1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
|
-*
Copyright 2010 Amelia Taylor and Augustine O'Keefe.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
Copyright 2014: Jack Burkart, David Cook II, Caroline Jansen
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2
of the License, or any later version.
*-
------------------------------------------
------------------------------------------
-- To Do List
------------------------------------------
------------------------------------------
-- Add more documentation
-- Add tests
------------------------------------------
------------------------------------------
-- Header
------------------------------------------
------------------------------------------
newPackage (
"Graphs",
Version => "0.3.4",
Date => "May 15, 2021",
Authors => {
{Name => "Jack Burkart", Email => "jburkar1@nd.edu"},
{Name => "David Cook II", Email => "dcook.math@gmail.com", HomePage => "http://ux1.eiu.edu/~dwcook/"},
{Name => "Caroline Jansen", Email => "cjansen@alumni.nd.edu"},
{Name => "Amelia Taylor", Email => "originalbrickhouse@gmail.com"},
{Name => "Augustine O'Keefe", Email => "aokeefe@tulane.edu"}
},
Headline => "graphs and directed graphs (digraphs)",
Keywords => {"Graph Theory"},
Configuration => {
"DotBinary" => "dot"
},
PackageImports => { "PrimaryDecomposition" },
PackageExports => {
"SimplicialComplexes"
},
DebuggingMode => false
)
-- Load configurations
graphs'DotBinary = if instance((options Graphs).Configuration#"DotBinary", String) then (options Graphs).Configuration#"DotBinary" else "dot";
-- Exports
export {
--
-- Data type & constructor
"Digraph",
"Graph",
"digraph",
"graph",
"EntryMode",
"Singletons",
--
-- Basic data
"adjacencyMatrix",
"degreeMatrix",
"degreeSequence",
"edges",
"incidenceMatrix",
"laplacianMatrix",
"simpleGraph",
"vertexSet",
--"vertices",
--
-- Display Methods
"displayGraph",
"showTikZ",
"writeDotFile",
--
-- Derivative graphs
"barycenter",
"complementGraph",
"digraphTranspose",
"lineGraph",
"underlyingGraph",
--
-- Enumerators
"barbellGraph",
"circularLadder",
"cocktailParty",
"completeGraph",
"completeMultipartiteGraph",
"crownGraph",
"cycleGraph",
"doubleStar",
"friendshipGraph",
"generalizedPetersenGraph",
"graphLibrary",
"kneserGraph",
"ladderGraph",
"lollipopGraph",
"monomialGraph",
"pathGraph",
"prismGraph",
"rattleGraph",
"starGraph",
"thresholdGraph",
"wheelGraph",
"windmillGraph",
--
-- Cut properties
"edgeConnectivity",
"edgeCuts",
"minimalVertexCuts",
"vertexConnectivity",
"vertexCuts",
--
-- Properties
"breadthFirstSearch",
"discoveryTime",
"finishingTime",
"BFS",
"center",
"children",
"chromaticNumber",
"cliqueComplex",
"cliqueNumber",
"closedNeighborhood",
"clusteringCoefficient",
"coverIdeal",
"criticalEdges",
"degeneracy",
"degreeCentrality",
"degreeIn",
"degreeOut",
"density",
"depthFirstSearch",
"DFS",
"descendants",
"descendents",
"distance",
"distanceMatrix",
"eccentricity",
"edgeIdeal",
"expansion",
"findPaths",
"floydWarshall",
"forefathers",
"foreFathers",
"girth",
"independenceComplex",
"independenceNumber",
"leaves",
"lowestCommonAncestors",
"minimalDegree",
"neighbors",
"nondescendants",
"nondescendents",
"nonneighbors",
"numberOfComponents",
"numberOfTriangles",
"parents",
"radius",
"reachable",
"reverseBreadthFirstSearch",
"sinks",
"sources",
"spectrum",
"vertexCoverNumber",
"vertexCovers",
--
-- Boolean properties
"hasEulerianTrail",
"hasOddHole",
"isBipartite",
"isCM",
"isChordal",
"isConnected",
"isCyclic",
"isEulerian",
"isForest",
"isLeaf",
"isPerfect",
"isReachable",
"isRegular",
"isRigid",
"isSimple",
"isSink",
"isSource",
"isStronglyConnected",
"isTree",
"isWeaklyConnected",
--
-- Graph operations
"cartesianProduct",
"disjointUnion",
"graphComposition",
"graphPower",
"lexicographicProduct",
"strongProduct",
"tensorProduct",
--
-- Graph manipulations
"addEdge",
"addEdges'",
"addVertex",
"addVertices",
"bipartiteColoring",
"deleteEdges",
"deleteVertex",
"deleteVertices",
"indexLabelGraph",
"inducedSubgraph",
"reindexBy",
"removeNodes",
"spanningForest",
"vertexMultiplication",
-- "LabeledGraph",
--"labeledGraph",
"topologicalSort",
"topSort",
"SortedDigraph",
"newDigraph"
}
------------------------------------------
------------------------------------------
-- Methods
------------------------------------------
------------------------------------------
------------------------------------------
-- Non-exported functions
------------------------------------------
runcmd := cmd -> (
stderr << "-- running: " << cmd << endl;
r := run cmd;
if r != 0 then error("-- command failed, error return code ", r);
)
------------------------------------------
-- Data type & constructor
------------------------------------------
Digraph = new Type of HashTable
Graph = new Type of Digraph
Digraph.synonym = "digraph"
Graph.synonym = "graph"
digraph = method(Options => {symbol Singletons => null, symbol EntryMode => "auto"})
digraph List := Digraph => opts -> L -> (
mode := if #L == 0 or opts.EntryMode == "edges" then "e"
else if opts.EntryMode == "neighbors" then "n"
else if opts.EntryMode == "auto" then (if all(#L, i -> instance(L_i_1, List)) then "n" else "e")
else error "EntryMode must be 'auto', 'edges', or 'neighbors'.";
if mode == "e" then digraph(unique flatten (toList \ L), L, Singletons => opts.Singletons, EntryMode => "edges")
else digraph(hashTable apply(L, x -> x_0 => toList(x_1)), Singletons => opts.Singletons, EntryMode => "neighbors")
)
digraph HashTable := Digraph => opts -> g -> digraph(unique join(keys g, flatten (toList \ values g)), flatten apply(keys g, v -> apply(toList g#v, u -> {v, u})), Singletons => opts.Singletons, EntryMode => "edges")
digraph (List, List) := Digraph => opts -> (V, L) -> (
mode := if #L == 0 or opts.EntryMode == "edges" then "e"
else if opts.EntryMode == "neighbors" then "n"
else if opts.EntryMode == "auto" then (if all(#L, i -> instance(L_i_1, List)) then "n" else "e")
else error "EntryMode must be 'auto', 'edges', or 'neighbors'.";
E := if mode == "e" then toList \ L else flatten apply(L, N -> apply(N_1, v -> {N_0, v}));
if not isSubset(flatten E, V) then error "There are edges with vertices outside the vertex set.";
V = unique join(V, if instance(opts.Singletons, List) then opts.Singletons else {});
A := if #V == 0 then map(ZZ^0, ZZ^0, 0) else matrix apply(#V, i -> apply(#V, j -> if member({V#i, V#j}, E) then 1 else 0));
digraph(V, A)
)
digraph (List, Matrix) := Digraph => opts -> (V, A) -> (
if ( sort unique join( {0,1}, flatten entries A) != {0,1} ) then error "The given matrix is not an adjacency matrix.";
if #V != numrows A or numrows A != numcols A then error "The given vertex set and matrix are incompatible.";
V' := if instance(opts.Singletons, List) then opts.Singletons - set V else {};
A' := matrix {{A, map(ZZ^(#V), ZZ^(#V'), 0)}, {map(ZZ^(#V'), ZZ^(#V), 0), 0}};
new Digraph from {
symbol vertexSet => join(V, V'),
symbol adjacencyMatrix => A',
symbol cache => new CacheTable from {}}
)
digraph Matrix := Digraph => opts -> A -> digraph(toList(0..<numRows A), A, opts)
graph = method(Options => {symbol Singletons => null, symbol EntryMode => "auto"})
graph (List, List) := Graph => opts -> (V, L) -> (
mode := if #L == 0 or opts.EntryMode == "edges" then "e"
else if opts.EntryMode == "neighbors" then "n"
else if opts.EntryMode == "auto" then (if all(#L, i -> instance(L_i_1, List)) then "n" else "e")
else error "EntryMode must be 'auto', 'edges', or 'neighbors'.";
E := if mode == "e" then toList \ L else flatten apply(L, N -> apply(N_1, v -> {N_0, v}));
if not isSubset(flatten E, V) then error "There are edges with vertices outside the vertex set.";
V = unique join(V, if instance(opts.Singletons, List) then opts.Singletons else {});
A := if #V == 0 then map(ZZ^0, ZZ^0, 0) else matrix apply(#V, i -> apply(#V, j -> if member({V#i, V#j}, E) or member({V#j, V#i}, E) then 1 else 0));
graph(V, A)
)
graph List := Graph => opts -> L -> (
mode := if #L == 0 or opts.EntryMode == "edges" then "e"
else if opts.EntryMode == "neighbors" then "n"
else if opts.EntryMode == "auto" then (if all(#L, i -> instance(L_i_1, List)) then "n" else "e")
else error "EntryMode must be 'auto', 'edges', or 'neighbors'.";
if mode == "e" then graph(unique flatten (toList \ L), L, Singletons => opts.Singletons, EntryMode => "edges")
else graph(hashTable apply(L, x -> x_0 => toList(x_1)), Singletons => opts.Singletons, EntryMode => "neighbors")
)
graph HashTable := Graph => opts -> g -> graph(unique join(keys g, flatten (toList \ values g)), flatten apply(keys g, v -> apply(toList g#v, u -> {v, u})), Singletons => opts.Singletons, EntryMode => "edges")
graph (List, Matrix) := Graph => opts -> (V,A) -> (
if ( sort unique join( {0,1}, flatten entries A) != {0,1} ) then error "The given matrix is not an adjacency matrix.";
if #V != numrows A or numrows A != numcols A then error "The given vertex set and matrix are incompatible.";
V' := if instance(opts.Singletons, List) then opts.Singletons - set V else {};
A' := matrix {{A, map(ZZ^(#V), ZZ^(#V'), 0)}, {map(ZZ^(#V'), ZZ^(#V), 0), 0}};
new Graph from {
symbol vertexSet => join(V, V'),
symbol adjacencyMatrix => A',
symbol cache => new CacheTable from {}}
)
graph Matrix := Graph => opts -> A -> graph(toList(0..<numrows A), A)
graph Digraph := HashTable => opts -> D -> (
V := vertexSet D;
A := adjacencyMatrix D;
hashTable apply(#V, i -> V_i => V_(positions(first entries A^{i}, j -> j != 0)))
)
Digraph _ ZZ := Thing => (D, i) -> D.vertexSet#i
Digraph _ List := List => (D, L) -> D.vertexSet_L
installMethod(symbol _*, Digraph, D -> D.vertexSet)
net Digraph := Net => G -> (
V := vertexSet G;
A := adjacencyMatrix G;
H := hashTable apply(#V, i -> V_i => V_(positions(first entries A^{i}, j -> j != 0)));
horizontalJoin flatten (
net class G,
"{",
stack (horizontalJoin \ sort apply(pairs H, (k,v) -> (net k, " => ", net v))),
"}"
))
toString Digraph := String => D -> (
concatenate( -- issue #1473 in github
-- horizontalJoin(
toLower toString class D,
" (",
toString vertexSet D,
", ",
toString (toList \ edges D),
")"
)
)
------------------------------------------
-- Basic data
------------------------------------------
adjacencyMatrix = method()
adjacencyMatrix Digraph := Matrix => D -> D.adjacencyMatrix
degree (Graph,Thing) := ZZ => (G,v) -> #neighbors(G,v)
degree (Digraph,Thing) := ZZ => (D,v) -> #(children(D,v) + parents(D,v))
degreeMatrix = method()
degreeMatrix Digraph := Matrix => G -> diagonalMatrix apply(entries transpose adjacencyMatrix G, a -> #positions(a, j -> j != 0))
degreeSequence = method()
degreeSequence Graph := List => G -> rsort \\ sum \ entries adjacencyMatrix G
edges = method()
edges Digraph := List => D -> (
V := vertexSet D;
A := adjacencyMatrix D;
flatten for i from 0 to #V - 1 list for j from 0 to #V - 1 list if A_(i,j) == 1 then {V#i, V#j} else continue
)
edges Graph := List => G -> (
V := vertexSet G;
A := adjacencyMatrix G;
flatten for i from 0 to #V - 1 list for j from i+1 to #V - 1 list if A_(i,j) == 1 or A_(j,i) == 1 then set {V#i, V#j} else continue
)
incidenceMatrix = method()
incidenceMatrix Graph := Matrix => G -> matrix apply(vertexSet G, v -> apply(edges G, e -> if member(v, e) then 1 else 0))
laplacianMatrix = method()
laplacianMatrix Graph := Matrix => G -> degreeMatrix G - adjacencyMatrix G
simpleGraph = underlyingGraph
vertexSet = method()
vertexSet Digraph := List => D -> D#(symbol vertexSet)
vertices Digraph := List => D -> D#(symbol vertexSet)
-------------------------------------------
-- Display Methods
-------------------------------------------
displayGraph = method()
displayGraph (String, String, Digraph) := (dotfilename, jpgfilename, G) -> (
writeDotFile(dotfilename, G);
runcmd(graphs'DotBinary | " -Tjpg " | dotfilename | " -o " | jpgfilename);
show URL("file://" | toAbsolutePath jpgfilename);
)
displayGraph (String, Digraph) := (dotfilename, G) -> (
jpgfilename := temporaryFileName() | ".jpg";
displayGraph(dotfilename, jpgfilename, G);
)
displayGraph Digraph := G -> (
dotfilename := temporaryFileName() | ".dot";
displayGraph(dotfilename, G);
)
showTikZ = method(Options => {Options=>"-t math --prog=dot -f tikz --figonly"})
showTikZ Digraph := opt -> G -> (
dotfilename := temporaryFileName() | ".dot";
writeDotFile(dotfilename, G);
output := temporaryFileName();
runcmd("dot2tex "|opt#Options|" "|dotfilename|" >> "|output);
get output
)
html Digraph := G -> if G.cache#?"svg" then G.cache#"svg" else (
dotfilename := temporaryFileName() | ".dot";
writeDotFile(dotfilename, G);
svgfilename := temporaryFileName() | ".svg";
runcmd(graphs'DotBinary | " -Tsvg " | dotfilename | " -o " | svgfilename);
G.cache#"svg" = get svgfilename
)
writeDotFile = method()
writeDotFile (String, Graph) := (filename, G) ->
writeDotFileHelper(filename, G, "graph", "--")
writeDotFile (String, Digraph) := (filename, G) ->
writeDotFileHelper(filename, G, "digraph", "->")
writeDotFileHelper = (filename, G, type, op) -> (
fil := openOut filename;
fil << type << " G {" << endl;
V := vertexSet G;
I := hashTable apply(#V, i -> V_i => i);
scan(V, v -> fil << "\t" << I#v << " [label=\"" << toString v << "\"];" << endl);
E := toList \ edges G;
scan(E, e -> fil << "\t" << I#(e_0) << " " << op << " " << I#(e_1) << ";"
<< endl);
fil << "}" << endl << close;
)
------------------------------------------
-- Derivative graphs
------------------------------------------
barycenter = method()
barycenter Graph := Graph => G -> inducedSubgraph(G, center G)
complementGraph = method()
complementGraph Graph := Graph => G -> graph(vertexSet G, subsets(vertexSet G, 2) - set(join(toList \ edges G, reverse@@toList \ edges G)), EntryMode => "edges")
digraphTranspose = method()
digraphTranspose Digraph := Digraph => D -> digraph(vertexSet D, reverse \ edges D, EntryMode => "edges")
lineGraph = method()
lineGraph Graph := Graph => (G) -> (
E:=edges(G);
if #E==0 then return graph({});
EE:={};
for e in E do (
for f in E do (
if not e===f then (
if #(e*f)>0 then (
EE=EE|{{e,f}};
);
);
);
);
--non-singletons
nS:=unique flatten EE;
--singletons
S:=for e in E list if member(e,nS)===false then e else continue;
return graph(EE,Singletons=>S);
)
underlyingGraph = method()
underlyingGraph Digraph := Graph => D -> graph(vertexSet D, edges D, EntryMode => "edges")
------------------------------------------
-- Enumerators
------------------------------------------
barbellGraph = method()
barbellGraph ZZ := Graph => n -> (
V := toList(0..<2*n);
E := select(flatten flatten apply(toList(0..<n), i -> apply(toList(0..<n), j -> {{i,j},{i+n,j+n}})), e -> e_0 != e_1) | {{n-1,n}};
graph(V,E, EntryMode => "edges")
)
circularLadder = method()
circularLadder ZZ := Graph => n -> generalizedPetersenGraph (n,1)
cocktailParty = method()
cocktailParty ZZ := Graph => n -> (
V := toList(0..<2*n);
E := subsets(2*n,2) - set apply(toList(0..<n), i -> {i, i+n});
graph(V,E, EntryMode => "edges")
)
completeGraph = method()
completeGraph ZZ := Graph => n -> graph(toList(0..<n), subsets(n, 2), EntryMode => "edges")
completeMultipartiteGraph = method()
completeMultipartiteGraph List := Graph => P -> (
if #P == 1 then return graph(toList(0..<P_0), {});
offset := 0;
V := apply(sort P, p -> ( ret := toList(offset..(offset+p-1)); offset = offset + p; ret ));
graph (flatten apply(#V-1, i -> flatten toList apply(i+1..#V-1, j -> toList \ toList((set V_i) ** (set V_j)))), EntryMode => "edges")
)
crownGraph = method()
crownGraph ZZ := Graph => n -> (
V := toList(0..<2*n);
E := select(flatten apply(toList(0..<n), i -> apply(toList(0..<n), j -> {i, j+n})), e -> e_0 + n != e_1);
graph (V,E, EntryMode => "edges")
)
cycleGraph = method()
cycleGraph ZZ := Graph => n -> graph(toList(0..<n), prepend({0,n-1}, apply(n-1, i -> {i, i+1})), EntryMode => "edges")
doubleStar = method()
doubleStar (ZZ,ZZ) := Graph => (m,n) -> (
V := toList(0..m+n+1);
E := apply(toList(1..n), i -> {0,i}) | apply(toList(n+2..m+n+1), i -> {n+1, i}) | {{0, n+1}};
graph (V,E, EntryMode => "edges")
)
friendshipGraph = method()
friendshipGraph ZZ := Graph => n -> windmillGraph(3, n)
generalizedPetersenGraph = method()
generalizedPetersenGraph (ZZ, ZZ) := Graph => (n, k) -> (
V := toList (0..2*n-1);
E := flatten apply(n, l -> {{l,(l+1) % n}, {l,l+n}, {l+n,n + ((l+k) % n)}});
graph(V, E, EntryMode => "edges")
)
graphLibrary = method()
graphLibrary String := Graph => s -> (
s = toLower s;
if s == "petersen" then return generalizedPetersenGraph(5,2);
if s == "bidiakis cube" then return addEdges'(cycleGraph 12, {{0,6},{1,5},{7,11},{2,10},{3,9},{4,8}});
if s == "desargues" then return generalizedPetersenGraph(10,3);
if s == "dodecahedron" then return generalizedPetersenGraph(10,2);
if s == "durer" then return generalizedPetersenGraph(6,2);
if s == "claw" then return starGraph 4;
if s == "cubical" then return circularLadder 4;
if s == "f26a" then return addEdges'(cycleGraph 26, apply(select(toList(0..24),even), i -> {i,(i+7) % 26}));
if s == "franklin" then return addEdges'(cycleGraph 12, apply(toList(0..5), i -> if even i then {i, i+7} else {i, i+5}));
if s == "chvatal" then return addEdges'(cycleGraph 12, apply({0,1,2,5}, i -> {i,i+6}) | apply({0,1,2,6,7,8}, i -> {i,i+3}) | {{3,10},{4,9}});
if s == "heawood" then return addEdges'(cycleGraph 14, apply(select(toList(0..12),even), i -> {i, i+5 % 14}));
if s == "paw" then return addEdge(starGraph 4, set {2,3});
if s == "mobius" then return generalizedPetersenGraph (8,3);
if s == "nauru" then return generalizedPetersenGraph (12,5);
if s == "kite" then return addEdge(cycleGraph 4, set {0,2});
if s == "house" then return addEdge(cycleGraph 5; set {1,3});
if s == "bull" then return addEdge(pathGraph 5, set {1,3});
if s == "bowtie" then return friendshipGraph 2;
if s == "dart" then return addEdges'(addVertex(cycleGraph 4, 4),{{0,2},{2,4}});
)
kneserGraph = method()
kneserGraph (ZZ,ZZ) := Graph => (n,k) -> (
S := subsets(n,k);
L := for i from 0 to (#S-1) list
for j from i+1 to (#S-1) list
if #((set S_i)*(set S_j)) == 0 then {i,j} else continue;
graph(toList(0..<#S), flatten L, EntryMode => "edges")
)
ladderGraph = method()
ladderGraph ZZ := Graph => n -> (
A := adjacencyMatrix pathGraph n;
B := map(ZZ^n, ZZ^n, 1);
C := matrix {{A, B}, {transpose B, A}};
graph C
)
lollipopGraph = method()
lollipopGraph (ZZ, ZZ) := Graph => (m,n) -> (
V := toList (0..n+m-1);
E := subsets(m,2) | apply(toList(m-1..m+n-2), i -> {i, i+1});
graph(V,E, EntryMode => "edges")
)
monomialGraph = method()
monomialGraph (MonomialIdeal, ZZ) := Graph => (I, d) -> (
V := first entries lift(basis(d, quotient I),ring I);
E := {};
for v in V do(
L := select(V, i -> first degree lcm (v,i) == d+1);
E = E | apply(L, i -> {v,i});
);
E = unique E;
graph(V,E, EntryMode => "edges")
)
pathGraph = method()
pathGraph ZZ := Graph => n -> graph (apply(n-1, i -> {i, i+1}), EntryMode => "edges")
prismGraph = circularLadder
rattleGraph = method()
rattleGraph (ZZ, ZZ) := Graph => (m,n) -> (
V := toList (0..n+m-1);
E := apply(toList(0..m-2), i -> {i,i+1}) | {{0,m-1}} | apply(toList(m-1..m+n-2), i -> {i, i+1});
graph(V,E, EntryMode => "edges")
)
starGraph = method()
starGraph ZZ := Graph => n -> windmillGraph(2, n)
thresholdGraph = method()
thresholdGraph List := Graph => L ->(
n := #L+1;
P := positions(L, i -> i == 1); -- assumes other positions are 0
E := if P === null then {} else flatten apply(P, i -> apply(i+1, j -> (j, i+1)));
graph(toList(0..<n), E, EntryMode => "edges")
)
wheelGraph = method()
wheelGraph ZZ := Graph => n -> (
spokes := apply(toList(1..n-1), i -> {0,i});
outside := apply(toList(1..n-2), i -> {i,i+1}) | {{1,n-1}};
graph(toList(0..<n), join(spokes,outside), EntryMode => "edges")
)
windmillGraph = method()
windmillGraph (ZZ,ZZ) := Graph => (k,d) -> (
E := apply(subsets(k, 2), s -> (
apply(d, i -> (
apply(s, j -> if j != 0 then j + i*(k-1) else 0)
))
));
graph(flatten E, EntryMode => "edges")
)
------------------------------------------
-- Cut properties
------------------------------------------
edgeConnectivity = method()
edgeConnectivity Graph := ZZ => G -> #first edgeCuts G
edgeCuts = method()
edgeCuts Graph := List => G -> (
if #edges G == 0 then return {{}};
E := toList \ edges G;
EC := {};
for i from 0 to #E - 1 do (
possibleSubsets := subsets(E, i);
EC = for x in possibleSubsets list (
G' := deleteEdges(G,x);
if not isConnected G' then x else continue
);
if #EC != 0 then break;
);
EC
)
minimalVertexCuts = method()
minimalVertexCuts Graph := List => G -> (
V := vertexSet G;
VC := {};
for i from 0 to #V-1 do (
possibleSubsets := subsets(V,i);
VC = for x in possibleSubsets list (
if not isConnected deleteVertices(G, x) then x else continue
);
if #VC != 0 then break;
);
VC
)
minimalDegree = method()
minimalDegree Graph := ZZ => G -> (
return min for v in vertexSet(G) list degree(G,v);
)
vertexConnectivity = method()
--returns n-1 for K_n as suggested by West
vertexConnectivity Graph := ZZ => G -> (
if #(vertexSet G)==0 then return 0;
if cliqueNumber G == #(vertexSet G) then (
return #(vertexSet G) - 1;
) else (
return #(first minimalVertexCuts G);
);
)
vertexCuts = method()
--West does not specify, but Wikipedia does, that K_n has no vertex cuts.
--The method currently returns an empty list, which is technically correct.
vertexCuts Graph := List => G -> (
V := vertexSet G;
possibleSubsets := drop(subsets V, -1);
for x in possibleSubsets list (
G' := deleteVertices(G,x);
if not isConnected G' then x else continue
)
)
------------------------------------------
-- Properties
------------------------------------------
breadthFirstSearch = method()
breadthFirstSearch (Digraph, Thing) := List => (G, v) -> (
V := vertexSet G;
if not member(v, V) then error "";
Q := {{v, 0}};
V = V - set {v};
i := 0;
while i < #Q do (
C := select(toList children(G, first Q_i), u -> member(u, V));
Q = Q | apply(C, c -> {c, last Q_i + 1});
V = V - set C;
i = i + 1;
);
P := partition(last, Q);
apply(sort keys P, k -> first \ P#k)
)
BFS = breadthFirstSearch
center = method()
center Graph := List => G -> select(vertexSet G, i -> eccentricity(G, i) == radius G)
children = method()
children (Digraph, Thing) := Set => (G, v) -> (
i := position(vertexSet G, u -> u === v);
if i === null then error "v is not a vertex of G.";
set (vertexSet G)_(positions(first entries (adjacencyMatrix G)^{i}, j -> j != 0))
)
chromaticNumber = method()
chromaticNumber Graph := ZZ => G -> (
if #edges G == 0 and #vertexSet G == 0 then 0
else if #edges G == 0 and #vertexSet G != 0 then 1
else if isBipartite G then 2
else (
chi := 3;
J := coverIdeal G;
m := product gens ring J;
while ((m^(chi - 1) % J^chi) != 0) do chi = chi+ 1;
chi
)
)
cliqueComplex = method()
cliqueComplex Graph := SimplicialComplex => G -> simplicialComplex edgeIdeal complementGraph G
cliqueNumber = method()
cliqueNumber Graph := ZZ => G -> independenceNumber complementGraph G
closedNeighborhood = method()
closedNeighborhood (Graph, Thing) := Set => (G,a) -> neighbors(G,a) + set {a}
clusteringCoefficient = method()
clusteringCoefficient Graph := QQ => G -> (
Cv := for v in vertexSet G list clusteringCoefficient(G,v);
sum Cv / #Cv
)
clusteringCoefficient (Graph, Thing) := QQ => (G,v) -> (
N := toList neighbors(G,v);
if #N == 0 or #N == 1 then return 0;
G' := inducedSubgraph(G, N);
2 * #edges G' / (#N * (#N - 1))
)
-- the 'conneectedComponents' methods is defined in 'SimplicialComplexies'
connectedComponents Graph := List => G -> (
V := vertexSet G;
while #V != 0 list (
C := {first V};
i := 0;
while i!= #C do (
N := toList neighbors(G, C_i);
C = unique(C | N);
V = V - set C;
i = i + 1;
if #V == 0 then break;
);
C
)
)
coverIdeal = method()
coverIdeal Graph := Ideal => G -> dual edgeIdeal G
criticalEdges = method()
criticalEdges Graph := List => G -> (
J := edgeIdeal G;
isSquarefree := x -> all(first exponents x, i -> i <= 1);
indSets := select(first entries basis(1,quotient J), isSquarefree);
i := 2;
while i >= 2 do (
potential := select(first entries basis(i,quotient J), isSquarefree);
if #potential != 0 then indSets = potential else break;
i = i + 1;
);
indSets = indices \ indSets;
A := adjacencyMatrix G;
V := vertexSet G;
E := flatten for i from 0 to #V - 1 list for j from i+1 to #V - 1 list if A_(i,j) == 1 or A_(j,i) == 1 then {i,j} else continue;
nbrs := v -> positions(first entries (adjacencyMatrix G)^{v}, j -> j != 0);
iE := select(E, e -> any (indSets, A -> (member(e_0, A) and #((set nbrs e_1)*set A) == 1) or (member(e_1, A) and #((set nbrs e_0)*set A) == 1)));
apply(iE, e -> set V_e)
)
degeneracy = method()
degeneracy Graph := ZZ => G -> (
nbrs := v -> positions(first entries (adjacencyMatrix G)^{v}, j -> j != 0);
n := #vertexSet G;
L := {};
dV := new MutableHashTable from apply(n, i -> i => #nbrs i);
D := apply(n, j -> select(n, i -> dV#i == j));
k := 0;
for l from 1 to n do (
i := position(D, j -> #j != 0);
k = max(k, i);
v := first D_i;
L = append(L, v);
D = replace(i, drop(D_i, 1), D);
scan(nbrs v, w -> dV#w = dV#w - 1);
V' := toList(0..n-1) - set L;
D = apply(n, j -> select(V', i -> dV#i == j));
);
k
)
degreeCentrality = method()
degreeCentrality (Graph, Thing) := QQ => (G, v) -> degree(G, v)/(2*#edges G)
degreeIn = method()
degreeIn (Digraph,Thing) := ZZ => (D,v) -> #parents(D,v)
degreeOut = method()
degreeOut (Digraph,Thing) := ZZ => (D,v) -> #children(D,v)
density = method()
density Graph := QQ => G -> (
E := #edges G;
V := #vertexSet G;
2*E / (V * (V - 1))
)
depthFirstSearch = method()
depthFirstSearch Digraph := HashTable => G -> (
V := vertexSet G;
Q := {};
discovery := new MutableHashTable from apply(V, v -> v => 0);
finishing := new MutableHashTable from apply(V, v -> v => -1);
parent := new MutableHashTable from apply(V, v -> v => null);
t := 0;
-- V maintains the vertexSet that have yet to be queued
while #V != 0 do (
Q = {V_0};
V = drop(V, 1);
-- While the queue is not empty...
while #Q != 0 do (
v := Q_0;
Q = drop(Q, 1);
t = t + 1;
discovery#v = t;
-- Find the unqueued children of v; mark v as their 'parent'
C := select(toList children(G, v), u -> member(u, V));
scan(C, u -> parent#u = v);
-- If all children have been queued, then we are finished,
-- as are all 'forefathers' of v that have no children in the queue.
if #C == 0 then (
while v =!= null and (#Q == 0 or parent#(first Q) =!= v) do (
t = t + 1;
finishing#v = t;
v = parent#v;
);
)
else (
Q = C | Q;
V = V - set C;
);
); -- while #Q != 0
); -- while #V != 0
hashTable{symbol discoveryTime => new HashTable from discovery, symbol finishingTime => new HashTable from finishing}
)
DFS = depthFirstSearch
descendants = method()
descendants (Digraph, Thing) := Set => (D,v) -> set flatten breadthFirstSearch(D, v)
descendents = descendants
diameter Graph := ZZ => G -> (
allEntries := flatten entries distanceMatrix G;
if member(-1, allEntries) then infinity else max allEntries
)
distance = method()
distance (Digraph, Thing, Thing) := ZZ => (G,v,u) -> (
if not member(v, vertexSet G) or not member(u, vertexSet G) then error "The given vertexSet are not vertexSet of G.";
n := #vertexSet G;
v = position(vertexSet G, i -> i == v);
u = position(vertexSet G, i -> i == u);
C := new MutableList from toList(#vertexSet G:infinity);
Q := {v};
C#v = 0;
while #Q != 0 do (
y := first Q;
Q = drop(Q, 1);
N := select(positions(first entries (adjacencyMatrix G)^{y}, j -> j != 0), x -> C#x == infinity);
if any(N, x -> x == u) then (
C#u = C#y + 1;
break;
);
Q = Q | N;
for z in N do C#z = C#y + 1;
);
C#u
)
distance (Digraph, Thing) := HashTable => (G, v) -> (
if not member(v, vertexSet G) then error "The given vertex is not a vertex of G.";
n := #vertexSet G;
v = position(vertexSet G, i -> i === v);
C := new MutableList from toList(#vertexSet G:infinity);
Q := {v};
C#v = 0;
while #Q != 0 do (
y := first Q;
Q = drop(Q, 1);
N := select(positions(first entries (adjacencyMatrix G)^{y}, j -> j != 0), x -> C#x == infinity);
Q = Q | N;
for z in N do C#z = C#y + 1;
);
hashTable apply(n, i -> (vertexSet G)_i => C#i)
)
distanceMatrix = method()
distanceMatrix Digraph := Matrix => G -> (
V := vertexSet G;
matrix for i to #V - 1 list (
H := distance(G, V_i);
for j from 0 to #V -1 list (if H#(V_j) == infinity then -1 else H#(V_j))
)
)
eccentricity = method()
eccentricity (Graph, Thing) := ZZ => (G,v) ->(
if isConnected G == false then error "Input graph must be connected";
max apply(vertexSet G, i -> distance(G, v, i))
)
edgeIdeal = method()
edgeIdeal Graph := Ideal => G -> (
G = indexLabelGraph G;
V := vertexSet G;
x := local x;
R := QQ(monoid[x_1..x_(#V)]);
monomialIdeal (
if #edges G == 0 then 0_R
else apply(toList \ edges G, e -> R_(position(V, i -> i === e_0)) * R_(position(V, i -> i === e_1)))
)
)
expansion = method ()
expansion Graph := QQ => G -> (
V:=set(vertexSet(G));
E:=edges(G);
--return 0 if graph is empty graph
if #E===0 then return 0;
n:=floor((#V)/2);
--CS:={};
RS:={};
qq:=0;
ee:=degree(G,(toList(V))_0);
for i in 1..n do (
for S in subsets(V,i) do (
CS:=V-S;
qq:=sum for e in edges(G) list if #(e*S)>0 and #(e*CS)>0 then 1 else 0;
ee=min(ee,qq/#S);
if(ee == qq) then RS=S;
);
);
return ee;
)
findPaths = method()
findPaths (Digraph,Thing,ZZ) := List => (G,v,l) -> (
if l < 0 then error "integer must be nonnegative";
if l == 0 then {{v}}
else(
nbors := toList children (G,v);
nPaths := apply(nbors, n -> findPaths(G,n,l-1));
flatten apply(nPaths, P -> apply(P, p -> {v} | p))
)
)
floydWarshall = method()
floydWarshall Digraph := HashTable => G -> (
V := vertexSet G;
D := new MutableHashTable from flatten apply(V, u -> apply(V, v-> (u,v) =>
if u===v then 0 else if member(v, children(G,u)) then 1 else infinity));
scan(V, w -> scan(V, u -> scan(V, v -> D#(u,v) = min(D#(u,v), D#(u,w) + D#(w,v)))));
new HashTable from D
)
forefathers = method()
forefathers (Digraph, Thing) := Set => (D,v) -> set flatten reverseBreadthFirstSearch(D,v)
foreFathers = forefathers
girth = method()
girth Graph := Thing => G -> (
g := infinity;
n := #vertexSet G;
P := new MutableList from toList(n:0);
D := new MutableList from toList(n:0);
for v from 0 to n-1 do (
S := {};
R := {v};
P#v = null;
D#v = 0;
while R != {} do(
x := first R;
S = append(S, x);
R = drop(R, 1);
L := positions(first entries (adjacencyMatrix G)^{x}, j -> j != 0) - set {P#x};
for y in L do (
if member(y, S) then
( g = min {g, D#y + D#x + 1}; )
else(
P#y = x;
D#y = 1 + D#x;
R = unique append(R, y);
);
);
);
);
g
)
independenceComplex = method()
independenceComplex Graph := SimplicialComplex => G -> simplicialComplex edgeIdeal G
independenceNumber = method()
independenceNumber Graph := ZZ => G -> dim edgeIdeal G
leaves = method()
leaves Graph := List => G -> if not isTree G then error "input must be a tree" else select(vertexSet G, i -> degree(G, i) == 1)
lowestCommonAncestors = method()
lowestCommonAncestors (Digraph,Thing,Thing) := Thing => (D,u,v) -> (
x := v;
y := u;
orderedVertices := flatten breadthFirstSearch(D, first vertexSet D);
if position(orderedVertices, i -> i == u) >= position(orderedVertices, i -> i == v) then (
x = u;
y = v;
);
ancestX := reverseBreadthFirstSearch(D,x);
ancestY := reverseBreadthFirstSearch(D,y);
for i in ancestY do (
for j in ancestX do (
a := set i * set j;
if #a != 0 then return toList a;
);
);
{}
)
highestCommonDescendant = method()
highestCommonDescendant(Digraph,Thing,Thing) := Thing => (D,u,v) -> (
x := v;
y := u;
orderedVertices := flatten breadthFirstSearch(D, first vertexSet D);
if position(orderedVertices, i -> i == u) >= position(orderedVertices, i -> i == v) then (
x = u;
y = v;
);
descendX := breadthFirstSearch(D,x);
descendY := breadthFirstSearch(D,y);
for i in descendY do (
for j in descendX do (
a := set i * set j;
if #a != 0 then return toList a;
);
);
{}
)
neighbors = method()
neighbors (Graph, Thing) := Set => (G,v) -> (
i := position(vertexSet G, u -> u === v);
if i === null then error "v is not a vertex of G.";
set (vertexSet G)_(positions(first entries (adjacencyMatrix G)^{i}, j -> j != 0))
)
nondescendants = method()
nondescendants (Digraph, Thing) := Set => (D,v) -> set vertexSet D - (set {v} + descendants(D, v))
nondescendents = nondescendants
nonneighbors = method()
nonneighbors (Graph, Thing) := Set => (G,v) -> set vertexSet G - (set {v} + neighbors(G, v))
numberOfComponents = method()
numberOfComponents Graph := ZZ => G -> #connectedComponents G
numberOfTriangles = method()
numberOfTriangles Graph := ZZ => G -> number(ass (coverIdeal G)^2, i -> codim i == 3)
parents = method()
parents (Digraph, Thing) := Set => (G, v) -> (
i := position(vertexSet G, u -> u === v);
if i === null then error "v is not a vertex of G.";
set (vertexSet G)_(positions(flatten entries (adjacencyMatrix G)_{i}, j -> j != 0))
)
radius = method()
radius Graph := ZZ => G -> min apply(vertexSet G, i -> eccentricity(G,i))
reachable = method()
reachable (Digraph, List) := (D, A) -> unique flatten apply(A, v -> toList descendants(D, v))
reachable (Digraph, Set) := (D, A) -> set reachable(D, toList A)
reverseBreadthFirstSearch = method()
reverseBreadthFirstSearch (Digraph, Thing) := List => (G, v) -> (
V := vertexSet G;
if not member(v, V) then error "";
Q := {{v, 0}};
V = V - set {v};
i := 0;
while i < #Q do (
C := select(toList parents(G, first Q_i), u -> member(u, V));
Q = Q | apply(C, c -> {c, last Q_i + 1});
V = V - set C;
i = i + 1;
);
P := partition(last, Q);
apply(sort keys P, k -> first \ P#k)
)
sinks = method()
sinks Digraph := List => D -> select(vertexSet D, i -> isSink(D,i))
sources = method()
sources Digraph := List => D -> select(vertexSet D, i -> isSource(D, i))
spec = spectrum
spectrum = method()
spectrum Graph := List => G -> sort toList eigenvalues (adjacencyMatrix G, Hermitian => true)
topologicalSort = method(TypicalValue =>List)
topologicalSort Digraph := List => D -> topologicalSort(D, "")
topologicalSort (Digraph, String) := List => (D,s) -> (
if instance(D, Graph) or isCyclic D then error "Topological sorting is only defined for acyclic directed graphs.";
s = toLower s;
processor := if s == "random" then random
else if s == "min" then sort
else if s == "max" then rsort
else if s == "degree" then L -> last \ sort transpose {apply(L, v -> degree(D, v)), L}
else identity;
S := processor sources D;
L := {};
v := null;
while S != {} do (
v = S_0;
L = L|{v};
S = processor join(drop(S, 1), select(toList children (D, v), c -> isSubset(parents(D, c), L)));
);
L
)
SortedDigraph = new Type of HashTable;
-- Keys:
-- digraph: the original digraph
-- NewDigraph: the digraph with vertices labeled as integers obtained from sorting
-- map: the map giving the sorted order
topSort = method(TypicalValue =>HashTable)
topSort Digraph := SortedDigraph => D -> topSort(D,"")
topSort (Digraph, String) := SortedDigraph => (D,s) -> (
L := topologicalSort (D,s);
g := graph D;
new SortedDigraph from {
digraph => D,
newDigraph => digraph hashTable apply(#L, i -> i + 1 => apply(toList g#(L_i), j -> position(L, k -> k == j) + 1)),
map => hashTable apply(#L, i -> L_i => i + 1)
}
)
vertexCoverNumber = method()
vertexCoverNumber Graph := ZZ => G -> min apply(vertexCovers G, i -> #i)
vertexCovers = method()
vertexCovers Graph := List => G -> (
J := coverIdeal G;
factoredIdealList := apply(J_*, indices);
apply(factoredIdealList, i -> (vertexSet G)_i)
)
weaklyConnectedComponents = method()
weaklyConnectedComponents Digraph := List => D -> connectedComponents underlyingGraph D
------------------------------------------
-- Boolean properties
------------------------------------------
hasEulerianTrail = method()
hasEulerianTrail Graph := Boolean => G -> (
V := vertexSet G;
V' := V - set select(V, v -> degree(G,v) == 0);
oddDegrees := select(V, v -> odd (degree(G,v)));
#oddDegrees <= 2 and isConnected inducedSubgraph(G,V')
)
hasEulerianTrail Digraph := Boolean => G -> (
V := vertexSet G;
G' := underlyingGraph G;
V' := V - set select(V, v -> degree(G',v) == 0);
inMinusOut := {};
outMinusIn := {};
inDegrees := {};
outDegrees := {};
for v in V' do (
outDeg := #children(G,v);
inDeg := #parents(G,v);
i := inDeg - outDeg;
o := outDeg - inDeg;
if i == 1 then inMinusOut = inMinusOut | {v};
if o == 1 then outMinusIn = outMinusIn | {v};
if i != 1 and o != 1 then (
inDegrees = inDegrees | {inDeg};
outDegrees = outDegrees | {outDeg};
);
);
#inMinusOut <= 1 and #outMinusIn <= 1 and #(unique inDegrees) <= 1 and #(unique outDegrees) <= 1 and isConnected inducedSubgraph(G',V')
)
hasOddHole = method()
hasOddHole Graph := Boolean => G -> any(ass (coverIdeal G)^2, i -> codim i > 3)
isBipartite = method()
isBipartite Graph := Boolean => G ->
try bipartiteColoring G then true else false
isCM = method()
isCM Graph := Boolean => G -> (
I := edgeIdeal G;
codim I == pdim coker gens I
)
isChordal = method()
isChordal Graph := Boolean => G -> (
I := edgeIdeal complementGraph G;
if I == ideal 0_(ring I) then true
else (min flatten degrees I - 1) == regularity coker gens I
)
isConnected = method()
isConnected Graph := Boolean => G -> numberOfComponents G <= 1
isCyclic = method()
isCyclic Graph := Boolean => G -> isConnected G and all(vertexSet G, v -> degree(G, v) == 2)
isCyclic Digraph := Boolean => G -> (
D := depthFirstSearch G;
any(vertexSet G, u ->
any(toList children(G, u), v ->
(D#symbol discoveryTime)#v < (D#symbol discoveryTime)#u and (D#symbol finishingTime)#u < (D#symbol finishingTime)#v
)
)
)
isEulerian = method()
isEulerian Graph := Boolean => G -> all(apply(vertexSet G, v -> degree(G,v)), even) and isConnected G
isEulerian Digraph := Boolean => G -> (
if #edges G == 0 then return false;
V := vertexSet G;
G' := underlyingGraph G;
V' := V - set select(V, v -> degree(G',v) == 0);
inDegree := #(parents(G, first V'));
outDegree := #(children(G, first V'));
all(V', v -> #parents(G, v) == inDegree) and all(V', v -> #children(G, v) == outDegree) and isConnected inducedSubgraph(G', V')
)
isForest = method()
isForest Graph := Boolean => G -> girth(G) == infinity
isLeaf = method()
isLeaf (Graph, Thing) := Boolean => (G,a) -> degree(G,a) == 1
isPerfect = method()
isPerfect Graph := Boolean => G -> not (hasOddHole G or hasOddHole complementGraph G)
isReachable = method()
isReachable (Digraph, Thing, Thing) := Boolean => (D,u,v) -> member(u, descendants(D,v))
isRegular = method()
isRegular Graph := Boolean => G -> (
n := degree(G, first vertexSet G);
all(drop(vertexSet G,1), v -> degree(G,v) == n)
)
-- input: A graph G
-- output: Uses Laman's Theorem to determine if a graph is rigid or not
-- written by Tom Enkosky
--
isRigid = method();
isRigid Graph := G -> (
local rigidity; local i; local j;
rigidity=true;
if #edges G < 2*#vertices G-3 then rigidity = false
else (
for j from 2 to #vertices G-1 do(
for i in subsets(vertices G,j) do(
if #edges inducedSubgraph(G,i)>2*#i-3 then rigidity = false
);
);
);
return rigidity;
)
isSimple = method()
isSimple Graph := Boolean => G -> (
A := adjacencyMatrix G;
all(toList(0..<numrows A), i -> A_(i,i) == 0)
)
isSink = method()
isSink (Digraph, Thing) := Boolean => (D,v) -> #children(D,v) == 0
isSource = method()
isSource (Digraph, Thing) := Boolean => (D,v) -> #parents(D,v) == 0
isStronglyConnected = method()
isStronglyConnected Digraph := Boolean => D -> all(unique flatten entries distanceMatrix D, i -> i>=0)
isTree = method()
isTree Graph := Boolean => G -> isConnected G and #edges G == #vertexSet G - 1
isWeaklyConnected = method()
isWeaklyConnected Digraph := Boolean => D -> isConnected underlyingGraph D
------------------------------------------
-- Graph operations
------------------------------------------
cartesianProduct = method()
cartesianProduct(Graph, Graph) := Graph => (G, H) -> (
V := toList(set vertexSet G ** set vertexSet H);
E := flatten for u in V list for v in V list
if (u_0 == v_0 and member(set {u_1, v_1}, edges H))
or (u_1 == v_1 and member(set {u_0, v_0}, edges G))
then {u, v} else continue;
graph(V, E, EntryMode => "edges")
)
-- the 'directProduct' method is defined in 'Polyhedra'
directProduct(Graph,Graph) := Graph => (G, H) -> (
V := toList(set vertexSet G ** set vertexSet H);
E := flatten for u in V list for v in V list
if member(set {u_0, v_0}, edges G) and member(set {u_1, v_1}, edges H)
then {u, v} else continue;
graph(V, E, EntryMode => "edges")
)
disjointUnion = method()
disjointUnion List := Graph => L -> (
if not all(L, G -> instance(G,Graph)) then error "must be a list of graphs";
V := flatten for i to #L-1 list apply(vertexSet L_i, v -> {v, i});
E := flatten for i to #L - 1 list apply(toList \ edges L_i, e -> {{e_0, i},{e_1, i}});
graph(V, E, EntryMode => "edges")
)
graphComposition = method()
graphComposition (Graph, Graph) := Graph => (G, H) -> (
V := toList(set vertexSet G ** set vertexSet H);
E := flatten for u in V list for v in V list
if member(set {u_0, v_0}, edges G)
or (u_0 == v_0 and member(set {u_1, v_1}, edges H))
then {u, v} else continue;
graph(V, E, EntryMode => "edges")
)
graphPower = method()
graphPower (Graph, ZZ) := Graph => (G,k) -> (
V := vertexSet G;
E := flatten for i from 0 to #V-2 list (
for j from i+1 to #V-1 list if distance(G,V_i, V_j) <= k then {V_i, V_j} else continue
);
graph(V, E, EntryMode => "edges")
)
lexicographicProduct = graphComposition
strongProduct = method()
strongProduct (Graph, Graph) := Graph => (G, H) -> (
V := toList \ toList(set vertexSet G ** set vertexSet H);
E' := flatten for u in V list for v in V list
if (u_0 == v_0 and member(set {u_1, v_1}, edges H))
or (u_1 == v_1 and member(set {u_0, v_0}, edges G))
then {u, v} else continue;
E'' := flatten for u in V list for v in V list
if member(set {u_0, v_0}, edges G) and member(set {u_1, v_1}, edges H)
then {u, v} else continue;
E := unique join(E', E'');
graph(V, E, EntryMode => "edges")
)
tensorProduct = directProduct
---------------------------
--Graph Manipulations
---------------------------
addEdge = method()
addEdge (Digraph, Set) := Graph => (G, s) -> addEdges'(G, {toList s})
addEdges' = method()
addEdges' (Graph, List) := Graph => (G, L) -> (
A := mutableMatrix adjacencyMatrix G;
while L != {} do(
l := first L;
e := apply(toList l, i -> position(vertexSet G, j -> j == i));
f := sequence(first e, last e);
A_f = 1;
A_(reverse f) = 1;
L = drop(L,1);
);
graph (vertexSet G, matrix A)
)
addEdges' (Digraph, List) := Digraph => (G, L) -> (
A := mutableMatrix adjacencyMatrix G;
while L != {} do(
l := first L;
e := apply(toList l, i -> position(vertexSet G, j -> j == i));
f := sequence(first e, last e);
A_f = 1;
L = drop(L,1);
);
digraph (vertexSet G, matrix A)
)
addVertex = method()
addVertex (Digraph, Thing) := Digraph => (G, v) -> addVertices(G, {v})
addVertices = method()
addVertices (Graph, List) := Graph => (G, L) -> (
L = L - set vertexSet G;
n := #vertexSet G;
m := #L;
A := adjacencyMatrix G;
B := map(ZZ^n, ZZ^m, 0);
D := map(ZZ^m, ZZ^m, 0);
A' := matrix {{A, B}, {transpose B, D}};
graph(join(vertexSet G, L), A')
)
addVertices(Digraph, List) := Graph => (G, L) -> (
L = L - set vertexSet G;
n := #vertexSet G;
m := #L;
A := adjacencyMatrix G;
B := map(ZZ^n, ZZ^m, 0);
D := map(ZZ^m, ZZ^m, 0);
A' := matrix {{A, B}, {transpose B, D}};
digraph (join(vertexSet G, L), A')
)
bipartiteColoring = method()
bipartiteColoring Graph := List => G -> (
n := # vertexSet G;
v := 0;
if n == 0 then return {{},{}};
D := new MutableList from toList(n: infinity);
while v != n do (
uncolored := {position(toList D, i -> i == infinity)};
D#(first uncolored) = 0;
v = v + 1;
while #uncolored != 0 do (
x := first uncolored;
uncolored = drop(uncolored, 1);
N := positions(first entries (adjacencyMatrix G)^{x}, j -> j != 0);
for y in N do (
if D#y == infinity then (
D#y = 1 + D#x;
v = v + 1;
uncolored = append(uncolored, y);
) else if (D#x - D#y) % 2 == 0 then
error "graph must be bipartite";
);
);
);
blue := positions(toList D, even);
gold := toList(0..(n-1)) - set blue;
{(vertexSet G)_blue, (vertexSet G)_gold}
)
deleteEdges = method()
deleteEdges (Graph, List) := Graph => (G,L) -> (
E := set edges G;
E' := E - set(for l in L list set l);
graph(vertexSet G, toList(E'), EntryMode => "edges")
)
deleteEdges (Digraph, List) := Graph => (G,L) -> digraph(vertexSet G, edges G - set L)
deleteVertex = method()
deleteVertex (Graph, Thing) := Graph => (G, v) -> (
if not member(v, vertexSet G) then error "v must be a vertex of G";
V := vertexSet G - set {v};
E := select(toList \ edges G, e -> not member(v, e));
graph(V,E, EntryMode => "edges")
)
deleteVertex (Digraph, Thing) := Digraph => (G, v) -> (
if not member(v, vertexSet G) then error "v must be a vertex of G";
V := vertexSet G - set {v};
E := select(edges G, e -> not member(v,e));
digraph(V,E, EntryMode => "edges")
)
deleteVertices = method()
deleteVertices (Digraph, List) := Digraph => (D, L) -> inducedSubgraph(D, vertexSet D - set L)
indexLabelGraph = method()
indexLabelGraph Graph := Graph => G -> (
V := vertexSet G;
h := hashTable apply(#V, i -> V_i => i);
E := apply(toList \ edges G, e -> {h#(e_0), h#(e_1)});
graph(toList(0..<#V), E, EntryMode => "edges")
)
indexLabelGraph Digraph := Digraph => G -> (
V := vertexSet G;
h := hashTable apply(#V, i -> V_i => i);
E := apply(edges G, e -> {h#(e_0), h#(e_1)});
digraph(toList(0..<#V), E, EntryMode => "edges")
)
inducedSubgraph = method()
inducedSubgraph (Graph, List) := Graph => (G, S) -> (
if S == {} then graph {}
else E' := select(edges G, e -> isSubset(e,S));
graph(S, E', EntryMode => "edges")
)
inducedSubgraph (Digraph,List) := Digraph => (D,S) -> (
E' := select(edges D, e -> isSubset(e,S));
digraph(S, E', EntryMode => "edges")
)
reindexBy = method()
reindexBy (Graph, String) := Graph => (G, s) -> (
s = toLower s;
if s == "maxdegree" then (
V := vertexSet G;
V' := {};
while V != {} do (
x := hashTable apply(V, i -> i => degree (G,i));
S := select(keys x, i -> x#i == max values x);
V = V - set S;
V' = V' | S;
);
return graph (V', edges G)
);
if s == "mindegree" then (
V = vertexSet G;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => degree (G,i));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = S | V'
);
return graph (V', edges G)
);
if s == "random" then return graph (random vertexSet G, edges G, EntryMode => "edges");
if s == "components" then return graph (flatten connectedComponents G, edges G, EntryMode => "edges");
if s == "sort" then return graph (sort vertexSet G, edges G, EntryMode => "edges");
)
reindexBy (Digraph, String) := Digraph => (D, s) -> (
s = toLower s;
if s == "maxdegreein" then (
V := vertexSet D;
V' := {};
while V != {} do (
x := hashTable apply(V, i -> i => #parents(D,i));
S := select(keys x, i -> x#i == max values x);
V = V - set S;
V' = V' | S;
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "mindegreein" then (
V = vertexSet D;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => #parents(D,i));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = S | V';
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "maxdegreeout" then (
V = vertexSet D;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => #children(D,i));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = V' | S;
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "mindegreeout" then (
V = vertexSet D;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => #children(D,i));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = S | V';
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "maxdegree" then (
V = vertexSet D;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => (#children(D,i) + #parents(D,i)));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = V' | S;
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "mindegree" then (
V = vertexSet D;
V' = {};
while V != {} do (
x = hashTable apply(V, i -> i => (#children(D,i) + #parents(D,i)));
S = select(keys x, i -> x#i == max values x);
V = V - set S;
V' = S | V';
);
return digraph (V', edges D, EntryMode => "edges")
);
if s == "random" then return digraph(random vertexSet D, edges D, EntryMode => "edges");
if s == "sort" then return digraph(sort vertexSet D, edges D, EntryMode => "edges");
)
removeNodes = deleteVertices
spanningForest = method()
spanningForest Graph := Graph => G -> (
V := vertexSet G;
E := {};
for v in V do (
N := toList (neighbors (G,v) - set select(V, x -> member(x, flatten E)));
E = E | apply(N, n -> {v,n});
);
graph(V, E, EntryMode => "edges")
)
vertexMultiplication = method()
vertexMultiplication (Graph, Thing, Thing) := Graph => (G,v,u) -> (
if member(u, vertexSet G) == true then error "3rd argument is already a vertex of the input graph";
if member(v, vertexSet G) == false then error "2nd argument must be in the input graph's vertex set";
graph(append(vertexSet G, u), edges G | apply(toList neighbors (G,v), i -> {i,u}), EntryMode => "edges")
)
-*
--This code is written for an older version of Graphs and is not functional with current version of the packages.
graphData = "graphData"
labels = "labels"
LabeledGraph = new Type of HashTable
labeledGraph = method(TypicalValue =>LabeledGraph)
labeledGraph (Digraph,List) := (g,L) -> (
C := new MutableHashTable;
C#cache = new CacheTable from {};
lg := new MutableHashTable;
lg#graphData = g;
label := new MutableHashTable;
if instance(g,Graph) then (
sg := simpleGraph g;
scan(L, i ->
if (sg#graph#(i#0#0))#?(i#0#1) then label#(i#0) = i#1
else if (sg#graph#(i#0#1))#?(i#0#0) then label#({i#0#1,i#0#0}) = i#1
else error (toString(i#0)|" is not an edge of the graph");
);
)
else (
scan(L, i ->
if (g#graph#(i#0#0))#?(i#0#1) then label#(i#0) = i#1
else error (toString(i#0)|" is not an edge of the graph");
);
);
lg#labels = new HashTable from label;
C#graph = lg;
new LabeledGraph from C
)
net LabeledGraph := g -> horizontalJoin flatten (
net class g,
"{",
stack (horizontalJoin \ sort apply(pairs (g#graph),(k,v) -> (net k, " => ", net v))),
"}"
)
toString LabeledGraph := g -> concatenate(
"new ", toString class g#graph,
if parent g#graph =!= Nothing then (" of ", toString parent g),
" from {",
if #g#graph > 0 then demark(", ", apply(pairs g#graph, (k,v) -> toString k | " => " | toString v)) else "",
"}"
)
graph LabeledGraph := opts -> g -> g#graph --used to transform the LabeledGraph into a hashtable
*-
------------------------------------------
------------------------------------------
-- Documentation
------------------------------------------
------------------------------------------
beginDocumentation()
-- authors: add some text to this documentation node:
doc ///
Key
Graphs
Headline
graphs and digraphs
Description
Text
This package defines classes for graphs and digraphs and related methods.
Contributors
Carlos Amendola, Alex Diaz, Luis David Garcia Puente, Roser Homs Pons,
Olga Kuznetsova, Shaowei Lin, Sonja Mapes, Harshit J Motwani, Mike Stillman,
and Doug Torrance contributed to this package.
///
-------------------------------
--Data Types
doc ///
Key
Digraph
///
doc ///
Key
Graph
///
-------------------------------
--Graph Constructors
-------------------------------
--digraph
doc///
Key
digraph
(digraph, List)
(digraph, List, List)
(digraph, HashTable)
(digraph, List, Matrix)
(digraph, Matrix)
Headline
Constructs a digraph
Usage
G = digraph E
G = digraph H
G = digraph (V, E)
G = digraph (V, A)
G = digraph A
Inputs
E:List
Denotes an edge list (a list of ordered pair lists)
V:List
Denotes a vertex list
H:HashTable
A:Matrix
Denotes an adjacency matrix
Outputs
G:Digraph
Description
Text
A digraph is a set of vertices connected by directed edges. Unlike the case with simple graphs, {u,v} being an edge does not imply that {v,u} is also an edge. Notably, this allows for non-symmetric adjacency matrices.
Example
G = digraph ({{1,2},{2,1},{3,1}}, EntryMode => "edges")
G = digraph hashTable{1 => {2}, 3 => {4}, 5 => {6}}
G = digraph ({{a,{b,c,d,e}}, {b,{d,e}}, {e,{a}}}, EntryMode => "neighbors")
G = digraph ({x,y,z}, matrix {{0,1,1},{0,0,1},{0,1,0}})
G = digraph matrix {{0,1,1},{0,0,1},{0,1,0}}
SeeAlso
graph
///
--graph
doc ///
Key
graph
(graph, List)
(graph, List, List)
(graph, HashTable)
(graph, List, Matrix)
(graph, Matrix)
[graph, Singletons]
[graph, EntryMode]
EntryMode
Headline
Constructs a simple graph
Usage
G = graph E
G = graph (V,E)
G = graph H
G = graph (V, A)
G = graph A
Inputs
E:List
V:List
H:HashTable
A:Matrix
Outputs
G:Graph
The graph with edges E and vertices V, or constructed from HashTable H, or from an adjacency matrix A, or from a new naming of vertices V and an adjacency matrix A.
Description
Text
A graph consists of two sets, a vertex set and an edge set which is a subset of the collection of subsets of the vertex set. Edges in graphs are symmetric or two-way; if u and v are vertices then if {u,v} is an edge connecting them, {v,u} is also an edge (which is implicit in the definition, we will almost always just use one of the pairs). Graphs are defined uniquely from their Adjacency Matrices. These matrices use the entries as 0 or 1 to signal the existence of an edge connecting vertices.
The options for EntryMode are "neighbors" and "edges" (the default). This means that in including EntryMode => "edges" in the constructor allows the user to simply type in a list of edges to construct a graph. See example 1 below. Using the default takes an input of a list of pairs, where the first entry of each pair is a vertex and the second entry of each pair is that vertex's neighborhood.
The options for Singletons allows the user to enter Singletons => {list of single points} in a graph if they desire to have isolated points in a graph. See second example below.
Example
G = graph({{1,2},{2,3},{3,4}})
G = graph({{1,2},{2,3},{3,4}}, Singletons => {5,6,7})
G = graph ({{a,{b,c,d,e}}, {b,{d,e}}, {e,{a}}})
G = graph hashTable {{1,{2}},{2,{1,3}},{3,{2,4}},{4,{3}}}
G = graph(matrix {{0,1,1},{1,0,0},{1,0,0}})
G = graph({a,b,c}, matrix {{0,1,1},{1,0,0},{1,0,0}})
SeeAlso
digraph
///
--graph
doc ///
Key
(graph, Digraph)
Headline
Returns the legacy G#graph hash table
Usage
G = graph D
Inputs
D:Digraph
Outputs
H:HashTable
The hash table with a graph's vertices as keys and list of neighbors as values.
Description
Text
A graph consists of two sets, a vertex set and an edge set which is a subset of the collection of subsets of the vertex set. Edges in graphs are symmetric or two-way; if u and v are vertices then if {u,v} is an edge connecting them, {v,u} is also an edge (which is implicit in the definition, we will almost always just use one of the pairs). The options for EntryMode are "neighbors" (the default) and "edges". This method returns a hash table where the keys are vertices of a given graph or digraph and the values are their children (or neighbors, in the case of undirected graphs).
Example
G = graph digraph({{1,2},{2,1},{3,1}}, EntryMode => "edges")
G = graph digraph(matrix {{0,1,1},{1,0,0},{1,0,0}})
SeeAlso
digraph
///
--------------------------------
--Graphs: Basic Data
--------------------------------
--adjacencyMatrix
doc ///
Key
adjacencyMatrix
(adjacencyMatrix, Digraph)
Headline
Returns the adjacency matrix of a Graph or Digraph
Usage
A = adjacencyMatrix D
A = adjacencyMatrix G
Inputs
D:Digraph
G:Graph
Outputs
A:Matrix
Description
Text
The adjacency matrix is the n by n matrix (where n is the number of vertices in graph/digraph G) with rows and columns indexed by the vertices of G. Entry A_(u,v) is 1 if and only if {u,v} is an edge of G and 0 otherwise. It is easy to observe that if we just use a simple graph G, then its adjacency matrix must be symmetric, but if we use a digraph, then it is not necessarily symmetric.
Example
D = digraph({{1,2},{2,3},{3,4},{4,3}},EntryMode=>"edges");
adjacencyMatrix D
G = graph({1,2,3,4}, {{1,2},{2,3},{3,4},{4,3}})
adjacencyMatrix G
SeeAlso
degreeMatrix
laplacianMatrix
///
--degree
doc ///
Key
(degree, Digraph, Thing)
Headline
returns the degree of a vertex in a digraph
Usage
x = degree(D,v)
Inputs
D:Digraph
v:Thing
a vertex in the graph/digraph
Outputs
x:ZZ
Description
Text
In a simple graph, the degree of a vertex is the number of neighbors of the vertex.
In a digraph, we define the degree of a vertex to be the number of elements in the unique union of the parents and children of the vertex.
Example
D = digraph({1,2,3,4},{{1,2},{2,3},{3,4},{4,2},{2,4}});
degree(D, 3)
degree(D, 2)
SeeAlso
neighbors
parents
children
///
--degreeMatrix
doc ///
Key
degreeMatrix
(degreeMatrix, Digraph)
Headline
Returns the degree matrix of a graph
Usage
D = degreeMatrix G
Inputs
G:Graph
Outputs
D:Matrix
The degree matrix of graph G
Description
Text
The degree matrix is the n by n diagonal matrix (where n is the number of vertices in the vertex set of the graph G) indexed by the vertices of G where A_(u,u) is the degree of vertex u. The degree of a vertex u is the number of edges such that {u,v} is an edge for any v also in the vertex set. This matrix is always diagonal.
Example
G = graph({1,2,3,4,5},{{1,2},{2,3},{3,4},{3,5},{4,5}});
degreeMatrix G
SeeAlso
adjacencyMatrix
laplacianMatrix
degree
///
doc ///
Key
degreeSequence
(degreeSequence, Graph)
Headline
the degree sequence of a graph
Usage
degreeSequence G
Inputs
G:Graph
Outputs
:List -- the degree sequence of G
Description
Text
The degree sequence of a graph is the list of the degrees of its
vertices sorted in nonincreasing order.
Example
degreeSequence pathGraph 5
///
--edges
doc ///
Key
edges
(edges, Digraph)
(edges, Graph)
Headline
Returns the edges of a digraph or graph
Usage
E = edges D
E = edges G
Inputs
D:Digraph
G:Graph
Outputs
E:List
The edges of digraph D or graph G
Description
Text
The edges of a graph are pairs (or ordered pairs if we are dealing with digraphs) of vertices that are connected in a graph. Any edge must be a member of the collection of subsets of the vertex set of a graph.
Example
D = digraph({{1,2},{2,1},{3,1}},EntryMode=>"edges");
edges D
G = cycleGraph 4;
edges G
SeeAlso
vertexSet
///
--incidenceMatrix
doc ///
Key
incidenceMatrix
(incidenceMatrix, Graph)
Headline
computes the incidence matrix of a graph
Usage
M = incidenceMatrix G
Inputs
G:Graph
Outputs
M:Matrix
the incidence matrix of graph G
Description
Text
An incidence matrix M is the #vertexSet of G by #edges of G matrix where entry (i,j) equals 1 if vertex i is incident to edge j, and equals 0 otherwise.
Example
M = incidenceMatrix cycleGraph 3
SeeAlso
adjacencyMatrix
///
--add laplacianMatrix to export list!
--laplacianMatrix
doc ///
Key
laplacianMatrix
(laplacianMatrix, Graph)
Headline
Returns the laplacian matrix of a graph
Usage
L = laplacianMatrix G
Inputs
G:Graph
Outputs
L:Matrix
the laplacian matrix of graph G
Description
Text
The laplacian matrix of a graph is the adjacency matrix of the graph subtracted from the degree matrix of the graph.
Example
G = graph({1,2,3,4,5},{{1,2},{2,3},{3,4},{3,5},{4,5}});
laplacianMatrix G
SeeAlso
adjacencyMatrix
degreeMatrix
///
--vertexSet
doc ///
Key
vertexSet
(vertexSet, Digraph)
(vertices, Digraph)
Headline
Returns the vertices of a graph or digraph
Usage
V = vertexSet D
V = vertexSet G
Inputs
D:Digraph
G:Digraph
Outputs
V:List
The vertices of digraph D
Description
Text
The vertices of a graph are just singletons that can be indexed by numbers, letters, or even in some cases something as exotic as a monomial. These form the base of a graph; the edges are 2 member subsets of the vertex set of a graph.
Example
D = digraph({{1,2},{2,1},{3,1}},EntryMode=>"edges");
vertexSet D;
G = completeGraph 4;
vertexSet G
A = adjacencyMatrix G;
graph({a,b,c,d}, A)
SeeAlso
edges
///
--------------------------------
--Graphs: Display Methods
--------------------------------
-- displayGraph
doc ///
Key
displayGraph
(displayGraph, String, String, Digraph)
(displayGraph, String, Digraph)
(displayGraph, Digraph)
Headline
displays a digraph or graph using Graphviz
Usage
displayGraph(dotFileName,jpgFileName,G)
displayGraph(dotFileName,G)
displayGraph G
Inputs
G:Digraph
dotFileName:String
jpgFileName:String
Description
Text
Displays a digraph or graph using Graphviz
-- Example
-- --G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
-- --displayGraph("chuckDot","chuckJpg", G)
-- --displayGraph("chuck", G)
-- --displayGraph G
SeeAlso
showTikZ
writeDotFile
///
-- showTikZ
doc ///
Key
showTikZ
(showTikZ, Digraph)
Headline
Writes a string of TikZ syntax that can be pasted into a .tex file to display G
Usage
S = showTikZ(G)
Inputs
G:Digraph
S:String
TikZ syntax used to display G
Description
Text
Writes a string of TikZ syntax that can be pasted into a .tex file to display G
-- Example
-- --G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
-- --showTikZ G
SeeAlso
displayGraph
///
-- html
doc ///
Key
(html, Digraph)
Headline
Create an .svg representation of a graph or digraph
Usage
html G
Inputs
G:Digraph
Description
Text
Uses graphviz to create an .svg representation of @TT "G"@,
which is returned as a string.
CannedExample
i2 : html completeGraph 2
-- running: dot -Tsvg /tmp/M2-2729721-0/0.dot -o /tmp/M2-2729721-0/1.svg
o2 = <?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Generated by graphviz version 2.43.0 (0)
-->
<!-- Title: G Pages: 1 -->
<svg width="62pt" height="116pt"
viewBox="0.00 0.00 62.00 116.00" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 112)">
<title>G</title>
<polygon fill="white" stroke="transparent" points="-4,4 -4,-112 58,-112 58,4 -4,4"/>
<!-- 0 -->
<g id="node1" class="node">
<title>0</title>
<ellipse fill="none" stroke="black" cx="27" cy="-90" rx="27" ry="18"/>
<text text-anchor="middle" x="27" y="-86.3" font-family="Times,serif" font-size="14.00">0</text>
</g>
<!-- 1 -->
<g id="node2" class="node">
<title>1</title>
<ellipse fill="none" stroke="black" cx="27" cy="-18" rx="27" ry="18"/>
<text text-anchor="middle" x="27" y="-14.3" font-family="Times,serif" font-size="14.00">1</text>
</g>
<!-- 0--1 -->
<g id="edge1" class="edge">
<title>0--1</title>
<path fill="none" stroke="black" d="M27,-71.7C27,-60.85 27,-46.92 27,-36.1"/>
</g>
</g>
</svg>
///
-- writeDotFile
doc ///
Key
writeDotFile
(writeDotFile, String, Graph)
(writeDotFile, String, Digraph)
Headline
Writes a graph to a dot file with a specified filename
Usage
writeDotFile(fileName,G)
Inputs
G:Graph
fileName:String
Description
Text
Writes the code for an inputted graph to be constructed in Graphviz with specified file name.
-- Example
-- --G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
-- --writeDotFile("chuck", G)
SeeAlso
///
--------------------------------
--Graphs: Derivative Graphs
--------------------------------
--barycenter
doc///
Key
barycenter
(barycenter, Graph)
Headline
Returns the barycenter of a grah
Usage
H = barycenter G
Inputs
G:Graph
Outputs
H:Graph
The barycenter of G
Description
Text
The barycenter of a graph is the subgraph induced by all the vertices with eccentricity equal to the graph's radius, in other words, it is the subgraph induced by the center of a graph.
Example
barycenter pathGraph 6
barycenter completeGraph 6
SeeAlso
center
///
--complementGraph
doc ///
Key
complementGraph
(complementGraph,Graph)
Headline
Returns the complement of a graph
Usage
G' = complementGraph G
Inputs
G:Graph
Outputs
G':Graph
The complement graph of G
Description
Text
The complement graph of a graph G is the graph G^c where any two vertices are adjacent in G^c iff they are not adjacent in G. The original vertex set is preserved, only the edges are changed.
Example
G = cycleGraph 4
complementGraph G
///
--digraphTranspose
doc ///
Key
digraphTranspose
(digraphTranspose,Digraph)
Headline
returns the transpose of a Digraph
Usage
G = digraphTranspose D
Inputs
D:Digraph
Outputs
G:Digraph
the transpose digraph of D
Description
Text
The transpose of a digraph D is the graph formed by taking every edge (u,v) in D and changing it to (v,u). Intuitively, it reverses the direction of all the edges while keeping the same vertex set. One can also view the transpose in terms of adjacency matrices, where the adjacency matrix of the transpose of D is the transpose of the adjacency matrix of D. In this way, we quickly see that the transpose of a transpose digraph is the original digraph, and that this operator is trivial for simple graphs since they have symmetric matrices.
Example
D = digraph ({{1,2},{2,3},{3,4},{4,1},{1,3},{4,2}},EntryMode=>"edges")
D' = digraphTranspose D
D'' = digraphTranspose D'
///
--lineGraph
doc ///
Key
lineGraph
(lineGraph, Graph)
Headline
Returns the line graph of an undirected graph
Usage
L = lineGraph G
Inputs
G:Graph
Outputs
L:Graph
The line graph of G
Description
Text
The line graph L of an undirected graph G is the graph whose
vertex set is the edge set of the original graph G and in
which two vertices are adjacent if their corresponding
edges share a common endpoint in G.
Example
G = graph({{1,2},{2,3},{3,4},{4,1},{1,3},{4,2}},EntryMode=>"edges")
lineGraph G
SeeAlso
///
--underlyingGraph
doc ///
Key
underlyingGraph
(underlyingGraph, Digraph)
Headline
Returns the underlying graph of a digraph
Usage
G = underlyingGraph D
Inputs
D:Digraph
Outputs
G:Graph
The underlying graph of digraph D
Description
Text
The underlying graph of a digraph is the simple graph constructed by all edges {u,v} such that (u,v) or (v,u) is a directed edge in the digraph.
Example
D = digraph hashTable{1 => {2,3}, 2 => {1,3}, 3 => {}};
underlyingGraph D
SeeAlso
///
--------------------------------
--Graphs: Enumerators
--------------------------------
--barbellGraph
doc ///
Key
barbellGraph
(barbellGraph, ZZ)
Headline
Returns the barbell graph
Usage
G = barbellGraph n
Inputs
n:ZZ
Outputs
G:Graph
The barbell graph
Description
Text
The barbell graph corresponding to an integer n is formed by the disjoint union of two complete graphs on n vertices joined together by exactly on edge connecting these complete graphs.
Example
G = barbellGraph 6
///
--circularLadder
doc ///
Key
circularLadder
(circularLadder, ZZ)
Headline
Returns a circular ladder graph
Usage
G = circularLadder n
Inputs
n:ZZ
Outputs
G:Graph
The circular ladder graph
Description
Text
The circular ladder graph corresponding to an integer n is a ladder of size n with two extra edges that connect the each top vertex with its respective bottom vertex. This creates two cycles, one inside and the other outside, that are connected by edges.
Example
G = circularLadder 5
SeeAlso
ladderGraph
///
--cocktailParty
doc ///
Key
cocktailParty
(cocktailParty, ZZ)
Headline
Returns a cocktail party graph
Usage
G = cocktailParty n
Inputs
n:ZZ
The number of vertices on each side; there will be 2*n total vertices
Outputs
G:Graph
The cocktail party graph
Description
Text
The cocktail party graph with respect to an integer n is a graph with 2*n vertices. Its edge set is formed by taking a disjoint union of n path graphs on 2 vertices and taking its complement, yielding an edge set of every possible edge except for those that were initially adjacent on the ladder.
Example
cocktailParty 4
///
--completeGraph
doc ///
Key
completeGraph
(completeGraph, ZZ)
Headline
Constructs a complete graph
Usage
K = completeGraph n
Inputs
n:ZZ
Outputs
K:Graph
The complete graph with n vertices
Description
Text
A complete graph on n vertices is a graph in which all the vertices are adjacent to each other.
Example
K = completeGraph 5
///
--completeMultipartiteGraph
doc ///
Key
completeMultipartiteGraph
(completeMultipartiteGraph, List)
Headline
constructs a complete multipartite graph
Usage
G = completeMultipartiteGraph P
Inputs
P:List
if P has k elements, the graph is k-partite. P_i determines how many vertices are in each partite group
Outputs
G:Graph
a complete multipartite graph
Description
Text
A complete multipartite graph is a graph that is first and foremost multi-partite. That is, the vertex set of a complete multipartite graph can be partitioned into k sets such that within each set, none of the vertices are connected by an edge. The second condition is that each vertex is connected to ever vertex except for those in its partition so that it is "almost" a complete graph. For programming this graph, the input is a list P. The length of the list P will be the number of groups of vertices. For example, in a complete bipartite graph, the length of the list would be 2. The entry P_i will determine how many vertices are in each partition; necessarily, we see that the entries of the list must be positive integers.
Example
G = completeMultipartiteGraph {1,2,3}
///
--crownGraph
doc ///
Key
crownGraph
(crownGraph, ZZ)
Headline
Returns a crown graph
Usage
G = crownGraph n
Inputs
n:ZZ
The number of vertices on each side; there will be 2*n total vertices
Outputs
G:Graph
Description
Text
The crown graph with respect to n is a type of bipartite graph. More specifically, it is the complement of the ladder graph with respect to n.
Example
crownGraph 4
SeeAlso
ladderGraph
///
--cycleGraph
doc ///
Key
cycleGraph
(cycleGraph, ZZ)
Headline
Constructs a cycle graph
Usage
C = cycleGraph n
Inputs
n:ZZ
Outputs
C:Graph
The cycle graph with n vertices
Description
Text
A cycle graph is a graph on n vertices in which all the vertices are in a closed chain of edges.
Example
C = cycleGraph 5
///
--doubleStar
doc ///
Key
doubleStar
(doubleStar,ZZ,ZZ)
Headline
returns a double star graph
Usage
G = doubleStar (m,n)
Inputs
n:ZZ
m:ZZ
Outputs
G:Graph
Description
Text
A double star graph is a graph formed by starting with 2 vertices and joining them together. Then each vertex is connected to a fixed amount of leaves (vertices of degree 1) specified by the user in the inputs.
Example
G = doubleStar(4,5)
SeeAlso
starGraph
isLeaf
///
--friendshipGraph
doc ///
Key
friendshipGraph
(friendshipGraph, ZZ)
Headline
Returns a friendship Graph
Usage
G = friendshipGraph n
Inputs
n:ZZ
Outputs
G:Graph
Description
Text
Friendship graphs of size n are a special case of windmill graphs. A friendship graph of size n is n 3-cycles that all share one common vertex.
Example
G = friendshipGraph 4
H = windmillGraph (3,4)
SeeAlso
windmillGraph
///
--generalizedPetersenGraph
doc ///
Key
generalizedPetersenGraph
(generalizedPetersenGraph, ZZ, ZZ)
Headline
Returns a generalized petersen graph
Usage
G = generalizedPetersenGraph (n, k)
Inputs
n:ZZ
The number of vertices will be 2*n, n in the outer ring and n in the inside ring
k:ZZ
The middle ring is a complete graph but looks like a star, k is the number of vertices that get jumped for each connection k must be less than n/2.
Outputs
G:Graph
The generalized petersen graph
Description
Text
The generalized Petersen Graph is a class of graphs with a particular edge set. There are two equal sets of vertices and each set is a cycle graph. This forms two disjoint cyclegraphs. Then each inside edge connects to an adjacent outside edge, similar to the circular ladder graph. The outer loop keeps a more "canonical" order for the cycle, in the sense that it does not "skip" vertices, while the inner cycle takes on a "star-like pattern" that jumps vertices but is still connected.
Example
generalizedPetersenGraph (5,2)
--The standard petersen graph
SeeAlso
circularLadder
///
--graphLibrary
doc ///
Key
graphLibrary
(graphLibrary, String)
Headline
constructs a graph of a type specified in the string input
Usage
G = graphLibrary(name)
Inputs
name:String
Outputs
G:Graph
The graph of the type specified by the String name
Description
Text
The graph library takes in a name of a special graph and constructs a graph of that type. Possible inputs include: "petersen", "bidiakis cube", "desargues", "dodecahedron", "durer", "claw", "cubical", "f26a", "franklin", "chvatal", "heawood", "paw", "mobius", "nauru", "kite", "house", "bull", "bowtie", "dart". Each of these create the special graph described clearly by their name.
Example
G = graphLibrary("petersen")
G = graphLibrary("f26a")
G = graphLibrary("chvatal")
///
--kneserGraph
doc ///
Key
kneserGraph
(kneserGraph, ZZ, ZZ)
Headline
constructs a kneser graph of specified size
Usage
G = kneserGraph(n,k)
Inputs
n:ZZ
k:ZZ
Outputs
G:Graph
The kneser graph constructed with vertices corresponding to the k-element subsets of a set of n elements.
Description
Text
A kneser graph (n,k) has vertices corresponding to the k-element subsets of a set of n elements, where two vertices are adjacent if and only if their corresponding k-element subsets are disjoint.
Example
G = kneserGraph(5,2)
///
--ladderGraph
doc ///
Key
ladderGraph
(ladderGraph, ZZ)
Headline
Returns a ladder graph
Usage
G = ladderGraph n
Inputs
n:ZZ
The length length of the ladder
Outputs
G:Graph
The ladder Graph
Description
Text
A ladder graph of length n is two path graphs of size n each joined by a set of n edges. The first edge connects the top elements, the second the second elements and the last edge connects the bottom elements, making a 2 by n grid that looks like a ladder.
Example
ladderGraph 5
SeeAlso
circularLadder
///
--lollipopGraph
doc ///
Key
lollipopGraph
(lollipopGraph, ZZ, ZZ)
Headline
constructs a lollipop graph
Usage
G = lollipopGraph (m, n)
Inputs
m:ZZ
The number of vertices in the complete graph element
n:ZZ
The length of stem coming out of the complete graph element
Outputs
G:Graph
The lollipop graph
Description
Text
A lollipop graph is a graph that is the union of two major elements. The "candy" portion is a complete graph of size m. Coming out of this is the stick or stem, just a path graph of size n. The combination of these yields a lollipop graph.
Example
lollipopGraph (6,2)
SeeAlso
rattleGraph
///
--monomialGraph
doc///
Key
monomialGraph
(monomialGraph, MonomialIdeal, ZZ)
Headline
Returns a monomial graph
Usage
G = monomialGraph(I,n)
Inputs
I:MonomialIdeal
This monomial ideal be part of forming a quotient ring with respect to the ambient ring the ideal is in
n:ZZ
This integer determines the degree of monomials that will be considered
Outputs
G:Graph
The monomial graph
Description
Text
The monomial graph with respect to a monomial ideal and an integer n is a graph with a vertex set of the monomials of the expression of the sum of the generators of the ambient ring for I to the power n. The edge set is formed by the rule that there is an edge between two of the vertices (which we are reminded are monomials) if and only if the degree of the least common multiple of the two vertices is n+1.
Example
R = QQ[x,y];
I = monomialIdeal (x^3, y^2*x);
monomialGraph (I, 3)
SeeAlso
lcm
///
--pathGraph
doc///
Key
pathGraph
"pathGraph(ZZ)"
Headline
A method that makes a path graph
Usage
P = pathGraph n
Inputs
n:ZZ
Outputs
P:Graph
the path grah of n vertices
Description
Text
A path graph on n vertices is a cycle graph of n vertices minus one edge.
Example
pathGraph 5
SeeAlso
cycleGraph
///
--rattleGraph
doc///
Key
rattleGraph
(rattleGraph, ZZ, ZZ)
Headline
Returns a rattle graph
Usage
G = rattleGraph (n, k)
Inputs
n:ZZ
n determines the amount of vertices for the bulb or rattle part of the graph
k:ZZ
k determines the length of the stem coming out of the rattle part of the graph
Outputs
G:Graph
Description
Text
The rattle graph is the union of two graphs. The rattle or bulb part of the graph is simply an n-cycle. This n cycle is joined to a stem or handle of a rattle of length k, so the second piece is just a path graph on k vertices.
Example
rattleGraph (6, 3)
SeeAlso
lollipopGraph
///
--starGraph
doc ///
Key
starGraph
(starGraph, ZZ)
Headline
Returns a star graph
Usage
G = starGraph n
Inputs
n:ZZ
Outputs
G:Graph
Description
Text
The star graph is a special class of the general windmill graph class, in particular, it is windmill(2,n). A star graph is best visualized having one vertex in the center of a circle of other vertices. The edge set is formed by connecting this center vertex to each of the outside vertices. The outside vertices are only connected to the center vertex.
Example
starGraph 5
SeeAlso
windmillGraph
///
--thresholdGraph
doc ///
Key
thresholdGraph
(thresholdGraph, List)
Headline
A method that generates a threshold graph from a binary list
Usage
G = thresholdGraph L
Inputs
L:List
This list is of 0's and 1's only
Outputs
G:Graph
Description
Text
A threshold graph is a graph that is constructed by starting with an isolated vertex and iteratively adding another isolated vertex or a vertex that shares an edge with each vertex generated before it (the dominating vertices). The isolated vertices are represented by 0's and the dominating vertices are represented by 1's. In this method, the initial vertex is implicit and by default is constructed, so the first entry need not always be 0 in the list.
Example
L = {1,0,0,1,0,1}
thresholdGraph L
///
--wheelGraph
doc ///
Key
wheelGraph
(wheelGraph, ZZ)
Headline
Constructs a wheel graph
Usage
G = wheelGraph n
Inputs
n:ZZ
Outputs
G:Graph
The wheel graph with n vertices
Description
Text
A wheel graph is a cycle graph on n-1 vertices with an extra single vertex adjacent to every vertex in the cycle.
Example
G = wheelGraph 6
SeeAlso
cycleGraph
windmillGraph
///
--windmillGraph
doc ///
Key
windmillGraph
(windmillGraph, ZZ, ZZ)
Headline
Constructs a windmill graph
Usage
G = windmillGraph(k,d)
Inputs
k:ZZ
d:ZZ
Outputs
G:Graph
The windmill graph constructed by joining d copies of the complete graph K_k at a shared vertex.
Description
Text
A whidmill joins d amount of copies of a complete graph on k vertices at exactly one shared vertex.
Example
G = windmillGraph(4,5)
SeeAlso
completeGraph
wheelGraph
starGraph
friendshipGraph
///
--------------------------------
--Graphs: Cut Properties
--------------------------------
--edgeConnectivity
doc ///
Key
edgeConnectivity
(edgeConnectivity, Graph)
Headline
computes the edge connectivity of a graph
Usage
C = edgeConnectivity G
Inputs
G:Graph
Outputs
C:ZZ
the edge connectivity of a graph
Description
Text
The edge connectivity of a graph is the smallest amount of edges that need be removed from a graph to make it not connected. This corresponds to the size of the edge cuts. A not connected graph has edge connectivity equal to 0.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{4,5},{5,3}},EntryMode=>"edges");
edgeConnectivity G
SeeAlso
edgeCuts
vertexConnectivity
///
--edgeCuts
doc ///
Key
edgeCuts
(edgeCuts, Graph)
Headline
returns the edge cuts of a graph
Usage
C = edgeCuts G
Inputs
G:Graph
Outputs
C:List
the edge cuts of a graph
Description
Text
An edge cut is a minimal set of edges that, when removed from a graph, make the graph not connected. If the graph is already not connected, the method returns the empty set.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{4,5},{5,3}},EntryMode=>"edges");
edgeCuts G
SeeAlso
vertexCuts
minimalVertexCuts
edgeConnectivity
///
--minimalVertexCuts
doc ///
Key
minimalVertexCuts
(minimalVertexCuts, Graph)
Headline
finds the minimal vertex cuts of a graph
Usage
C = minimalVertexCuts G
Inputs
G:Graph
Outputs
C:List
the minimal vertex cuts of a graph
Description
Text
A vertex cut is a set of vertices that, when removed from a graph, make the graph have more than one component. The minimal vertex cuts are the only the vertex cuts removing only the smallest amount of vertices. If the graph is complete, it has no vertex cuts, so the method returns an empty list.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{4,5},{5,3}},EntryMode=>"edges");
minimalVertexCuts G
SeeAlso
vertexCuts
vertexConnectivity
///
--minimalDegree
doc ///
Key
minimalDegree
(minimalDegree, Graph)
Headline
computes the minimal degree of a graph
Usage
d = minimalDegree G
Inputs
G:Graph
Outputs
d:ZZ
the minimal degree of a graph
Description
Text
This computes the minimal vertex degree of an undirected
graph.
Example
G = graph({{1,2}});
minimalDegree G
SeeAlso
degree
///
--vertexConnectivity
doc ///
Key
vertexConnectivity
(vertexConnectivity, Graph)
Headline
computes the vertex connectivity of a graph
Usage
C = vertexConnectivity G
Inputs
G:Graph
Outputs
C:ZZ
the vertex connectivity of a graph
Description
Text
The vertex connectivity of a graph is the smallest amount of vertices that need be removed from a graph to make it not connected or have one vertex. This corresponds to the size of the smallest vertex cut. A not connected graph has connectivity equal to 0.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{4,5},{5,3}},EntryMode=>"edges");
vertexConnectivity G
SeeAlso
minimalVertexCuts
vertexCuts
edgeConnectivity
///
--vertexCuts
doc ///
Key
vertexCuts
(vertexCuts, Graph)
Headline
lists all the vertex cuts of a graph
Usage
C = vertexCuts G
Inputs
G:Graph
Outputs
C:List
the list of vertex cuts of a graph
Description
Text
A vertex cut is a set of vertices that, when removed from a graph, make the graph have more than one component. The complete graph has no vertex cuts, so the method returns an empty list.
Example
G = cycleGraph 5;
vertexCuts G
SeeAlso
minimalVertexCuts
vertexConnectivity
edgeCuts
///
--------------------------------
--Graphs: Properties
--------------------------------
--breadthFirstSearch
doc ///
Key
breadthFirstSearch
(breadthFirstSearch, Digraph, Thing)
Headline
runs a breadth first search on the digraph starting at a specified node
Usage
bfs = breadthFirstSearch(D,v)
Inputs
D:Digraph
v:Thing
Outputs
bfs:List
A list of the vertices of D in order discovered by the breadth first search
Description
Text
A breadth first search begins the search at the specified vertex of a digraph, followed by that vertex's children (or in the case of an undirected graph, its neighbors), followed by their children (or neighbors), etc, until all the descendants are exhausted, and returns a list, such that the list's index number indicates the depth level of the vertex, of lists of the vertices in order searched.
Example
D = digraph ({{0,1},{0,2},{2,3},{3,4},{4,2}},EntryMode=>"edges");
bfs = breadthFirstSearch(D,0)
G = cycleGraph 6
bfs = breadthFirstSearch(G,3)
SeeAlso
reverseBreadthFirstSearch
depthFirstSearch
topologicalSort
///
--center
doc ///
Key
center
(center,Graph)
Headline
Returns the center of a graph
Usage
L = center G
Inputs
G:Graph
Outputs
L:List
This is a list of the vertices of G that form the center of G
Description
Text
The center of a graph G is defined to be the set of all vertices of G such that the eccentricity of the vertex is equal to the graph's radius. This list often will contain 1 member, for example, path graphs on with an odd amount of vertices. It can also contain all the vertices (such as complete graphs).
Example
center graphLibrary "dart"
SeeAlso
barycenter
eccentricity
radius
///
--children
doc ///
Key
children
(children, Digraph, Thing)
Headline
returns the children of a vertex of a digraph
Usage
C = children (D, v)
Inputs
D:Digraph
v:Thing
the vertex that we want to find the children of
Outputs
C:Set
a set of the children of v
Description
Text
The children of v are the all the vertices u such that {v,u} is in the edge set of the digraph D. So the children of a vertex v are exactly those vertices on a directed graph that v points to.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
children(D, b)
SeeAlso
descendants
///
--chromaticNumber
doc ///
Key
chromaticNumber
(chromaticNumber,Graph)
Headline
Computes the chromatic number of a graph
Usage
chi = chromaticNumber G
Inputs
G:Graph
Outputs
chi:ZZ
The chromatic number of G
Description
Text
The chromatic number of G is chi(G) = min{k | there exists a k-coloring of G}. A k-coloring of G is a partition into k sets of vertices such that in each of these sets, none of the members form edges with each other.
Example
G = cycleGraph 5;
chromaticNumber G
SeeAlso
independenceNumber
///
--cliqueComplex
doc ///
Key
cliqueComplex
(cliqueComplex,Graph)
Headline
Returns the clique complex of a graph
Usage
clG = cliqueComplex G
Inputs
G:Graph
Outputs
clG: SimplicialComplex
The clique complex of G
Description
Text
The clique complex of a graph G is the set of all cliques of G.
Example
G = graph(toList(1..4),{{1, 2}, {1, 3}, {2, 3}, {3, 4}});
cliqueComplex G
SeeAlso
independenceComplex
cliqueNumber
///
-- cliqueNumber
doc ///
Key
cliqueNumber
(cliqueNumber,Graph)
Headline
Returns the clique number of a graph
Usage
omega = cliqueComplex G
Inputs
G:Graph
Outputs
omega:ZZ
the clique number of G
Description
Text
The clique number is the maximum number of vertices comprising a clique in G. A clique in a graph G is a set of vertices such that all the vertices are mutually adjacent (they are all connected to each other).
Example
G = graph({{1, 2}, {1, 3}, {2, 3}, {3, 4}},EntryMode=>"edges");
cliqueNumber G
SeeAlso
independenceNumber
cliqueComplex
///
--closedNeighborhood
doc ///
Key
closedNeighborhood
(closedNeighborhood, Graph, Thing)
Headline
Returns the closed neighborhood of a vertex of a graph
Usage
N = closedNeighborhood(G,v)
Inputs
G:Graph
v:Thing
Outputs
N:List
The closed neighborhood of vertex v in graph G
Description
Text
The closed neighborhood of a vertex v just the union of the open neighborhood (or neighbors) of v and the vertex v itself
Example
G = cycleGraph 4;
closedNeighborhood(G,2)
SeeAlso
neighbors
///
--missing documentation for clusteringCoefficient
--connectedComponents
doc ///
Key
(connectedComponents, Graph)
Headline
Computes the connected components of a graph
Usage
C = connectedComponents G
Inputs
G:Graph
Outputs
C:List
The list of connected components of G
Description
Text
A connected component is a list of vertices of a graph that are connected, in other words there exists a path of edges between any two vertices in the component.
Example
G = graph(toList(1..8),{{1,2},{2,3},{3,4},{5,6}});
connectedComponents G
SeeAlso
isConnected
numberOfComponents
///
--coverIdeal
doc ///
Key
coverIdeal
(coverIdeal, Graph)
Headline
Returns the vertex cover ideal of a graph
Usage
J = coverIdeal G
Inputs
G:Graph
Outputs
J:Ideal
The vertex cover ideal of a graph G
Description
Text
The vertex cover ideal of a graph G is the ideal generated by (m_s | s in [n] is a vertex cover of G), where m_s = product_(i in S)(x_i)
Example
G = graph({{1, 2}, {1, 3}, {2, 3}, {3, 4}},EntryMode=>"edges");
coverIdeal G
SeeAlso
edgeIdeal
vertexCovers
vertexCoverNumber
///
--criticalEdges
doc ///
Key
criticalEdges
(criticalEdges, Graph)
Headline
Finds the critical edges of a graph
Usage
C = criticalEdges G
Inputs
G:Graph
Outputs
C:List
the critical edges of G
Description
Text
A critical edge is an edge such that the removal of the edge from the graph increases the graph's independence number.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{4,1},{4,2},{4,5}},EntryMode=>"edges");
criticalEdges G
SeeAlso
independenceNumber
///
--degeneracy
doc ///
Key
degeneracy
(degeneracy, Graph)
Headline
Computes the degeneracy of a graph
Usage
d = degeneracy G
Inputs
G:Graph
Outputs
d:ZZ
Description
Text
The degeneracy of a graph is the maximum degree of all vertices in any subgraph of G. This is essentially equivalent to the coloring number of G, which is the least number k such that there exists an ordering of the vertices of G in which each vertex has less than k neighbors earlier in the ordering. The coloring number is equal to the degeneracy plus one.
Example
G = completeGraph 10;
degeneracy G
SeeAlso
///
--degreeCentrality
doc ///
Key
degreeCentrality
(degreeCentrality, Graph, Thing)
Headline
Returns the degreeCentrality of a vertex of a graph
Usage
x = degreeCentrality (G, v)
Inputs
G:Graph
v:Thing
v must be a vertex of G
Outputs
x:RR
x is a real number between 0 and 1
Description
Text
The degreeCentrality of a vertex of a graph is the degree of a vertex divided by 2 times the number of edges of the graph. Intuitively, this number will give a measure of how "central" a vertex is in a graph. In other words, if a vertex has a relatively high degreeCentrality, it is connected to more vertexSet than other vertexSet of G, so it is more central or a bottleneck in the graph. Note that the sum of the degree centralities must be 1.
Example
L = apply(vertexSet pathGraph 5, i -> degreeCentrality (pathGraph 5, i))
sum L
SeeAlso
center
distance
degree
///
--degreeIn
doc ///
Key
degreeIn
(degreeIn, Digraph, Thing)
Headline
returns the "in-degree" of a vertex in a digraph
Usage
x = degreeIn (D, v)
Inputs
D:Digraph
v:Thing
a vertex of D
Outputs
x:ZZ
Description
Text
In a directed graph, we define the degree into a vertex or the "in-degree" of a vertex to be the number of parents of that vertex. Intuitively, this give the number of edges that point into the vertex.
Example
D = digraph({1,2,3,4},{{1,2},{2,3},{3,4},{4,2}});
degreeIn(D, 2)
SeeAlso
degree
degreeOut
parents
///
--degreeOut
doc ///
Key
degreeOut
(degreeOut, Digraph, Thing)
Headline
returns the "out-degree" of a vertex in a digraph
Usage
x = degreeIn (D, v)
Inputs
D:Digraph
v:Thing
a vertex of D
Outputs
x:ZZ
Description
Text
In a directed graph, we define the degree out of a vertex or the "out-degree" of a vertex to be the number of children of that vertex. Intuitively, this give the number of edges pointing out of a vertex to another vertex.
Example
D = digraph({1,2,3,4},{{1,2},{2,3},{3,4},{4,2}});
degreeOut(D, 2)
SeeAlso
degree
degreeIn
children
///
--density
doc ///
Key
density
(density, Graph)
Headline
computes the density of a graph
Usage
d = density G
Inputs
G:Graph
Outputs
d:QQ
the density of G
Description
Text
A dense graph has a high edge to vertex ratio, whereas a sparse graph has a low edge to vertex ratio. Density is equal to 2*|E| divided by |V|*(|V|-1). A complete graph has density 1; the minimal density of any graph is 0.
Example
G = graph({{1,2},{2,3},{3,4},{4,2},{1,4}},EntryMode=>"edges");
density G
SeeAlso
degreeCentrality
///
--depthFirstSearch
doc ///
Key
depthFirstSearch
(depthFirstSearch, Digraph)
Headline
runs a depth first search on the digraph
Usage
dfs = depthFirstSearch D
dfs = depthFirstSearch G
Inputs
D:Digraph
G:Graph
Outputs
dfs:HashTable
A hash table with keys discoveryTime and finishingTime, whose values are hash tables containing for each vertex the discovery time and finishing time, respectively.
Description
Text
A depth first search begins at the first vertex of a graph as a root and searches as far as possible along one branch from that root before backtracking to the next branch to the right. Discovery time denotes the order in which the vertex was searched first; finishing time denotes the time in which the vertex's descendents were all finished.
Example
D = digraph ({{0,1},{1,3},{1,4},{4,7},{4,8},{0,2},{2,5},{2,6}},EntryMode=>"edges")
dfs = depthFirstSearch D
G = cycleGraph 6
dfs = depthFirstSearch G
SeeAlso
breadthFirstSearch
topologicalSort
///
--descendants
doc ///
Key
descendants
(descendants, Digraph, Thing)
Headline
returns the descendants of a digraph
Usage
L = descendants (D, v)
Inputs
D:Digraph
v:Thing
a vertex of the digraph
Outputs
L:Set
a set of all the descendants of v
Description
Text
The descendants of a directed graph are all the vertexSet u of D such that u is reachable from v.
Another way to more intuitively see what the descendants are is to see the descendants of a vertex v
can be found by first taking the children of v. Then if you take the children of each of the
children, and continue the process until the list stops growing, this will form all the descendants of v.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
descendants (D, a)
SeeAlso
children
isReachable
nondescendants
///
--diameter
doc ///
Key
(diameter, Graph)
Headline
Computes the diameter of a graph
Usage
d = diameter G
Inputs
G:Graph
Outputs
d:ZZ
The diameter of G
Description
Text
The diameter of a graph is the maximum of the distances between all the vertexSet of G. If the graph is not connected, the diameter is infinity.
Example
G = graph({{1,2},{2,3},{3,4}},EntryMode=>"edges");
d = diameter G
G = graph({1,2,3,4},{{2,3},{3,4}});
d = diameter G
SeeAlso
distance
distanceMatrix
///
--distance
doc ///
Key
distance
(distance, Digraph, Thing, Thing)
Headline
Computes the distance between two vertexSet in a graph
Usage
d = distance(G,v,u)
Inputs
G:Graph
v:Thing
u:Thing
Outputs
d:ZZ
The distance between vertexSet v and u
Description
Text
The distance between two vertexSet is calculated as the number of edges in the shortest path between the two vertexSet. If the two vertexSet are not connected, the distance between them is infinity by convention.
Example
G = graph({{1,2},{2,3},{3,4}},EntryMode=>"edges");
d = distance (G,1,4)
G = graph({1,2,3,4},{{2,3},{3,4}});
d = distance(G, 1, 4)
SeeAlso
(diameter, Graph)
distanceMatrix
///
--distanceMatrix
doc ///
Key
distanceMatrix
(distanceMatrix, Digraph)
Headline
Computes the distance matrix of a digraph
Usage
M = distanceMatrix(G)
Inputs
G:Digraph
Outputs
M:Matrix
the distance matrix of G
Description
Text
The distance matrix is the matrix where entry M_(i,j) corresponds to the distance between vertex indexed i and vertex indexed j in the specified graph. If the distance between two vertexSet is infinite (i.e. the vertexSet are not connected) the matrix lists the distance as -1.
Example
G = graph({{1,2},{2,3},{3,4}},EntryMode=>"edges");
d = distanceMatrix G
G = digraph({1,2,3,4},{{2,3},{3,4}},EntryMode=>"edges");
d = distanceMatrix G
SeeAlso
(diameter, Graph)
distance
///
--eccentricity
doc ///
Key
eccentricity
(eccentricity,Graph,Thing)
Headline
Returns the eccentricity of a vertex of a graph
Usage
k = eccentricity (G, v)
Inputs
G:Graph
G must be a connected graph
v:Thing
v needs to be a vertex of the graph
Outputs
k:ZZ
Description
Text
The eccentricity of a vertex is the maximal distance between the given vertex and any other vertex in the graph. It gives a measure of how far away a vertex is from the rest of the graph.
Example
eccentricity(pathGraph 5, 2)
eccentricity(pathGraph 5, 1)
eccentricity(pathGraph 5, 0)
SeeAlso
distance
radius
isConnected
///
--edgeIdeal
doc ///
Key
edgeIdeal
(edgeIdeal, Graph)
Headline
returns the edge ideal of a graph
Usage
I = edgeIdeal G
Inputs
G:Graph
Outputs
I:Ideal
the edge ideal of a graph G
Description
Text
The edge ideal of a graph G is the ideal generated by the minimal nonfaces of the independence complex of G.
Example
G = graph({{1, 2}, {1, 3}, {2, 3}, {3, 4}},EntryMode=>"edges");
edgeIdeal G
SeeAlso
coverIdeal
independenceComplex
///
--expansion
doc ///
Key
expansion
(expansion, Graph)
Headline
returns the expansion of a graph
Usage
h=expansion G
Inputs
G:Graph
Outputs
h:QQ
the expansion of a graph G
Description
Text
The expansion of a subset S of vertices is the ratio of
the number of edges leaving S and the size of S. The
(edge) expansion of a graph G is the minimal expansion of
all not too large subsets of the vertex set. The expansion
of a disconnected graph is 0 whereas the expansion of the
complete graph on n vertices is ceiling(n/2)
Example
G = graph({{1, 2}, {1, 3}, {2, 3}, {3, 4}},EntryMode=>"edges");
expansion G
expansion pathGraph 7
///
--findPaths
doc ///
Key
findPaths
(findPaths, Digraph, Thing, ZZ)
Headline
finds all the paths in a digraph of a given length starting at a given vertex
Usage
F = findPaths(D,v,l)
Inputs
D:Digraph
v:Thing
vertex at which paths start
l:ZZ
length of desired paths
Outputs
F:List
list of paths starting at v of length l
Description
Text
The method will return a list of all the paths of length l starting at a vertex v in the digraph D. The method is compatible for graphs with loops or cycles, as variables can be repeatedly visited in paths.
Example
D = digraph(toList(1..5), {{1,2},{1,3},{2,5},{2,4}})
F = findPaths(D,1,2)
D = digraph(toList(a..d), {{a,c},{a,b},{b,b},{b,d}})
F = findPaths(D,a,100)
SeeAlso
distance
distanceMatrix
///
--floydWarshall
doc ///
Key
floydWarshall
(floydWarshall, Digraph)
Headline
runs the Floyd-Warshall algorithm on a digraph to determine the minimum distance from one vertex
Usage
F = floydWarshall D
Inputs
D:Digraph
Outputs
F:HashTable
A hash table with the keys representing pairs of vertexSet (u,v) and the value being the distance from u to v.
Description
Text
The distance from one vertex u to another v in digraph D is the minimum number of edges forming a path from u to v. If v is not reachable from u, the distance is infinity; if u = v, the distance is 0.
Example
D = digraph({{0,1},{0,2},{2,3},{3,4},{4,2}},EntryMode=>"edges")
F = floydWarshall D
SeeAlso
distance
distanceMatrix
///
--forefathers
doc ///
Key
forefathers
(forefathers,Digraph,Thing)
symbol foreFathers
Headline
returns the forefathers of a digraph
Usage
L = forefathers (D, v)
Inputs
D:Digraph
v:Thing
v must be a vertex of D
Outputs
L:Set
a set of all the forefathers of v in D
Description
Text
The forefathers of a vertex v in a digraph D are all the vertexSet u in D such that v is reachable from u. Another way to more intuitively see what the forefathers are is to see the forefathers of a vertex v can be found by first taking the parents of v. Then if you find the parents of each of the parents of v, and continue the process until the list stops growing, this will form all the descendants of v.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
forefathers (D, d)
Caveat
The forefathers of a vertex in a digraph are more commonly known as the ancestors. But ancestors is an entirely different function in Macaulay 2, so forefathers is the convention we will use
SeeAlso
isReachable
parents
///
--girth
doc ///
Key
girth
(girth, Graph)
Headline
A method for computing the girth of a graph
Usage
g = girth G
Inputs
G:Graph
Outputs
g:ZZ
the girth of G
Description
Text
This method computes the girth (the smallest n such that G contains an n-cycle) of any graph. If the graph has no n-cycle as a subgraph, the output will be infinity.
Example
girth completeGraph 6
girth pathGraph 6
///
--independenceComplex
doc ///
Key
independenceComplex
(independenceComplex, Graph)
Headline
constructs the independence complex of a graph
Usage
indG = independenceComplex G
Inputs
G:Graph
Outputs
indG:SimplicialComplex
the independence complex of G
Description
Text
The independence complex of a graph G is the set of all the independent sets of G.
Example
G = graph({{1,2},{2,3},{3,4},{4,5}},EntryMode=>"edges");
independenceComplex G
SeeAlso
independenceNumber
cliqueComplex
///
--independenceNumber
doc ///
Key
independenceNumber
(independenceNumber, Graph)
Headline
computes the independence number of a graph
Usage
alpha = independenceNumber G
Inputs
G:Graph
Outputs
alpha:ZZ
the independence number of G
Description
Text
The independence number of a graph G is the maximum number of vertexSet in any independent set of G.
Example
G = graph({{1,2},{2,3},{3,4},{4,5}},EntryMode=>"edges");
independenceNumber G
SeeAlso
independenceComplex
cliqueNumber
///
--leaves
doc ///
Key
leaves
(leaves, Graph)
Headline
lists the leaves of a tree graph
Usage
L = leaves G
Inputs
G:Graph
Outputs
L:List
list of leaves of a tree graph
Description
Text
A vertex of a tree graph is a leaf if the degree of the vertex is 1
Example
G = graph({{1,2},{1,3},{3,4},{3,5}},EntryMode=>"edges");
leaves G;
SeeAlso
isForest
isLeaf
isTree
///
--lowestCommonAncestors
doc ///
Key
lowestCommonAncestors
(lowestCommonAncestors, Digraph, Thing, Thing)
Headline
determines the lowest common ancestors between two vertexSet
Usage
A = lowestCommonAncestors(D,u,v)
Inputs
D:Digraph
u:Thing
v:Thing
Outputs
A:List
A list of the lowest common ancestors of u and v
Description
Text
The lowest common ancestors between two vertexSet are the vertexSet that are ancestors of both u and v and are the shortest distance from the vertexSet in the digraph.
Example
D = digraph({{0,1},{0,2},{2,3},{3,4},{4,2}},EntryMode=>"edges");
A = lowestCommonAncestors(D,1,3)
SeeAlso
reverseBreadthFirstSearch
forefathers
///
-- neighbors
doc ///
Key
neighbors
(neighbors, Graph, Thing)
Headline
returns the neighbors of a vertex in a graph
Usage
N = neighbors(G,v)
Inputs
G:Graph
v:Thing
Outputs
N:Set
the neighbors of vertex v in graph G
Description
Text
The neighbors of a vertex v are all the vertexSet of G adjacent to v. That is, if u is a neighbor to v, {v,u} is an edge of G.
Example
G = graph({1,2,3,4},{{2,3},{3,4}});
neighbors(G,3)
SeeAlso
nonneighbors
///
--nondescendants
doc ///
Key
nondescendants
(nondescendants, Digraph, Thing)
Headline
returns the nondescendants of a vertex of a digraph
Usage
L = nondescendants (D, v)
Inputs
D:Digraph
v:Thing
a vertex of the digraph
Outputs
L:Set
a set of all the nondescendants of v
Description
Text
The nondescendants of a directed graph are all the vertexSet u of D such that u is not reachable from v.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
nondescendants (D, d)
SeeAlso
children
descendants
isReachable
///
--nonneighbors
doc ///
Key
nonneighbors
(nonneighbors, Graph, Thing)
Headline
returns the non-neighbors of a vertex in a graph
Usage
N = nonneighbors(G,v)
Inputs
G:Graph
v:Thing
Outputs
N:Set
the non-neighbors of vertex v in graph G
Description
Text
The non-neighbors of a vertex v are all the vertexSet of G that are not adjacent to v. That is, if u is a non-neighbor to v, {u,v} is not an edge in G.
Example
G = graph({1,2,3,4},{{2,3},{3,4}});
nonneighbors(G,2)
SeeAlso
neighbors
///
--numberOfComponents
doc ///
Key
numberOfComponents
(numberOfComponents, Graph)
Headline
computes the number of connected components of a graph
Usage
n = numberOfComponents G
Inputs
G:Graph
Outputs
n:ZZ
the number of connected components of G
Description
Text
A connected component is a list of vertexSet of a graph that are connected, i.e. there exists a path of edges between any two vertexSet in the component.
Example
G = graph(toList(1..8),{{1,2},{2,3},{3,4},{5,6}});
numberOfComponents G;
SeeAlso
isConnected
connectedComponents
///
--numberOfTriangles
doc ///
Key
numberOfTriangles
(numberOfTriangles, Graph)
Headline
counts how many subtriangles are present in a graph
Usage
t = numberOfTriangles G
Inputs
G:Graph
Outputs
t:ZZ
number of subtriangles in a graph
Description
Text
A triangle is formed by three vertexSet which are mutually adjacent.
Example
G = graph({{1,2},{2,3},{3,1},{3,4},{2,4}},EntryMode=>"edges");
numberOfTriangles G
SeeAlso
hasOddHole
isCyclic
inducedSubgraph
///
--parents
doc ///
Key
parents
(parents, Digraph, Thing)
Headline
returns the parents of a vertex on a digraph
Usage
P = parents (D, v)
Inputs
D:Digraph
v:Thing
the vertex whose parents we want to find
Outputs
P:Set
the parents of v
Description
Text
The parents of a vertex v in a digraph D are all the vertexSet u in D such that {u,v} is an edge of D. In other words, the parents of v are all the vertexSet that have edges coming out of them that point at v.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
parents (D, b)
SeeAlso
forefathers
///
--radius
doc ///
Key
radius
(radius,Graph)
Headline
Returns the radius of a graph
Usage
r = radius G
Inputs
G:Graph
Outputs
r:ZZ
Description
Text
The radius of a graph is defined to be the minimum of the eccentricities of the vertexSet, i.e, the smallest number k such that for some vertex v, the distance between v and another vertex is less than or equal to k.
Example
radius completeGraph 5
radius pathGraph 5
radius graphLibrary "dart"
SeeAlso
eccentricity
barycenter
distance
///
--reachable
doc ///
Key
reachable
(reachable,Digraph,List)
(reachable,Digraph,Set)
Headline
Returns the vertices reachable in a digraph from a given collection of vertices
Usage
Rl = reachable(D, L)
Rs = reachable(D, S)
Inputs
D:Digraph
L:List
a list of vertices
S:Set
a set of vertices
Outputs
Rl:List
the list of reachable vertices
Rs:Set
the set of reachable vertices
Description
Text
Given a collection of vertices of a digraph, the reachable vertices are those
that are on a path away from a vertices in the collection.
SeeAlso
descendants
isReachable
///
--reverseBreadthFirstSearch
doc ///
Key
reverseBreadthFirstSearch
(reverseBreadthFirstSearch, Digraph, Thing)
Headline
runs a reverse breadth first search on the digraph starting at a specified node
Usage
bfs = reverseBreadthFirstSearch(D,v)
Inputs
D:Digraph
Outputs
bfs:List
A list of the vertexSet of D in order discovered by the breadth first search
Description
Text
A reverse breadth first search first searches the specified of a digraph, followed by that vertex's parents, followed by their parents, etc, until all the ancestors are exhausted, and returns a list, with the index of the item of the list signifying the depth level of the result, of the vertexSet in order searched.
Example
D = digraph ({{0,1},{0,2},{2,3},{3,4},{4,2}},EntryMode=>"edges")
bfs = reverseBreadthFirstSearch(D,2)
SeeAlso
breadthFirstSearch
depthFirstSearch
topologicalSort
///
--sinks
doc ///
Key
sinks
(sinks, Digraph)
Headline
returns the sinks of a digraph
Usage
L = sinks D
Inputs
D:Digraph
digraph whose sinks we are searching for
Outputs
L:List
list of all the sinks (if there are any)
Description
Text
A sink of a Digraph D is a vertex of D that has no children. That is, v is a sink of D if and only if there are only edges pointing into v; none can be pointing out (there is no edge of the form (v,u)).
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
sinks D
SeeAlso
sources
isSink
///
--sources
doc ///
Key
sources
(sources, Digraph)
Headline
returns the sources of a digraph
Usage
L = sources D
Inputs
D:Digraph
digraph whose sources we are searching for
Outputs
L:List
list of all the sources (if there are any)
Description
Text
A source of a Digraph D is a vertex of D that has no parents. That is, v is a source of D if and only if there are only edges pointing from v; none can be pointing into v (there is no edge of the form (v,u)).
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
sources D
SeeAlso
sinks
isSource
///
--spectrum
doc ///
Key
spectrum
(spectrum, Graph)
Headline
Returns the spectrum of a graph
Usage
L = spectrum G
Inputs
G:Graph
Outputs
L:List
Description
Text
The spectrum of a graph G is the set of the eigenvalues of the adjacency matrix A corresponding to G. For simple graphs, these eigenvalues are all real since A must be symmetric. The user should be aware that Macaulay 2 does not give exact values for these eigenvalues, they are numerical approximations, but it is still a good tool to use to check if two graphs are isomorphic; isomorphic graphs share the same spectrum although the converse is not necessarily true.
Example
spectrum completeGraph 6
spectrum graphLibrary "petersen"
///
--vertexCoverNumber
doc ///
Key
vertexCoverNumber
(vertexCoverNumber, Graph)
Headline
returns the vertex cover number of a graph
Usage
v = vertexCoverNumber G
Inputs
G:Graph
Outputs
v:ZZ
the vertex cover number of graph G
Description
Text
The vertex cover number is the minimum length of the set of vertex covers of a graph.
Example
G = graph({{1,2},{1,3},{1,4},{2,3}},EntryMode=>"edges");
vertexCoverNumber G
SeeAlso
vertexCovers
coverIdeal
///
--vertexCovers
doc ///
Key
vertexCovers
(vertexCovers, Graph)
Headline
returns a list of the minimal vertex covers of a graph
Usage
V = vertexCovers G
Inputs
G:Graph
Outputs
V:List
the list of minimal vertex covers of graph G
Description
Text
A vertex cover of G is a set of vertexSet which intersects with every edge of G. In other words, L is a vertex cover of a graph if and only if their does not exist an edge {u,v} such that both u and v are not in L.
Example
G = graph({{1,2},{1,3},{1,4},{2,3}},EntryMode=>"edges");
vertexCovers G
SeeAlso
vertexCoverNumber
coverIdeal
///
------------------------------------------
--Boolean Methods
------------------------------------------
--hasEulerianTrail
doc ///
Key
hasEulerianTrail
(hasEulerianTrail, Graph)
(hasEulerianTrail, Digraph)
Headline
determines whether a graph or a digraph has an Eulerian trail
Usage
E = hasEulerianTrail G
E = hasEulerianTrail D
Inputs
G:Graph
D:Digraph
Outputs
E:Boolean
whether G or D has an Eulerian trail
Description
Text
A graph has an Eulerian trail if there is a path in the graph that visits each edge exactly once. A digraph has a Eulerian trail if there is a directed path in the graph that visits each edge exactly once. An Eulerian trail is also called an Eulerian path. Unconnected graphs can have a Eulerian trail, but all vertices of degree greater than 0 of a graph (or all vertices of degree greater than 0 in the underlying graph of a digraph) must belong to a single connected component.
Example
G = cycleGraph 5;
hasEulerianTrail G
D = digraph(toList(1..4), {{1,2},{2,3},{3,4}});
hasEulerianTrail D
SeeAlso
isEulerian
///
--hasOddHole
doc ///
Key
hasOddHole
(hasOddHole, Graph)
Headline
checks whether a graph has a odd hole
Usage
oddHole = hasOddHole G
Inputs
G:Graph
Outputs
oddHole:Boolean
whether the graph has an odd hole
Description
Text
A graph has an odd hole if it has an induced cycle that is odd and has length of at least 5.
Example
G = graph({{1,2},{2,3},{3,4},{4,5}},EntryMode=>"edges");
hasOddHole G
SeeAlso
cycleGraph
isPerfect
isChordal
///
--isBipartite
doc ///
Key
isBipartite
(isBipartite, Graph)
Headline
determines whether a graph is bipartite
Usage
b = isBipartite G
Inputs
G:Graph
Outputs
b:Boolean
whether graph G is bipartite
Description
Text
A graph is bipartite if it has a chromatic number less than or equal to 2.
Example
G = graph({{0,1},{1,2},{2,4},{3,4},{4,5}},EntryMode=>"edges");
isBipartite G
SeeAlso
bipartiteColoring
///
--isCM
doc ///
Key
isCM
(isCM, Graph)
Headline
determines if a graph is Cohen-Macaulay
Usage
c = isCM G
Inputs
G:Graph
Outputs
c:Boolean
whether the graph is Cohen-Macaulay
Description
Text
This uses the edge ideal notion of Cohen-Macaulayness; a graph is called C-M if and only if its edge ideal is C-M.
Example
G = graph({{1,2},{1,3},{1,4},{2,5},{5,3},{3,2}},EntryMode=>"edges");
isCM G
SeeAlso
edgeIdeal
///
--isChordal
doc ///
Key
isChordal
(isChordal, Graph)
Headline
checks whether a graph is chordal
Usage
c = isChordal G
Inputs
G:Graph
Outputs
c:Boolean
whether the graph is chordal
Description
Text
A graph is chordal if its cycles with at least four vertices contain at least one edge between two vertices which are not adjacent in the cycle.
Example
G = graph({{1,2},{2,3},{3,4},{4,1},{2,4}}, EntryMode => "edges");
isChordal G
SeeAlso
cycleGraph
isPerfect
hasOddHole
///
--isConnected
doc ///
Key
isConnected
(isConnected, Graph)
Headline
determines whether a graph is connected
Usage
C = isConnected G
Inputs
G:Graph
Outputs
C:Boolean
whether a graph is connected
Description
Text
A graph is connected when there exists a path of edges between any two vertices in the graph.
Example
G = graph({{1,2},{2,3},{3,4},{5,6}},EntryMode=>"edges");
isConnected G;
SeeAlso
connectedComponents
numberOfComponents
///
--isCyclic
doc ///
Key
isCyclic
(isCyclic, Graph)
Headline
determines whether a graph is cyclic
Usage
c = isCyclic G
Inputs
G:Graph
Outputs
c:Boolean
whether a graph is cyclic
Description
Text
A graph is cyclic if it is composed of vertices connected by a single chain of edges.
Example
G = graph({{1,2},{2,3},{3,1}},EntryMode=>"edges");
isCyclic G
G = graph({{1,2},{2,3},{3,4}},EntryMode=>"edges");
isCyclic G
SeeAlso
cycleGraph
///
--isCyclic
doc ///
Key
(isCyclic, Digraph)
Headline
determines whether a digraph is cyclic
Usage
C = isCyclic D
Inputs
D:Digraph
Outputs
C:Boolean
Whether the digraph D is cyclic
Description
Text
A digraph is cyclic if it contains a cycle, i.e. for some vertex v of D, by following the edges of D, one can return to v.
Example
D = digraph ({{0,1},{0,2},{2,3},{3,4},{4,2}},EntryMode=>"edges")
isCyclic D
SeeAlso
isCyclic
--the isCyclic method for graphs!
///
--isEulerian
doc ///
Key
isEulerian
(isEulerian, Graph)
(isEulerian, Digraph)
Headline
determines if a graph or digraph is Eulerian
Usage
E = isEulerian G
E = isEulerian D
Inputs
G:Graph
D:Digraph
Outputs
E:Boolean
whether G or D is Eulerian
Description
Text
A graph is Eulerian if it has a path in the graph that visits each vertex exactly once. A digraph is Eulerian if it has a directed path in the graph that visits each vertex exactly once. Such a path is called an Eulerian circuit. Unconnected graphs can be Eulerian, but all vertices of degree greater than 0 of a graph (or all vertices of degree greater than 0 in the underlying graph of a digraph) must belong to a single connected component.
Example
bridges = graph ({{0,1},{0,2},{0,3},{1,3},{2,3}}, EntryMode => "edges");
E = isEulerian bridges
D = digraph(toList(1..4), {{2,3},{3,4},{4,2}});
E = isEulerian D
SeeAlso
hasEulerianTrail
///
--isForest
doc ///
Key
isForest
(isForest, Graph)
Headline
determines whether a graph is a forest
Usage
f = isForest G
Inputs
G:Graph
Outputs
f:Boolean
whether a graph is a forest
Description
Text
A graph is a forest if it is a disjoint collection of trees.
Example
G = graph({{1,2},{1,3},{6,4},{4,5}},EntryMode=>"edges");
isForest G
SeeAlso
isTree
isLeaf
leaves
///
--isLeaf
doc ///
Key
isLeaf
(isLeaf, Graph, Thing)
Headline
determines whether a vertex is a leaf
Usage
l = isLeaf(G,v)
Inputs
G:Graph
v:Thing
Outputs
l:Boolean
whether vertex v of graph G is a leaf
Description
Text
A vertex of a tree graph is a leaf if its degree is 1
Example
G = graph({{1,2},{1,3},{3,4},{3,5}},EntryMode=>"edges");
isLeaf(G,2)
SeeAlso
isForest
isTree
leaves
///
--isPerfect
doc ///
Key
isPerfect
(isPerfect, Graph)
Headline
checks whether a graph is perfect
Usage
p = isPerfect G
Inputs
G:Graph
Outputs
p:Boolean
whether the graph is perfect
Description
Text
A perfect graph is a graph where the chromatic number of every induced subgraph of G is equal to the clique number in that subgraph.
Example
G = graph {{1,2},{1,3},{1,4},{2,5},{5,3},{3,2}};
isPerfect G
SeeAlso
chromaticNumber
cliqueNumber
hasOddHole
///
--isReachable
doc ///
Key
isReachable
(isReachable, Digraph, Thing, Thing)
Headline
checks if a vertex u is reachable from a vertex v
Usage
r = isReachable(D, u, v)
Inputs
D:Digraph
u:Thing
this is the vertex that we are attempting to reach
v:Thing
this is the vertex that we are starting from
Outputs
r:Boolean
whether or not us is reachable from v
Description
Text
In a Digraph D, a vertex u of D is reachable from another vertex v of D if u is a descendant of v. Alternatively, u is reachable from v if there is some set of vertices u_0, ... , u_n such that u_n = u and u_0 = v and (u_i, u_i+1) is and edge of D for all i from 0 to n-1.
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
isReachable(D, e, a)
isReachable(D, d, e)
SeeAlso
descendants
forefathers
///
--isRegular
doc ///
Key
isRegular
(isRegular, Graph)
Headline
determines whether a graph is regular
Usage
r = isRegular G
Inputs
G:Graph
Outputs
r:Boolean
whether the graph G is regular or not.
Description
Text
A graph is regular if all of its vertices have the same degree.
Example
G = cycleGraph 5;
isRegular G
SeeAlso
completeGraph
cycleGraph
///
--isRigid
doc ///
Key
isRigid
(isRigid,Graph)
Headline
checks if a graph is rigid
Usage
r = isRigid G
Inputs
G:Graph
Outputs
r:Boolean
Description
Text
A drawing of a graph is rigid in the plane if any continuous motion
of the vertices that preserve edge lengths must preserve the distance
between every pair of vertices. A graph is generically rigid if any
drawing of the graph with vertices in general position is rigid. This
method uses Laman's Theorem to determine if a graph is rigid or not.
Example
G = cycleGraph 4;
isRigid G
G' = addEdges' (G, {{1,1},{3,1}})
isRigid G'
///
--isSimple
doc ///
Key
isSimple
(isSimple,Graph)
Headline
checks if a graph is simple
Usage
r = isSimple G
Inputs
G:Graph
Outputs
r:Boolean
Description
Text
A graph is said to be simple if it has a maximum of one edge between each vertex, contains no loops (vertices connected to themselves by edges), and is undirected. Since the Graph Type does not allow for multiple edges and directed edges, it is sufficient to check that the graph has no loops.
Example
G = cycleGraph 5;
isSimple G
G' = addEdge (G, set {1,1});
isSimple G'
///
--isSink
doc ///
Key
isSink
(isSink, Digraph, Thing)
Headline
determines if a vertex of a digraph is a sink or not
Usage
r = isSink (D, v)
Inputs
D:Digraph
v:Thing
the vertex being texted
Outputs
r:Boolean
whether the vertex v is a sink or not
Description
Text
A vertex v of a Digraph D is a sink if v has no children
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
isSink (D,b)
isSink (D,d)
SeeAlso
sinks
///
--isSource
doc ///
Key
isSource
(isSource, Digraph, Thing)
Headline
determines if a vertex of a digraph is a source or not
Usage
r = isSource (D, v)
Inputs
D:Digraph
v:Thing
the vertex being texted
Outputs
r:Boolean
whether the vertex v is a source or not
Description
Text
A vertex v of a Digraph D is a source if v has no parents
Example
D = digraph({a,b,c,d,e},{{a,b},{b,c},{b,d},{e,b}});
isSource (D,c)
isSource (D,e)
SeeAlso
sources
///
--isStronglyConnected
doc ///
Key
isStronglyConnected
(isStronglyConnected,Digraph)
Headline
checks if a digraph is strongly connected
Usage
r = isStronglyConnected D
Inputs
D:Digraph
Outputs
r:Boolean
Description
Text
A digraph is said to be strongly connected if for each vertex u of D, any other vertex of D is reachable from u. An equivalent definition is that D is strongly connected if the distance matrix of D has only positive terms in the non-diagonal entries.
Example
D = digraph({1,2,3,4},{{1,2},{2,3},{3,4},{4,2}});
isStronglyConnected D
D' = digraph({1,2,3,4},{{1,2},{2,1},{2,3},{3,4},{4,2}});
isStronglyConnected D'
SeeAlso
isWeaklyConnected
distanceMatrix
isReachable
///
--isTree
doc ///
Key
isTree
(isTree, Graph)
Headline
determines whether a graph is a tree
Usage
t = isTree G
Inputs
G:Graph
Outputs
t:Boolean
whether a graph is a tree
Description
Text
A graph is a tree if any two vertices are connected by a unique path of edges.
Example
G = graph({{1,2},{1,3},{3,4},{3,5}},EntryMode=>"edges");
isTree G
SeeAlso
isForest
isLeaf
leaves
///
--isWeaklyConnected
doc ///
Key
isWeaklyConnected
(isWeaklyConnected,Digraph)
Headline
checks if a digraph is weakly connected
Usage
r = isWeaklyConnected D
Inputs
D:Digraph
Outputs
r:Boolean
Description
Text
A digraph is said to be weakly connected if the underlying graph of D, that is, the graph formed by taking away direction from the edges so each edge becomes "2-way" again, is connected.
Example
D = digraph({1,2,3,4},{{1,2},{2,3},{3,4},{4,2}});
isWeaklyConnected D
SeeAlso
weaklyConnectedComponents
isStronglyConnected
///
------------------------
--Graph operations
------------------------
--cartesianProduct
doc///
Key
cartesianProduct
(cartesianProduct, Graph, Graph)
Headline
Computes the cartesian product of two graphs
Usage
F = cartesianProduct(G,H)
Inputs
G:Graph
H:Graph
Outputs
F:Graph
The Cartesian Product of G and H
Description
Text
This method will take in any two graphs and output the cartesian product of the two graphs. The vertex set of this new graph is the cartesian product of the vertex sets of the two input graphs. The keys for each vertex will be output as a sequence. Any two vertices (u,u') and (v,v') are adjacent in the cartesian product of G and H if and only if either u = v and u' is adjacent with v' in H, or u' = v' and u is adjacent with v in G.
Example
G = graph({1,2},{{1,2}});
H = graph({3,4,5},{{3,4},{4,5}});
G' = cartesianProduct(G,H)
SeeAlso
strongProduct
directProduct
graphComposition
///
--directProduct
doc ///
Key
directProduct
(directProduct, Graph, Graph)
symbol tensorProduct
Headline
Computes the direct product of two graphs
Usage
F = directProduct(G,H)
Inputs
G:Graph
H:Graph
Outputs
F:Graph
The Direct Product of G and H
Description
Text
This method will take in any two graphs and output the direct product of these two graphs. The vertex set of the direct product of G and H is the cartesian product of G and H's vertex sets. The keys for each vertex will be output as a sequence to represent this. Any two vertices (u,u') and (v,v') form an edge in the direct product of G and G if and only if u' is adjacent with v' and u is adjacent with v in the original graphs.
Example
G = graph({1,2},{{1,2}});
H = graph({3,4,5},{{3,4},{4,5}});
G'= directProduct(G,H)
SeeAlso
graphComposition
strongProduct
cartesianProduct
///
-- disjointUnion
doc ///
Key
disjointUnion
(disjointUnion, List)
Headline
Returns the disjoint union of a list of graphs.
Usage
G = disjointUnion L
Inputs
L:List
Outputs
G:Graph
The disjoint union of the graphs in list L
Description
Text
The disjoint union of a list of graphs is the graph constructed from the unions of their respective vertex sets and edge sets. By default, the vertex set of the union will be listed as sequences.
Example
A = graph({{1,2},{2,3}},EntryMode=>"edges");
B = graph({1,2,3,4,5},{{1,2},{4,5}});
disjointUnion {A,B}
///
--graphComposition
doc///
Key
graphComposition
(graphComposition, Graph, Graph)
Headline
A method for composing two graphs
Usage
F = graphComposition(G,H)
Inputs
G:Graph
H:Graph
Outputs
F:Graph
The Graph Composition of G and H
Description
Text
This method will take in any two graphs and output the composition of the two graphs. The vertex set of the graph composition of G and H is the cartesian product of the vertex sets of G and H. The keys for each vertex will be output as a sequence to represent this. The edge set is formed by the rule that any two vertices (u,v) and (x,y) are adjacent the composition of G and H if and only if either u is adjacent with x in G or u = x and v is adjacent with y in H. Be careful, since this operation is not commutative, and the user needs to be mindful what order the graphs are entered into the method.
Example
G = graph({1,2},{{1,2}});
H = graph({3,4,5},{{3,4},{4,5}})
GH = graphComposition(G,H)
HG = graphComposition(H,G)
SeeAlso
strongProduct
directProduct
cartesianProduct
///
--graphPower
doc ///
Key
graphPower
(graphPower, Graph, ZZ)
Headline
constructs a graph raised to a power
Usage
G' = graphPower(G,k)
Inputs
G:Graph
k:ZZ
Outputs
G':Graph
graph G to the kth power
Description
Text
G^k is the graph with the same vertices as G, where the vertices of G^k are adjacent if they are separated by distance less than or equal to k in graph G. If the diameter of G is d, G^d is the complete graph with the same number of vertices as G.
Example
G = cycleGraph 6;
graphPower(G,2)
SeeAlso
distance
(diameter, Graph)
///
--strongProduct
doc ///
Key
strongProduct
(strongProduct, Graph, Graph)
Headline
a method for taking the strong product of two graphs
Usage
F = strongProduct(G,H)
Inputs
G:Graph
H:Graph
Outputs
F:Graph
The Strong Product of G and H
Description
Text
This method will take in any two graphs and output the strong product of the two graphs. The vertex set of
the strong product of G and H is the cartesian product of the vertex sets of G and H. The keys for each
vertex will be output as a sequence to represent this clearly. The edge set of the strong product of G and H
is formed by the rule any two distinct vertices (u,u') and (v,v') are adjacent in G and H if and only if u'
is adjacent with v' or u'=v' , and u is adjacent with v or u = v.
Example
G = graph({1,2},{{1,2}});
H = graph({3,4,5},{{3,4},{4,5}});
strongProduct(G,H)
SeeAlso
graphComposition
directProduct
cartesianProduct
///
---------------------------
--Graph Manipulations
---------------------------
--addEdges'
doc ///
Key
addEdge
(addEdge, Digraph, Set)
addEdges'
(addEdges', Digraph, List)
Headline
A method for adding edges to a graph
Usage
H = addEdges' (G, L)
H = addEdge (G, S)
Inputs
G:Graph
L:List
This List should be composed of other Lists, just as one would input an edge set
S:Set
This is used when only one edge needs to be used via addEdge
Outputs
H:Graph
The Graph with the new edge
Description
Text
This method will take in a Graph and a List of new edges, and output a graph with these new edges along with the previous edges.
Example
H = cycleGraph 4;
G = addEdge(H, set {0,2})
G = addEdges'(H, {{0,2},{3,1}})
SeeAlso
addVertices
///
--addVertices
doc ///
Key
addVertex
(addVertex, Digraph, Thing)
addVertices
(addVertices, Digraph, List)
Headline
A method for adding a set of vertices to a graph
Usage
H = addVertex (G, v)
H = addVertices (G, L)
Inputs
G:Graph
L:List
list of the names of the new vertices
v:Thing
name of the new vertex
Outputs
H:Graph
This is the graph with the additional vertices specified in L
Description
Text
This method will add vertices (as singletons) to any already present graph. Note that if you add a vertex that is already in the vertex set of the input graph, that vertex will be ignored.
Example
G = completeGraph 4
H = addVertices(G, {3,4,5})
--Notice that since 3 is already a vertex of G, it is ignored
SeeAlso
addEdges'
///
--bipartiteColoring
doc ///
Key
bipartiteColoring
(bipartiteColoring, Graph)
Headline
Returns a coloring of a bipartite graph
Usage
coloring = bipartiteColoring G
Inputs
G:Graph
Outputs
coloring:List
a coloring of bipartite graph G
Description
Text
A graph is bipartite if it has a chromatic number less than or equal to 2. This method colors the graph two colors. In other words, it partitions the graph into two sets such that there is no edge connecting any vertex within each set.
Example
G = graph({{0,1},{1,2},{2,4},{3,4},{4,5}},EntryMode=>"edges");
bipartiteColoring G
SeeAlso
isBipartite
///
--deleteEdges
doc ///
Key
deleteEdges
(deleteEdges, Graph, List)
Headline
Deletes a list of edges from a graph
Usage
G' = deleteEdges(G,E)
Inputs
G:Graph
E:List
Outputs
G':Graph
the graph resulting from deleting edges in list E from graph G
Description
Text
This method deletes the specified edges from the graph, but preserves the original vertex set of the graph, and outputs the adjusted graph.
Example
G = cycleGraph 10;
deleteEdges(G,{{1,2},{3,4},{7,8}})
SeeAlso
deleteVertices
deleteVertex
///
--deleteVertex
doc ///
Key
deleteVertex
(deleteVertex, Graph, Thing)
Headline
a method for deleting the vertex of a graph
Usage
H = deleteVertex(G, v)
Inputs
G:Graph
v:Thing
v should be a member of the vertex set of G
Outputs
H:Graph
The graph with the vertex v and any edges touching it
Description
Text
This is a method that takes in any graph and outputs this graph minus one specified vertex. This will also remove any edge that contained this vertex as one of its entries.
Example
G = cycleGraph 4;
-- the graph
G' = deleteVertex(G,1);
-- the graph G minus vertex 1
SeeAlso
inducedSubgraph
deleteVertices
deleteEdges
///
--delete method for Graphs in package!
--deleteVertices
doc ///
Key
deleteVertices
(deleteVertices, Digraph, List)
Headline
Deletes specified vertices from a digraph or graph
Usage
G' = deleteVertices(G,L)
Inputs
G:Digraph
L:List
Outputs
G':Digraph
Graph with vertices in list L and their incident edges deleted.
Description
Text
Removes specified list of vertices and their incident edges from a graph or digraph.
Example
G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
L = {1,2};
deleteVertices(G,L)
SeeAlso
deleteVertex
inducedSubgraph
deleteEdges
///
--indexLabelGraph
doc ///
Key
indexLabelGraph
(indexLabelGraph, Graph)
(indexLabelGraph, Digraph)
Headline
Relabels the vertices of a graph or digraph according to their indices, indexed from 0.
Usage
G' = indexLabelGraph G
D' = indexLabelGraph D
Inputs
G:Graph
D:Digraph
Outputs
G':Graph
D':Digraph
the graph or digraph with vertices relabeled according to their indices starting from 0.
Description
Text
This method relabels the vertices of a graph or digraph according to their indices. The method indexes from 0 to the number of vertices minus one.
Example
G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
indexLabelGraph G
D = digraph({1,2,3,4,5},{{1,2},{2,3},{3,1},{4,5},{5,4}})
indexLabelGraph D
SeeAlso
reindexBy
///
--inducedSubgraph
doc ///
Key
inducedSubgraph
(inducedSubgraph, Graph, List)
(inducedSubgraph, Digraph, List)
Headline
A method for finding the induced subgraph of any Graph or Digraph
Usage
H = inducedSubgraph(G, L)
D' = inducedSubgraph(D, L)
Inputs
G:Graph
D:Digraph
L:List
This list should contain vertices of G
Outputs
H:Graph
D':Digraph
The subgraph induced by removing the vertices in L
Description
Text
This method takes a graph or digraph and a list as the inputs. The List should be the vertices of the subgraph the user wants to consider, and the output will contain just those vertices and any edges from G that connect them. This method also is a way of iterating deleteVertex several times in a quick way.
Example
G = completeGraph 5
S = {3,4}
inducedSubgraph(G,S)
--Observe that the output is a complete graph with 3 vertices, as desired
D = digraph ({{1,2},{2,3},{3,4},{4,1},{2,4}},EntryMode=>"edges");
D' = inducedSubgraph(D,{1,2,4})
SeeAlso
deleteVertex
///
--reindexBy
doc ///
Key
reindexBy
(reindexBy, Graph, String)
(reindexBy, Digraph, String)
Headline
reindexes the vertices according to the input ordering.
Usage
G' = reindexBy(G, ordering)
D' = reindexBy(D, ordering)
Inputs
G:Graph
D:Digraph
ordering:String
Outputs
G':Graph
D':Digraph
the graph or digraph with vertices reindexed according to the String ordering
Description
Text
This method reindexes the vertices of a specified graph or digraph according to the ordering method entered by the user. The orderings available for graphs are: "maxdegree" (orders the vertices in order of highest to lowest degree), "mindegree" (orders the vertices in order of lowest to highest degree), "random" (orders the vertices randomly), "components" (orders the vertices in the same connected components close together in indices), and "sort" (orders the vertices by sorting their names). For digraphs, the orderings available are: "maxdegreein" (orders the vertices in order of highest in-degree to lowest in-degree), "mindegreein" (orders the vertices in order of lowest in-degree to highest in-degree), "maxdegreeout" (orders the vertices in order of highest out-degree to lowest out-degree), "mindegreeout" (orders the vertices in order of lowest out-degree to highest out-degree), "maxdegree" (orders the vertices in order of highest to lowest degree in the underlying undirected graph), "mindegree" (orders the vertices in order of lowest to highest degree in the underlying undirected graph), "random" (orders the vertices randomly), "sort" (orders the vertices by sorting their names).
Example
G = graph({1,2,3,4,5},{{1,3},{3,4},{4,5}});
reindexBy(G,"maxdegree")
D = digraph({1,2,3,4,5},{{1,2},{2,3},{3,1},{4,5},{5,4}})
reindexBy(D, "mindegreeout")
SeeAlso
reindexBy
///
--spanningForest
doc ///
Key
spanningForest
(spanningForest, Graph)
Headline
constructs a spanning forest of a graph
Usage
F = spanningForest G
Inputs
G:Graph
Outputs
F:Graph
a forest spanning G
Description
Text
A graph is a forest if it is a disjoint collection of trees. A graph is a tree if any two vertices are connected by a unique path of edges. A spanning forest is a forest that spans all the vectors of G using edges of G.
Example
G = cycleGraph 5;
spanningForest G
SeeAlso
isForest
isTree
///
--vertexMultiplication
doc ///
Key
vertexMultiplication
(vertexMultiplication, Graph, Thing, Thing)
Usage
H = vertexMultiplication (G, v, u)
Inputs
G:Graph
u:Thing
u is the new vertex to be added
v:Thing
v is the vertex whose neighbors become the vertices that u connects to.
Outputs
H:Graph
Description
Text
Multiplying the vertex of a graph adds one vertex to the original graph. It also adds several edges, namely, if we are multiplying a vertex v and calling the new vertex u, {u,W} is an edge if and only if {v,w} is an edge.
Example
G = completeGraph 5
H = vertexMultiplication(G, 0, 6)
///
doc ///
Key
topologicalSort
(topologicalSort, Digraph)
(topologicalSort, Digraph, String)
Headline
outputs a list of vertices in a topologically sorted order of a DAG.
Usage
topologicalSort(D,S)
topologicalSort(D)
Inputs
D:Digraph
S:String
Outputs
:List
Description
Text
This function outputs a list of vertices in a topologically sorted order of a directed acyclic graph (DAG).
S provides the preference given to the vertices in order to break ties and provide unique topological sorting to the DAG.
Permissible values of S are: "random", "max", "min", "degree".
S = "random" randomly sort the vertices of graph which have same precedence at any instance of the algorithm to break the ties.
S = "min" sort the vertices according to their indices (from low to high) to break the ties.
S = "max" sort the vertices according to their indices (from high to low) to break the ties.
S = "degree" sort the vertices according to their degree (from low to high) to break the ties.
Example
G = digraph{{5,2},{5,0},{4,0},{4,1},{2,3},{3,1}}
topologicalSort G
topologicalSort(G,"min")
topologicalSort(G,"max")
topologicalSort(G,"random")
topologicalSort(G,"degree")
SeeAlso
topSort
///
--------------------------------------------
-- Documentation topSort
--------------------------------------------
doc ///
Key
topSort
(topSort, Digraph)
(topSort, Digraph, String)
Headline
topologically sort the vertices of a digraph
Usage
topSort(D)
topSort(D,S)
Inputs
D:Digraph
S: String
Outputs
:HashTable
Description
Text
This method outputs a HashTable with keys digraph, map and newDigraph, where digraph is the original digraph,
map is the relation between old ordering and the new ordering of vertices and newDigraph is the Digraph with
topologically sorted vertices. This method needs the input to be directed acyclic graph (DAG).
S provides the preference given to the vertices in order to break ties and provide unique topological sorting to the DAG.
Permissible values of S are: "random", "max", "min", "degree".
S = "random" randomly sort the vertices of graph which have same precedence at any instance of the algorithm to break the ties.
S = "min" sort the vertices according to their indices (from low to high) to break the ties.
S = "max" sort the vertices according to their indices (from high to low) to break the ties.
S = "degree" sort the vertices according to their degree (from low to high) to break the ties.
Example
G = digraph{{5,2},{5,0},{4,0},{4,1},{2,3},{3,1}}
H = topSort G
H#digraph
H#map
topSort(G,"min")
topSort(G,"max")
topSort(G,"random")
topSort(G,"degree")
SeeAlso
topologicalSort
SortedDigraph
newDigraph
///
doc ///
Key
SortedDigraph
Headline
hashtable used in topSort
Description
Text
This is a type of hashtable.The output of @TO topSort@ has class {\tt SortedDigraph}. In the current version of
Graphs (version 0.3.3) the only use of SortedDigraph is in @TO topSort@.
Example
G = digraph{{5,2},{5,0},{4,0},{4,1},{2,3},{3,1}}
H = topSort G
class H
SeeAlso
topSort
newDigraph
topologicalSort
///
doc ///
Key
newDigraph
Headline
key used in the output of topSort
Description
Text
This is a key of the hashtable output @TO SortedDigraph@ of @TO topSort@.
Example
G = digraph{{5,2},{5,0},{4,0},{4,1},{2,3},{3,1}}
H = topSort G
keys H
SeeAlso
topSort
SortedDigraph
topologicalSort
///
doc ///
Key
clusteringCoefficient
(clusteringCoefficient, Graph)
(clusteringCoefficient, Graph, Thing)
Headline
a method for computing the clustering coefficient of a Graph
Usage
c = clusteringCoefficient(G, v)
g = clusteringCoefficient(G)
Inputs
G:Graph
v:Thing
v should be a member of the vertex set of G
Outputs
c:ZZ
The local clustering coefficient for G relative to v.
g:ZZ
The global clustering coefficient for G.
Description
Text
The clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. The global clustering coefficient gives an overall
indication of the interconnectedness of the graph. The local clustering coefficient gives an indication of how embedded a single vertex is in the graph.
Example
clusteringCoefficient cycleGraph 4
clusteringCoefficient completeGraph 4
///
TEST ///
--test expansion of graphs
G=pathGraph(7);
assert(expansion(G)===1/3);
///
TEST ///
--test connectivity
G=completeGraph(5);
assert(vertexConnectivity(G)===4);
assert(edgeConnectivity(G)===4);
H=graph({{1,2},{1,3},{2,4},{3,4},{4,5},{4,6},{5,7},{6,7}});
assert(vertexConnectivity(H)===1);
assert(edgeConnectivity(H)===2);
///
TEST ///
--test cuts
G=completeGraph(4);
--complete graphs have no vertex cuts
assert(vertexCuts(G)==={});
assert(edgeCuts(G)==={{{0,1},{0,2},{0,3}},{{0,1},{1,2},
{1,3}},{{0,2},{1,2},{2,3}},{{0,3},{1,3},{2,3}}});
H=graph({{1,2},{2,3},{3,4},{4,1}});
assert(vertexCuts(H)==={{1,3},{2,4}});
assert(edgeCuts(H)==={{{1,2},{4,1}},{{1,2},{2,3}},
{{4,1},{2,3}},{{1,2},{4,3}},{{4,1},{4,3}},{{2,3},{4,3}}});
///
TEST ///
--vertices of complete graphs start at zero
assert(vertexSet(completeGraph(4))==={0,1,2,3});
--vertices of path graphs start at zero
assert(vertexSet(pathGraph(4))==={0,1,2,3});
///
TEST ///
--check diameter
assert(diameter(pathGraph(7))===6);
///
TEST ///
--check chromatic number
G=starGraph(4);
H=completeGraph(3);
assert(chromaticNumber(G)===2);
assert(chromaticNumber(H)===3);
assert(chromaticNumber(cartesianProduct(G,H))===max(2,3));
///
TEST ///
--check graphs with vertices from different classes
G=graph({{1,2},{a,b},{3,c}});
assert(numberOfComponents(G)===3);
assert(chromaticNumber(G)===2);
assert(isConnected(G)===false);
assert(neighbors(G,a)===set({b}));
assert(deleteEdges(G,{{a,b}})===graph({1,2,a,b,3,c},{{1,2},{c,3}}));
H=digraph({{1,2},{a,b},{3,c}});
assert(children(H,3)===set({c}));
assert(parents(H,c)===set({3}));
assert(degree(H,c)===1);
///
TEST ///
--check properties of empty graph
G=graph({});
assert(vertexSet(G)==={});
assert(expansion(G)===0);
assert(edgeConnectivity(G)===0);
assert(vertexConnectivity(G)===0);
assert(edgeCuts(G)==={{}});
assert(vertexCuts(G)==={});
assert(connectedComponents(G)==={});
assert(cliqueNumber(G)===0);
assert(chromaticNumber(G)===0);
assert(independenceNumber(G)===0);
assert(numberOfComponents(G)===0);
assert(isConnected(G)===true);
assert(isBipartite(G)===true);
assert(isCyclic(G)===true);
assert(isForest(G)===true);
assert(isChordal(G)===true);
assert(isSimple(G)===true);
///
TEST ///
--check rigidity
assert( isRigid ( graph({{0,1},{0,3},{0,4},{1,3},{2,3}},Singletons => {5}) ) === false )
assert( isRigid ( graph({{0,4},{0,5},{0,6},{1,4},{1,5},{1,6},{2,4},{2,5},{2,6}}) ) === true )
assert( isRigid(graph{{0,1}}) === true )
assert( isRigid(graph{{0,1},{1,2}}) === false )
///
TEST ///
D = digraph{{2,1},{3,1}}
assert(topologicalSort D==={2,3,1})
///
TEST ///
D = digraph{{2,1},{3,1}}
assert(topSort D === new SortedDigraph from {map => new HashTable from {1 => 3, 2 => 1, 3
=> 2}, newDigraph => digraph ({1, 2, 3}, {{1, 3}, {2, 3}}), digraph =>
digraph ({2, 1, 3}, {{2, 1}, {3, 1}})})
///
TEST ///
assert Equation(degreeSequence pathGraph 5, {2, 2, 2, 1, 1})
///
end;
loadPackage(Graphs, Reload => true)
restart
uninstallPackage "Graphs"
restart
installPackage "Graphs"
viewHelp Graphs
check Graphs
|