(1..2),j-> apply(toList(1..4),i-> random(F)))
C=quasiCyclicCode(L)
assert ( length C==4)
///
TEST ///
--quasi-cyclic codes.
F = GF(8)
L = apply(toList(1..2),j-> apply(toList(1..5),i-> random(F)))
C=quasiCyclicCode(F,L)
assert ( length C==5)
///
TEST ///
-- reducedMatrix.
F = GF(4)
n = 7
k = 3
L = apply(toList(1..k),j-> apply(toList(1..n),i-> random(F)))
m=matrix(L)
M=reducedMatrix(m)
assert (rank m== rank M)
///
-----------------------------------------------
-----------------------------------------------
-- Use this section for Evaluation Code Tests
-----------------------------------------------
-----------------------------------------------
TEST ///
-- Evaluation code.
F=GF(4);
R=F[x,y,z];
P={{0,0,0},{1,0,0},{0,1,0},{0,0,1},{1,1,1},{a,a,a}};
S={x+y+z,a+y*z^2,z^2,x+y+z+z^2};
C=evaluationCode(F,P,S);
assert(length C.LinearCode == 6)
assert(dim C.LinearCode == 3)
///
TEST ///
-- Toric code.
M=matrix{{1,4},{2,5},{10,6}} -- matrix of exponent vectors defining the polytope P, exponents vectors are rows
T=toricCode(GF 4,M) --- a toric code over F_4 with polytope P
assert(length T.LinearCode == 9)
assert(dim T.LinearCode == 5)
///
TEST ///
-- Cartesian code.
F=GF(4);
R=F[x,y];
C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
assert(length C.LinearCode == 9)
assert(dim C.LinearCode == 2)
///
TEST ///
-- Cartesian codes.
C=cartesianCode(ZZ/11,{{1,2,3},{2,6,8}},3)
assert( length C.LinearCode == 9)
///
TEST ///
-- Reed-Muller codes.
C=reedMullerCode(3,3,4);
assert( length C.LinearCode == 27)
///
TEST ///
-- Reed-Solomon codes.
C=reedSolomonCode(ZZ/11,{1,2,3},3);
assert( length C.LinearCode == 3)
///
TEST ///
-- Reed-Solomon codes.
C=reedSolomonCode(ZZ/17,{0,1,2,3,7,11},4)
dim C.LinearCode
assert( dim C.LinearCode == 4)
///
TEST ///
-- Order codes.
F=GF(4);
R=F[x,y];
I=ideal(x^3+y^2+y);
l=7;
C=orderCode(I,{2,3},l);
assert(length C.LinearCode==8)
assert( dim C.LinearCode==7)
///
TEST ///
-- Given the target parameters (n,k,r) of an LRC code to be constructed over finite field F
-- with a partition of symbols A that has good polynomial g, take an information
-- vector in F^k and generate its corresponding encoding polynomial.
n=9
k=4
r=2
q=13
S=ZZ/(q)[a,b,c,d][x] --arbitrary vector in F^k.
g=x^3
encodingPolynomial=getLRCencodingPolynomial(k,r,{a,b,c,d},g)
polynomial1=sub(encodingPolynomial,{a=>1,b=>1,c=>0,d=>0})
polynomial2=sub(encodingPolynomial,{a=>0,b=>1,c=>0,d=>1})
test1=getLRCencodingPolynomial(k,r,{1,1,0,0},g)
test2=getLRCencodingPolynomial(k,r,{0,1,0,1},g)
assert( polynomial1==test1 )
assert( polynomial2==test2 )
///
TEST ///
-- LRC code over GF(13).
A1={{1,5,12,8},{2,10,11,3},{4,7,9,6}}
n=12
k=6
r=3
q=13
R=ZZ/(q)[x]
g=x^4
C=locallyRecoverableCode({q,n,k,r},A1,g)
assert( rank(C.GeneratorMatrix)==k )
sampleWords=(entries C.GeneratorMatrix)_{2,3}
evaluations=apply(sampleWords,i->toList set apply(i,j->g[j]%q))
assert( #evaluations_0==r )
assert( #evaluations_1==r )
///
TEST ///
-- Evaluation code over a graph.
G = graph({1,2,3,4}, {{1,2},{2,3},{3,4},{4,3}})
B=incidenceMatrix G
S=ZZ/2[t_(0)..t_(#vertexSet G-1)]
C=evCodeGraph(coefficientRing S,B,flatten entries basis(1,S))
assert(length C.LinearCode==4)
assert( dim C.LinearCode==3)
///
------------------------------------------
------------------------------------------
-- Documentation
------------------------------------------
------------------------------------------
beginDocumentation()
-*document {
Key => CodingTheory,
Headline => "a package for coding theory",
PARA {
EM "CodingTheory", " is a package to provide both
basic coding theory objects and routines, and methods
for computing invariants of codes using commutative
algebra techniques."
},
PARA { "This package currently provides constructors for
linear codes, evaluation codes, and a few methods for each."
},
SUBSECTION "Contributors", "The following people have generously
contributed code or worked on our code at various Macaulay2 workshops.",
UL {
"Branden Stone"
},
SUBSECTION "Modified Methods",
UL {
TO "random(GaloisField,ZZ,ZZ)",
TO "ring(LinearCode)"
}
}
*-
doc ///
Key
CodingTheory
Headline
tools for Coding Theory
Description
Text
{\tt CodingTheory} is a package designed to provide
basic coding theory objects, and
methods for computing the basic parameters of
linear codes. Some of the implemented functions use commutative
algebra techniques.
Text
{\tt CodingTheory} currently provides constructors for
linear codes and evaluation codes, and a few methods for each.
Contributors
Branden Stone generously contributed code or worked on our
code at various Macaulay2 workshops.
Subnodes
:Main objects
EvaluationCode
LinearCode
:Modified methods
@TO (dim,LinearCode)@
@TO (length,LinearCode)@
@TO (ring,LinearCode)@
@TO (size,LinearCode)@
@TO (toString,LinearCode)@
:Implemented functions that are independent of coding theory
enumerateVectors
randNoRepeats
reducedMatrix
shortestPath
///
doc ///
Key
LinearCode
Headline
class of linear codes
Description
Text
A linear code is the image of some mapping between vector spaces,
where each vector space is taken to be over the same finite field. A codeword is an element
of the image. A linear code in {\it Macaulay2} is implemented as a hash table.
The values of the hash table correspond to common representations of the code, as well as
information about its structure. The values include the base field of the modules, a set
of generators for the code, and more. To construct a linear code, see @TO linearCode@.
Example
F1=GF(2)
G1={{1,1,0,0,0,0},{0,0,1,1,0,0},{0,0,0,0,1,1}}
C1=linearCode(F1,G1)
C1.Code
Text
For the mapping defined above, we call the codomain of the mapping the ambient module. The length of a code is defined
to be the rank of this module.
Example
F2=GF(3)
G2={{1,0,0,0,0,1,1,1},{0,1,0,0,1,0,1,1},{0,0,1,0,1,1,0,1},{0,0,0,1,1,1,1,0}}
C2=linearCode(F2,G2)
AM=C2.AmbientModule
rank(AM)==length(C2)
Text
Since a linear code $C$ is a vector subspace over some finite field, we may represent it using a Generator Matrix, i.e., a
matrix whose rows form a basis for $C$. The dimension of a code is the rank of the generator matrix.
Example
dim(C2)==rank(C2.GeneratorMatrix)
Text
A linear code in Macaulay2 also includes a parity check matrix $H$, which generates the vector space orthogonal to $C$. Let $c$
be a code word in $C$ and $h$ a vector in the space generated by the rows of $H$. Then the dot product between $c$ and $h$
is zero.
Example
c=matrix{G2_0}
h=transpose matrix({(entries(C2.ParityCheckMatrix))_0})
c*h
Caveat
While some functions may work even when a ring is given, instead of a finite field,
it is possible that the results are not the expected ones.
Subnodes
:Related functions and symbols:
ambientSpace
bitflipDecode
Code
codewords
GeneratorMatrix
informationRate
linearCode
messages
weight
syndromeDecode
@TO (symbol ==,LinearCode,LinearCode)@
///
-----------------------------------------------
-----------------------------------------------
-- Use this section for Linear Code documentation:
-----------------------------------------------
-----------------------------------------------
doc ///
Key
linearCode
[linearCode,ParityCheck]
(linearCode,Module,List)
(linearCode,GaloisField,ZZ,List)
(linearCode,GaloisField,List)
(linearCode,ZZ,ZZ,ZZ,List)
(linearCode,Module)
(linearCode,Matrix)
Headline
functions to construct linear codes over Galois fields
Usage
linearCode(G)
linearCode(M)
linearCode(M,L)
linearCode(F,L)
linearCode(F,n,L)
linearCode(p,r,n,L)
Inputs
G:Matrix
M:Module
F:GaloisField
p:ZZ
r:ZZ
n:ZZ
L:List
Outputs
:LinearCode
$C$
Description
Text
We present below the ways in how a linear code $C$ can be defined.
Subnodes
:Constructions of linear codes
cyclicCode
dualCode
genericCode
hammingCode
locallyRecoverableCode
ParityCheck
randomCode
repetitionCode
shorten
universeCode
zeroCode
zeroSumCode
Caveat
While some functions may work even when a ring is given, instead of a finite field,
it is possible that the results are not the expected ones.
Synopsis
Heading
a matrix is given
BaseFunction
linearCode
Usage
linearCode(G)
Inputs
G:Matrix
Outputs
:LinearCode
$C$
Description
Text
Given a matrix {\tt G}, whose entries are in a Galois field {\tt F},
this function returns a linear code $C$ over {\tt F}.
Text
If no optional input is specified, then the generator matrix of
the code $C$ is {\tt G}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the
code $C$ is the dual of the linear code generated by the matrix {\tt G}.
Example
F = GF 4;
L = apply({{1,0,1,0},{0,1,1,1}},codeword ->apply(codeword,entry->sub(entry,F)));
M = matrix L
C = linearCode(M)
C.GeneratorMatrix
C.ParityCheckMatrix
Text
This is an example using the optional argument {\tt ParityCheck=>true}.
Example
F = GF(4,Variable => a);
L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};
M = matrix L;
C = linearCode(F,L,ParityCheck => true)
C.GeneratorMatrix
C.ParityCheckMatrix
Synopsis
Heading
a module is given
BaseFunction
linearCode
Usage
linearCode(M)
Inputs
M:Module
Outputs
:LinearCode
$C$
Description
Text
Given a submodule {\tt M} of a free module {\tt F}$^n$, where $F$ is a Galois field,
this function returns a linear code $C$ whose ambient space is {\tt F}$^n$.
Text
If no optional input is specified, then the code $C$ is generated by the
elements of {\tt M}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the code $C$
is the dual of the linear code generated by the elements of {\tt M}.
Example
F = GF 2; G = transpose matrix {apply({1,1,1,1},entry -> sub(entry,F))};
M = image G;
C = linearCode(M)
C.AmbientModule
C.BaseField
C.GeneratorMatrix
C.ParityCheckMatrix
Synopsis
Heading
a module and a list are given
BaseFunction
linearCode
Usage
linearCode(M,L)
Inputs
M:Module
L:List
Outputs
:LinearCode
$C$
Description
Text
Given a free module {\tt M}$=F^n$, where $F$ is a Galois field,
and a non-empty list {\tt L} of vectors of {\tt M}, this function returns a
linear code $C$ whose ambient space is $F^n$.
Text
If no optional input is specified, then the code $C$ is generated by the
vectors of {\tt L}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the code $C$
is the dual of the linear code generated by the vectors of {\tt L}.
Example
F = GF(4,Variable => a); M = F^5; L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};
C = linearCode(M,L)
C.AmbientModule
C.BaseField
C.Generators
C.GeneratorMatrix
C.ParityCheckMatrix
C.Code
Text
This is an example using the optional argument {\tt ParityCheck=>true}.
Example
F = GF(8,Variable =>a); M = F^4; L = {{a+1,a+1,a+1,a+1}};
C = linearCode(M,L,ParityCheck => true)
G = C.GeneratorMatrix
H = C.ParityCheckMatrix
Synopsis
Heading
a Galois field and a list are given
BaseFunction
linearCode
Usage
linearCode(F,L)
Inputs
F:GaloisField
L:List
Outputs
:LinearCode
$C$
Description
Text
Given a Galois field {\tt F}, and a non-empty list {\tt L}
of vectors of the same size and whose entries are coercible into the field {\tt F},
this function returns a linear code $C$ over the field {\tt F}.
Text
If no optional input is specified, then the code $C$ is generated by the
vectors of {\tt L}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the code $C$
is the dual of the linear code generated by the vectors of {\tt L}.
Example
F = GF 4; L = {{1,0,1,0},{1,0,1,0}};
C = linearCode(F,L)
C.GeneratorMatrix
C.ParityCheckMatrix
Text
This is an example using the optional argument {\tt ParityCheck=>true}.
Example
F = GF(9,Variable => a); L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};
C = linearCode(F,L,ParityCheck => true)
C.GeneratorMatrix
C.ParityCheckMatrix
Synopsis
Heading
a Galois field, a positive integer and a list are given
BaseFunction
linearCode
Usage
linearCode(F,n,L)
Inputs
F:GaloisField
n:ZZ
L:List
Outputs
:LinearCode
$C$
Description
Text
Given a Galois field {\tt F}, a positive integer {\tt n}, and a non-empty list {\tt L}
of vectors of size {\tt n} and entries that are coercible into the field {\tt F},
this function returns a linear code $C$ of length {\tt n} over the field {\tt F}.
Text
If no optional input is specified, then the code $C$ is generated by the
vectors of {\tt L}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the code $C$
is the dual of the linear code generated by the vectors of {\tt L}.
Example
F = GF 4; n = 4; L = {{1,0,1,0},{1,0,1,0}};
C = linearCode(F,n,L)
C.GeneratorMatrix
C.ParityCheckMatrix
Text
This is an example using the optional argument {\tt ParityCheck=>true}.
Example
F = GF(9,Variable => a); n = 5; L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};
C = linearCode(F,n,L,ParityCheck => true)
C.GeneratorMatrix
C.ParityCheckMatrix
Synopsis
Heading
a prime number, two positive integers and a list are given
BaseFunction
linearCode
Usage
linearCode(p,r,n,L)
Inputs
p:ZZ
r:ZZ
n:ZZ
L:List
Outputs
:LinearCode
$C$
Description
Text
Given a prime number {\tt p}, positive integers {\tt r} and {\tt n},
and a non-empty list {\tt L} of vectors of size {\tt n} and entries that are
coercible into the Galois field {\tt GF}$(\mathtt{p}^\mathtt{r})$,
this function returns a linear code $C$ of length {\tt n} over the
Galois field {\tt GF}$(\mathtt{p}^\mathtt{r})$.
Text
If no optional input is specified, then the code $C$ is generated by the
vectors of {\tt L}.
Text
If the optional input {\tt ParityCheck => true} is specified, then the code $C$
is the dual of the linear code generated by the vectors of {\tt L}.
Example
p = 2; r = 2; n=4; L = {{1,0,1,0},{0,1,1,1}};
C=linearCode(p,r,n,L)
p = 3; r = 2; n = 5;
ambient GF(p,r)
L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a+1,0}};
C=linearCode(p,r,n,L)
///
doc ///
Key
AmbientModule
Headline
the ambient module of a code
Usage
C.AmbientModule
Inputs
C:LinearCode
Outputs
:Module
Description
Text
Given a linear code {\tt C} of length $n$ over a Galois Field $F$,
this symbol is used as a key for storing the free module $F^n$,
which is referred to as the ambient module of {\tt C}.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(4,Variable => a), {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}})
C.AmbientModule
///
doc ///
Key
BaseField
Headline
the field of a code
Usage
C.BaseField
Inputs
C:LinearCode
Outputs
:GaloisField
Description
Text
Given a linear code {\tt C} over a Galois field $F$,
this symbol is used as a key for storing the Galois field $F$.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(8,Variable => b), {{1,0,b,0,0},{0,b,b+1,1,0},{1,1,1,b,0}})
C.BaseField
///
doc ///
Key
Code
Headline
a code as image
Usage
C.Code
Inputs
C:LinearCode
Outputs
:Module
Description
Text
Given a linear code {\tt C}, this symbol is used as a key for storing {\tt C} as the
image of some mapping between finitely generated modules,
where each module is over the same Galois field.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(8,Variable => b), {{1,1,b,0,0},{0,b,b,1,0},{1,1,1,b,0}});
C.Code
///
doc ///
Key
ExponentsMatrix
Headline
specifies the matrix of exponents
Usage
C.Code
Inputs
C:EvaluationCode
Outputs
:Matrix
Description
Text
This symbol is used as a key for storing the matrix of exponents,
which is used for the function @TO toricCode@.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
M=matrix{{1,4},{2,5},{10,6}};
T=toricCode(GF 4,M);
T.ExponentsMatrix
///
doc ///
Key
GeneratorMatrix
Headline
gives the generator matrix of a linear code
Usage
C.GeneratorMatrix
Inputs
C:LinearCode
Outputs
:Matrix
Description
Text
Given a linear code {\tt C}, this symbol is used as a key for storing
a generator matrix of {\tt C}.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(8,Variable => b), {{1,1,b,0,0},{0,b,b,1,0},{1,1,1,b,0}});
C.GeneratorMatrix
Subnodes
:Related function:
Generators
///
doc ///
Key
Generators
Headline
list of generators of a code
Usage
C.Generators
Inputs
C:LinearCode
Outputs
:List
Description
Text
Given a linear code {\tt C}, this symbol is used as a key for
storing the list of rows of a generator matrix of {\tt C}.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(8,Variable => a), {{1,1,a,0,0},{0,a,a,1,0},{1,1,1,a,0}});
C.Generators
///
-*
doc ///
Key
IncidenceMatrix
Headline
gives the incident matrix of a graph
Description
Text
This symbol is provided by the package @TO CodingTheory@.
///
*-
doc ///
Key
ParityCheck
Headline
an optional input for the linearCode constructor
Usage
linearCode(..., ParityCheck => ...)
Description
Text
This is a Boolean symbol, returns value false or true.
The default value is false.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
F = GF(4,Variable => a);
L = {{1,0,a,0,0},{0,a,a+1,1,0},{1,1,1,a,0}};
M = matrix L;
C = linearCode(F,L,ParityCheck => true);
C.GeneratorMatrix;
C.ParityCheckMatrix
Subnodes
:Related functions and symbols:
generatorToParityCheck
ParityCheckMatrix
ParityCheckRows
parityCheckToGenerator
randLDPC
tannerGraph
///
doc ///
Key
ParityCheckMatrix
Headline
a parity check matrix of a code
Usage
C.ParityCheckMatrix
Inputs
C:LinearCode
Outputs
:Matrix
Description
Text
This symbol is used as a key for storing a parity check matrix of {\tt C}.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C=linearCode(GF(8,Variable => b), {{1,1,b,0,0},{0,b,b,1,0},{1,1,1,b,0}});
C.ParityCheckMatrix
SeeAlso
ParityCheckRows
Generators
reducedMatrix
generatorToParityCheck
parityCheckToGenerator
///
doc ///
Key
ParityCheckRows
Headline
rows of a parity check matrix of a code
Usage
C.ParityCheckRows
Inputs
C:LinearCode
Outputs
:List
Description
Text
This symbol is a key to store a list with the rows of a parity check matrix of {\tt C}.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(8,Variable => b), {{1,1,b,0,0},{0,b,b,1,0},{1,1,1,b,0}});
C.ParityCheckMatrix
C.ParityCheckRows
SeeAlso
ParityCheckMatrix
Generators
reducedMatrix
generatorToParityCheck
parityCheckToGenerator
///
doc ///
Key
weight
(weight, BasicList)
Headline
Hamming weight of a list
Usage
weight(L)
Inputs
L:List
Outputs
:ZZ
Description
Text
Computes the Hamming weight of a list {\tt L}, which is the number of its non-zero entries.
Example
weight({1,0,1,0,1})
Example
weight({0,123,48,0,256})
Subnodes
:Related functions
minimumWeight
///
doc ///
Key
syndromeDecode
(syndromeDecode, LinearCode, Matrix, ZZ)
Headline
syndrome decoding on a code
Usage
syndromeDecode(C,v,minDist)
Inputs
C:LinearCode
v:Matrix
minDist:ZZ
Outputs
:List
Description
Text
When this function runs, it checks the cache of the
{\tt LinearCode} {\tt C} for an existing syndrome look-up
table. If a look-up table is not found, it automatically
generates one. Because of
this, the first time this function is called will take longer
than subsequent calls. If you want to access the look-up table,
it can be obtained from {\tt C.cache#"syndromeLUT"}. The
{\tt minDist} argument only affects the behavior of this function
on the first call, because it is only used when generating the
syndrome look-up table.
Example
C = hammingCode(2,3);
msg = matrix {{1,0,1,0}};
v = msg*(C.GeneratorMatrix);
err = matrix take(random entries basis source v, 1);
received = (transpose (v+err));
syndromeDecode(C, received, 3);
C.cache#"syndromeLUT"
///
doc ///
Key
parityCheckToGenerator
(parityCheckToGenerator, Matrix)
Headline
generator matrix given a parity check matrix
Usage
parityCheckToGenerator H
Inputs
H:Matrix
Outputs
:Matrix
$G$
Description
Text
Given parity check matrix {\tt H} of a code $C$, this function
recovers a generator matrix {\tt G} of $C$.
Example
F = GF 2;
H = matrix apply({{1,1,1,0}},l->apply(l,entry->sub(entry,F)))
G = parityCheckToGenerator H
H*(transpose G)
Example
F = GF(8,Variable => a);
H = matrix{{1,0,0,0,1,1,0,0},{0,1,0,0,0,1,1,0},{0,0,1,0,1,0,1,a^2+1}}
G = parityCheckToGenerator H
H*(transpose G)
///
doc ///
Key
zeroCode
(zeroCode,GaloisField,ZZ)
Headline
zero code
Usage
zeroCode(F,n)
Inputs
F:GaloisField
n:ZZ
Outputs
:LinearCode
Description
Text
Constructs the linear code of length {\tt n} over {\tt F}
whose only codeword is the zero codeword.
Example
C=zeroCode(GF(4),7)
C.GeneratorMatrix
///
doc ///
Key
universeCode
(universeCode,GaloisField,ZZ)
Headline
linear code $\mathtt{F}^\mathtt{n}$
Usage
universeCode(F,n)
Inputs
F:GaloisField
n:ZZ
Outputs
:LinearCode
Description
Text
Returns the code with largest dimension such that
its length is {\tt n} and the entries of its codewords
are in the field {\tt F}.
Example
F = GF(2,3);
n=7;
C=universeCode(F,n)
C.ParityCheckMatrix
///
doc ///
Key
repetitionCode
(repetitionCode,GaloisField,ZZ)
Headline
repetition code
Usage
repetitionCode(F,n)
Inputs
F:GaloisField
n:ZZ
Outputs
:LinearCode
Description
Text
Returns the repetition code over {\tt F} of length {\tt n}.
Example
F = GF(2,3);
n=7;
C=repetitionCode(F,n);
C.ParityCheckMatrix
///
doc ///
Key
zeroSumCode
(zeroSumCode,GaloisField,ZZ)
Headline
linear code in which the entries of each codeword add up zero
Usage
zeroSumCode(F,n)
Inputs
F: GaloisField
n: ZZ
Outputs
:LinearCode
$C$
Description
Text
Returns the code $C$ of length {\tt n} over {\tt F} such that for any
$c\in C$, $\sum_{i=1}^n c_i=0$. The dual of the code $C$ is the repetition
code. In the binary case, this code $C$ equals the code of all even-weight codewords.
Example
D = zeroSumCode(GF 3,5)
Example
E = zeroSumCode(GF 8,5)
///
doc ///
Key
reducedMatrix
(reducedMatrix, Matrix)
Headline
reduced matrix
Usage
reducedMatrix(Matrix)
Inputs
M:Matrix
Outputs
:Matrix
Description
Text
Returns a full rank matrix whose row space equals the row space of {\tt M}.
Example
F = GF(4);
n = 7;
k = 3;
L = apply(toList(1..k),j-> apply(toList(1..n),i-> random(F)));
m=matrix(L)
reducedMatrix(m)
///
doc ///
Key
bitflipDecode
(bitflipDecode, Matrix, Vector, ZZ)
Headline
an experimental implementation of a message passing decoder
Usage
bitflipDecoder(H,v,maxI)
Inputs
H:Matrix
v:Vector
maxI:ZZ
Outputs
:List
Description
Text
Attempts to decode the vector {\tt v} relative to the parity check
matrix {\tt H} using a message passing decoding algorithm. The
matrix {\tt H} and the vector {\tt v} must have entries in
{\tt GF(2)}. Returns the empty list if {\tt maxI} is exceeded.
Text
At each iteration, this function flips all the bits of {\tt v}
that fail the maximum number of parity check equations from {\tt H}.
This is experimental because it has not been fully tested. The
output is only guaranteed to be a codeword of the code defined by
{\tt H}.
Example
R=GF(2);
H := matrix(R, {{1,1,0,0,0,0,0},{0,1,1,0,0,0,0},{0,1,1,1,1,0,0},{0,0,0,1,1,0,0},{0,0,0,0,1,1,0},{0,0,0,0,1,0,1}});
v := vector transpose matrix(R, {{1,0,0,1,0,1,1}});
bitflipDecode(H,v,100)
///
doc ///
Key
tannerGraph
(tannerGraph,Matrix)
Headline
outputs the tanner graph associated with the given parity check matrix
Usage
tannerGraph(H)
Inputs
H:Matrix
Outputs
:Graphs$Graph
Description
Text
Given a linear code $C$ with parity-check matrix {\tt H},
the function returns the Tanner graph associated to {\tt H}.
This is a bipartite graph with one set of vertices indexed by
the rows of {\tt H} and the other by the columns of {\tt H}.
The vertex corresponding to the $i$-th row is connected to the
vertex corresponding to the $j$-th column if and only if the $(i,j)$-th
entry of {\tt H} is nonzero.
Example
H := matrix(GF(2), {{1,1,0,0,0,0,0},{0,1,1,0,0,0,0}, {0,1,1,1,1,0,0},{0,0,0,1,1,0,0},{0,0,0,0,1,1,0},{0,0,0,0,1,0,1}});
tannerGraph(H)
///
doc ///
Key
hammingCode
(hammingCode,ZZ,ZZ)
Headline
generates a Hamming code
Usage
hammingCode(q,s)
Inputs
q: ZZ
s: ZZ
Outputs
: LinearCode
$C$
Description
Text
Returns the Hamming code $C$ over {\tt GF(q)} whose dual
has dimension {\tt s}.
Example
C1 = hammingCode(2,3);
C1.ParityCheckMatrix
///
doc ///
Key
shorten
(shorten, LinearCode, List)
(shorten, LinearCode, ZZ)
Headline
shortens a code
Usage
shorten(LinearCode, List)
shorten(LindearCode, ZZ)
Inputs
C:LinearCode
L:List
i:ZZ
Outputs
:LinearCode
Description
Text
Given a code {\tt C} of length $n$ and a list {\tt L}
(or an integer {\tt i}),
returns a new code obtained from {\tt C} by selecting only
those codewords of {\tt C} that have zeros in each of the
coordinate positions in the list {\tt L} (or the
position {\tt i}), and then deleting these positions.
Text
The resulting code will have length $n - r$, where $r$ is the
number of elements in {\tt L} (or 1 when the integer {\tt i} is
used).
Synopsis
Heading
a code and a list are given
BaseFunction
shorten
Usage
shorten(LinearCode, List)
Inputs
C:LinearCode
L:List
Outputs
:LinearCode
Description
Text
Given a code {\tt C} of length $n$ and a list {\tt L},
returns a new code obtained from {\tt C} by selecting only
those codewords of {\tt C} that have zeros in each of the
coordinate positions in the list {\tt L},
and then deleting these positions.
Text
The resulting code will have length $n - r$, where $r$ is the
number of elements in {\tt L}.
Example
F = GF(2);
codeLen = 10;
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0,0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1,1}};
C = linearCode(F,codeLen,L);
shorten(C, {3,6,8,9});
Synopsis
Heading
a linear code and an integer are given
BaseFunction
shorten
Usage
shorten(LinearCode, ZZ)
Inputs
C:LinearCode
i:ZZ
Outputs
:LinearCode
$C$
Description
Text
Given a code {\tt C} of length $n$ and a list {\tt L},
returns a new code obtained from {\tt C} by selecting only
those codewords of {\tt C} that have zero in the position
{\tt i}), and then deleting this position.
Text
The resulting code will have length $n - 1$.
Example
F = GF(2);
codeLen = 10;
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0,0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1,1}};
C = linearCode(F,codeLen,L);
shorten(C, 3)
///
doc ///
Key
randomCode
(randomCode,GaloisField,ZZ,ZZ)
(randomCode,QuotientRing,ZZ,ZZ)
Headline
constructs a random linear code over a finite field
Usage
randomCode(F,n,k)
randomCode(QR,n,k)
Inputs
F:GaloisField
QR:QuotientRing
n:ZZ
k:ZZ
Outputs
:LinearCode
Description
Text
Given a finite field {\tt F} (or a quotient ring {\tt QR}) and two positive
integers {\tt n} and {\tt k}, returns a random linear code over {\tt F} (or
{\tt QR}) of length $n$ and dimension at most $k$.
Example
F = GF(2, 4)
C = randomCode(F,5,3)
QR = ZZ/3
C = randomCode(QR,5,3)
///
-*
doc ///
Key
(random,QuotientRing,ZZ,ZZ)
Headline
constructs a random linear code over a quotient ring
Usage
random(QR,n,k)
Inputs
QR:QuotientRing
n:ZZ
k:ZZ
Outputs
:LinearCode
$C$
Description
Text
Given a quotient ring {\tt QR} and positive integers {\tt n} and {\tt k},
returns a random linear code $C$ over {\tt QR} of length $n$ and dimension at most $k$.
Example
QR = ZZ/3
C = random(QR,5,3)
///
*-
doc ///
Key
(ring, LinearCode)
Headline
the ring of a code
Usage
ring LinearCode
Inputs
C:LinearCode
Outputs
:Ring
Description
Text
Given a code {\tt C}, returns the ring that contains the entries of the
generator matrix of {\tt C}.
Example
C = hammingCode(2, 3)
ring(C)
///
doc ///
Key
(toString, LinearCode)
Headline
string with the vectors of a generator matrix of a code
Usage
toString C
Inputs
C:LinearCode
Outputs
:String
Description
Text
Given a linear code {\tt C}, this function returns a string that
contains the rows of a generator matrix of {\tt C}.
Example
L = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 1, 1, 0,1, 0, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 1, 1, 1}}
C = linearCode(GF(2),L)
S=toString C
///
doc ///
Key
(symbol ==,LinearCode,LinearCode)
Headline
determines if two linear codes are equal
Usage
LinearCode == LinearCode
Inputs
C1:LinearCode
C2:LinearCode
Outputs
:Boolean
Description
Text
Given linear codes {\tt C1} and {\tt C2}, this function determines if they
define the same subspace over the same field or ring.
Example
F = GF(3,4)
codeLen = 7; codeDim = 3;
L = apply(toList(1..codeDim),j-> apply(toList(1..codeLen),i-> random(F)))
C1 = linearCode(F,L)
C2 = linearCode(matrix L)
C1 == C2
///
doc ///
Key
Strat
[minimumWeight, Strat]
Headline
Specify the algorithm used to perform a minimum weight computation.
Usage
minimumWeight(C, Strat=>StratName)
Inputs
C:LinearCode
StratName:String
Description
Text
{\tt StratName} is the name of the desired algorithm to use.
By default, the function @TO "minimumWeight"@ uses the function @TO "chooseStrat"@ to estimate the optimal strategy for a
given linear code. Specifying a strategy manually is not recommended in the majority of cases because @TO "chooseStrat"@
reliably chooses the best strategy based on approximations of performance.
The valid options of the argument @TT "StratName"@ are:
@UL {
{BOLD {"MatroidPartition"}, ": The most advanced algorithm, but requires a longer up-front computation."},
{BOLD {"OneInfoSet"}, ": An algorithm that is always faster than ", TT {"BruteForce"},"."},
{BOLD {"BruteForce"}, ": (Not recommended) Determine the minimum weight by enumerating all codewords."}
}@
@TT "MatroidPartition"@ is the most advanced strategy, but requires a longer up-front computation. Specifically, it has to
compute the matroid associated with the given linear code's generator matrix and then compute a partition of it into independent
sets. If such a partition exists, this algorithm will be strictly faster than @TT "OneInfoSet"@ after the matroid partition
has been computed.
@TT "OneInfoSet"@ can be viewed as a direct improvement over the @TT "BruteForce"@ strategy. The properties of this algorithm
imply that it is always as fast or faster than @TT "BruteForce"@.
@TT "BruteForce"@ is the simplest and most reliable strategy, but also almost always the slowest. It is intended mainly for
internal purposes such as debugging and testing the other strategies.
Example
C=hammingCode(2,3);
minimumWeight(C, Strat=>"BruteForce")
SeeAlso
chooseStrat
///
doc ///
Key
chooseStrat
(chooseStrat,LinearCode)
Headline
Estimate the optimal strategy to compute the minimum weight of a linear code.
Usage
chooseStrat C
Inputs
C: LinearCode
Outputs
:String
Description
Text
This function returns the name of the strategy that would be automatically chosen by function @TO "minimumWeight"@ if no
value of the optional argument @TT "Strat"@ is specified.
Example
chooseStrat(hammingCode(2,3))
F = GF(16);
chooseStrat(linearCode random(F^5, F^10))
SeeAlso
[minimumWeight, Strat]
///
doc ///
Key
minimumWeight
(minimumWeight,LinearCode)
Headline
computes the minimum weight of a linear code
Usage
minimumWeight C
Inputs
C: LinearCode
Outputs
:ZZ
Description
Text
The minimum weight of a linear code $C$ is the minimum Hamming weight of its non-zero codewords.
It is known that computing the minimum weight of a linear code is an NP-hard problem.
If no value is specified for the optional argument @TT "Strat"@ is specified,
the function @TO "chooseStrat"@ is used internally to choose a strategy.
Usually it is best not to specify a value of the optional strategy argument, because a strategy is
automatically chosen based on built-in approximations of performance.
Example
C=hammingCode(2,3);
minimumWeight C
minimumWeight(C, Strat=>"BruteForce")
SeeAlso
weight
Subnodes
:Related functions
chooseStrat
Strat
///
doc ///
Key
shortestPath
(shortestPath, Digraph, Thing, List)
Headline
shorthest path in a digraph
Usage
shortestPath(D,start,finishSet)
Inputs
D:Digraph
start:Thing
finishSet:List
Outputs
:List
Description
Text
Given a digraph {\tt D}, a vertex {\tt start} in {\tt D}, and
a list of vertices {\tt finishSet} of {\tt D}, this function
returns the shortest path in {\tt D} from {\tt start} to
{\tt finishSet}.
Text
It is safe to use this in applications that have nothing to do
with coding theory.
Example
D = digraph({x,y,z,u,v}, matrix {{0,1,0,1,0},{0,0,1,0,0},{0,0,0,1,1},{0,0,0,0,0},{0,0,0,0,0}});
shortestPath (D,x,{z,v})
///
doc ///
Key
enumerateVectors
(enumerateVectors, Ring, List)
Headline
a particular way to enumerate vectors over a finite field
Usage
enumerateVectos(F, L)
Inputs
L:List
F:GaloisField
Outputs
:List
Description
Text
Given a $0$, $1$ valued list {\tt L}, this function returns
the list with all the possible ways to replace the
one values in {\tt L}, with a nonzero element of the
finite field {\tt F}.
Example
F = GF(3);
enumerateVectors(F, {1,0,1,0,1})
///
doc ///
Key
randLDPC
(randLDPC, ZZ, ZZ, RR, ZZ)
Headline
low density parity check matrix
Usage
randLDPC(n, k, m, b)
Inputs
n:ZZ
k:ZZ
m:RR
b:ZZ
Outputs
:Matrix
$H$
Description
Text
The parameter {\tt n} indicates the number of columns of $H$. The
number of rows of $H$ is {\tt n}-{\tt k}. The real number
{\tt m} indicates the
slope of the line which relates {\tt n} and the number of ones in
$H$. Finally, {\tt b} indicates the constant term of the line
which relates $n$ and the number of ones in $H$. The number of
ones in $H$ is determined by the formula
floor({\tt n}*{\tt m}) + {\tt b}.
Since this formula is linear in the number
of columns of $H$, {\tt randLDPC} produces a sparse
matrix, for a fixed set of parameters {\tt n}, {\tt k}, {\tt m}
and {\tt b}.
Example
randLDPC(15,5,3.0,0)
///
doc ///
Key
randNoRepeats
(randNoRepeats,ZZ,ZZ)
Headline
list of random integers from a specified range with no repetitions
Usage
randNoRepeats(n,k)
Inputs
n:ZZ
k:ZZ
Outputs
:List
Description
Text
Given the integers {\tt k} and {\tt k}, this function returns a
list of {\tt k} random integers between $0$ and {\tt n}
(inclusive) with no repetitions.
Text
It is safe to use this in applications that have nothing to do
with coding theory.
Example
randNoRepeats(10,4)
randNoRepeats(0,1)
randNoRepeats(25,5)
///
doc ///
Key
vNumber
(vNumber,Ideal)
Headline
the v-number of a graded ideal
Usage
vNumber(I)
Inputs
I:Ideal
Outputs
:ZZ
Description
Text
Returns the v-number of a graded ideal {\tt I}.
This invariant is used to express the regularity index of the
generalized minimum distance function of the ideal {\tt I}
on the parameter $r=1$ @TO genMinDisIdeal@. Moreover,
the v-number has other combinatorial implications.
More information about the v-number
can be found in Definition 4.1 at
\url{https://arxiv.org/pdf/1812.06529v1.pdf}.
Example
K=ZZ/3;
R=K[t3,t2,t1,MonomialOrder=>Lex];
I=ideal(t1*t2^2-t1^2*t2,t1*t3^3-t1^3*t3,t2*t3^3-t2^3*t3);
vNumber(I)
///
doc ///
Key
footPrint
(footPrint,ZZ,ZZ,Ideal)
Headline
generalized footprint function of an ideal
Usage
footPrint(d,r,I)
Inputs
I:Ideal
d:ZZ
r:ZZ
Outputs
:ZZ
Description
Text
Returns the value of the generalized footprint function of the ideal {\tt I}
on the parameters {\tt d} and {\tt r}.
Given an ideal {\tt I}, a monomial is called standard of {\tt I} if it is not a
leading monomial of any polynomial of {\tt I}.
The parameters {\tt d} and {\tt r} are used as follows. The function computes the
degree of the ideal generated by sets of {\tt r}
standard monomials of degree at most {\tt d}.
The footprint function is a lower bound of the
generalized minimum function @TO genMinDisIdeal@. More information about the
footprint function
can be found in Definition 1.3 at \url{https://arxiv.org/pdf/1812.06529v1.pdf}
Example
K=QQ;
R=K[t1,t2,t3];
I=ideal(t1^3,t2*t3);
footPrint(2,3,I)
///
doc ///
Key
hyp
(hyp,ZZ,ZZ,Ideal)
Headline
hyp function of an ideal
Usage
hyp(d,r,I)
Inputs
d:ZZ
r:ZZ
I:Ideal
Outputs
:ZZ
Description
Text
Returns the value of the
hyp function (HypF) of the ideal {\tt I}
on the parameters {\tt d} and {\tt r}. The HypF
computes the maximum degree of the ideals
generated by {\tt r}-tuples of
polynomials of degree at most {\tt d} that are linearly
independent modulo the ideal {\tt I}.
Finding upper bounds for this functions is
equivalent to finding lower bounds for the generalized minimum
distance function @TO genMinDisIdeal@.
More information about the Hyp
can be found in Definition 1.2 at
\url{https://arxiv.org/pdf/1812.06529v1.pdf}.
Example
K=ZZ/3;
R=K[t1,t2,t3,t4,t5,t6];
I=ideal(t1*t6-t3*t4,t2*t6-t3*t5);
hyp(1,1,I)
///
doc ///
Key
genMinDisIdeal
(genMinDisIdeal,ZZ,ZZ,Ideal)
Headline
generalized minimum distance function of an ideal
Usage
genMinDisIdeal(d,r,I)
Inputs
d:ZZ
r:ZZ
I:Ideal
Outputs
:ZZ
Description
Text
Returns the value of the
generalized minimum distance function (GMDF) of the ideal {\tt I}
on the parameters {\tt d} and {\tt r}. The GMDF
generalizes the Hamming weights
of Reed-Muller-type codes.
The integers {\tt d} and {\tt r} indique
that the function is computing the degree of
the ideal generated by {\tt r}-tuples of
polynomials of degree at most {\tt d} that are linearly
independent modulo
the ideal {\tt I}. More information about the GMDF
can be found in Definition 1.1 at
\url{https://arxiv.org/pdf/1812.06529v1.pdf}.
Example
K=ZZ/3;
R=K[t1,t2,t3,t4,t5,t6];
I=ideal(t1*t6-t3*t4,t2*t6-t3*t5);
genMinDisIdeal(1,1,I)
///
doc ///
Key
vasconcelosDegree
(vasconcelosDegree,ZZ,ZZ,Ideal)
Headline
Vasconcelos function of an ideal
Usage
vasconcelosDegree(d,r,I)
Inputs
d:ZZ
r:ZZ
I:Ideal
Outputs
:ZZ
Description
Text
Returns the value of the
Vasconcelos function of the ideal {\tt I}
on the parameters {\tt d} and {\tt r}.
In the case of a graded unmixed radical ideal {\tt I}, the Vasconcelos
function is equal to the generalized minimum distance function
@TO genMinDisIdeal@. The Vasconcelos function computes the minimum value
of the degree of {\tt I} minus the degree of the ideal
generated by {\tt r}-tuples of polynomials of degree at
most {\tt d} that are linearly independent
modulo the ideal {\tt I}. More information about the Vasconcelos function
can be found in Definition 3.4 at
\url{https://arxiv.org/pdf/1812.06529v1.pdf}.
Example
K=QQ;
R=K[t1,t2,t3];
I=ideal(t1^3,t2*t3);
vasconcelosDegree(1,1,I)
///
doc ///
Key
alphabet
(alphabet,LinearCode)
Headline
elements of the base ring of a code
Usage
alphabet(C)
Inputs
C:LinearCode
Outputs
:List
Description
Text
Given a linear code {\tt C}, the function returns
the list of all elements of the ring $R$, where $R$ is the
ring containing the entries of the
generator matrix of {\tt C}.
Example
F=GF(4, Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}});
alphabet(C)
///
doc ///
Key
ambientSpace
(ambientSpace,LinearCode)
Headline
recovers the ambient module of a code
Usage
ambientSpace C
Inputs
C: LinearCode
Outputs
:Module
Description
Text
Given a code {\tt C} of length $n$ over the field $F$, this function
extracts the ambient module $F^n$, which is the value stored under the
key {\tt AmbientModule} of the hash table {\tt C.LinearCode}.
Example
F=GF(4,Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}});
ambientSpace C
Subnodes
:Related functions and symbols:
alphabet
AmbientModule
BaseField
field
vectorSpace
///
doc ///
Key
codewords
(codewords, LinearCode)
Headline
codewords of the code
Usage
codewords(C)
Inputs
C:LinearCode
Outputs
:List
Description
Text
Obtains all the codewords of a code {\tt C} by multiplying all
the elements of the ambient space (obtained with the function
messages) by the generator matrix of {\tt C}.
Example
F=GF(4,Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}});
codewords(C)
///
doc ///
Key
cyclicMatrix
(cyclicMatrix, List)
(cyclicMatrix, GaloisField, List)
Headline
cyclic matrix
Usage
cyclicMatrix(v)
cyclicMatrix(F,v)
Inputs
v:List
F:GaloisField
Outputs
:Matrix
$M$
Description
Text
A cyclic matrix (also known as circulant matrix) is a square matrix
whose every row (starting from the second) is the right cyclic shift by one entry of the previous row.
Below we present ways to define a cyclic matrix $M$.
Synopsis
Heading
a list is given
BaseFunction
cyclicMatrix
Usage
cyclicMatrix(v)
Inputs
v:List
Outputs
:Matrix
$M$
Description
Text
Assume that $v_1,\ldots,v_n$ are the entries of {\tt v}. The
output is an $n\times n$ matrix. The entries of row 1 are
$v_1,\ldots,v_n$, the entries of row 2 are $v_2,\ldots,v_n,v_1$,
in general,
the entries of row $i$ are $v_i,\ldots,v_n,v_1,\ldots, v_{i-1}$.
Example
v=toList(1,0,2,0);
M =cyclicMatrix(v)
Synopsis
Heading
a finite field and a list are given
BaseFunction
cyclicMatrix
Usage
cyclicMatrix(v,F)
Inputs
v:List
F:GaloisField
Outputs
:Matrix
$M$
Description
Text
Assume that $v_1,\ldots,v_n$ are the entries of {\tt v}. The
output is an $n\times n$ matrix over {\tt F}. The entries of
row 1 are $v_1,\ldots,v_n$, the entries of row 2 are $v_2,\ldots,v_n,v_1$,
in general,
the entries of row $i$ are $v_i,\ldots,v_n,v_1,\ldots, v_{i-1}$.
Example
F=GF(4,Variable=>a);
v={0,1,a};
M=cyclicMatrix(F,v)
///
doc ///
Key
dualCode
(dualCode,LinearCode)
Headline
dual of a code
Usage
dualCode(C)
Inputs
C:LinearCode
Outputs
:LinearCode
Description
Text
The dual of a code {\tt C} of length $n$ over the field $F$ is the code
whose codewords are the elements $v$ in $F^n$ such that for any $c$ in {\tt C},
the inner product $<c,v>$ is equal to zero. This function returns
the dual of {\tt C}.
Example
F=GF(4,Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}});
D=dualCode(C)
///
doc ///
Key
field
(field, LinearCode)
Headline
the field of a code
Usage
field (C)
Inputs
C:LinearCode
Outputs
:Ring
Description
Text
Given a code {\tt C}, returns the field (or ring) that contains
the entries of the generator matrix of {\tt C}.
Example
F=GF(4,Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}});
field C
///
doc ///
Key
genericCode
(genericCode, LinearCode)
Headline
ambient space of a code
Usage
genericCode(C)
Inputs
C:LinearCode
Outputs
:LinearCode
Description
Text
Given a code {\tt C} over a finite field $F$ of length $n$,
returns the code $F^n$.
Example
F=GF(4,Variable=>a);
C=linearCode(matrix{{1,a,0},{0,1,a}})
genericCode(C)
///
doc ///
Key
(dim,LinearCode)
Headline
dimension of a linear code
Usage
dim C
Inputs
C:LinearCode
Outputs
:Number
Description
Text
Given a linear code {\tt C}, returns the dimension of
{\tt C}. The dimension of {\tt C} is defined as the
dimension of {\tt C} as a vector space.
Example
C = linearCode(GF(2),{{1,1,0,0},{0,0,1,1}});
dim C
H = hammingCode(2,3)
dim H
///
doc ///
Key
informationRate
(informationRate,LinearCode)
Headline
information rate of a code
Usage
informationRate C
Inputs
C: LinearCode
Outputs
:QQ
Description
Text
Given a linear code {\tt C} of length $n$ and dimension $k$, this function returns
the number $\frac{k}{n}$, which is known as the information rate of {\tt C}.
Example
C=linearCode(GF(4),{{1,1,1,1}});
informationRate C
Example
H=hammingCode(2,3);
informationRate H
Text
The next is an example for the class of @TO EvaluationCode@.
Example
RM=reedMullerCode(2,3,1);
informationRate(RM.LinearCode)
///
doc ///
Key
(size,LinearCode)
Headline
gives the number of codewords in a linear code
Usage
size C
Inputs
C:LinearCode
Outputs
:ZZ
Description
Text
Given a linear code {\tt C} of dimension $k$ over a
Galois field with $q$ elements, returns
the number of codewords in {\tt C}, which is $q^k$.
Text
This method is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(4),{{1,1,1,1}});
size C
H = hammingCode(2,3);
size H
F = GF(4,Variable=>a);
L = {{1,a,a+1},{a+1,1,a},{a,a+1,1},{1,0,1}};
C = linearCode(F,L);
size C
Text
The next example illustrates how to use this function for the class of
Evaluation Codes.
Example
RM = reedMullerCode(2,3,1);
size RM.LinearCode
///
doc ///
Key
(length,LinearCode)
Headline
returns the length of a linear code
Usage
length C
Inputs
C:LinearCode
Outputs
:ZZ
Description
Text
Given a linear code {\tt C} over a Galois field,
returns the number of entries in any codeword in {\tt C}.
This parameter is called the length of the code.
Text
This method is provided by the package @TO CodingTheory@.
Example
C = linearCode(GF(4),{{1,1,1,1}});
length C
H = hammingCode(2,3);
length H
Text
The next example illustrates how to use this function for the class of
Evaluation Codes.
Example
RM = reedMullerCode(2,3,1);
length RM.LinearCode
///
doc ///
Key
vectorSpace
(vectorSpace,LinearCode)
Headline
vector space of a code
Usage
vectorSpace C
Inputs
C:LinearCode
Outputs
:Module
$V$
Description
Text
Given a linear code {\tt C}, this function returns $V$, the vector
space spanned by the rows of a generator matrix of {\tt C}.
Example
H = hammingCode(2,3);
vectorSpace H
Text
The next is an example for the class of @TO EvaluationCode@.
Example
RM = reedMullerCode(2,4,1);
vectorSpace(RM.LinearCode)
///
doc ///
Key
messages
(messages,LinearCode)
Headline
set of messages to be encoded by a code
Usage
messages C
Inputs
C:LinearCode
Outputs
:List
Description
Text
Given a code {\tt C} of dimension $k$ over a finite field $F$,
this function returns the list that contains all the elements of $F^k$.
Every element of the list can be used to encode a message using the linear code {\tt C}.
Example
F=GF(4,Variable=>a);
R=linearCode(F,{{1,1,1}});
messages R
Example
messages hammingCode(2,3)
Example
RM=reedMullerCode(2,2,1);
messages(RM.LinearCode)
Text
This method is provided by the package @TO CodingTheory@.
SeeAlso
codewords
///
doc ///
Key
cyclicCode
(cyclicCode, GaloisField, RingElement, ZZ)
(cyclicCode, GaloisField, ZZ, ZZ)
Headline
cyclic codes
Usage
cyclicCode(F, g, n)
cyclicCode(F, m, n)
Inputs
F:GaloisField
g:RingElement
m:ZZ
n:ZZ
Outputs
:LinearCode
$C$
Description
Text
A linear code is called cyclic if $(a_{n},a_1,\ldots,a_{n-1})\in C$ for
all $(a_1,a_2,\ldots,a_n)\in C$.
A cyclic code can be defined by a polynomial.
Subnodes
:Related functions:
cyclicMatrix
quasiCyclicCode
Synopsis
Heading
a polynomial is given
BaseFunction
cyclicCode
Usage
cyclicCode(F,g,n)
Inputs
F:GaloisField
g:RingElement
n:ZZ
Description
Text
Given a finite field {\tt F}, an integer {\tt n},
and a polynomial {\tt g} in {\tt F}$[x]\setminus${\tt F} that is a
divisor of $x^n-1$, this function returns the cyclic code $C$
with generating polynomial {\tt g} and length {\tt n}.
Text
If the polynomial {\tt g} is not a divisor of $x^n-1$,
the function returns a code with a circulant matrix as
generator matrix.
Example
F=GF(5);
R=F[x];
g=x-1;
C=cyclicCode(F,g,8)
Synopsis
Heading
a constant polynomial is given
BaseFunction
cyclicCode
Usage
cyclicCode(F, m, n)
Inputs
F:GaloisField
m:ZZ
n:ZZ
Description
Text
If {\tt m} is a nonzero constant, then this function returns
the universal code of length {\tt n} over the field {\tt F}.
Text
If {\tt m} is zero, then this function returns the zero code
of length {\tt n}.
Example
F=GF(5);
R=F[x];
C=cyclicCode(F,0,5)
C=cyclicCode(F,2,5)
///
doc ///
Key
quasiCyclicCode
(quasiCyclicCode,List)
(quasiCyclicCode,GaloisField,List)
Headline
constructs a quasi-cyclic code
Usage
quasiCyclicCode(L)
quasiCyclicCode(F,L)
Inputs
L:List
F:GaloisField
Outputs
:LinearCode
$C$
Description
Text
We present below the ways in how a quasi-cyclic
code $C$ can be defined.
Synopsis
Heading
a list is given
BaseFunction
quasiCyclicCode
Usage
quasiCyclicCode(L)
Inputs
L:List
Outputs
:LinearCode
$C$
Description
Text
{\tt L} is a list of vectors.
Every vector \(v_i\) in {\tt L} generates a cyclic matrix $A_i$.
Returns the quasi-cyclic code $C$ whose generator matrix is the
concatenation of the matrices $A_i$.
Example
F = GF(5);
L = apply(toList(1..2),j-> apply(toList(1..4),i-> random(F)));
L
C2=quasiCyclicCode(L)
Synopsis
Heading
a finite field and a list are given
BaseFunction
quasiCyclicCode
Usage
quasiCyclicCode(F,L)
Inputs
L:List
F:GaloisField
Outputs
:LinearCode
$C$
Description
Text
{\tt L} is a list of vectors, whose entries belong to the
field {\tt F}.
Every vector \(v_i\) in {\tt L} generates a cyclic matrix $A_i$.
Returns the quasi-cyclic code $C$ whose generator matrix is the
concatenation of the matrices $A_i$.
Example
F = GF(5);
L = apply(toList(1..2),j-> apply(toList(1..4),i-> random(F)));
L
C2=quasiCyclicCode(F,L)
///
-----------------------------------------------
-----------------------------------------------
-- Use this section for Evaluation Code documentation:
-----------------------------------------------
-----------------------------------------------
doc ///
Key
EvaluationCode
Headline
class of evaluation codes
Description
Text
EvaluationCode is the class of linear codes obtained by evaluating polynomials in
$F[X_1,\ldots,X_m]$, where $F$ is a finite field, at a set of points in $F^m$. There are various
constructions of evaluation codes depending on how the polynomials and points are chosen.
Important examples include Reed-Solomon codes, Reed-Muller codes, monomial codes, Cartesian codes,
and toric codes. To construct a linear code, see @TO evaluationCode@.
Text
The basic structure is a hash table. One of the values is the resulting linear code of type
@TO LinearCode@. Other values include the set of points, its vanishing ideal,
the set of polynomials, and more.
Example
F=GF(4);
R=F[x,y];
P={{0,0},{1,0},{0,1},{a,a}};
S={x+y,x^2+y^2, a+x*y^2};
C=evaluationCode(F,P,S);
C.VanishingIdeal
C.PolynomialSet
C.LinearCode
length C.LinearCode
dim C.LinearCode
Subnodes
:Functions related to ideals and evaluation codes
evaluationCode
footPrint
genMinDisIdeal
hyp
vasconcelosDegree
vNumber
:Symbols that are used as a key for storing information of an evaluation code
PolynomialSet
VanishingIdeal
///
doc ///
Key
locallyRecoverableCode
(locallyRecoverableCode,List,List,RingElement)
Headline
constructs a locally recoverable code (LRC)
Usage
locallyRecoverableCode(L,A,g)
Inputs
L:List
A:List
g:RingElement
Outputs
:LinearCode
$C$
Description
Text
{\tt L} is the list $\{q,n,k,r\},$ where $q$ is a prime power, and $n$, $k$ and $r$ are
positive integers. {\tt A} is a list that contains lists of elements of the field
{\tt GF(q)}. Every sublist contains different elements of {\tt GF(q)}.
The intersection between every two sublists is empty. The polynomial {\tt g} is "good",
which means
that is constant on every sublist of {\tt A}. This function
generates an LRC code $C$ of length $n$, dimension $k$, and locality $r$, over
{\tt GF(q)}. This code $C$ has the property that for every $1\leq i \leq n$,
there exist $i_1,\ldots,i_r$ such that for every codeword $c$ in $C$, the entry $c_i$
can be recovered from the entries $c_{i_1},...,c_{i_r}$. This construction was introduced
by Tamo and Barg in the paper {\it A family of optimal locally recoverable codes}:
\url{https://arxiv.org/pdf/1311.3284v2.pdf}.
Example
A={{1,3,9},{2,6,5},{4,12,10}}
R=(ZZ/13)[x]
g=x^3
locallyRecoverableCode({13,9,4,2},A,g)
Subnodes
:Related function:
getLRCencodingPolynomial
///
doc ///
Key
evaluationCode
(evaluationCode, Ring, List, List)
(evaluationCode, Ring, List, Matrix)
Headline
functions to construct evaluation codes over Galois fields
Usage
evaluationCode(F,P,S)
evaluationCode(F,P,M)
Inputs
F:Ring
P:List
S:List
M:Matrix
Outputs
:EvaluationCode
$C$
Description
Text
We present below the ways in how an evaluation
code $C$ can be defined.
Subnodes
:Constructions of evaluation codes
evCodeGraph
cartesianCode
orderCode
reedSolomonCode
reedMullerCode
toricCode
Caveat
While this function may work even when a ring is given,
instead of a finite field, it is possible that the results
are not the expected ones.
Synopsis
Heading
a ring and a two lists are given
BaseFunction
evaluationCode
Usage
evaluationCode(F,P,S)
Inputs
F:Ring
P:List
S:List
Outputs
:EvaluationCode
$C$
Description
Text
Given a finite field {\tt F}, an ordered list {\tt P}
of points in {\tt F}$^m$, and an ordered list {\tt S}
of polynomials over {\tt F} in $m$ variables,
this method produces an {\tt EvaluationCode} $C$ generated
by codewords obtained by evaluating the given polynomials in
{\tt S} at the given points in {\tt P}.
Example
F=GF(4);
R=F[x,y,z];
P={{0,0,0},{1,0,0},{0,1,0},{0,0,1},{1,1,1},{a,a,a}};
S={x+y+z,a+y*z^2,z^2,x+y+z+z^2};
C=evaluationCode(F,P,S)
Synopsis
Heading
a ring, a list and a matrix are given
BaseFunction
evaluationCode
Usage
evaluationCode(F,P,M)
Inputs
F:Ring
P:List
M:Matrix
Outputs
:EvaluationCode
$C$
Description
Text
Given a finite field {\tt F}, an ordered list {\tt P}
of points in {\tt F}$^m$, and a matrix {\tt M} with
$m$ columns, this method produces a linear code $C$
generated by the codewords obtained by evaluating the
monomials defined by the rows of {\tt M} at the given
points in {\tt P}.
Example
F=GF(4);
R=F[x,y,z];
P={{0,0,0},{1,0,0},{0,1,0},{0,0,1},{1,1,1},{a,a,a}};
M=matrix{{0,0,1},{1,1,1}};
C=evaluationCode(F,P,M)
///
doc ///
Key
toricCode
(toricCode,Ring,Matrix)
Headline
a toric code construction
Usage
toricCode(F,M)
Inputs
F:Ring
M:Matrix
Outputs
:EvaluationCode
$C$
Description
Text
Given a finite field {\tt F} and an integer matrix {\tt M}, this
method produces a toric code whose lattice polytope $P$ is the
convex hull of the row vectors of {\tt M}. By definition, the
toric code is generated by codewords obtained by evaluating the
monomials corresponding to the lattice points of $P$ at the
points of the algebraic torus ({\tt F}*)$^m$, where $m$ is the
number of columns of {\tt M}.
Example
M=matrix{{1,4},{2,5},{10,6}};
T=toricCode(GF 4,M);
T.VanishingIdeal
T.ExponentsMatrix
T.LinearCode
length T.LinearCode
dim T.LinearCode
Subnodes
:Symbols that are used as a key for storing information of a toric code
ExponentsMatrix
///
doc ///
Key
cartesianCode
(cartesianCode,Ring,List,List)
(cartesianCode,Ring,List,ZZ)
(cartesianCode,Ring,List,Matrix)
Headline
Cartesian code
Usage
cartesianCode(F,L,d)
cartesianCode(F,L,S)
cartesianCode(F,L,M)
Inputs
F:Ring
L:List
S:List
d:ZZ
M:Matrix
Outputs
:EvaluationCode
$C$
Description
Text
We present below the ways in how a Cartesian
code $C$ can be defined.
Caveat
While this function may work even when a ring is given,
instead of a finite field, it is possible that the results
are not the expected ones.
Subnodes
:Symbols that are used as a key for storing information of a Cartesian code
Sets
Synopsis
Heading
a ring, a list and an integer are given
BaseFunction
cartesianCode
Usage
cartesianCode(F, L, d)
Inputs
F:Ring
L:List
d:ZZ
Outputs
:EvaluationCode
$C$
Description
Text
{\tt F} is a field, {\tt L} is a list of subsets of
{\tt F} and {\tt d} is an integer. Returns the Cartesian code $C$
obtained when polynomials of degree at most {\tt d} are evaluated
over the points of the Cartesian product made by the subsets of
{\tt L}.
Example
C=cartesianCode(ZZ/11,{{1,2,3},{2,6,8}},3)
Synopsis
Heading
a ring and two lists are given
BaseFunction
cartesianCode
Usage
cartesianCode(F, L, S)
Inputs
F:Ring
L:List
S:List
Outputs
:EvaluationCode
$C$
Description
Text
{\tt F} is a field, {\tt L} is a list of subsets of {\tt F} and
{\tt S} is a set of polynomials. Returns the Cartesian code $C$
obtained when polynomials in the list {\tt S} are evaluated over
the points of the Cartesian product made by the subsets of {\tt L}.
Example
F=GF(4);
R=F[x,y];
C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
C.LinearCode
Synopsis
Heading
a ring, a list and a Matrix are given
BaseFunction
cartesianCode
Usage
cartesianCode(F, L, M)
Inputs
F:Ring
L:List
M:Matrix
Outputs
:EvaluationCode
$C$
Description
Text
{\tt F} is a field, {\tt L} is a list of subsets of {\tt F} and
{\tt M} is the matrix whose rows are the exponents of the monomials
to evaluate. Returns the Cartesian code $C$ obtained when the
monomials defined by the matrix {\tt M} are evaluated over
the points of the Cartesian product made by the subsets of {\tt L}.
Example
F=GF(4);
R=F[x,y];
C=cartesianCode(F,{{0,1,a},{0,1,a}},matrix{{1,2},{2,3}})
///
doc ///
Key
reedMullerCode
(reedMullerCode,ZZ,ZZ,ZZ)
Headline
constructs the Reed-Muller code
Usage
reedMullerCode(q,m,d)
Inputs
q:ZZ
m:ZZ
d:ZZ
Outputs
:EvaluationCode
Description
Text
Given the integers {\tt q}, {\tt m} and {\tt d}, returns the
Reed-Muller code obtained when polynomials in {\tt m} variables
of total degree at most {\tt d} are evaluated on the points
of {\tt GF(q)}$^\mathtt{m}$.
Example
C=reedMullerCode(2,3,4);
C.Sets;
C.VanishingIdeal;
C.PolynomialSet;
C.LinearCode;
length C.LinearCode
///
doc ///
Key
reedSolomonCode
(reedSolomonCode,Ring,List,ZZ)
Headline
constructs the Reed-Solomon code
Usage
reedSolomonCode(F,L,k)
Inputs
F:Ring
L:List
k:ZZ
Outputs
:EvaluationCode
Description
Text
Given a field {\tt F}, a list {\tt L} of different elements
of {\tt F}, and an integer {\tt k}, returns the Reed-Solomon
code obtained when polynomials of degree less than {\tt k}
are evaluated on the elements of {\tt L}.
Example
C=reedSolomonCode(ZZ/31,{1,2,3},3);
peek C
///
doc ///
Key
generatorToParityCheck
(generatorToParityCheck, Matrix)
Headline
parity check matrix of a linear code
Usage
generatorToParityCheck(G)
Inputs
G:Matrix
Outputs
:Matrix
$H$
Description
Text
Constructs a parity check matrix $H$ of the linear code
generated by {\tt G}.
Example
F = GF 2;
L = {{0,1,1,0},{1,0,1,0},{0,0,0,1}};
G = matrix apply(L, codeword->apply(codeword, en -> sub(en,F)))
H = generatorToParityCheck G
K = GF(8,Variable => a);
G = matrix {{1,0,0,a,0,1,1,a},{0,0,0,1,1,1,1,0},{1,1,0,0,0,1,0,0},{1,0,1,0,0,1,1,0}}
H = generatorToParityCheck G
///
doc ///
Key
orderCode
(orderCode,Ring,List,List,ZZ)
(orderCode,Ideal,List,List,ZZ)
(orderCode,Ideal,List,ZZ)
Headline
computes an order code for a given weight
Usage
orderCode(F,P,v,d)
orderCode(I,P,v,d)
orderCode(I,v,d)
Inputs
F:Ring
P:List
v:List
I:Ideal
d:ZZ
Outputs
:EvaluationCode
$C$
Description
Text
Let {\tt F} be a finite field and {\tt F}$[t_1,\ldots,t_m]$
a polynomial ring with a weight order defined by the list {\tt v} of size $m$.
For {\tt P}$=\{P_1,\ldots,P_n\}\subset${\tt F}$^m$, the order
code of degree $d$ is the {\tt F}-vector space generated
by the vectors $(f(P_1),\ldots,f(P_n))$,
where $f$ is a monomial of weight at most $d$.
We describe ways to obtain an order code below.
Caveat
While this function may work even when a ring is given,
instead of a finite field, it is possible that the results
are not the expected ones.
Synopsis
Heading
a list of points and the weight vector are given
BaseFunction
orderCode
Usage
orderCode(F,P,v,d)
Inputs
F:Ring
P:List
v:List
d:ZZ
Outputs
:LinearCode
$C$
Description
Text
The order code $C$ of degree {\tt d} over the points of {\tt P} using the weight vector {\tt v}.
Example
F = GF(4);
P = {{0, 0}, {a, a}, {a+1, a}, {1, a}, {a, a+1}, {a+1, a+1}, {1, a+1}, {0, 1}};
C = orderCode(F,P,{2,3},7);
peek C
Synopsis
Heading
given the ideal of the finite algebra associated to the order function and a list of points
BaseFunction
orderCode
Usage
orderCode(I,P,v,d)
Inputs
I: Ideal
P: List
v: List
d: ZZ
Outputs
:LinearCode
$C$
Description
Text
If {\tt I} is the ideal associated to the semigroup generated by {\tt v},
this function allows us to improve by knowing a basis defined through {\tt I}.
Example
F = GF(4);
R = F[x,y];
I = ideal(x^3+y^2+y)
P = {{0, 0}, {a, a}, {a+1, a}, {1, a}};
C = orderCode(I,P,{2,3},7);
peek C
Synopsis
Heading
given just an ideal and the weight vector
BaseFunction
orderCode
Usage
orderCode(I,v,d)
Inputs
I:Ideal
v:List
d:ZZ
Outputs
:LinearCode
$C$
Description
Text
The order code of degree {\tt d}, using the order function defined by {\tt v} and the set of points the zeroes of {\tt I}.
Example
F = GF(4);
R = F[x,y];
I = ideal(x^3+y^2+y);
C = orderCode(I,{2,3},7);
peek C
///
doc ///
Key
getLRCencodingPolynomial
(getLRCencodingPolynomial, ZZ,ZZ, List, RingElement)
Headline
encoding polynomial for an LRC code
Usage
getLRCencodingPolynomial(k,r,List,informationList,g)
Inputs
k:ZZ
r:ZZ
informationList: List
g:RingElement
Outputs
:RingElement
$f(x)$
Description
Text
Generates an encoding polynomial $f(x)$ corresponding to an information vector
in $F^\texttt{k}$, where $F$ is a field, which can be used to generate an
encoding in $F^\texttt{r}$.
Example
R=ZZ/(13)[x];
getLRCencodingPolynomial(4,2,{1,0,1,1},x^3)
///
doc ///
Key
evCodeGraph
(evCodeGraph,Ring,Matrix,List)
Headline
Reed–Muller-type code over a graph
Usage
evCodeGraph(F,M,S)
Inputs
F:Ring
M:Matrix
S:List
Outputs
:EvaluationCode
$C$
Description
Text
Given a finite field {\tt F}, an incidence matrix {\tt M}
of a connected graph $G$, and an ordered list {\tt S} of
polynomials over {\tt F}, this method produces an
{\tt EvaluationCode} $C$ generated by evaluating the given
polynomials in {\tt S} at the columns of the matrix {\tt M}.
Example
G = graph({1,2,3,4}, {{1,2},{2,3},{3,4},{4,3}});
B=incidenceMatrix G;
S=ZZ/2[t_(0)..t_(#vertexSet G-1)];
Y=evCodeGraph(coefficientRing S,B,flatten entries basis(1,S))
Caveat
While this function may work even when a ring is given,
instead of a finite field, it is possible that the results
are not the expected ones.
///
--------------- Documentation PolynomialSet-----------------
doc ///
Key
PolynomialSet
Headline
a set of polynomials for an evaluation code
Usage
C.PolynomialSet
Inputs
C:EvaluationCode
Outputs
:Set
Description
Text
This key stores a polynomial set used to construct an
@TO EvaluationCode@.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
F=GF(4,Variable=>a);
R=F[x,y];
P={{0,0},{1,0},{0,1},{a,a}};
S={x+y,x^2+y^2,a+x*y^2};
C=evaluationCode(F,P,S);
C.PolynomialSet
///
--------------- Documentation Sets-----------------
doc ///
Key
Sets
Headline
sets of a Cartesian code
Usage
C.Sets
Inputs
C:EvaluationCode
Outputs
:List
Description
Text
This key stores a list of subsets of a field that are
used for constructing a @TO cartesianCode@.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
F=GF(4);
R=F[x,y];
C=cartesianCode(F,{{0,1,a},{0,1,a}},{1+x+y,x*y})
C.Sets
///
--------------- Documentation VanishingIdeal-----------------
doc ///
Key
VanishingIdeal
Headline
vanishing ideal of an evaluation code
Usage
C.VanishingIdeal
Inputs
C:EvaluationCode
Outputs
:Ideal
Description
Text
This key stores the vanishing ideal of the set of points that are
used for constructing an @TO EvaluationCode@.
Text
This symbol is provided by the package @TO CodingTheory@.
Example
F=GF(4);
R=F[x,y];
P={{0,0},{1,0},{0,1},{a,a}};
S={x+y,x^2+y^2, a+x*y^2};
C=evaluationCode(F,P,S);
C.VanishingIdeal
///
end
-- Here place M2 code that you find useful while developing this
-- package. None of it will be executed when the file is loaded,
-- because loading stops when the symbol "end" is encountered.
restart
uninstallPackage "CodingTheory"
installPackage "CodingTheory"
installPackage("CodingTheory", RemakeAllDocumentation=>true)
installPackage("CodingTheory", RemakeAllDocumentation=>true, RunExamples=>false)
installPackage("CodingTheory", MakeDocumentation=>true,FileName=>"~/myCodingTheoryStuff/CodingTheoryEdit5202020.m2")
check CodingTheory
viewHelp CodingTheory
viewHelp doc
-----------------------------------------------------
-- Codes from Generator Matrices (as lists):
-----------------------------------------------------
F = GF(3,4)
codeLen = 7
codeDim = 3
L = apply(toList(1..codeDim),j-> apply(toList(1..codeLen),i-> random(F)))
C = linearCode(F,L)
peek C
-- check that dimension and length are correct:
dim C
length C
-- check that G*H^t = 0:
C.GeneratorMatrix * (transpose C.ParityCheckMatrix)
-----------------------------------------------------
-- Codes from Parity Check Matrices (as a matrix):
-----------------------------------------------------
F = GF(2)
L = {{1,0,1,0,0,0,1,1,0,0},{0,1,0,0,0,0,0,1,1,0},{0,0,1,0,1,0,0,0,1,1},{1,0,0,1,0,1,0,0,0,1},{0,1,0,0,1,1,1,0,0,0}}
C = linearCode(F,L,ParityCheck => true)
peek C
-----------------------------------------------------
-- Codes with Rank Deficient Matrices:
-----------------------------------------------------
R=GF 4
M=R^4
C = linearCode(R,{{1,0,1,0},{1,0,1,0}})
peek C
-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/packages PACKAGES=CodingTheory pre-install"
-- End:
|