1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
-- -*- coding: utf-8 -*-
document {
Key => Module,
Headline => "the class of all modules",
PARA{},
"See ", TO "modules", " for an overview of modules in Macaulay2. See
", TO "modules in Macaulay2", " for a tutorial overview of modules.",
PARA{},
"Modules in Macaulay2 are implemented as ", TO "subquotient modules", ".
Submodules and quotients of free modules are perhaps the most common and important
modules, and subquotients form the smallest class
of modules that naturally includes these cases.",
PARA{},
"Common ways to make a module:",
UL {
TO (symbol ^, Ring, ZZ),
TO (symbol ^, Ring, List),
TO (cokernel, Matrix),
TO (image, Matrix),
TO (kernel, Matrix),
},
"Common ways to get information about modules:",
UL {
TT "ring Module",
TO (numgens, Module),
TO (degrees, Module),
TO (generators, Module),
TO (relations, Module),
TO "isFreeModule",
TO (isHomogeneous, Module),
},
"Numerical information about a module:",
UL {
TO (codim, Module),
TO (dim, Module),
TO (rank, Module)
},
"Submodules, quotients, and subquotient modules:",
UL {
TO (ambient, Module),
TO (cover, Module),
TO (super, Module),
TO (symbol /, Module, Module),
TO (subquotient, Matrix, Matrix),
TO (isSubset, Module, Module),
},
"Common operations on modules:",
UL {
TO (symbol +, Module, Module),
TO (symbol ==, Module, Module),
TO (symbol ++, Module, Module),
TO (symbol ^, Module, List),
TO (symbol **, Module, Module),
TO (symbol ^**, Module, ZZ),
TO (symbol _, Module, List),
},
"Minimalization:",
UL {
TO (mingens,Module),
TO (trim,Module),
TO (minimalPresentation,Module)
},
"Graded modules:",
UL {
TO basis,
TO "Truncations::truncate(ZZ,Module)",
TO (degree, Module),
TO "Varieties::genera(Module)",
TO (hilbertSeries, Module),
TO (hilbertFunction, ZZ, Module),
TO (poincare, Module),
TO (regularity, Module),
},
"Annihilators, quotients and Gröbner bases:",
UL {
TO (gb, Module),
TO "Saturation::Ideal : Ideal",
TO "Saturation::annihilator(Module)",
TO "Saturation::saturate(Module,Ideal)",
},
"Common homological computations:",
UL {
TO (res, Module),
TO (pdim, Module),
TO "Hom",
TO (homomorphism,Matrix),
TO (Ext,ZZ,Module,Module),
TO (Tor,ZZ,Module,Module),
TO (cohomology,ZZ,Module),
TO (homology, Matrix, Matrix),
TO (fittingIdeal, ZZ, Module),
},
"Multilinear algebra:",
UL {
TO (exteriorPower,ZZ,Module),
}}
document {
Key => "modules",
"For more operations in homological algebra, see ",
TO "chain complexes", ". For additional common operations and a
comprehensive list of all routines
in Macaulay2 which return or use modules, see ", TO Module, ".",
Subnodes => {
"construction of modules",
TO "free modules",
TO "matrices to and from modules",
TO "submodules and quotients",
TO "subquotient modules",
"homomorphisms (maps) between modules",
TO "module homomorphisms",
-- Mike wanted this: TO "canonical maps between modules",
TO "right modules or left modules?",
-- Mike wanted this: "operations on modules",
-- Mike wanted this: TO "direct sums of modules",
-- Mike wanted this: TO "tensor products of modules",
-- Mike wanted this: TO "Hom modules and homomorphisms",
-- Mike wanted this: TO "annihilators and submodule quotients",
TO "Saturation :: module quotients, saturation, and annihilator",
"graded modules",
TO "Hilbert functions and free resolutions",
-- Mike wanted this: TO "degrees of elements and free modules",
-- Mike wanted this: TO "degree and multiplicity of a module",
TO "basis",
-- Mike wanted this: TO "Hilbert functions and polynomials",
-- Mike wanted this: TO "homogenization",
-- Mike wanted this: TO "truncation and homogeneous components of a graded module",
"multilinear algebra",
TO "exterior power of a module",
-- Mike wanted this: TO "Fitting ideals",
-- Mike wanted this: TO "adjoints of maps",
-- Mike wanted this: "homological algebra",
-- Mike wanted this: TO "Ext and Tor",
-- Mike wanted this: TO "local cohomology",
-- Mike wanted this: TO "is a module Cohen-Macaulay?"
}
}
document { Key => "right modules or left modules?",
"Macaulay2 can handle non-commutative rings, and for such rings there is a difference between left modules and right modules.
In Macaulay2, all the modules are left modules, but matrices act on the left, too. The usual convention would be to have the matrices
act on the right, so the homomorphism rule (", TT "f(av)=af(v)", ") becomes a consequence of associativity of matrix-vector-scalar
multiplication (", TT "(av)f=a(vf)", "). Macaulay2 makes things come out okay in the end -- a left ", TT "R", "-module can be regarded
naturally as a right ", TT "R'", "-module, where ", TT "R'", " is the opposite ring of ", TT "R", ", obtained from the ring ", TT "R", "
by reversing the multiplication. Thus matrices over ", TT "R'", " can act on ", TT "R", "-modules from the left. Matrices over ", TT "R", "
in Macaulay2 are ", EM "really", " matrices over ", TT "R'", ".",
PARA{},
"We illustrate this state of affairs with an example over a (noncommutative) Weyl algebra. First observe the noncommutativity.",
EXAMPLE lines ///
R = QQ[x,dx,WeylAlgebra=>{x=>dx}]
x*dx
dx*x
///,
"Now verify the module is a left module by checking associativity.",
EXAMPLE lines ///
M = R^2
v = M_0
dx*v
x*(dx*v)
(x*dx)*v
x*(dx*v) == (x*dx)*v
///,
"Now make a matrix and check that left multiplication by it is a homomorphism from ", TT "M", " to ", TT "M", ".",
EXAMPLE lines ///
f = dx * id_M
f*(x*v)
x*(f*v)
f*(x*v) == x*(f*v)
///,
"Now we make another matrix and check that matrix multiplication treats the entries of the matrices as residing in the opposite ring, ", TT "R'", ".",
EXAMPLE lines ///
g = x * id_M
f*g
f*g == (x*dx) * id_M
(dx * id_M)*(x * id_M) == (x*dx) * id_M
///,
"Here we check that multiplication of a scalar times a matrix is compatible with multiplication of a scalar times a vector.",
EXAMPLE lines ///
x * ( (dx * id_M) * v )
(x * (dx * id_M) ) * v
(x * (dx * id_M) ) * v == x * ( (dx * id_M) * v )
///,
"One desirable associativity rule does ", EM "not", " hold, the one for ", EM "RingElement * Matrix * Matrix", ", as we
see in this example.",
EXAMPLE lines ///
x * ( id_M * ( dx * id_M ) )
(x * id_M) * ( dx * id_M )
x * ( id_M * ( dx * id_M ) ) == (x * id_M) * ( dx * id_M )
///,
"The reason for this discrepancy is that, as explained above, matrix multiplication is done over ", TT "R'", ", not over ", TT "R", ".",
PARA{},
"Currently, tensor product of a module ", TT "M", " by a ring ", TT "R", " works on either side and does the same thing. In
other words, you can write ", TT "R**M", " or ", TT "M**R", ". That may change in the future."
}
-------------------
-- module nodes ---
-------------------
document {
Key => "free modules",
"We use ", TO (symbol ^,Ring,ZZ), " to make a new free module.",
PARA{},
EXAMPLE {
"R = ZZ/101[x,y,z];",
"M = R^4"
},
"Such modules are often made implicitly when constructing matrices.",
EXAMPLE {
"m = matrix{{x,y,z},{y,z,0}}",
"target m == R^2"
},
PARA{},
"When a ring is graded, so are its free modules. By default,
the degrees of the basis elements are taken to be 0.",
EXAMPLE {
"degrees M"
},
"We can use ", TO (symbol ^, Ring, List), " to specify other degrees,
or more precisely, their additive inverses.",
EXAMPLE {
"F = R^{1,4:2,3,3:4}",
"degrees F",
},
"Notice the use of ", TO ":", " above to indicate repetition.",
PARA{},
"If the variables of the ring have multi-degrees represented by
lists (vectors) of integers,",
-- Mike wanted this: " as described in ", TO "multi-graded polynomial rings", ",",
" then the degrees of a
free module must also be multi-degrees.",
EXAMPLE {
"S = ZZ[a,b,c, Degrees=>{{1,2},{2,0},{3,3}}]",
"N = S ^ {{-1,-1},{-4,4},{0,0}}",
"degree N_0",
"degree (a*b*N_1)",
},
SeeAlso => {
-- Mike wanted this: "multigraded polynomial rings",
"graded modules"
},
}
document {
Key => "matrices to and from modules",
Headline => "including kernel, cokernel and image",
SUBSECTION "matrices to modules (kernel, image, cokernel)",
"Given a matrix, we may compute the ", TO kernel, ", ",
TO image, ", and ", TO cokernel, ".",
EXAMPLE {
"R = QQ[a..f];",
"F = matrix{{a,b,d,e},{b,c,e,f}}",
},
EXAMPLE {
"M = ker F",
"coker F",
"image F",
},
"Some routines in Macaulay2 have abbreviations, for example ", TT "ker",
" may be used for ", TT "kernel", ", and
", TT "coker", " may be used for ", TT "cokernel", ".
The ", TT "image", " function has no abbreviated form.",
SUBSECTION "modules to matrices",
"Each module has, at least implicitly, two matrices associated to it:
", TO generators, " (abbreviated form: ", TT "gens", "), and ",
TO relations, ". If a module is
a submodule of a free module, then the relations matrix is zero. If a
module is a quotient of a free module, then the generator matrix
is the identity matrix. If a module is a ", TO "subquotient", ",
then both may be more general.",
EXAMPLE {
"generators M",
"relations M",
},
PARA{},
"Every finitely generated module has a presentation matrix.
In Macaulay2,
if the module is not a quotient of a free module, then a syzygy
computation is performed to find a presentation matrix.",
EXAMPLE {
"presentation M",
},
SeeAlso => {(cokernel,Matrix),
(image,Matrix),
(kernel,Matrix),
(generators,Module),
(relations,Module),
(presentation,Module)
},
}
document {
Key => "submodules and quotients",
SUBSECTION "submodules",
"We can create submodules by using standard mathematical notation, keeping in mind
that the generators of a module ", TT "M", " are denoted by ", TT "M_0, M_1", ", etc.",
EXAMPLE {
"R = QQ[x,y,z];",
"M = R^3",
"I = ideal(x^2,y^2-x*z)",
},
"Here are some examples of submodules of ", TT "M", ".",
EXAMPLE {
"I*M",
"R*M_0",
"I*M_1",
"J = I*M_1 + R*y^5*M_1 + R*M_2"
},
"To determine if one submodule is contained in the other, use
", TO (isSubset,Module,Module), ".",
EXAMPLE {
"isSubset(I*M,M)",
"isSubset((x^3-x)*M,x*M)"
},
"Another way to construct submodules is to take the kernel or image of a matrix.",
EXAMPLE {
"F = matrix{{x,y,z}}",
"image F",
"kernel F"
},
"The module ", TT "M", " does not need to be a free module. We will see examples below.",
SUBSECTION "quotients",
"If N is a submodule of M, construct the quotient using ", TO (symbol/,Module,Module), ".",
EXAMPLE {
"F = R^3",
"F/(x*F+y*F+R*F_2)"
},
"When constructing M/N, it is not necessary that M be a free module, or a quotient of a free
module. In this case, we obtain a subquotient module, which we describe below."
}
document {
Key => "subquotient modules",
Headline => "the way Macaulay2 represents modules",
"Not all modules arise naturally as submodules or quotients of free modules. As an example,
consider the module ", TEX "$M = I/I^2$", " in the example below.",
EXAMPLE {
"R = QQ[x,y,z];",
"I = ideal(x*y,x*z,y*z)",
"M = I/I^2"
},
TEX "Macaulay2 represents each module (at least conceptually) as a subquotient module, that is, a submodule of
a quotient of an ambient free module. A subquotient module is determined by two
matrices $f : R^m \\rightarrow{} R^n$ and $g : R^p \\rightarrow{} R^n$.
The {\\em subquotient module} with generators $f$ and relations $g$ is by definition the module
$M = ((image f) + (image g))/(image g)$.",
PARA{},
TEX "If $f$ is the identity map, $M = coker g$, and if $g = 0$, then $M = image f$.
The class of subquotient modules is the smallest class containing free modules, which is closed
under taking submodules and quotients.",
PARA{},
"One may create a subquotient module directly from matrices f and g having the same target free module.",
EXAMPLE {
"f = matrix{{x,y}}",
"g = matrix{{x^2,x*y,y^2,z^4}}",
"M = subquotient(f,g)"
},
"The same module can be constructed in the following manner.",
EXAMPLE {
"N = (image f)/(image g)",
"N1 = (image f + image g)/(image g)",
"M === N"
},
"Notice that Macaulay2 allows one to write (image f)/(image g), even though
mathematically this really means: (image f + image g)/(image g). There is an important
difference however. Modules in Macaulay2 always come with an ordered set of generators,
and N1 has 4 more generators (all zero in the module!) than N. The
modules M and N though are identical.",
PARA{},
"The two matrices f and g mentioned above are recovered using the
routines ", TO (generators,Module), " and ", TO (relations,Module), ".",
EXAMPLE {
"generators M",
"relations M"
},
PARA{},
"Submodules and quotients of free modules work as one would imagine.",
EXAMPLE {
"N2 = R*M_0 + I*M",
"M/N2",
"prune(M/N2)"
},
PARA{},
"Given a subquotient module M, there are several useful modules associated to M.",
"The free module of which M is a subquotient is obtained using ", TO (ambient,Module), ".",
EXAMPLE {
"ambient M"
},
"This is the same as the common target of the matrices of generators and
relations.",
EXAMPLE {
"ambient M === target relations M",
"ambient M === target generators M"
},
"M is a submodule of the module R^n/(image g). The routine ", TO (super,Module),
" returns this quotient module.",
EXAMPLE {
"super M"
},
"This may be obtained directly as the cokernel of the matrix of relations.",
EXAMPLE {
"super M === cokernel relations M"
},
"Often the given representation of a module is not very efficient.
Use ", TO (trim,Module), " to keep the module as a subquotient of the
same ambient free module,
but change the generators and relations to be minimal, or in the nonlocal or
non-graded case, at least more efficient.",
EXAMPLE {
"M + M",
"trim (M+M)"
},
"Use ", TO (minimalPresentation,Module), " to also allow the ambient free
module to be improved. This currently returns a quotient of a free
module, but in the future it might not.",
EXAMPLE {
"minimalPresentation M"
},
TT "prune", " is a synonym for ", TT "minimalPresentation", ".",
EXAMPLE {
"prune M"
},
"For maps between modules, including between subquotient modules, see ",
TO "homomorphisms (maps) between modules", ".",
SeeAlso => {
(ambient,Module),
(super,Module),
(generators,Module),
(relations,Module),
subquotient,
(trim,Module),
(minimalPresentation,Module)
}
}
document {
Key => "module homomorphisms",
"A homomorphism ", TT "f : M --> N", " is represented as a matrix
from the generators of M to the generators of N.",
EXAMPLE {
"R = QQ[x,y]/(y^2-x^3);",
"M = module ideal(x,y)"
},
"One homomorphism ", TT "F : M --> R", " is ",
TT "x |--> y, y |--> x^2", " (this is
multiplication by the fraction ", TT "y/x", ").
We write this in the following way.",
EXAMPLE {
"F = map(R^1,M,matrix{{y,x^2}})"
},
"Notice that as is usual in Macaulay2, the target comes before the source.",
PARA{},
"Macaulay2 doesn't display the source and target, unless they are both free
modules or have been assigned to global variables. Use ", TO target,
" and ", TO source, " to get them. The ", TO matrix,
" routine recovers the matrix of free modules between the generators of the
source and target.",
EXAMPLE {
"source F",
"target F == R^1",
"matrix F"
},
"Macaulay2 also does not check that the homomorphism is well defined
(i.e. the relations of the source map into the relations of the target).
Use ", TO isWellDefined, " to check. This generally requires a Gröbner
basis computation (which is performed automatically, if it is required
and has not already been done).",
EXAMPLE {
"isWellDefined F",
"isIsomorphism F"
},
"The image of ", TT "F", " lies in the submodule ", TT "M",
" of ", TT "R^1", ". Suppose we wish to
define this new map ", TT "G : M --> M", ". How does one do this?",
PARA{},
"To obtain the map ", TT "M --> M", ", we use ",
TO (symbol//,Matrix,Matrix), ".
In order to do this, we need the inclusion map of ", TT "M",
" into ", TT "R^1", ".",
-*
-- Mike wanted this:
" We explain these canonical maps
more thoroughly in ", TO "canonical maps between modules", ",
but for now we just write down the inclusion map.",
*-
EXAMPLE {
"inc = inducedMap(R^1, M)"
},
"Now we use // to lift ", TT "F : M --> R^1", " along ",
TT "inc : M --> R^1", ", to obtain
a map ", TT "G : M --> M", ", such that ", TT "inc * G == F", ".",
EXAMPLE {
"G = F // inc",
"target G == M and source G == M",
"inc * G == F"
},
"Let's make sure that this map ", TT "G", " is well defined.",
EXAMPLE {
"isWellDefined G",
"isIsomorphism G",
"prune coker G",
"kernel G == 0"
},
SeeAlso => {
-- Mike wanted this: "canonical maps between modules",
(isWellDefined,Matrix),
(isIsomorphism,Matrix),
(isInjective,Matrix),
(isSurjective,Matrix),
(kernel,Matrix),
(cokernel,Matrix),
(symbol//,Matrix,Matrix)
}
}
-*
-- Mike wanted this:
document {
Key => "canonical maps between modules",
Headline => "empty"
}
*-
document {
-- old??
Key => "constructing maps between modules",
"Let's start with a free module.",
EXAMPLE {
"R = ZZ/5[x,y,z];",
"F = R^3"
},
"A list of indices can be used to produce homomorphisms corresponding to the corresponding basis vectors.",
EXAMPLE {
"F_{0,1,2}",
"F_{0,1}",
"F_{1,2}"
},
"Matrices are viewed as linear transformations.",
EXAMPLE {
"f = matrix{{x,y,z}}"
},
-- "The standard way to define a map from an R-module M to an
-- R-module N is to give a matrix whose columns are the image vectors
-- of the generators of M.",
-- EXAMPLE {
-- "R = QQ[x,y,z];",
-- "m = cokernel vars R",
-- "--F = map(m/m^2, R^1/m, {{x*y*z}})"
-- }
}
-*
-- Mike wanted this:
document {
Key => "direct sums of modules",
Headline => "empty",
"
"
}
*-
-*
-- Mike wanted this:
document {
Key => "tensor products of modules",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "Hom modules and homomorphisms",
Headline => "empty",
///
R = QQ[a..e]
C = res coker vars R
M = coker C.dd_3 ++ R^{-4}
N = coker C.dd_4
H = Hom(N,M);
B = basis(0,H);
F = B * random(source B, R^1)
f = homomorphism F
source f
target f
syz transpose matrix f
///
}
*-
document {
Key => "Hilbert functions and free resolutions",
Headline => "including degree and betti numbers",
"In this section, we give examples of common operations
involving modules. Throughout this section, we suppose that the base
ring ", TT "R", " is graded, with each variable having degree one, and that ",
TT "M", " is a graded ", TT "R", "-module. If the ring is not graded, or is multi-graded,
or if ", TT "M", " is not graded, some of these functions still work, but
care must be taken in interpreting the output. Here, we just consider the
standard grading case.",
SUBSECTION "checking homogeneity",
"Let's start by making a module over a ring with 18 variables",
EXAMPLE {
"R = ZZ/32003[vars(0..17)];",
"M = coker genericMatrix(R,a,3,6)"
},
"Use ", TO "isHomogeneous", " to check whether a given module is
graded.",
EXAMPLE "isHomogeneous M",
SUBSECTION "codimension, degree, and sectional arithmetic genera",
"Use ", TO (codim,Module), ", ", TO (degree,Module), ", and ", TO "Varieties::genera(Module)", " for some basic
numeric information about a module.",
EXAMPLE {
"codim M",
"degree M",
"genera M"
},
"The last number in the list of genera is the degree minus one. The second to last
number is the genus of the generic linear section curve, ..., and the first
number is the arithmetic genus.",
SUBSECTION "the Hilbert series",
"The Hilbert series (", TO (hilbertSeries, Module), ") of ", TT "M", " is by definition the formal power series ",
TT "H(t) = sum(d in ZZ) dim(M_d) t^d", ". This is a rational function with
denominator ", TT "(1-t)^n", ", where ", TT "n", " is the number of variables
in the polynomial ring. The numerator of this rational function is called
the poincare polynomial, and is obtained by the ", TO (poincare,Module), " function.",
EXAMPLE {
"poincare M",
"hf = hilbertSeries M"
},
PARA{},
"It is often useful to divide the poincare polynomial by ", TT "(1-t)", " as many
times as possible. This can be done by using ", TO reduceHilbert, ":",
EXAMPLE {
"reduceHilbert hf"
},
EXAMPLE {
"poincare' = (M) -> (
H := poincare M;
t := (ring H)_0; -- The variable t above
while H % (1-t) == 0 do H = H // (1-t);
H);",
"poincare' M",
},
SUBSECTION "free resolutions",
"The minimal free resolution ", TT "C", " is computed using ", TO (resolution,Module), ".
The specific matrices are obtained by indexing ", TT "C.dd", ".",
EXAMPLE {
"C = resolution M",
"C.dd_3"
},
"For more information about chain complexes and resolutions, see ", TO "chain complexes",
" and ", TO "computing resolutions", ".",
SUBSECTION "betti numbers",
"Use ", TO2{(betti,GradedModule),"betti"}, " to display the graded betti numbers of ", TT "M", ".",
EXAMPLE "betti C",
"This table should be interpreted as follows: the number in the ",
TT "i", "-th row and ", TT "j", "-th column (indices starting at 0),
is the number of ", TT "j", "-th syzygies in degree ", TT "i+j", ".
In the above example, there are 15 second syzygies of degree 4, and the entries
of the maps ", TT "CC.d_1, CC.d_3, CC.d_4", " are all linear.",
Subnodes => {
TO isHomogeneous,
TO (codim, Module),
TO (degree, Module),
TO "Varieties::genera(Module)",
TO (hilbertSeries, Module),
TO poincare,
TO poincareN,
TO reduceHilbert,
TO betti,
}
}
-*
-- Mike wanted this:
document {
Key => "degrees of elements and free modules",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "degree and multiplicity of a module",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "Hilbert functions and polynomials",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "homogenization",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "truncation and homogeneous components of a graded module",
Headline => "empty",
}
*-
document {
Key => "exterior power of a module",
"The ", TT "k","-th exterior power of a module ", TT "M"," is the ", TT "k", "-fold tensor product of ",
TT "M", " together with the equivalence relation:",
PRE ///
m_1 ** m_2 ** .. ** m_k = 0 if m_i = m_j for i != j
///,
"If ", TT "M", " is a free ", TT "R", "-module of rank ", TT "n", ", then the ", TT "k", "-th exterior power of ", TT "M",
" is a free ", TT "R", "-module of rank ", TT "binomial(n,k)", ". Macaulay2 computes the ", TT "k", "-th
exterior power of a module ", TT "M", " with the command exteriorPower.",
EXAMPLE {
"R = ZZ/2[x,y]",
"exteriorPower(3,R^6)",
"binomial(6,3)"
},
"Macaulay2 can compute exterior powers of modules that are not free as well.",
EXAMPLE {
"exteriorPower(2,R^1)",
"I = module ideal (x,y)",
"exteriorPower(2,I)"
},
SeeAlso => "exterior power of a matrix"
}
-*
-- Mike wanted this:
document {
Key => "Fitting ideals",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "adjoints of maps",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "Ext and Tor",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "local cohomology",
Headline => "empty",
}
*-
-*
-- Mike wanted this:
document {
Key => "is a module Cohen-Macaulay?",
Headline => "empty",
}
*-
-- one link (in this file) to this node
document {
Key => "homomorphisms (maps) between modules",
Headline => "including elements of modules",
EXAMPLE {
"R = QQ[x,y];",
"M = image vars R",
"N = coker presentation M",
"f = map(M,N,1)",
"isWellDefined f",
"isIsomorphism f",
"g = map(M,cover M,1)",
"isWellDefined g",
"isIsomorphism g",
"h = map(cover M,M,1)",
"isWellDefined h",
}
}
-- no links to this node
document {
Key => "extracting elements",
"If M is an R-module, the best way to think of an element v of M
in Macaulay2 is as a map of the ring into M, mapping 1 to v."
}
-- no links to this node
document {
Key => "equality and containment of modules",
"==, isSubset"
}
-- no links to this node
document {
Key => "minimal presentations and generators",
"prune, trim"
}
-- no links to this node
document {
Key => "information about a map of modules",
"usual information: source, target, ring.",
}
-- no links to this node
-* -- Mike wanted this:
document {
Key => "kernel, cokernel and image of a map of modules",
}
*-
-* -- Mike wanted this:
-- no links to this node
document {
Key => "extracting parts of a subquotient module",
"Include: "
}
-- no links to this node
document {
Key => "quotients of modules",
}
-- no links to this node
document {
Key => "free resolutions",
}
-- no links to this node
document {
Key => "Hom module",
}
*-
|