1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
-- -*- coding: utf-8 -*-
-- licensed under GPL, any version
newPackage(
"FormalGroupLaws",
Version => "0.2",
Date => "February 26, 2010",
Authors => {
{Name => "Baptiste Calmès",
HomePage => "http://bcalmes.perso.math.cnrs.fr/"},
{Name => "Viktor Petrov"}
},
Headline => "commutative formal group laws",
Keywords => {"Group Theory"},
PackageImports => {"Truncations"},
DebuggingMode => false)
-- Put here the name of functions that should be visible to users
export{"series", "FormalGroupLaw", "FormalSeries", "valuation", "compositionInverse", "FGL", "FormalGroupPoint", "universalFGL", "universalFGLQ", "formalGroupPoint"
}
-- Variables that can be modified by the user
exportMutable{
}
-- Package code
--Defining the class of all formal series (with a precision).
FormalSeries = new Type of BasicList
--Defining a method to create a FormalSeries from a polynomial and an integer.
series = method()
series(RingElement,ZZ) := (s,n) ->
(
if n<0 then error "The second argument should be a nonnegative integer."
else if instance(class(s),PolynomialRing)==false then error "The first element of the list should be an element of a polynomial ring."
else new FormalSeries from {part(0,n,numgens(class(s)) : 1,s),n}
);
--Defining equality of FormalSeries
FormalSeries == FormalSeries := (s,t) ->
(
s#0==t#0 and s#1==t#1
);
--Defining truncation of formal series (note: truncate is already defined for modules, but I don't think it is important.)
truncate(FormalSeries,ZZ) := {} >> o -> (s,n) -> new FormalSeries from {part(0,min(n,s#1),numgens(class(s#0)):1,s#0),min(n,s#1)}
--Defining the sum of FormalSeries
FormalSeries + FormalSeries := (s,t) ->
(
u:=s#0+t#0;
new FormalSeries from {part(0,min(s#1,t#1),numgens(class(u)):1,u),min(s#1,t#1)}
)
--Defining the opposite of a FormalSeries
-FormalSeries := (s) ->
(
new FormalSeries from {-s#0,s#1}
)
--Defining the difference of FormalSeries
FormalSeries - FormalSeries := (s,t) ->
(
u:=s#0-t#0;
new FormalSeries from {part(0,min(s#1,t#1),numgens(class(u)) :1 ,u),min(s#1,t#1)}
)
--Defining multiples of a FormalSeries
ZZ * FormalSeries := (n,s) -> new FormalSeries from {n*s#0,s#1}
RingElement * FormalSeries := (n,s) ->
(
if ring n =!= coefficientRing ring s#0 then error "The constant must be from the coefficient ring."
else new FormalSeries from {n*s#0,s#1}
)
--Defining valuation of an element in a Polynomial ring. Maybe there is a built in function or a better way, but I cannot find it. It is a bit annoying, because we need this to be very quick, because it is used in every multiplication of FormalSeries.
valuation = (x) ->
(
if instance(class(x),PolynomialRing) then min(apply(exponents(x),sum))
else error "The argument must be an element of a polynomial ring."
)
--Defining product of FormalSeries
FormalSeries * FormalSeries := (s,t) ->
(
k := min(s#1,t#1);
n:=numgens(class(s#0)):1 ;
m:=numgens(class(t#0)):1 ;
new FormalSeries from {sum for i from 0 to k list (part(i,i,n,s#0))*(part(0,(k-i),m,t#0)),k}
)
--Defining inverse of FormalSeries. It has the same precision. Still slow because the internal multiplication of macaulay2 is not used. Instead, we use our multiplication, that is slow.
inverse(FormalSeries) := (s) ->
(
const:=(part(0,0,numgens(class(s#0)) :1 ,s#0))#0;
R:=class(s#0);
if const==1_R then
(
use R;
u:= new FormalSeries from {1,s#1};
v:=u-s;
t:=u+v;
for i from 2 to s#1 do t=u+(v*t);
t
)
else if const==-1_R then -inverse(-s)
else error "Only formal series with constant term +1 or -1 can be inverted for the moment."
)
--Defining powers of FormalSeries
FormalSeries^ZZ := (s,n) ->
(
if n==0 then new FormalSeries from {1_(class(s#0)),s#1}
else if (n==1) or (s#0==0_(class(s#0))) then s
else if n>0 then
(
t := s^(n//2);
if n%2 == 0 then t*t else t*t*s
)
else inverse(s)^(-n)
)
--Defining composition of FormalSeries
monomialSubstitute = method()
monomialSubstitute(BasicList,BasicList) := (s,v) -> --the first BasicList is a list of objects to multiply (ex: variables or FormalSeries), the second is the exponents of the monomial. A test that the two lengths match could be added.
(
product(for i from 0 to #v-1 list (s#i)^(v#i))
)
substitute(FormalSeries,BasicList) := (s,v) ->
(
if s#0==0_(class(s#0)) then s else (
l:=listForm(s#0);
u:=apply(v,x->truncate(x,s#1));
sum(for i from 0 to #l-1 list (l#i#1)*monomialSubstitute(u,l#i#0))
)
)
--Defining reverse formal series (inverse for composition)
compositionInverse = method()
compositionInverse(FormalSeries):= (s) ->
(
R:= class(s#0);
firstCoeffs:=part(0,1,{1} ,s#0);
if numgens(R) =!= 1 then error "Only formal series in one variable may have a composition inverse."
else if firstCoeffs==R_0 then
(
local g;
g=new FormalSeries from {R_0,1};
for k from 2 to s#1 do
(
g= new FormalSeries from {g#0,k};
g= g + (new FormalSeries from {R_0,k})-substitute(s,{g});
);
g
)
else if firstCoeffs==-R_0 then
(
local g;
g=new FormalSeries from {-R_0,1};
for k from 2 to s#1 do
(
g= new FormalSeries from {g#0,k};
g= g + (new FormalSeries from {-R_0,k})+substitute(s,{g});
);
g
)
else error "Only formal series with constant term 0 can be inverted for the composition. And for the moment, the next one also has to be 1 or -1 (and not just any invertible element)."
)
--Defining the class of formal group laws
FormalGroupLaw = new Type of FormalSeries
--Method to construct a new formal group law from a FormalSeries in two variables. It tests if the formal series defines a commutative formal group law with neutral element. This is quite conservative. We might also want to make things quicker by forgetting about formal series in the computations, and then truncating at the end.
FGL = method()
FGL(FormalSeries) := (s) ->
(
x:= local x;
y:= local y;
z:= local z;
S:= class(s#0);
R := (coefficientRing(S))[x,y,z];
t:= new FormalSeries from {sub(s#0,{S_0=>x,S_1=>y}),s#1}; -- s seen in polynomials with an extra variable in order to check associativity (even if z is already the name of a variable of S, M2 distinguishes between the two, and z now means this third z, whereas the other variables should be called R_0 and R_1).
u:= new FormalSeries from {x,s#1}; --first variable
v:= new FormalSeries from {y,s#1}; --second variable
w:= new FormalSeries from {z,s#1}; --third variable
q:= new FormalSeries from {0_R,s#1}; --zero series
if numgens(S)=!=2 then error "The formal series must be in two variables."
else if (((substitute(t,{u, q, q})) =!= u) or ((substitute(t,{q, v, q})) =!= v)) then error "The formal series does not satisfy the neutral axiom of formal group laws."
else if (substitute(t,{v, u, q})) =!=t then error "The formal series does not satisfy the commutativity axiom of commutative formal group laws."
else if (substitute(t,{t,w,q})) =!= (substitute(t,{u,substitute(t,{v,w,q}),q})) then error "The formal series does not satisfy the axiom of associative formal group laws."
else new FormalGroupLaw from s
)
--Defining the class of ``points'' of formal groups (that is, pairs consisting of a FGL and a formal series without free term)
FormalGroupPoint = new Type of BasicList
--Constructor for FormalGroupPoint objects
formalGroupPoint= method()
formalGroupPoint(FormalGroupLaw,FormalSeries) := (f,s) -> (
if f#1<s#1 then error "The precision of the formal group law should be at least that of the formal series."
else if coefficientRing(class(s#0)) =!= coefficientRing(class(f#0)) then error "The formal group law and the series should be over the same coefficient ring."
else new FormalGroupPoint from {f,s}
)
--formal sum
FormalGroupPoint + FormalGroupPoint := (s,t) -> (
if s#0 != t#0 then error "Points must belong to the same formal group"
else new FormalGroupPoint from {s#0,substitute(s#0,{s#1,t#1})}
)
--Invert a formal group law
- FormalGroupPoint := s ->
(
g := - truncate(s#1,1);
for k from 2 to (s#1)#1 do
(
g=new FormalSeries from {g#0,k};
g=g - substitute(s#0,{s#1,g});
);
new FormalGroupPoint from {s#0,g}
)
--formal difference
FormalGroupPoint - FormalGroupPoint := (s,t) -> s + (-t)
--formal multiple
ZZ * FormalGroupPoint := (n,s) ->
(
if n==0 then new FormalGroupPoint from {s#0,new FormalSeries from {0_(class((s#1)#0)),(s#1)#1}}
else if (n==1) or ((s#1)#0==0_(class((s#1)#0))) then s
else if n>0 then
(
t := (n//2) * s;
if n%2 == 0 then t+t else t+t+s
)
else (-n)*(-s)
)
--Defining the universal formal group law on the Lazard ring tensor Q up to a precision.
universalFGLQ=method()
universalFGLQ(ZZ,String,String,String) := (n,b,x,y) ->
(
R := ZZ[(value(b))_1..(value(b))_(n-1)];
t := local t;
S := R[t];
lg := new FormalSeries from {t+sum for k from 1 to n-1 list t^(k+1)*(value(b))_k,n};
T := R[value(x),value(y)];
new FormalGroupLaw from substitute(compositionInverse lg,{(new FormalSeries from {sub(lg#0,{S_0=>T_0}),lg#1})+(new FormalSeries from {sub(lg#0,{S_0=>T_1}),lg#1})})
)
--computation of the nu(i,d) of Strickland's notes. They are Bezout coefficients satisfying an extra property that makes them unique.
gcdCoeffs=method()
gcdCoeffs(BasicList):= (L) ->
(
if #L==0 then error "The list should have at least one element."
else if #L==1 then {1}
else
(
dwz:={L#0,0,1}; --gcdCoefficients(L#0,L#1);
wzlist:= for i from 1 to #L-1 list dwz do dwz=gcdCoefficients(dwz#0,L#i);
wzlist=append(wzlist,dwz);
v:=1;
i:=#wzlist-1;
nu:= 0;
result:={};
while i>0 do
(
nu=wzlist#(i-1)#0//wzlist#i#0;
result=prepend((v*(wzlist#i#2))%nu,result);
v=v*wzlist#i#1+((v*wzlist#i#2)//nu)*(L#(i)//wzlist#i#0);
i=i-1;
);
result=prepend(v,result)
)
)
--Universal FGL with integer coefficients. Try to remove the dependence on the name of the b's in all this by asking for a string "b" maybe. The idea is to express the coefficients of the universal formal group law in terms of some b_i's that are the coefficients of a universal logarithm. Then, we form the a_i's that are linear combinations of the a_(i,j) using some special coefficients. It turns out that these a_i's are multiples of the b_i's modulo some smaller b_j's. So rationally, we can express the b_i's in terms of the a_i's, and so the a_(i,j)'s in terms of a_i's. The coefficients appearing in this last expression are integers, and this gives the coeffs of the universal formal group law on Z[a_i], which is the Lazard ring (really seen as a polynomial ring).
universalFGL=method()
universalFGL(ZZ,String,String,String) := (n,s,u,v) ->
(
--A test should be added here to return an error if the symbol value(s) has been affected a value
x:= local x;
y:= local y;
b:= local b;
a:= local a;
R:=QQ[b_1..b_(n-1),a_1..a_(n-1)]; --Defining a big ring with all our variables to be able to substitute and sum freely in there.
S:=R[x];
f:=series(x+sum for i from 1 to n-1 list b_i*x^(i+1),n);
T:=R[x,y];
g:=series(x+sum for i from 1 to n-1 list b_i*x^(i+1),n);
F:=substitute(compositionInverse(f),{g+substitute(g,{series(y,n),series(y,n)})}); --F lives in T
alist:= for d from 1 to n-1 list
(
coeffs:=gcdCoeffs(for i from 1 to d list binomial(d+1,i));
sum for i from 1 to d list (coeffs#(i-1))*((F#0)_(x^i*y^(d+1-i)))
); --this alist is a list supposed to contain the a_i's expressions in term of the b_i's.
blist:={}; --this list (of elements of the form b_i => ...) will contain the b_i's expressed in terms of the a_i's.
for i from 1 to n-1 do
(
blist=append(blist,
b_i=>1/((alist#(i-1))_(b_i))*(a_i+substitute((alist#(i-1))_(b_i)*b_i - alist#(i-1),blist)))
);
--this part is dangerous. It assumes that the map sends coefficients in QQ that are integers to the correct element in ZZ. It seems to work, but I doubt it is firmly supported by M2, and I don't know if it will be supported in the future.
U:=ZZ[for i from 1 to n-1 list (value(s))_i];
V:=U[value(u),value(v)];
mymap:=map(V,T,join(for i from 1 to n-1 list a_i => U_(i-1), for i from 1 to n-1 list b_i => 0, {x=>V_0, y=>V_1}));
new FormalGroupLaw from {mymap(substitute(F#0,blist)),n}
)
--Todo
--compute logarithm of a formal group law if the coefficient ring is a Q-algebra.
--The rest of the file is documentation.
beginDocumentation()
doc ///
Key
FormalGroupLaws
Headline
commutative formal group laws
Description
Text
This package provides elementary functions to deal with commutative formal group laws of dimension one.
///
doc ///
Key
FormalSeries
Headline
the class of all formal series
Description
Text
An object of the class {\tt FormalSeries} is a list {\tt \{P,n\}} where {\tt P} is an element of a polynomial ring and {\tt n} is an integer representing the precision (the terms in degree strictly greater than {\tt n} are considered zero).
///
doc ///
Key
series
Headline
constructing a formal series
///
doc ///
Key
(series,RingElement, ZZ)
Usage
series(s,n)
Inputs
s: RingElement
an element of a polynomial ring
n: ZZ
Outputs
: FormalSeries
Description
Text
This constructs an object of the class {\tt FormalSeries} out of an element of a {\tt PolynomialRing} and an integer representing the precision.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
Text
Note that the polynomial is automatically truncated at the precision.
Example
t = series(x^3+x^2+x+y,2)
///
doc ///
Key
(symbol ==, FormalSeries, FormalSeries)
Headline
equality of formal series
Usage
s == t
Inputs
s: FormalSeries
t: FormalSeries
Outputs
: ZZ
Description
Text
True is returned if the formal series are equal (they should have the same precision) and false is returned if not.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
t = series(x+y+1,2)
s == s
s == t
r = truncate(t,1)
t == r
///
TEST ///
R=ZZ[x,y];
s = series(x^2+x+y,2);
t = series(x+y,2);
assert((s == t)==false);
r = truncate(s,1);
u = truncate(t,1);
assert(u == r)
///
doc ///
Key
valuation
Headline
smallest degree of monomials
Usage
valuation(p)
Inputs
p:
an element of a {\tt PolynomialRing}
Outputs
:
an integer, or infinity
Description
Text
This function computes the minimum of the degrees of monomials appearing in {\tt p}. It gives infinity if {\tt p} is zero.
Example
R= ZZ[x,y]
valuation(x^2+y)
valuation(0_R)
///
TEST ///
R= ZZ[x,y];
assert(valuation(x^2+y)==1);
assert(valuation(0_R)==infinity)
///
doc ///
Key
(symbol +, FormalSeries, FormalSeries)
Headline
addition of formal series
Usage
s + t
Inputs
s : FormalSeries
t : FormalSeries
Outputs
: FormalSeries
Description
Text
The sum of the formal series is returned.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
t = series(x+y+1,2)
s + t
///
doc ///
Key
(symbol -, FormalSeries)
Headline
minus a formal series
Usage
-s
Inputs
s : FormalSeries
Description
Text
This returns the additive opposite of the formal series {\tt s}.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
-s
///
doc ///
Key
(symbol -, FormalSeries, FormalSeries)
Headline
difference of formal series
Usage
s - t
Inputs
s : FormalSeries
t : FormalSeries
Outputs
: FormalSeries
Description
Text
The difference of the formal series is returned.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
t = series(x+y+1,2)
s - t
///
doc ///
Key
(symbol *, FormalSeries, FormalSeries)
Headline
multiplication of formal series
Usage
s * t
Inputs
s : FormalSeries
t : FormalSeries
Outputs
: FormalSeries
the product of the formal series {\tt s} and {\tt t}
Description
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
t = series(x+y+1,2)
s * t
///
doc ///
Key
(symbol *, ZZ, FormalSeries)
Headline
multiplication of a formal series by an integer
Usage
n * t
Inputs
n : ZZ
t : FormalSeries
Outputs
: FormalSeries
The multiplication of the formal series {\tt s} by the integer {\tt n}
Description
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
4 * s
///
doc ///
Key
(symbol *, RingElement, FormalSeries)
Headline
multiplication of a formal series by a constant
Usage
r * t
Inputs
r : RingElement
t : FormalSeries
Outputs
: FormalSeries
the multiplication of the formal series {\tt s} by the constant {\tt r}
Description
Example
R=ZZ[a]
S=R[x,y]
s = series(x^2+x+y,2)
(a^2+a) * s
///
TEST ///
R=ZZ[a];
S=R[x,y];
s = series(x^2+x+y,2);
assert((a^2+a) * s ==series((a^2+a)*x^2+(a^2+a)*x+(a^2+a)*y,2))
///
doc ///
Key
(symbol ^, FormalSeries, ZZ)
Headline
powers of formal series
Usage
s^n
Inputs
s : FormalSeries
n : ZZ
Outputs
: FormalSeries
the {\tt n}-th power of the formal series {\tt s}
Description
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
s^4
Caveat
If {\tt n} is 0, the formal series returned is 1 with the same precision as {\tt s}. If {\tt n} is negative, then {\tt s} needs to have its constant part equal to either +1 or -1, otherwise an error occurs.
///
TEST ///
R=ZZ[x,y];
s = series(x^2+x+y,2);
t = series(x+y+1,2);
assert(s + t==series(x^2+2*x+2*y+1,2));
assert(-s==series(-x^2-x-y,2));
assert(t-s == series(-x^2+1,2));
assert(-2*t == series(-2*x-2*y-2,2));
assert(s^2 == series(x^2+y^2+2*x*y,2))
///
doc ///
Key
(truncate, FormalSeries, ZZ)
Headline
truncate formal series
Usage
truncate(s,n)
Inputs
s : FormalSeries
n : ZZ
Outputs
: FormalSeries
Description
Text
This function truncates the formal series {\tt s} at the precision {\tt n}.
Example
R=ZZ[x,y]
s = series(x^7+x^2+x+y,7)
truncate(s,4)
///
TEST ///
R=ZZ[x,y];
s = series(x^7+x^2+x+y,7);
assert(truncate(s,4)==series(x^2+x+y,4))
///
doc ///
Key
(inverse, FormalSeries)
Headline
multiplicative inverse of formal series
Usage
inverse(s)
Inputs
s : FormalSeries
Outputs
: FormalSeries
the multiplicative inverse of the formal series {\tt s}
Description
Example
R=ZZ[x,y]
s = series(2*x^2*y+x*y+x^2+x+y+1,3)
inverse(s)
Caveat
If the constant coefficient of {\tt s} is not +1 or -1, {\tt inverse} returns an error.
///
TEST ///
R=ZZ[x,y];
s = series(2*x^2*y+x*y+x^2+x+y+1,3);
assert(inverse(s) == series(x^3-x^2*y-x*y^2-y^3+x*y+y^2-x-y+1,3))
///
doc ///
Key
(substitute, FormalSeries, BasicList)
Headline
compose formal series
Usage
substitute(s,l)
Inputs
s : FormalSeries
l : BasicList
Outputs
: FormalSeries
Description
Text
All the {\tt FormalSeries} involved should have the same coefficient ring. The function substitutes the variables in {\tt s} with the series in the {\tt BasicList} {\tt l}. Also note that this also works when {\tt s} is a {\tt FormalGroupLaw} which is a subclass of {\tt FormalSeries}.
Example
R=ZZ[x,y]
s = series(x^2+x+y,2)
substitute(s,{s,s})
///
TEST ///
R=ZZ[x,y];
s = series(x^2+x+y,2);
assert(substitute(s,{s,s})==series(3*x^2+2*x*y+y^2+2*x+2*y,2))
///
doc ///
Key
(compositionInverse)
Headline
inverse for composition
///
doc ///
Key
(compositionInverse, FormalSeries)
Headline
inverse for composition of formal series
Usage
compositionInverse(s)
Inputs
s : FormalSeries
Outputs
: FormalSeries
Description
Text
The {\tt FormalSeries} {\tt s} must be in one variable and have a zero constant coefficient and a coefficient +1 or -1 in degree 1. Then, {\tt compositionInverse} computes the inverse of {\tt s} for the composition of formal series, up to the precision of {\tt s}.
Example
ZZ[x]
s = series(x+x^2+2*x^3-5*x^4,4)
t = compositionInverse(s)
substitute(s,{t})
substitute(t,{s})
///
TEST ///
ZZ[x];
s = series(x+x^2+2*x^3-5*x^4,4);
t = compositionInverse(s);
assert(substitute(s,{t})==series(x,4));
assert(substitute(t,{s})==series(x,4))
///
doc ///
Key
FormalGroupLaw
Headline
the class of all formal group laws
Description
Text
An object of the class {\tt FormalGroupLaw} is a {\tt FormalSeries} in two variables.
///
doc ///
Key
FGL
Headline
constructing a formal group law
///
doc ///
Key
(FGL, FormalSeries)
Usage
FGL(s)
Inputs
s : FormalSeries
in two variables
Outputs
: FormalGroupLaw
Description
Text
This constructs an object of the class {\tt FormalGroupLaw} out of a {\tt FormalSeries} living in a {\tt PolynomialRing} with two generators. The axioms of the neutral element, commutativity and associativity are checked up to the precision of {\tt s}.
Example
R=ZZ[x,y]
s = series(x+y+x*y,2)
f= FGL(s)
///
doc ///
Key
FormalGroupPoint
Headline
the class of all points of a formal group
Description
Text
An object of the class {\tt FormalGroupPoint} is a list {\tt \{f,s\}} where {\tt f} is a formal group law, {\tt s} is a formal series without free term
///
doc ///
Key
formalGroupPoint
Headline
constructing a formal group point
///
doc ///
Key
(formalGroupPoint, FormalGroupLaw, FormalSeries)
Usage
formalGroupPoint(f,s)
Inputs
f : FormalGroupLaw
s : FormalSeries
with the same coefficient ring as {\tt f}
Outputs
p : FormalGroupPoint
Description
Text
This constructs an object of the class {\tt FormalGroupPoint} out of a {\tt FormalGroupLaw} and a {\tt FormalSeries} with the same coefficient ring and such that {\tt s} has precision at most that of {\tt f}.
Example
ZZ[x,y]
f=FGL(series(x+y+x*y,2))
ZZ[u,v]
s = series(u+v+u^2,2)
p= formalGroupPoint(f,s)
///
doc ///
Key
(symbol +, FormalGroupPoint, FormalGroupPoint)
Headline
sum of points of a formal group
Usage
s+t
Inputs
s : FormalGroupPoint
t : FormalGroupPoint
Outputs
: FormalGroupPoint
Description
Example
ZZ[x,y]
f = FGL(series(x+y+x*y,10))
ZZ[u]
s = formalGroupPoint(f,series(u^2+u,5))
t = formalGroupPoint(f,series(u^3,5))
s+t
///
doc ///
Key
(symbol -, FormalGroupPoint, FormalGroupPoint)
Headline
difference of points of a formal group
Usage
s-t
Inputs
s : FormalGroupPoint
t : FormalGroupPoint
Outputs
: FormalGroupPoint
Description
Example
ZZ[x,y]
f = FGL(series(x+y+x*y,10))
ZZ[u]
s = formalGroupPoint(f,series(u^2+u,5))
t = formalGroupPoint(f,series(u^3,5))
s-t
///
doc ///
Key
(symbol -, FormalGroupPoint)
Headline
inverse to a point of a formal group
Usage
-s
Inputs
s : FormalGroupPoint
Outputs
: FormalGroupPoint
Description
Example
ZZ[x,y]
f = FGL(series(x+y+x*y,10))
ZZ[u]
s = formalGroupPoint(f,series(u^2+u,5))
t = -s
s+t
///
doc ///
Key
(symbol *, ZZ, FormalGroupPoint)
Usage
n*s
Inputs
n : ZZ
s : FormalGroupPoint
Outputs
: FormalGroupPoint
Description
Example
ZZ[x,y]
f = FGL(series(x+y+x*y,10))
ZZ[u]
s = formalGroupPoint(f,series(u^2+u,5))
3*s
///
TEST ///
ZZ[x,y];
f = FGL(series(x+y+x*y,10));
ZZ[u];
s = formalGroupPoint(f,series(u^2+u,5));
t = formalGroupPoint(f,series(u^3,5));
assert(s+t===formalGroupPoint(f,series(u^5+u^4+u^3+u^2+u,5)));
assert(s-t===formalGroupPoint(f,series(-u^5-u^4-u^3+u^2+u,5)));
assert(-s===formalGroupPoint(f,series(-u^4+u^3-u,5)));
assert((-3)*s===formalGroupPoint(f,series(9*u^5-9*u^4+2*u^3+3*u^2-3*u,5)))
///
doc ///
Key
universalFGL
Headline
universal formal group law
///
doc ///
Key
(universalFGL,ZZ,String,String,String)
Headline
universal formal group law in the Lazard ring
Usage
universalFGL(n,s,t,u)
Inputs
n: ZZ
the degree of precision
s : String
the name (such as "a") to be used for the variables of the Lazard ring
t : String
the name (such as "x") of the first variable of the formal group law
u : String
the name (such as "y") of the second variable of the formal group law
Outputs
: FormalGroupLaw
Description
Text
The following returns the formal group law over the Lazard ring (seen as a polynomial ring in the {a_i}'s up to degree {\tt n}.
Example
universalFGL(3,"a","x","y")
universalFGL(4,"a","x","y")
Caveat
The decomposition of the Lazard as a polynomial ring in an infinite number of variables is not canonical, we have made a choice, here, which amounts to choosing, for every d at most n, of Bezout coefficients for the set of binomial coefficients (d,i), 1<i<d.
Variables with names equal to the strings (like x, y or a, here) should not have been assigned values (like 3) beforehand otherwise an error will occur.
///
TEST ///
assert(universalFGL(3,"a","x","y")==FGL(series(a_2 *x^2*y+a_2 *x*y^2+ a_1 *x*y +x+y,3)))
///
doc ///
Key
universalFGLQ
Headline
universal formal group law over rationals
///
doc ///
Key
(universalFGLQ,ZZ,String,String,String)
Headline
universal formal group law in the Lazard ring tensor Q
Usage
universalFGLQ(n,s,t,u)
Inputs
n : ZZ
the degree of precision
s : String
the name (such as "b") to be used for the variables of the Lazard ring
t : String
the name (such as "x") of the first variable of the formal group law
u : String
the name (such as "y") of the second variable of the formal group law
Outputs
: FormalGroupLaw
Description
Text
The following returns a formal group law over the Lazard ring tensor Q (seen as a polynomial ring in the classes of the projective spaces {b_i}'s, up to degree {\tt n}.
Example
universalFGLQ(3,"b","x","y")
universalFGLQ(4,"b","x","y")
Caveat
Variables with names equal to the strings (like x, y or b, here) should not have been assigned values (like 3) beforehand otherwise an error will occur.
///
TEST ///
assert(universalFGLQ(3,"b","x","y")==FGL(series((4*b_1^2 - 3*b_2 )*x^2*y + (4*b_1^2 - 3*b_2 )*x*y^2 - 2*b_1 *x*y + x + y, 3)))
///
--document {
-- Key => (functionName, argumentClass1, argumentClass2, ...),
-- Headline => "one line description", -- only if different functionName Headline
-- Usage => "usage",
-- Inputs => {
-- -- each input is a hypertext list
-- },
-- Outputs => {
-- -- each output is a hypertext list
-- },
-- Consequences => {
-- -- each effect is a hypertext list
-- },
-- "There can be explanatory prose here in the form of a hypertext list.",
-- EXAMPLE {
-- "m2code",
-- "m2code",
-- "m2code"
-- },
-- "There can be explanatory prose here in the form of a hypertext list.",
-- Caveat => {"warning"}
-- }
-- Tests associated to the package
-- TEST "..."
|