1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
newPackage("FunctionFieldDesingularization",
Version => "1.0",
Date => "September 13, 2021",
Authors => {{Name => "Douglas A. Leonard", Email => "leonada@auburn.edu"}},
Headline => "desingularization of function fields",
Keywords => {"Commutative Algebra"}
)
export {"negLexMatrix", "arcs"}
----------------------------------------
--exported matrix for input as local ring
----------------------------------------
negLexMatrix = method()
negLexMatrix ZZ := d->matrix(
for i to d list(
for j to d list(
if j==d-i then -1 else 0
)
)
);
------------------------------------------------------------------------
--Unexported subroutines for arcs---------------------------------------
------------------------------------------------------------------------
--basic list operations
------------------------------------------------------------------------
GE=(uuu,vvv)->min(for i to #uuu-1 list uuu#i-vvv#i)>=0;
------------------------------------------------------------------------
GT=(uuu,vvv)->min(for i to #uuu-1 list uuu#i-vvv#i)>0;
------------------------------------------------------------------------
GC=(L)->( f := for i to #L-1 list( if L#i!=0 then L#i else continue);
g := gcd(f);
L//g
);
------list A\ list B----------------------------------------------------
AnotB=(A,B)->(for i in A do(
for j in B do if i==j then A=delete(j,A)
);
A
);
-------list A intersect list B------------------------------------------
AcapB=(A,B)-> AnotB(A,AnotB(A,B));
-------elements of list A with zeroth entry negative--------------------
negA=(A)->for i in A list if i#0<0 then i else continue;
-------elements of list A with zeroth entry 0---------------------------
zerA=(A)->for i in A list if i#0==0 then i else continue;
-------cyclic shift of first m entries of elements of list A------------
cycshft=(A,m)->(for i to m-1 list A#(i+1))|{A#0}|
(for j to #A-m-2 list A#(m+j+1));
------------------------------------------------------------------------
------------------------------------------------------------------------
--orthogonal complement of integer list m of length n over N------------
------------------------------------------------------------------------
orth=(m,n)->(
matrix(
flatten(
for i to n list(
if m#i==0 then(
{for j to n list(
if j==i then 1 else 0
)}
)
else if m#i<0 then(
for k to n list(
if m#k>0 then(
for l to n list(
if l==i then m#k else
if l==k then -m#i else 0
)
)
else continue
)
)
else continue
)
)
)
);
------------------------------------------------------------------------
-------reducing b in N by elements of pos-------------------------------
--red=(b,pos)->(
-- i:=0;
-- bnew := b;
-- while i<#pos and bnew != list0 do(
-- if GE(bnew,pos#i)
-- and bnew != list0
-- then bnew = bnew-pos#i
-- else i=i+1
-- );
-- GC(bnew)
-- );
------------------------------------------------------------------------
weights=(M,I,J,N,d)->(
m:=N+d-2;
O:=for k2 to N+d-2 list 0;
ainit:=Ainit(M,I,J,N,d);
------------------------------------------------------------------------
if #(M#0)!=2 then(
neg := negA(ainit);
zer := zerA(ainit);
pos := AnotB(AnotB(ainit,neg),zer);
if #pos>0 then(
i:=0;
while i<N-2 do(
j:=0;
while j< #neg do(
k:=0;
while k < #pos do(
v:=GC(for l to m list neg#j#l+pos#k#l);
if v#i<0 then(
for i1 to #neg-1 do(
if neg#i1#i==v#i and GE(v,neg#i1) then(
vv:=for j1 to m list v#j1-neg#i1#j1;
if vv!=O then(
v=GC(vv);
)
else(
v=O;
);
);
);
);
--reduction
l1 := 0;
zp:=zer|pos;
while #zp>0 and l1<#zp do(
if GE(v,zp#l1) then(
vv := for k1 to m list v#k1-zp#l1#k1;
if vv!=O then v=GC(vv) else v=vv;
l1 = 0;
)
else(
l1 = l1+1;
);
);
--appending
if v#i<0 then neg=sort unique append(neg,v);
if v#i==0 and v!=O then zer=unique append(zer,v);
if v#i>0 then pos=unique append(pos,v);
k=k+1;
);
j=j+1;
);
i=i+1;
zp=sort unique(zer|pos);
if #zp>0 then(
neg=sort(for i2 to #zp-1 list if zp#i2#i<0 then zp#i2 else continue);
zer=sort(for j2 to #zp-1 list if zp#j2#i==0 then zp#j2 else continue);
pos=sort(for k2 to #zp-1 list if zp#k2#i>0 then zp#k2 else continue);
);
);
);
);
if #(M#0)==2 then ainit else zer|pos
);
------------------------------------------------------------------------
------------------------------------------------------------------------
printWeights=(R,b,IM)->(
L1 := {};
iM := flatten entries gens IM;
N := #iM;
MM := unique(for i to #iM-1 list
for j to numgens(R)-1 list
degree(R_j,iM#i));
M := for i to #MM-1 list
for j to #MM-1 list
for k to numgens(R)-1 list MM#j#k-MM#i#k;
for i to N-2 do(
for j from i+1 to N-1 do(
S := weights(M,i,j,N,numgens(R)-1);
if S != {} then(
L1 = append(L1,S);
);
);
);
L4 := {};
if L1 != {} then(
L2 := transpose matrix(flatten (L1));
L3 := unique(for i to numColumns(L2)-1 list L2_i);
L4 = for i to #L3-1 list if sum(entries L3#i)>1 then
flatten entries transpose matrix(L3#i) else continue;
);
L4
);
------------------------------------------------------------------------
--A Gr\"obner basis should be an ideal, not a matrix--------------------
GB=(I)-> ideal(flatten entries gens gb I);
------------------------------------------------------------------------
redneg=(f)->(
if #f==0 then(
f
)
else(
s:=unique flatten (
for i to #f-1 list(
g := factor(f#i);
for j to #g-1 list g#j#0
)
);
ss:=for i to #s-1 list(
for j to numgens(ring(f#0))-1 list degree((ring(f#0))_j,s#i)
);
for i to #ss-1 list(
if sum(ss#i)>0 then s#i else continue
)
)
);
------------------------------------------------------------------------
distinctFactors=(nlist)->(
n1 := for i to #nlist-1 list factor(nlist#i);
n2 := for i to #n1-1 list for j to #(n1#i)-1 list n1#i#j#0;
unique flatten n2
);
------------------------------------------------------------------------
saturateByList=(nlist,eideal)->(
e1 := eideal;
for i to #nlist-1 do (e1 = saturate(e1,ideal(nlist#i)););
e1
);
------------------------------------------------------------------------
------------------------------------------------------------------------
-- gblist appends an element v to a list, reduces the ideal generated by
-- the appended list and produces a list of gb elements for it
gblist:=(init,newelement)->
ideal flatten entries gens gb (init+newelement);
------------------------------------------------------------------------
redgE:=(g,E,P)->(
e := ideal(for i to numgens(E)-1 list (E_i)*P_0^0);
(g*P_0^0)%e
);
redfE:=(f,E,R)->(
e := ideal(for i to numgens(E)-1 list (E_i)*R_0^0);
(f*R_0^0)%e
);
------------------------------------------------------------------------
--initialization function for the i,j weight computation----------------
--run this for 0<=i<j<=N------------------------------------------------
Ainit=(M,i,j,N,d)->(
Sinit := (orth(M#i#j,d)*transpose matrix(M#i))
_(AnotB(for k to N-1 list k,{i,j}));
Tinit := matrix entries(orth(M#i#j,d));
sort(apply(entries(Sinit|Tinit),k->GC(k)))
);
------------------------------------------------------------------------
------------------------------------------------------------------------
possibleInit=(b,initialNEQ,initialEQ)->(
-- b an element of R,
-- initialNEQ a list of elements of P,
-- initialEQ an ideal of P
R := ring(b);
P := coefficientRing(R);
F := coefficientRing(P);
d := numgens(R)-1;
localMap := map(R,R,matrix{for i to d list P_i+R_i});
constantTerm := map(R,R,matrix{ for i to d list promote(P_i,R)});
------------------------------------------------------------------------
-- local affine polynomial, since the constant term is assumed to be zero
Bbar := localMap(b)-constantTerm(b);
-- Vbar, the list of monomials supporting B
Vbar := flatten entries (coefficients(Bbar))#0;
-- Cbar, the corresponding list of coefficients
Cbar := flatten entries transpose (coefficients(Bbar))#1;
-- genericInit, the minimal monomials with constant coefficients in Bbar
genericInit := flatten entries gens gb ideal(
for i to #Cbar-1 list(
if (degree(Cbar#i))#1==0 then Vbar#i else continue
)
);
-- standard is the sum of standard terms
standard := Bbar%ideal genericInit;
-- V is the list of standard monomials of B
V := flatten entries (coefficients(standard))#0;
-- C is the corresponding list of coefficients
C := flatten entries transpose (coefficients(standard))#1;
------------------------------------------------------------------------
------------------------------------------------------------------------
-- Start with EQ the ideal generated by the constant term
NEQ := {initialNEQ};--list of lists of P elements
EQ := {initialEQ};--list of P ideals
INIT := {ideal(genericInit)};--list of R ideals
TAIL := {standard};--list of R elements
------------------------------------------------------------------------
------------------------------------------------------------------------
k := 0;
while k < #NEQ do(
tail := TAIL#k;
eqk1 := GB(EQ#k);
if tail != 0 then(
monid := ideal(leadMonomial(tail));
newcoeff := redgE(lift(leadCoefficient(tail),P),eqk1,P);
neqk1 := flatten({NEQ#k}|{newcoeff});
neqk1 = flatten(for jj to #neqk1-1 list distinctFactors({neqk1#jj}));
if neqk1 != {} then neqk1 = unique(neqk1);
if all(neqk1,i->i!=0) then(
NEQ = append(NEQ,neqk1);
EQ = append(EQ,eqk1);
INIT = append(INIT,gblist(INIT#k,monid));
TAIL = append(TAIL,redfE(redfE(tail,monid,R),eqk1,R));
);
dist := product(distinctFactors({newcoeff}));
eqka := GB(eqk1+ideal(dist));
genlista := flatten entries gens eqka;
eqkb := ideal(flatten(for jj to #genlista-1 list product(distinctFactors({genlista#jj}))));
eqkc := GB(eqkb);
if eqkc != ideal(promote(1,ring(eqkc))) then(
genlistc := flatten entries gens eqkc;
eqkd := ideal(flatten(for jj to #genlistc-1 list product(distinctFactors({genlistc#jj}))));
eqk2 := GB(eqkd);
neqk2 := unique(for i to #(NEQ#k)-1 list ((NEQ#k)#i)%eqk2);
neqk2 = distinctFactors(neqk2);
if all(neqk2,i->i!=0) then(
EQ = append(EQ,eqk2);
NEQ = append(NEQ,neqk2);
INIT = append(INIT,INIT#k);
TAIL = append(TAIL,(tail-leadTerm(tail))%promote(eqk2,R));
);
);
);
------------------------------------------------------------------------
k=k+1;
);
------------------------------------------------------------------------
-- returning sublists NEQ, EQ, INIT
newinits:=(
NEQ=for i to #NEQ-1 list
if #(NEQ#i)>0 then
distinctFactors(NEQ#i)
else NEQ#i;
for i to #NEQ-1 list (
if TAIL#i==0
and unique(NEQ#i) != {0}
and promote(EQ#i,P)!=ideal(promote(1,P))
then (i,unique(NEQ#i),GB(EQ#i),(INIT#i))
else continue)
);
newinits
);
-----------------------------------------------------------------------
----printing results routine ------------------------------------------
--with input the output of possibleInit(F,b,d)-------------------------
printInit=(A,d)->(
NEQ := {};
EQ := {};
INIT := {};
for i to #A-1 do(
B1 := A#i#1;
B2 := for j to #(B1)-1 list
if degree(B1#j)!= (for k to d list 0)
then B1#j
else continue;
C1 := A#i#2;
if numgens(C1)>0 then(
for j to #B2-1 do C1=saturate(C1,ideal(B2#j));
C1 = GB(C1);
r := ring(C1);
if C1 != ideal((r_0)^0) then(
NEQ = append(NEQ,B2);
EQ = append(EQ,C1);
INIT = append(INIT,A#i#3);
);
);
);
{NEQ,EQ,INIT}
);
-------------------------------------------------------------------------
-------------------------------------------------------------------------
--turns a translation and a minWeight into
-- a unimodularTransformation map on the series ring R with coeffs from P
-------------------------------------------------------------------------
unimodular=(w,P,R,E)->(
d := numgens(R)-1;
M := id_(ZZ^(d+1));
M = for i to d list M_i;
i := 0;
while w#i==0 and i<d do (i=i+1;);
while sum(w) >1 do(
for j to d do( if w#j!=0 and w#j<w#i then i=j);
q := for k to d list w#k//w#i;
M = (for l to d list( if l!=i then M_l else sum(q,M,(i,m)->i*m)));
w = for n to d list if n!=i then (w#n)%(w#i) else w#i;
);
M = rsort(matrix(M));
map(R,R, matrix{for i1 to d list
promote((P_i1)%E,R)+product(for j1 to d list R_(d-j1)^((M_j1)_i1))
}
)
);
--------------------------------------------------------------------------
--promote all the entries of m to R and make it into a matrix
--in case all the entries of m are in the coeff ring P
-- and M2 doesn't know to promote then to R in defining a map from R to R
-- with matrix m with entries all from P
pmatrix = (R,m)-> matrix{for i to #m-1 list promote(m#i,R)};
--------------------------------------------------------------------------
--constant=(R)->map(R,R,matrix{for i to d list 0});
--------------------------------------------------------------------------
rho = (phim,E,b,P,R)->(
d :=numgens(R)-1;
fm := (phim(b))%promote(E,R);
con := map(R,R,matrix{for i to d list 0});
cm := fm-con(fm);
tm := terms(P,cm);
dgm := for i to d list
for j to #tm-1 list degree(R_i,tm#j);
mdegm := for i to d list min(dgm#i);
for i to d do cm=cm//(R_i^(mdegm#i));
cm
);
---------------------------------------------------------------------
--Main exported method
-----------------------------------------------------------------------
arcs = method()
arcs(RingElement,Ideal,List,File):=(polyb,eq,ineq,fout)->(
-----------------------------------------------------------------------
--Initialization
-----------------------------------------------------------------------
R := ring(polyb);
P := coefficientRing(R);
d := numgens(R)-1;
prevlist := {-1};
levellist := {0};
Plist := {P};
a := getSymbol "a";
for i to 12 do Plist=append(Plist,Plist#i[a_{i+1,0}..a_{i+1,d}]);
a = value a;
Rlist := {R};
x := getSymbol "x";
for i to 12 do Rlist=append(Rlist,Plist#(i+1)[x_{i+1,0}..x_{i+1,d},
Weights=> entries negLexMatrix(d),Global=>false]);
x = value x;
blist := {polyb};
clist := {polyb%promote(eq,R)};
nlist := {ineq};
elist := {eq};
philist := {map(R,R,matrix{gens(R)})};
Philist := {map(R,R,matrix{gens(R)})};
leaflist := {"root"};
currentnode := 0;
lastnode := 0;
globalpars := 0;
nodenumber := 0;
i0 := 1;
nextlevel := 1;
fout << "===================================" << endl;
-----------------------------------------------------------------------
while currentnode<=lastnode and globalpars==0 do(
nextlevel = 1+levellist#currentnode;
polyb = blist#currentnode;
ineq = nlist#currentnode;
eq = elist#currentnode;
R = ring(polyb);
P = coefficientRing(R);
-----------------------------------------------------------------------
--computation of INITs-------------------------------------------------
-----------------------------------------------------------------------
PI := possibleInit(polyb,ineq,eq);
Parts := printInit(PI,d);
NEQ1 := Parts#0;
EQ1 := Parts#1;
INIT1 := Parts#2;
-----------------------------------------------------------------------
--computation of weights and unimodular transformations for each case
-----------------------------------------------------------------------
--initialize neq1,eq1,ne1,WT,wt,test,
--taustart,phistar,Pstar,Rstar,bnew,cnew, GBB,linear
for Partnumber to #EQ1-1 do(
if globalpars == 0 then(
neq1 := redneg(NEQ1#Partnumber);
eq1 := EQ1#Partnumber;
ne1 := distinctFactors(for j to #neq1-1 list (neq1#j)%eq1);
ne1 = for i to #ne1-1 list if max(for j to d list degree(R_j,ne1#i))>0
then ne1#i
else continue;
if eq1 != promote(ideal(1),ring(eq1)) then(
WT := printWeights(R,polyb,INIT1#Partnumber);
for i1 to #WT-1 do(
if globalpars==0 then(
wt := for j from #(WT#i1)-d-1 to #(WT#i1)-1 list WT#i1#j;
test := true;
for j to d do if ((Plist#(levellist#currentnode)_j)%eq1)==0
and wt#d==0 then test=false
else continue;
if sum(wt) !=1 and test==true
then(
phi := unimodular(wt,P,R,eq1);
fout << "-------------------" << endl;
fout << "currentnode=" << currentnode <<
", lastnode=" << lastnode <<
", lastvertex=" << i0 << endl;
fout << "-------------------" << endl;
i0 = i0+1;
taustar := map(Plist#(nextlevel),R,
matrix{gens Plist#(nextlevel)});
phistar := map(Rlist#(1+levellist#currentnode),R,
matrix{gens Rlist#(nextlevel)});
Pstar := Plist#(nextlevel);
Rstar := Rlist#(nextlevel);
bnew := (rho(phistar*phi,eq1,polyb,Pstar,Rstar));
if degree(Rstar_d,bnew)<2 then globalpars=1;
cnew := bnew%ideal(Rstar_d);
--------print to file--------------------------------
fout << endl << "phi=" << endl;
for i to d do fout << toString((phistar*phi)(R_i)) << endl;
fout << endl;
fout << endl << "Phi=" << endl;
for i to d do
fout << toString((phistar*phi*Philist#currentnode)((Rlist#0)_i))
<< endl;
fout << endl;
fout << "Part#=" << Partnumber << endl;
fout << endl << "neq=";
fout << toString(for i to #ne1-1 list
promote(ne1#i,Plist#(nextlevel))) << endl;
fout << endl << "eq=";
GBB := GB (ideal(Pstar_d)
+ideal((map(Pstar,Rstar,matrix{gens Pstar}))(bnew))
+promote(eq1,Pstar)
);
fout << toString(GBB) << endl << endl;
fout << "b=" << toString(bnew) << endl << endl;
mindeg:=min(for j to d list degree(promote(x_{nextlevel,j},ring(bnew)),bnew));
if mindeg==0 then print("global parameter found");
if mindeg==1 then print("global parametrization found");
---------------------------------------------------------
linear := "not a leaf";
dc := for i to d-1 list degree(R_i,cnew);
if max(dc)>0 then(
dcplus := for i to d-1 list if dc_i != 0 then dc_i
else continue;
if min(dcplus)==1 then(
linear = "leaf";
);
fout << linear << endl;
if linear != "leaf" then(
nodenumber = 1+nodenumber;
fout << "nodenumber=" << nodenumber << endl;
lastnode = 1+lastnode;
--updating node lists
prevlist = append(prevlist,currentnode);
levellist = append(levellist,nextlevel);
blist = append(blist, bnew);
clist = append(clist, cnew);
nlist = append(nlist, (for i to #ne1-1 list
promote(ne1#i,Pstar)));
elist = append(elist,GBB);
philist = append(philist, phistar*phi);
leaflist = append(leaflist,linear);
Philist = append(Philist, phistar*phi*Philist#(currentnode));
);
);
);
);
);
);
);
);
currentnode = 1+currentnode;
-- if currentnode <= lastnode then print(currentnode,lastnode);
);
{prevlist,levellist,clist,blist,nlist,elist,philist,leaflist,Philist}
);
-----------------------------------------------
-- documentation and tests
-----------------------------------------------
beginDocumentation()
document {
Key => {
FunctionFieldDesingularization
},
Headline => "Strong desingularization of a function field
in arbitrary characteristic and dimension",
"Strong desingularization of a function field
in arbitrary characteristic and dimension,
using the algorithm in the paper
Desingularization of Function Fields, Leonard, arXiv1912.08663, December, 2019.",
}
document {
Key => {
negLexMatrix
},
Headline => "a local (series) monomial ordering matrix for the input of arcs",
Usage => "negLexMatrix(d)",
Inputs => {
"d" => "the dimension, a positive integer"
},
Outputs => {
"negLexMatrix" => Matrix => "negative lex d\times d matrix"
},
EXAMPLE lines ///
M = negLexMatrix 10;
///,
PARA {
"The rings should be poly rings over poly rings with local monomial orderings to emphasize series"
}
}
document {
Key => {
arcs
},
Headline => "prints node labels for the desingularization tree",
Usage => "(prevlist,levellist,clist,blist,nlist,elist,philist,leaflist,Philist) = arcs(b0,n0e0,fout)",
Inputs => {
"polyb" => "irreducible polynomial for the domain A_k",
"ineq" => "list of inequality constraints for the part",
"eq" => "ideal of equality constraints for the part",
"fout" => "output file to which results are written"
},
Outputs => {
"prevlist" => List => "previous node in tree list",
"levellist" => List => "level determines the rings being used",
"clist" => List => "irreducible mod x_d",
"blist" => List => "irreducible",
"nlist" => List => "inequality constraints",
"elist" => List => "ideal of equality constraints",
"philist" => List => "birational change of variables maps between node and previous node",
"leaflist" => List => "leaf of tree or not",
"Philist" => List => "birational change of variables maps between node and root node"
},
EXAMPLE lines ///
fout = openOut "curve_example0";
F = QQ;
d = 1;
P0 = F[a_{0,0}..a_{0,d}];
R0 = P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 = x_{0,0}^3+x_{0,0}*x_{0,1}+x_{0,1}^5;
n0 = {};
e0 = ideal(a_{0,0}^3+a_{0,0}*a_{0,1}+a_{0,1}^5);
tree = arcs(b0,e0,n0,fout);
b1 = x_{0,0}^3+x_{0,0}^2*x_{0,1}^4+x_{0,1}^5;
n1 = {};
e1 = ideal(a_{0,0},a_{0,1});
tree = arcs(b1,e1,n1,fout);
fout << close;
///,
PARA {
"Each node is described by an irreducible polynomial bnew,
cnew its reduction mod x_d, a list of inequality constraints,
an ideal of equality constraints, a birational change-of-variables
from its previous node, and one from the root as well.
See the test examples for syntax."
}
}
TEST ///
fout = openOut "/dev/null";
F = QQ;
d = 1;
P0 = F[a_{0,0}..a_{0,d}];
R0 = P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 = x_{0,0}^3+x_{0,0}*x_{0,1}+x_{0,1}^5;
n0 = {};
e0 = ideal(a_{0,0}^3+a_{0,0}*a_{0,1}+a_{0,1}^5);
tree = arcs(b0,e0,n0,fout);
b1 = x_{0,0}^3+x_{0,0}^2*x_{0,1}^4+x_{0,1}^5;
n1 = {};
e1 = ideal(a_{0,0},a_{0,1});
tree = arcs(b1,e1,n1,fout);
fout << close;
-- assert(globalpars==0);
///
TEST ///
fout := openOut "/dev/null"
F := ZZ/2
d := 1
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^17+
x_{0,0}^7*x_{0,1}^6+
x_{0,1}^25;
n0 := {};
e0 := ideal(a_{0,0}^17+
a_{0,0}^7*a_{0,1}^6+
a_{0,1}^25);
time tree1 := arcs(b0,e0,n0,fout);
b1 := x_{0,0}^17+
x_{0,0}^10*x_{0,1}^19+
x_{0,1}^25;
n1 := {};
e1 := ideal(a_{0,0},
a_{0,1});
time tree2 := arcs(b1,e1,n1,fout);
fout << close
-- assert(globalpars==0);
///
TEST ///
fout := openOut "/dev/null";
F := QQ
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^3+
(x_{0,1}^2-x_{0,2}^6)^2+
x_{0,2}^21;
n0 := {};
e0 := ideal((a_{0,0}^3+
(a_{0,1}^2-a_{0,2}^6)^2+
a_{0,2}^21));
time tree := arcs(b0,e0,n0,fout);
fout << close
assert(#tree#0==5)
///
TEST ///
fout := openOut "/dev/null";
F := QQ
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^3+
(x_{0,1}^2-x_{0,2}^3)^2+
x_{0,2}^8;
n0 := {};
e0 := ideal((a_{0,0}^3+
(a_{0,1}^2-a_{0,2}^3)^2+
a_{0,2}^8));
time tree := arcs(b0,e0,n0,fout);
fout << close
assert(#tree#0==4)
///
TEST ///
fout := openOut "/dev/null"
F := QQ
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^4+
x_{0,0}^2*x_{0,1}*x_{0,2}^9+
x_{0,0}*x_{0,1}^9*x_{0,2}+
x_{0,1}^5*x_{0,2}^5;
n0 := {};
e0 := ideal(a_{0,0}^4+
a_{0,0}^2*a_{0,1}*a_{0,2}^9+
a_{0,0}*a_{0,1}^9*a_{0,2}+
a_{0,1}^5*a_{0,2}^5);
time tree := arcs(b0,e0,n0,fout);
fout << close
assert(#tree#0==8)
///
TEST ///
fout := openOut "/dev/null"
F := ZZ/2
d := 3
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^2+
x_{0,1}^3*x_{0,2}+
x_{0,1}*x_{0,3}^3+
x_{0,3}*x_{0,2}^7;
n0 := {};
e0 := ideal(a_{0,0}^2+
a_{0,1}^3*a_{0,2}+
a_{0,1}*a_{0,3}^3+
a_{0,3}*a_{0,2}^7);
time tree := arcs(b0,e0,n0,fout);
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
B0 := x_{0, 1}^3+
x_{0, 0}^2*x_{0, 2}+
x_{0, 1}*x_{0, 2}+
x_{0, 2}^2;
N0 := {};
E0 := ideal(a_{0, 1}^3+
a_{0, 0}^2*a_{0, 2}+
a_{0, 1}*a_{0, 2}+
a_{0, 2}^2);
time Tree := arcs(B0,E0,N0,fout);
fout << close
assert(#tree#0==2)
///
TEST ///
fout := openOut "/dev/null"
F := ZZ/2
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}^2+
x_{0,1}^4*x_{0,2}+
x_{0,1}^2*x_{0,2}^4+
x_{0,2}^7;
n0 := {};
e0 := ideal(a_{0,0}^2+
a_{0,1}^4*a_{0,2}+
a_{0,1}^2*a_{0,2}^4+
a_{0,2}^7);
time tree := arcs(b0,e0,n0,fout);
d := 1
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
B0 := x_{0, 0}^4+
x_{0, 1}+
x_{0, 0}^2*x_{0, 1}+
x_{0, 1}^2;
N0 := {};
E0 := ideal(a_{0, 0}^4+
a_{0, 1}+
a_{0, 0}^2*a_{0, 1}+
a_{0, 1}^2);
time Tree := arcs(B0,E0,N0,fout);
fout << close
assert(#tree#0==2)
///
TEST ///
fout := openOut "/dev/null"
F := ZZ/2
d := 2
P0 := F[a_{0,0}..a_{0,d}];
R0 := P0[x_{0,0}..x_{0,d},
Weights=> entries negLexMatrix(d),Global=>false];
b0 := x_{0,0}+
x_{0,1}^2+
x_{0,2}^3+
x_{0,0}^2*x_{0,1}*x_{0,2};
n0 := {};
e0 := ideal(a_{0,0}+
a_{0,1}^2+
a_{0,2}^3+
a_{0,0}^2*a_{0,1}*a_{0,2});
time tree := arcs(b0,e0,n0,fout);
fout << close
assert(#tree#0==1)
///
end
|