File: doc.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (952 lines) | stat: -rw-r--r-- 29,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
-- -*- coding: utf-8 -*-
--		Copyright 1993-1999 by Daniel R. Grayson

document {
     Key => identity,
     Headline => "the identity function",
     TT "identity x", " -- returns x.",
     PARA{},
     "This is the identity function."
     }

document {
     Key => symbol SPACE, 
     Headline => "blank operator; often used for function application, making polynomial rings",
     SeeAlso =>(symbol SPACE, Function, Thing)		    -- not really a method
     }

document {
     Key => (symbol SPACE, Function, Thing),
     Headline => "function application",
     TT "f x", " -- yields the result of applying the function ", TT "f", " to ", TT "x", ".",
     }

undocumented {
     (symbol *, Number, RingElement),
     (symbol *, RingElement, Number),
    (symbol*,  Number, InfiniteNumber),
    (symbol*,  InfiniteNumber, ZZ),
    (symbol*,  InfiniteNumber, QQ),
    (symbol*,  InfiniteNumber, RR),
    (symbol*,  ZZ, Ideal),
    (symbol*,  ZZ, GradedModuleMap),
    (symbol*,  InfiniteNumber, InfiniteNumber),
    (symbol*,  ZZ, Module),
    (symbol*,  ZZ, MonomialIdeal),
    (symbol*,  String),
    (symbol*,  ZZ, ChainComplexMap),
    }

     
document {
     Key => {symbol*,
    (symbol*,  Ring, Ideal),
    (symbol*,  MutableMatrix, MutableMatrix),
    (symbol*,  Ideal, Module),
    (symbol*,  Ring, RingElement),
    (symbol *,Constant,Constant),
    (symbol *,Constant,InexactNumber),
    (symbol *,Constant,Number),
    (symbol *,InexactNumber,Constant),
    (symbol *,Matrix,Number),
    (symbol *,Number,Constant),
    (symbol *,Number,Matrix),
    (symbol *,QQ,CC),
    (symbol *,QQ,QQ),
    (symbol *,QQ,RR),
    (symbol *,QQ,ZZ),
    (symbol *,RR,CC),
    (symbol *,RR,QQ),
    (symbol *,RR,RR),
    (symbol *,RR,ZZ),
    (symbol *,ZZ,CC),
    (symbol *,ZZ,QQ),
    (symbol *,ZZ,RR),
    (symbol *,ZZ,ZZ),
    (symbol *,CC,CC),
    (symbol *,CC,QQ),
    (symbol *,CC,RR),
    (symbol *,CC,ZZ),
    (symbol *, QQ, RRi),
    (symbol *, RR, RRi),
    (symbol *, RRi, QQ),
    (symbol *, RRi, RR),
    (symbol *, RRi, RRi),
    (symbol *, RRi, ZZ),
    (symbol *, ZZ, RRi),
    (symbol*,  GradedModuleMap, GradedModuleMap),
    (symbol*,  RingElement, Matrix),
    (symbol*,  RingMap, RingMap),
    (symbol*,  RingElement, MutableMatrix),
    (symbol*,  Ring, MonomialIdeal),
    (symbol*,  MonomialIdeal, MonomialIdeal),
    (symbol*,  RingElement, Ideal),
    (symbol*,  Matrix, Vector),
    (symbol*,  MonomialIdeal, Ring),
    (symbol*,  Ring, Vector),
    (symbol*,  RingElement, ChainComplexMap),
    (symbol*,  Ideal, Vector),
    (symbol*,  RingElement, MonomialIdeal),
    (symbol*,  Matrix, RingElement),
    (symbol*,  RingElement, Module),
    (symbol*,  RingElement, GradedModuleMap),
    (symbol*,  Ideal, Ring),
    (symbol*,  ChainComplexMap, ChainComplexMap),
    (symbol*,  RingElement, RingElement),
    (symbol*,  Thing, List),
    (symbol*,  List, Thing),
    (symbol*,  ZZ, ProjectiveHilbertPolynomial),
    (symbol*,  ProjectiveHilbertPolynomial, ZZ),
    (symbol*,  RingElement, Vector),
    (symbol*,  Number, Vector),
    (symbol*,  Vector, RingElement),
    (symbol*,  Vector, Number)
	  },
     Headline => "a binary operator, usually used for multiplication",
     Usage => "x * y",
     "The return type depends on the types of x and y.  If they have the
     same type, then usually the return type is the common type of x and y.",
     PARA{},
     "Multiplication involving ring elements (including integers, rational numbers,
     real and complex numbers), ideals, vectors, matrices, modules is 
     generally the usual multiplication, or composition of functions.",
     PARA{},
     "The intersection of sets is given by multiplication.  See ", TO (symbol*,Set,Set), ".",
     EXAMPLE {
	  "set{hi,you,there} * set{hi,us,here,you}"
	  },
     PARA{},
     "Multiplication involving a list attempts to multiply each element of the list.",
     EXAMPLE {
	  "R = QQ[a..d];",
	  "a * {b,c,d}"
	  },
     PARA{},
     "Multiplication of matrices (", TO (symbol*,Matrix,Matrix),") or ring maps is the same as composition.",
     EXAMPLE {
	  "f = map(R,R,{b,c,a,d})",
	  "g = map(R,R,{(a+b)^2,b^2,c^2,d^2})",
	  "f*g",
	  "(f*g)(a) == f(g(a))"
	  },
     PARA{},
     "Submodules of modules may be produced using multiplication and addition.",
     EXAMPLE {
	  "M = R^2; I = ideal(a+b,c);",
	  "N = I*M + a*R^2",
	  "isHomogeneous N"
	  },
     HEADER3 "Intervals",
     PARA { "If one of the factors is an ", TO "RRi", ", the output is an interval containing all products of pairs in the factors." },
    EXAMPLE {
    "2*interval(1,3)",
    "interval(1,3)*interval(-1,2)",
    "interval(-1,1)*interval(-1,1)"
    },
     SeeAlso =>{ "times", "product"}
     }

document {
     Key => symbol &,
     Headline => "a binary operator",
     }

document {
     Key => (symbol &, ZZ, ZZ),
     Headline => "logical and",
     Usage => "m & n",
     Inputs => {"m", "n"},
     Outputs => {
	  ZZ => {"obtained from the bits of the 
     	       integers ", TT "m", " and ", TT "n", " by logical 'and'."}
	  },
     EXAMPLE "(2^15 + 2^13 + 2^42) & (2^15 + 2^23 + 2^42) == 2^15 + 2^42",
     SeeAlso => {(symbol |,ZZ,ZZ),(symbol ^^,ZZ,ZZ), (symbol ~, ZZ)}
     }

undocumented {
	  (symbol +, Number, RingElement),
	  (symbol +, RingElement, Number)
	  }
document {
     Key => {symbol +,
	  (symbol +, ChainComplexMap, ChainComplexMap),
	  (symbol +, Number, InfiniteNumber),
	  (symbol +, ProjectiveHilbertPolynomial, ProjectiveHilbertPolynomial),
	  (symbol +, ZZ, ProjectiveHilbertPolynomial),
	  (symbol +, ProjectiveHilbertPolynomial, ZZ),
	  (symbol +, MonomialIdeal, MonomialIdeal),
	  (symbol +,CC),
	  (symbol +,CC,CC),
	  (symbol +,CC,QQ),
	  (symbol +,CC,RR),
	  (symbol +,CC,ZZ),
	  (symbol +,Constant),
	  (symbol +,Constant,Constant),
	  (symbol +,Constant,InexactNumber),
	  (symbol +,Constant,Number),
	  (symbol +,InexactNumber,Constant),
	  (symbol +,Number,Constant),
	  (symbol +,QQ),
	  (symbol +,QQ,CC),
	  (symbol +,QQ,QQ),
	  (symbol +,QQ,RR),
	  (symbol +,QQ,ZZ),
	  (symbol +,RR),
	  (symbol +,RR,CC),
	  (symbol +,RR,QQ),
	  (symbol +,RR,RR),
	  (symbol +,RR,ZZ),
	  (symbol +,ZZ),
	  (symbol +,ZZ,CC),
	  (symbol +,ZZ,QQ),
	  (symbol +,ZZ,RR),
	  (symbol +,ZZ,ZZ),
      (symbol +, QQ, RRi),
      (symbol +, RR, RRi),
      (symbol +, RRi, QQ),
      (symbol +, RRi, RR),
      (symbol +, RRi),
      (symbol +, RRi, RRi),
      (symbol +, RRi, ZZ),
      (symbol +, ZZ, RRi),
      (symbol +, RingElement, GradedModuleMap),
	  (symbol +, Matrix, Number),
	  (symbol +, ZZ, ChainComplexMap),
	  (symbol +, ChainComplexMap, ZZ),
	  (symbol +, RingElement, RingElement),
	  (symbol +, InfiniteNumber, InfiniteNumber),
	  (symbol +, Ideal, RingElement),
	  (symbol +, RingElement, ChainComplexMap),
	  (symbol +, MutableMatrix, MutableMatrix),
	  (symbol +, Matrix, Matrix),
	  (symbol +, GradedModuleMap, GradedModuleMap),
	  (symbol +, InfiniteNumber, Number),
	  (symbol +, GradedModuleMap, RingElement),
	  (symbol +, Number, Matrix),
	  (symbol +, Vector),
	  (symbol +, Vector, Vector),
	  (symbol +, Matrix, RingElement),
	  (symbol +, RingElement, Matrix),
	  (symbol +, ChainComplexMap, RingElement)
     	  },
     Headline => "a unary or binary operator, usually used for addition",
     Usage => "+y \n x+y",
     "In most cases, this operator refers to standard addition.",
     PARA{},
     "In many cases, the integer 1 can be used as the identity, and scalars function as multiples
     of the identity.  
     For example, the 1 below refers to the identity matrix
     and the 2 to twice the identity matrix.",
     EXAMPLE lines ///
     	  M = matrix{{1,2,3},{2,3,4},{3,4,6}}
	  M+1, M+2
     ///,
    HEADER3 "Intervals",
    PARA { "If one of the addends is an ", TO "RRi", ", the output is an interval containing all sums of pairs in the addends." },
    EXAMPLE {
        "2+interval(1,3)",
        "interval(1,3)+interval(-1,2)",
        "interval(-1,1)+interval(-1,1)"
    },
     SeeAlso =>{ "plus", "sum"}
     }

undocumented {
     (symbol -, Number, RingElement),
     (symbol -, RingElement, Number),
     }

document {
     Key => {symbol -,
	  (symbol -, ChainComplexMap, ChainComplexMap),
	  (symbol -, ProjectiveHilbertPolynomial, ProjectiveHilbertPolynomial),
	  (symbol -, ProjectiveHilbertPolynomial, ZZ),
	  (symbol -, ZZ, ProjectiveHilbertPolynomial),
	  (symbol -, Number, InfiniteNumber),
	  (symbol -, RingElement, GradedModuleMap),
	  (symbol -, GradedModuleMap),
	  (symbol -, Matrix, Number),
	  (symbol -, ProjectiveHilbertPolynomial),
	  (symbol -, RingElement),
	  (symbol -, RingElement, RingElement),
	  (symbol -, InfiniteNumber),
	  (symbol -, InfiniteNumber, InfiniteNumber),
	  (symbol -, RingElement, ChainComplexMap),
	  (symbol -, ChainComplexMap),
	  (symbol -, MutableMatrix, MutableMatrix),
	  (symbol -, Matrix, Matrix),
	  (symbol -, GradedModuleMap, GradedModuleMap),
	  (symbol -, InfiniteNumber, Number),
	  (symbol -, GradedModuleMap, RingElement),
	  (symbol -, Number, Matrix),
	  (symbol -, MutableMatrix),
	  (symbol -,CC),
	  (symbol -,CC,CC),
	  (symbol -,CC,QQ),
	  (symbol -,CC,RR),
	  (symbol -,CC,ZZ),
	  (symbol -,Constant),
	  (symbol -,Constant,Constant),
	  (symbol -,Constant,InexactNumber),
	  (symbol -,Constant,Number),
	  (symbol -,InexactNumber,Constant),
	  (symbol -,Number,Constant),
	  (symbol -,QQ),
	  (symbol -,QQ,CC),
	  (symbol -,QQ,QQ),
	  (symbol -,QQ,RR),
	  (symbol -,QQ,ZZ),
	  (symbol -,RR),
	  (symbol -,RR,CC),
	  (symbol -,RR,QQ),
	  (symbol -,RR,RR),
	  (symbol -,RR,ZZ),
	  (symbol -,ZZ),
	  (symbol -,ZZ,CC),
	  (symbol -,ZZ,QQ),
	  (symbol -,ZZ,RR),
	  (symbol -,ZZ,ZZ),
      (symbol -, QQ, RRi),
      (symbol -, RR, RRi),
      (symbol -, RRi),
      (symbol -, RRi, QQ),
      (symbol -, RRi, RR),
      (symbol -, RRi, RRi),
      (symbol -, RRi, ZZ),
      (symbol -, ZZ, RRi),
	  (symbol -, Matrix, RingElement),
	  (symbol -, Matrix),
	  (symbol -, RingElement, Matrix),
	  (symbol -, ChainComplexMap, RingElement),
	  (symbol -, Vector, Vector)
	  },
     Headline => "a unary or binary operator, usually used for negation or subtraction",
     Usage => "-y \n x-y",
     "In most cases, this operator refers to standard negation or subtraction.",
     PARA{},
     "In many cases, the integer 1 can be used as the identity, and scalars function as multiples
     of the identity.  
     For example, the 1 below refers to the identity matrix
     and the 2 to twice the identity matrix.",
     EXAMPLE lines ///
     	  M = matrix{{1,2,3},{2,3,4},{3,4,6}}
	  M-1, M-2
     ///,
     HEADER3 "Intervals",
     PARA { "If one of the inputs is an ", TO "RRi", ", the output is an interval containing all differences of pairs in the inputs." },
     EXAMPLE {
          "2-interval(1,3)",
          "interval(1,3)-interval(-1,2)",
          "interval(-1,1)-interval(-1,1)"
     },
     SeeAlso =>{ "difference", "minus"}
     }

undocumented {
     (symbol /, InfiniteNumber, InfiniteNumber),
     (symbol /, RingElement, Number),
     (symbol /, Number, RingElement),
     (symbol /, Number, InfiniteNumber),
     (symbol /, InfiniteNumber, Number),
     (symbol /, InfiniteNumber, RR),
     (symbol /, EngineRing, Ideal),
     (symbol /, List, SelfInitializingType)
     }

document {
     Key => {symbol /,
	  (symbol /,CC,CC),
	  (symbol /,CC,QQ),
	  (symbol /,CC,RR),
	  (symbol /,CC,ZZ),
	  (symbol /,QQ,CC),
	  (symbol /,QQ,QQ),
	  (symbol /,QQ,RR),
	  (symbol /,QQ,ZZ),
	  (symbol /,RR,CC),
	  (symbol /,RR,QQ),
	  (symbol /,RR,RR),
	  (symbol /,RR,ZZ),
	  (symbol /,ZZ,CC),
	  (symbol /,ZZ,QQ),
	  (symbol /,ZZ,RR),
	  (symbol /,ZZ,ZZ),
      (symbol /, QQ, RRi),
      (symbol /, RR, RRi),
      (symbol /, RRi, QQ),
      (symbol /, RRi, RR),
      (symbol /, RRi, RRi),
      (symbol /, RRi, ZZ),
      (symbol /, ZZ, RRi)
},
     Headline => "a binary operator, usually used for division",
     Usage => "x / y",
     "This operator is currently used in several ways in Macaulay2.",
     UL {
	  "division in a ring, yielding a fraction",
     	  "division in unevaluated expressions",
	  "quotient rings, modules and sheaves",
	  "applying a function or ring map to every element of a list or set"
	  },
     EXAMPLE lines ///
     2/3
     2./3
     ///,
     HEADER3 "Intervals",
     PARA { "If one of the inputs is an ", TO "RRi", ", the output is an interval containing all quotients of pairs in the inputs." },
     EXAMPLE {
         "2/interval(1,3)",
         "interval(-1,2)/interval(1,3)",
         "interval(1,2)/interval(1,2)"
     },
     SeeAlso => { "//"}
     }

doc ///
  Key
    (symbol /, Matrix, Number)
    (symbol /, Matrix, RingElement)
    (symbol /, Vector, Number)
    (symbol /, Vector, RingElement)
  Headline
    scalar division
  Usage
    v / c
  Inputs
    v:{Matrix, Vector}
    c:{Number, RingElement}
  Outputs
    :{Matrix, Vector}
  Description
    Text
      This operation is equivalent to right scalar multiplication by the
      multiplicative inverse of @CODE "c"@, i.e., @CODE "v * (1/c)"@.
    Example
      R = QQ[a,b,c,d]
      matrix {{d, -b}, {-c, a}} / (a * d - b * c)
  Caveat
    The base ring of the output will be a field containing the base ring
    of @CODE "v"@.
///

document {
     Key => {symbol %,
	  (symbol %, CC, CC),
	  (symbol %, CC, QQ),
	  (symbol %, CC, RR),
	  (symbol %, CC, ZZ),
	  (symbol %, Number, RingElement),
	  (symbol %, QQ, QQ),
	  (symbol %, QQ, ZZ),
	  (symbol %, RingElement, Number),
	  (symbol %, RR, QQ),
	  (symbol %, RR, RR),
	  (symbol %, RR, ZZ),
	  (symbol %, Number, GroebnerBasis),
	  (symbol %, Number, Ideal),
	  (symbol %, ZZ, MonomialIdeal),
	  (symbol %, ZZ, ZZ)
	  },	  
     Headline => "a binary operator, usually used for remainder and reduction",
     Usage => "x % y",
     "The usual meaning for this operator is remainder, or normal form with respect
     to a Gröbner basis.",
     PARA{},
     "For integers, the remainder is non-negative.",
     EXAMPLE lines ///
       1232132141242345 % 1000000
       (-4)%5
       ///,
     PARA{},
     "In polynomial rings, the division algorithm is used.",
     EXAMPLE lines ///
       A = ZZ[a,b]
       (3*a^3-a*b-4) % (5*a-b)
       pseudoRemainder(3*a^3-a*b-4, 5*a-b)
       B = QQ[a,b]
       (3*a^3-a*b-4) % (5*a-b)
     ///,
     "In more complicated situations, Gröbner bases are usually needed.  See ",
     TO "methods for normal forms and remainder", ".",
     SeeAlso => { remainder, remainder', pseudoRemainder, "//"}
     }
     
document {
     Key => {symbol //,(symbol //,ZZ,ZZ),
	  (symbol //, CC, CC),
	  (symbol //, CC, QQ),
	  (symbol //, CC, RR),
	  (symbol //, CC, ZZ),
	  (symbol //, InfiniteNumber, Number),
	  (symbol //, InfiniteNumber, RR),
	  (symbol //, Matrix, Number),
	  (symbol //, QQ, QQ),
	  (symbol //, Number, RingElement),
	  (symbol //, QQ, ZZ),
	  (symbol //, RingElement, Number),
	  (symbol //, RR, QQ),
	  (symbol //, RR, RR),
	  (symbol //, RR, ZZ),
	  (symbol //, Number, InfiniteNumber),
	  (symbol //, Number, Matrix),
	  (symbol //, ZZ, MonomialIdeal)
	  },
     Headline => "a binary operator, usually used for quotient",
     Usage => "x // y",
     "For ring elements in the integers, polynomial rings, and other rings,
     there are two types of division:  exact division, whose result is often in a larger
     field, such as the rationals or a function field, and division with remainder,
     whose result is in the same ring.  In Macaulay2, '/' denotes the first kind of division, while
     '//' denotes the latter kind.
     The following example shows
     the difference between ", TO "//", " and ", TO "/", ".",
     EXAMPLE lines ///
     	  4/2
	  4//2
     ///,
     EXAMPLE lines ///
     	  R = QQ[x];
	  (x^2-3)//(x-1)
	  (x^2-3)%(x-1)
	  (x^2-3)/(x-1)
     ///,
     SeeAlso => { "/", "%" }
     }

document {
     Key => symbol \,
     Headline => "a binary operator",
     }

document {
     Key => symbol \\,
     Headline => "a binary operator"
     }

undocumented {
     (symbol ^, InfiniteNumber, ZZ),
     (symbol ^, InfiniteNumber, QQ),
     (symbol ^, InfiniteNumber, RR),
     (symbol ^, ZZ, InfiniteNumber),
     (symbol ^, QQ, InfiniteNumber),
     (symbol ^, RR, InfiniteNumber),
     }

document {
     Key => {symbol ^},
     Headline => "a binary operator, usually used for powers",
     Usage => "x ^ y",
     PARA{},
     "This operator is used for exponentiation, making free modules and sheaves, 
     for shifting complexes left or right, for projection maps involving direct sums, 
     and for making nets.",
     }

document {
     Key => {symbol !, (symbol !, ZZ), (symbol !, QQ), (symbol !, RR),(symbol !,Constant)},
     Headline => "factorial",
     Usage => "n!",
     Inputs => {"n"=>ZZ},
     Outputs => { ZZ => "n factorial, 1*2*3*...*n."},
     EXAMPLE lines ///
     	  30!
     	  30.!
	  30.01!
     ///
     }

document {
     Key => "not",
     Headline => "negation",
     TT "not x", " -- yields the negation of x, which must be true or false.",
     SeeAlso =>{ "and", "or" }
     }

doc ///
  Key
    (symbol ~, ZZ)
  Headline
    logical not
  Usage
    n~
  Inputs
    n:ZZ
  Outputs
    :ZZ -- the bitwise complement of @TT "n"@
  Description
    Example
      7~
    Text
      Note that @TT "~"@ has @TO2 {"precedence of operators",
      "higher precedence"}@ than @TT "-"@, so enclose negative integers in
      parentheses.
    Example
      (-12)~
  SeeAlso
    (symbol &, ZZ, ZZ)
    (symbol |, ZZ, ZZ)
    (symbol ^^, ZZ, ZZ)
///

document {
     Key => symbol |, 
     Headline => "a binary operator, often used for horizontal concatenation",
     SeeAlso => {"||"}
     }

document {
     Key => {(symbol |, List, List),
	  (symbol |, Array, Array),
	  (symbol |, Sequence, Sequence)},
     Headline => "join lists, sequences or arrays",
     Usage => "v|w",
     Inputs => {"v" => Nothing =>  {ofClass List, ", ",
	       ofClass Array, ", or ",
	       ofClass Sequence},
	  "w" => Nothing => {"of the same type as ", TT "v"}},
     Outputs => {
	  Nothing => "The join of the lists, sequences or arrays."},
     EXAMPLE "{1,2,3}|{4,5,6}",
     EXAMPLE "(a,b,c)|(1,2)",
     SeeAlso => {join}
     }

document {
     Key => {(symbol |, Net, Net),
	  (symbol |, String, String),
	  (symbol |, String, ZZ),
	  (symbol |, ZZ, String)},
     Headline => "join strings or nets",
     TT "s|t", " -- concatenates strings or nets horizontally.", 
     PARA{},
     "The result is a string if the arguments are all strings, otherwise it
     is a net.  The baselines of the nets are aligned.",
     EXAMPLE {
	  ///"abc" | "def"///,
      	  ///x = "abc" || "ABC"///,
      	  ///x|"x"|x///,
	  },
     "If one of the two arguments is an integer, it is converted to a string first.",
     EXAMPLE ///"t = " | 333///,
     SeeAlso => {horizontalJoin}
     }

document {
     Key => (symbol |, ZZ, ZZ),
     Headline => "logical or",
     Usage => "m | n",
     Inputs => {"m", "n"},
     Outputs => {
	  ZZ => {"obtained from the bits of the 
     	       integers ", TT "m", " and ", TT "n", " by logical 'or'."}
	  },
     EXAMPLE "2^42 | 2^15 == 2^42 + 2^15",
     SeeAlso => {(symbol &,ZZ,ZZ),(symbol ^^,ZZ,ZZ), (symbol ~, ZZ)}
     }

document {
     Key => {(symbol |, Matrix, Matrix),
	  (symbol |, RingElement, Matrix),
	  (symbol |, Matrix, RingElement),
	  (symbol |, RingElement, RingElement),
	  (symbol |, Number, Matrix),
	  (symbol |, Matrix, Number)
	  },
     Headline => "join matrices horizontally",
	Usage => "f = g | h",
	Inputs => {
		"g" => {"a ", TT "m", " by ", TT "n", " matrix"},
		"h" => {"a ", TT "m", " by ", TT "r", " matrix"}
		},
	Outputs => {
		"f" => {"the ", TT "m", " by ", TT "n+r", " matrix,
		     obtained from matrices ", TT "g", " and ", TT "h", " by
     		     concatenating the rows"}
	        },
     EXAMPLE lines ///
	  R = ZZ[i..p];
      	  g = matrix {{i,j},{k,l}}
      	  h = matrix {{m,n},{o,p}}
      	  f= g | h
	  ///,
     "If one of the arguments is a ring element or a number, then it
     will be multiplied by a suitable identity matrix.",
	EXAMPLE "f | (m-n)",
	Caveat => {"It is assumed that the matrices ", TT "g", " and ", TT "h", " have the same ", TO Ring, "."},
     SeeAlso =>{(symbol ||, Matrix, Matrix), (ring, Matrix)}
     }

document {
     Key => symbol ||,
     Headline => "a binary operator, often used for vertical concatenation"
     }

document {
     Key => (symbol ||, Net, Net),
     Headline => "join nets or strings vertically",
     TT "m||n", " -- joins nets or strings by concatenating
     them vertically.  The baseline of the result is the baseline of the
     first one.",
     PARA{},
     "In this example, we build a large net with arrows to indicate
     the location of the baseline.",
     EXAMPLE {
	  ///x = "x" | "3"^1///,
      	  ///"<--- " | ( x || "" || x ) | " --->"///,
	  },
     SeeAlso => {"stack"}
     }

document {
     Key => {(symbol ||, Matrix, Matrix),
	  (symbol ||, RingElement, Matrix),
	  (symbol ||, Matrix, RingElement),
	  (symbol ||, RingElement, RingElement),
	  (symbol ||, Matrix, Number),
	  (symbol ||, Number, Matrix)
	  },
     Headline => "join matrices vertically",
	Usage => "f = g || h",
	Inputs => {
		"g" => {"a ", TT "m", " by ", TT "n", " matrix."},
		"h" => {"a ", TT "r", " by ", TT "n", " matrix."}
		},
	Outputs => {
		"f" => {"the ", TT "m+r", " by ", TT "n", " matrix,
		     obtained from matrices ", TT "g", " and ", TT "h", " by
     		     concatenating the columns."}
		},
     EXAMPLE lines ///
	  R = ZZ[i..p];
      	  g = matrix {{i,j},{k,l}}
      	  h = matrix {{m,n},{o,p}}
      	  f= g || h
	  ///,
     "If one of the arguments is a ring element or a number, then it
     will be multiplied by a suitable identity matrix.",
	EXAMPLE "f || 33",
	Caveat => {"It is assumed that the matrices ", TT "g", " and ", TT "h", " have the same ", TO Ring, "."},
     SeeAlso =>{(symbol |, Matrix, Matrix), (ring, Matrix)}
     }


document {
     Key => (symbol ||, Vector, Vector),
     Headline => "join Vectors ",
     Usage => "v || w",
	Inputs => {"v", "w"},
	Outputs => {
		Vector => {"obtained from vectors v and w by concatenating the columns."}
                   },
     EXAMPLE lines ///
	      R = (ZZ[x,y,z])^3;
      	  v = vector {1,x,x*y,x*z,x*y*z}
      	  w = vector {z*x,z^2,3}
      	  v || w
	  ///,
     PARA{},
     SeeAlso => {(symbol ||, Matrix, Matrix)}
     }

document {
     Key => {(symbol===,Thing,Thing), symbol ===},
     Headline => "strict equality",
     Usage => "x === y",
     Inputs => { "x", "y" },
     Outputs => { Boolean => {"whether the expressions ", TT "x", " and ", TT "y", " are strictly equal"} },
     PARA{
	  "Strictly equal expressions have the same type, so ", TT "0===0.", " and
	  ", TT "0===0/1", " are false; the three types involved here are ", 
	  TO "ZZ", ", ", TO "RR", ", and ", TO "QQ", "."
	  },
     PARA{
	  "If x and y are ", TO "mutable", " then they are strictly equal only
	  if they are identical (i.e., at the same address in memory).  For
	  details about why strict equality cannot depend on the contents of
	  mutable hash tables, see ", TO "hashing", ".  On the other hand, if x
	  and y are non-mutable, then they are strictly equal if and only if
	  all their contents are strictly equal."
	  },
     EXAMPLE { "{1,2,3} === {1,2,3}", "{1,2,3} === {2,1,3}" },
     PARA {
	  "For some types, such as ring elements and matrices, strict equality is the same as mathematical equality.
	  This tends to be the case for objects for which not much computation is not required to test equality.
	  For certain other types, such as ", TO "Ideal", " or ", TO "Module", ", where extensive computations may
	  be required, the operator ", TO "==", " implements the desired comparison."
	  },
     EXAMPLE {
	  "R = QQ[a..d];",
	  "a^2+b === b+a^2",
	  "ideal(a^2+b,c*d) === ideal(b+a^2,c*d+b+a^2)",
     	  "matrix{{a,b,c}} === matrix{{a,b,c}}",
       	  "matrix{{a,b,c}} === transpose matrix{{a},{b},{c}}"
	  },
     PARA {
	  "As it happens, polynomial rings are mutable objects, and new ones are easily created, which are distinct from each other.
	  For example, the rings ", TT "A", " and ", TT "B", " below are not strictly equal."
	  },
     EXAMPLE {
     	  "A = QQ[x]; B = QQ[x];",
     	  "A === B"
     	  },
     SeeAlso =>{ symbol==,  symbol=!=, "operators" }
     }

document {
     Key => {symbol =!=, (symbol=!=,Thing,Thing)},
     Headline => "strict inequality",
     TT "x =!= y", " -- returns true or false depending on whether the expressions
     x and y are strictly unequal.",
     PARA{},
     "See ", TO "===", " for details."
     }

document {
    Key => { symbol == },
     Headline => "equality",
     Usage => "x == y",
     PARA {
	  "Returns true or false, depending on whether 
	  the objects x and y are (mathematically) equal.  The objects x and y are
	  typically numbers, elements of rings, matrices, modules, ideals, 
	  chain complexes, and so on."
	  },
     PARA {
	  "A test for mathematical equality will typically involve doing a computation
	  to see whether two representations of the same mathematical object are being
	  compared.  For example, an ideal in a ring is represented by giving its
	  generators, and checking whether two sets of generators produce the same
	  ideal involves a computation with Gröbner bases.  The ideals must be defined
	  in the same ring."
	  },
     HEADER3 "Ideals",
     EXAMPLE {
	  "R = QQ[a,b,c];",
	  "ideal(a^2-b,a^3) == ideal(b^2, a*b, a^2-b)"
	  },
     PARA {
     	  "Often mathematical objects can be tested to see if they are 0 or 1."
	  },
     EXAMPLE {
	  "L = ideal(a^2-a-1,a^3+a+3)",
	  "L == 1",
	  "L == 0"
	  },
     HEADER3 "Matrices",
     PARA {
	  "Two ", TO "matrices", " are equal if their entries are equal, the source and target are
	  the same (including degrees), and the degree of the matrices are the same.  In this example,
	  m and n have different source free modules."
	  },
     EXAMPLE {
	  "m = matrix{{a,b},{c,a}}",
     	  "n = map(R^2,R^2,m)",
	  "m == n",
	  "source m == source n"
	  },
     PARA {
     	  "If you only want to know if they have the same entries, test the difference against zero."
	  },
     EXAMPLE {
	  "m-n == 0"
	  },
     HEADER3 "Rings",
     HEADER3 "Modules",
     PARA {
     	  "Two ", TO "modules", " are equal if they are isomorphic as subquotients of the
     	  same ambient free module."
	  },
     EXAMPLE {
      	  "image matrix {{2,a},{1,5}} == R^2",
      	  "image matrix {{2,a},{0,5}} == R^2"
	  },
     HEADER3 "Intervals",
        PARA { "If either side of the equality is an ", TO "RRi", ", the equality is an equality of sets." },
    EXAMPLE {
        "interval(1,3) == interval(1,3)",
        "interval(1/2) == 1/2",
        "interval(1/3) == 1/3"
    },
     PARA{
	  "It may happen that for certain types of objects, there is no method installed (yet)
	  for testing mathematical equality, in which case an error message will be
	  printed.  A good alternative may be to test for strict equality with
	  the operator ", TO "===", "."
	  },
     PARA {
	 "Since various sorts of mathematical objects are implemented as types, i.e., as
	 instances of ", TO "Type", ", there is no generic method for checking equality of types, so that
	 new mathematical comparison code can be provided in the future without breaking code that works."
	 },
     Caveat => {
	  "Warning: whether this comparison operator returns true is not necessarily 
     	  related to whether the comparison operator ", TO symbol ?, " returns ", TT "symbol ==", "."
	  },
     SeeAlso =>{ symbol!=, symbol===, symbol=!=, "operators" }
     }

document {
     Key => symbol !=,
     Headline => "inequality",
     TT "x != y", " -- the negation of ", TT "x == y", ".",
     PARA{},
     SeeAlso =>{ "==", "operators" }
     }

undocumented {
    (symbol**, QuotientRing, PolynomialRing),
    (symbol**, QuotientRing, QuotientRing),
    (symbol**, Number, Matrix),
    (symbol**, Matrix, Number),
    (symbol **,Number,RingElement),
    (symbol **,RingElement,Matrix),
    (symbol **,RingElement,Number),
    (symbol **,RingElement,RingElement),
    (symbol **,Thing,InexactFieldFamily),
    (symbol**, PolynomialRing, PolynomialRing),
    (symbol**, PolynomialRing, QuotientRing),
     }

document {
     Key => {symbol** },
     Headline => "a binary operator, usually used for tensor product or Cartesian product",
     SeeAlso => {symbol ^**}
     }

document {
     Key => symbol ^**,
     Headline => "a binary operator, usually used for tensor or Cartesian power",
     }

document {
     Key => (symbol **, Set, Set),
     Headline => "Cartesian product",
     Usage =>  "x ** y", 
     Inputs => {
	  "x",
	  "y"
	  },
     Outputs => {
	  Set => "whose elements are the sequences (a,b), where a is an element
     	  of x, and b is an element of y."
	  },
     EXAMPLE "set {1,2} ** set {a,b,c}",
     "Suppose we wish to form the set of
     all triples with entries either in the set A below.",
     EXAMPLE {
	  "A = set{1,2}",
	  "A ** A ** A"
	  },
     "To make this last a set of triples, ", TO splice, " each element together.  
     Or, use ", TO (symbol^**,VirtualTally,ZZ), ".",
     EXAMPLE {
	  "(A ** A ** A)/splice",
	  "A^**3"
	  },
     SeeAlso => { Set }
     }

-- Local Variables:
-- compile-command: "make -C $M2BUILDDIR/Macaulay2/m2 "
-- End: