File: frac-doc.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (103 lines) | stat: -rw-r--r-- 2,965 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
-- -*- coding: utf-8 -*-
--- status: Draft
--- author(s): M2Fest 2005 -- Irena
--- notes: 

undocumented{(frac, InexactField)}
document { 
     Key => {frac, (frac,Ring), (frac,FractionField), (frac,EngineRing)},
     Headline => "construct a fraction field",
     EXAMPLE {
	  "F = frac ZZ",
	  "F = frac (ZZ[a,b])",
	  },
     "After invoking the ", TT "frac", " command, ",
	 "the elements of the ring are treated as elements ",
	 "of the fraction field:",
     EXAMPLE {
	      "R = ZZ/101[x,y];",
	      "gens gb ideal(x^2*y - y^3)",
	      "K = frac R;",
	      "gens gb ideal(x^2*y - y^3)",
	  },
     Usage => "frac R",
     Inputs => {
	  "R" => Ring => "an integral domain"
	  },
     Outputs => {
	  FractionField => {"the field of fractions of ", TT "R"}
	  },
     "Another way to obtain ", TT "frac R", " is with ",
     TT "x", TO "/", TT "y", " where ",
     TT "x, y", " are elements of ", TT "R", ":",
     EXAMPLE {
	  "a*b/b^4",
	  },
     "Fractions are reduced to the extent possible.",
     EXAMPLE {
	  "f = (x-y)/(x^6-y^6)",
      	  "(x^3 - y^3) * f"
	  },
     "The parts of a fraction may be extracted.",
     EXAMPLE {
	  "numerator f",
      	  "denominator f",
	  },
     "Alternatively, the functions ", TO "lift", " and ", TO "liftable",
     " can be used.",
     EXAMPLE {
	  "liftable(1/f,R)",
      	  "liftable(f,R)",
      	  "lift(1/f,R)"
	  },
     "One can form resolutions and Gröbner bases of ideals in polynomial
     rings over fraction fields, as in the following example.
     Note that computations over fraction fields can be quite slow.",
     EXAMPLE {
	      "S = K[u,v];",
		  "I = ideal(y^2*u^3 + x*v^3, u^2*v, u^4);",
		  "gens gb I",
		  "Ires = res I",
		  "Ires.dd_2"
	 },
     "One way to compute a blowup of an ideal ", TT "I", " in ", TT "R",
     ", is to compute the kernel of a map of a new polynomial ring
     into a fraction field of ", TT "R", ", as shown below.",
     EXAMPLE {
	"A = ZZ/101[a,b,c];",
	"f = map(K, A, {x^3/y^4, x^2/y^2, (x^2+y^2)/y^4});",
	"kernel f",
	 },
     Caveat => {"The input ring should be an integral domain.",
	PARA{},
	"Currently, for ", TT "S", " as above, one cannot define ",
	TT "frac S", " or fractions ", TT "u/v", 
	".  One can get around that by defining ",
	TT "B = ZZ/101[x,y,u,v]", " and identify ",
	TT "frac S", " with ", TT "frac B", ".",
	PARA{},
	"Note that expressions such as ", TT "frac QQ[x]", " are parsed as ",
	TT "(frac QQ)[x]", ". To obtain the fraction field of ", TT "QQ[x]", 
	" use instead ", TT "frac (QQ[x])", "."
     },
     SeeAlso => {numerator, denominator, liftable, lift}
     }

doc ///
Node
  Key
    fraction
   (fraction, RingElement, RingElement)
  Usage
    fraction(f, g)
  Inputs
  Outputs
    :RingElement
      the fraction @TT "f/g"@
  Description
    Text
      The output will be in the fraction field of the ring containing @TT "f"@ and @TT "g"@,
      without reducing it to lowest terms.
  SeeAlso
    frac
///