1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
-- this is the OLD way of building SLPs used in the old "track"
-- "trackHomotopy" relies on SLPexpressions.m2
------------ preSLPs ------------------------------------------------------------------------
-- preSLP = (constants, program, output_description)
-- constants = list of elements in CC
-- program = node, node, ...
-- node = {binary_operation, a, b}
-- or {multi_operation, n, a_1, ... , a_m(n)} -- e.g., m(n) = n^2 for det
-- or {copy, a} -- copies node n
-- a,b,ai are
-- negative integers (relative position)
-- or const => i (refers to i-th constant)
-- or in => i (refers to i-th input)
-- binary_operation = {sum, product}
-- multi_operation = {msum, mproduct, det}
-- output_description = Matrix over ZZ (each entry refers to a node)
libPREFIX = "/tmp/slpFN.";
slpCOMPILED = 100;
slpPREDICTOR = 101;
slpCORRECTOR = 102;
slpEND = 0;
slpCOPY = 1; --"COPY"; -- node positions for slpCOPY commands are absolute
slpMULTIsum = 2; --"MULTIsum";
slpPRODUCT = 3; --"PRODUCT";
slpDET = 4; --"DET";
CONST := symbol CONST;
INPUT := symbol INPUT;
protect CONST
protect INPUT
-- types of predictors
predRUNGEKUTTA = 1;
predTANGENT = 2;
predEULER = 3;
predPROJECTIVENEWTON = 4;
-- Xn are inputs
-- Cn are constants
-- Gn are "gates"
-- output is listed in the end
printSLP = method()
printSLP (List,List,Matrix) := (cc,pp,o) -> (
scan(#cc,i-><<"C"<<i<<" = "<<cc#i<<endl);
scan(#pp,i->(
p := pp#i;
<<"G"<<i<<" = ";
(op,ops) :=
if first p === slpPRODUCT then (" * ",drop(p,1))
else if first p === slpMULTIsum then (" + ",drop(p,2))
else error "unknown gate";
scan(between(op,apply(ops,
o->if instance(o,Option) then (
if o#0 === CONST then "C" else "X"
)|toString o#1 else "G"|toString(i+o)
)),x-><<x);
<< endl;
));
<< "output:" << endl;
scan(flatten entries o, x-> << "G" << x <<endl);
)
shiftConstsSLP = method(TypicalValue=>List);
shiftConstsSLP (List,ZZ) := (slp,shift) -> apply(slp,
n->apply(n, b->
if class b === Option and b#0 === CONST
then CONST=>shift+b#1
else b
)
);
poly2preSLP = method(TypicalValue=>Sequence)
poly2preSLP RingElement := g -> (
prog := {}; -- our SLP
R := ring g;
const := coefficient(1_R,g);
finalMULTIsum := {}; -- list of nodes for final multisum
constants := if const == 0 then {} else ( finalMULTIsum = finalMULTIsum | {CONST=>0}; {const} );
f := g - const;
scan(numgens R, i->(
fnox := sum(select(listForm f,ec->(first ec)#i==0), (e,c)->c*R_e); -- fnox := f%R_i;
if fnox == 0 then fnox = 0_R;
fx := f - fnox;
if fx != 0 then (
fxOverRi := --fx//R_i
sum(listForm fx, (e,c)->c*R_(take(e,i)|{e#i-1}|drop(e,i+1)));
if fxOverRi == 0 then fxOverRi = 0_R;
(constfx, progfx, outfx) := poly2preSLP(
fxOverRi
);
-- shift constant nodes positions
prog = prog | shiftConstsSLP(progfx, #constants);
constants = constants | constfx;
-- multiply by x=R_i
prog = prog | {{slpPRODUCT, INPUT=>i, -1}};
finalMULTIsum = finalMULTIsum | {#prog-1};
);
f = fnox;
));
curPos := #prog;
if #finalMULTIsum === 1 then (
if finalMULTIsum#0 === curPos-1 -- if trivial
then null -- do nothing
else if class finalMULTIsum#0 === Option and finalMULTIsum#0#0 === CONST then
prog = prog | {{slpCOPY, finalMULTIsum#0}}
else error "unknown trivial MULTIsum";
)
else prog = prog | {{slpMULTIsum, #finalMULTIsum} | apply(finalMULTIsum,
p->if class p === Option then p
else p - curPos -- add a relative position
)};
(constants, prog, matrix{{#prog-1}})
)
matrix2preSLP = method() -- make a preSLP evaluating the matrix with polynomial entries
matrix2preSLP Matrix := M -> stackPreSLPs apply(entries M, row -> concatPreSLPs apply(row, a->poly2preSLP a))
detPreSLP = method() -- determinant of a preSLP
detPreSLP (List,List,Matrix) := (c,p,M) -> (
n := numgens target M;
assert (n == numgens source M);
(c,p|{{slpDET, n}|apply(flatten entries M,i->i-#p)}, matrix{{#p}})
)
shift'constants = method() -- outputs the program obtained from p by shifting constants by s
shift'constants (List, ZZ) := (p, s) -> apply(p, a->
apply(a, b->
if class b === Option and b#0 === CONST
then b#0=>b#1+s -- shift the constants
else b
)
)
concatPreSLPs = method() -- concatenate pre-slps
-- ( if 2 slp's output matrices are A and B, their concatenation is A|B )
concatPreSLPs List := S -> (
c := {};
p := {};
o := null;
scan(S, s->(
if o === null then o = s#2
else -- shift output by the current length of the program
o = o | (s#2 + map(ZZ^(numgens target s#2), ZZ^(numgens source s#2), (i,j)->#p));
p = p | shift'constants(s#1, #c);
c = c | s#0;
));
(c,p,o)
);
stackPreSLPs = method() -- stacks pre-slps (A||B)
stackPreSLPs List := S -> (
c := {};
p := {};
o := null;
scan(S, s->(
if o === null then o = s#2
else -- shift output by the current length of the program
o = o || (s#2 + map(ZZ^(numgens target s#2), ZZ^(numgens source s#2), (i,j)->#p));
p = p | shift'constants(s#1, #c);
c = c | s#0;
));
(c,p,o)
);
addPreSLPs = method() -- adds pre-slps
-- ( output matrix dimensions should match)
addPreSLPs List := S -> (
c := {};
p := {};
nRows := null;
nCols := null;
o'summands := apply(S, s->(
(c',p',o') := s;
if nRows === null then (nRows = numgens target o'; nCols = numgens source o')
else (
-- check if the dimensions of the output matrix are the same
assert (nRows == numgens target o' and nCols == numgens source o');
-- shift output by the current length of the program
o' = o' + map(ZZ^nRows, ZZ^nCols, (i,j)->#p)
);
p = p | shift'constants(p', #c);
c = c | c';
o'
));
o := map(ZZ^nRows, ZZ^nCols, (i,j)->(
p = p | {{slpMULTIsum, #o'summands}|apply(o'summands,a->a_(i,j)-#p)};
#p-1 -- position of just added node
));
(c,p,o)
);
evaluatePreSLP = method() -- evaluates preSLP S at v
evaluatePreSLP (Sequence,List) := (S,v)-> (
-- sign of a permutation
sign := p -> (
N := #p;
p = new MutableList from p;
s := 1;
I := 0;
while I < N-1 do (
J := p#I;
if J == I then I = I+1
else (s = -s; p#I = p#J; p#J = J)
);
s
);
det' := if isPolynomialRing ring first v
then det
else M -> (
(p,L,U) := LUdecomposition M;
sign p * product(numgens target M, i->L_(i,i)*U_(i,i))
); -- this is a hack!!! lapack det needs to be wrapped
val := {};
constants := S#0;
slp := S#1;
scan(#slp, i->(
n := slp#i;
k := first n;
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST then val = val | {constants#(n#1#1)}
else error "unknown node type";
)
else if k === slpMULTIsum then (
val = val | { sum(2..1+n#1,
j->if class n#j === Option and n#j#0 === CONST then constants#(n#j#1)
else if class n#j === Option and n#j#0 === INPUT then v#(n#j#1)
else if class n#j === ZZ then val#(i+n#j)
else error "unknown node type"
)
}
)
else if k === slpPRODUCT then (
val = val | {
product(1..2, j->(
if class n#j === Option and n#j#0 === CONST then constants#(n#j#1)
else if class n#j === Option and n#j#0 === INPUT then v#(n#j#1)
else if class n#j === ZZ then val#(i+n#j)
else error "unknown node type"
))
}
)
else if k === slpDET then (
N := n#1; -- NxN matrix
assert(N>0);
M := matrix apply(N, a->apply(N, b->(
ab := 2+a*N+b;
if class n#ab === Option and n#ab#0 === CONST then constants#(n#ab#1)
else if class n#ab === ZZ then val#(i+n#ab)
else error "unknown node type"
)));
val = val | { det' M }
)
else error "unknown SLP node key";
));
matrix apply(entries S#2, r->apply(r, e->val#e))
)
transposePreSLP = method()
transposePreSLP(List,List,Matrix) := (C,slp,M) -> (C, slp, transpose M)
jacobianPreSLP = method() -- finds jacobian of S with respect to inputs listed in L
jacobianPreSLP (Sequence, List) := (S,L) -> (
-- constants := S#0 | {0_CC,1_CC};
constants := S#0 | {0,1};
slp := S#1;
outMatrix := S#2;
-- create "zero node"
zeroNode := #slp;
slp = slp | {{slpCOPY, CONST=>#constants-2}};
if numgens target outMatrix != 1 then error "preSLP: row vector expected";
diffNodeVar := (ni,vj)->(
-- augments slp with nodes necessary to differentiate node n#ni w.r.t. input vj
-- output: the (absolute) position of the result in slp (or -1 "zero")
n := slp#ni;
k := first n;
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST
then return -1 -- "zero"
else error "unknown node type";
)
else if k === slpMULTIsum then (
pos := toList apply(2..1+n#1, j->
if class n#j === Option and n#j#0 === CONST then -1 -- "zero"
else if class n#j === Option and n#j#0 === INPUT then (
if n#j#1 == vj then (
slp = slp | {{slpCOPY,CONST=> #constants-1}}; -- "one"
(#slp-1)
)
else -1 -- "zero"
)
else if class n#j === ZZ then diffNodeVar(ni+n#j,vj)
else error "unknown node type"
);
summands := select(pos, p->p!=-1);
if #summands == 0 then return -1 -- "zero"
else if #summands == 1 then return first summands
else (
slp = slp | {{slpMULTIsum,#summands} | apply(summands, i->i-#slp)};
return (#slp-1);
)
)
else if k === slpPRODUCT then (
pos = toList apply(1..2, j->(
if class n#j === Option and n#j#0 === CONST then -1 -- "zero"
else if class n#j === Option and n#j#0 === INPUT then (
if n#j#1 == vj then (
slp = slp | {{slpPRODUCT}|
toList apply(1..2, t->if t==j
then CONST=> #constants-1 -- "one"
else (
if class n#t === ZZ then ni+n#t-#slp
else n#t
)
)};
(#slp-1)
)
else -1 -- "zero"
)
else if class n#j === ZZ then (
p:=diffNodeVar(ni+n#j,vj);
if p==-1 then -1 -- "zero"
else (
slp = slp | {
{slpPRODUCT}|
toList apply(1..2, t->
if t==j
then p-#slp
else (
if class n#t === ZZ then ni+n#t-#slp
else n#t
)
)};
(#slp-1)
)
)
else error "unknown node type"
));
summands = select(pos, p->p!=-1);
if #summands == 0 then return -1 -- "zero"
else if #summands == 1 then return first summands
else (
slp = slp | {{slpMULTIsum,#summands} | apply(summands, p->p-#slp)};
return (#slp-1);
)
)
else if k === slpDET then (
e := apply(drop(n,2), a->ni+a); -- matrix entries (global node references)
pos = toList apply(2..(#e+1), j->(
if class n#j === ZZ then diffNodeVar(ni+n#j,vj)
else error "unknown node type"
));
N := n#1;
slp = slp | apply(N, row->{slpDET,N}|
-- references: global->local
apply(
take(e,N*row)|take(pos,{N*row,N*(row+1)-1})|drop(e,N*(row+1)),
a->(if a == -1 then zeroNode else a)-(#slp+row)
)
) | {
{slpMULTIsum,N} | toList((-N)..(-1))
};
return (#slp-1)
)
else error "unknown SLP node key";
);
newOut := transpose matrix apply(first entries outMatrix, ni->apply(L, vj->diffNodeVar(ni,vj)));
( constants, slp,
matrix apply(entries newOut, row->apply(row, i->if i==-1 then zeroNode else i)) )
)
prunePreSLP = method() -- finds jacobian of S with respect to inputs listed in L
prunePreSLP (List,List,Matrix) := (C,slp,outMatrix) -> (
-- look for duplicate constants
newC := {};
remap := apply(#C, i->(
p := position(newC,c->C#i==c);
if p =!= null
then p
else (
newC = newC | {C#i};
#newC - 1
)
));
newslp := apply(slp, n->(
k := first n;
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST then {n#0,CONST=>remap#(n#1#1)}
else error "unknown node type"
)
else if k === slpMULTIsum then (
{n#0,n#1} | toList apply(2..1+n#1,
j -> if class n#j === Option and n#j#0 === CONST
then CONST=>remap#(n#j#1)
else n#j
)
)
else if k === slpPRODUCT then (
{n#0} | toList apply(1..2, j->
if class n#j === Option and n#j#0 === CONST
then CONST => remap#(n#j#1)
else n#j
)
)
else if k === slpDET then n
else error "unknown SLP node key"
));
(newC,newslp,outMatrix)
)
-- create a file <fn>.cpp with C++ code for the function named fn that evaluates a preSLP S
-- format:
-- void fn(const complex* a, complex* b)
-- here: input array a
-- output array b
preSLPtoCPP = method(TypicalValue=>Nothing, Options=>{System=>MacOsX})
preSLPtoCPP (Sequence,String) := o-> (S,filename)-> (
constants := S#0;
slp := S#1;
fn := "slpFN"; -- function name
f := openOut(filename);
f << ///
#include<stdio.h>
#include<math.h>
class complex
{
private:
double real; // Real Part
double imag; // Imaginary Part
public:
complex();
complex(double,double);
complex(const complex&);
//complex(M2_CCC);
complex operator +(complex);
complex operator -(complex);
complex operator *(complex);
complex operator /(complex);
complex getconjugate();
complex getreciprocal();
double getreal();
double getimaginary();
bool operator ==(complex);
void operator =(complex);
void sprint(char*);
};
complex::complex() { }
complex::complex(double r, double im)
{
real=r;
imag=im;
}
// COPY CONSTRUCTOR
complex::complex(const complex &c)
{
this->real=c.real;
this->imag=c.imag;
}
void complex::operator =(complex c)
{
real=c.real;
imag=c.imag;
}
complex complex::operator +(complex c)
{
complex tmp;
tmp.real=this->real+c.real;
tmp.imag=this->imag+c.imag;
return tmp;
}
complex complex::operator -(complex c)
{
complex tmp;
tmp.real=this->real - c.real;
tmp.imag=this->imag - c.imag;
return tmp;
}
complex complex::operator *(complex c)
{
complex tmp;
tmp.real=(real*c.real)-(imag*c.imag);
tmp.imag=(real*c.imag)+(imag*c.real);
return tmp;
}
complex complex::operator /(complex c)
{
double div=(c.real*c.real) + (c.imag*c.imag);
complex tmp;
tmp.real=(real*c.real)+(imag*c.imag);
tmp.real/=div;
tmp.imag=(imag*c.real)-(real*c.imag);
tmp.imag/=div;
return tmp;
}
complex complex::getconjugate()
{
complex tmp;
tmp.real=this->real;
tmp.imag=this->imag * -1;
return tmp;
}
complex complex::getreciprocal()
{
complex t;
t.real=real;
t.imag=imag * -1;
double div;
div=(real*real)+(imag*imag);
t.real/=div;
t.imag/=div;
return t;
}
double complex::getreal()
{
return real;
}
double complex::getimaginary()
{
return imag;
}
bool complex::operator ==(complex c)
{
return (real==c.real)&&(imag==c.imag) ? 1 : 0;
}
void complex::sprint(char* s)
{
sprintf(s, "(%lf) + i*(%lf)", real, imag);
}
/// << endl;
if o.System === MacOsX then f << ///#define EXPORT __attribute__((visibility("default")))/// <<endl;
if o.System === MacOsX then f << /// extern "C" EXPORT ///;
f << "void " << fn << "(complex* a, complex* b)" << endl
<< "{" << endl
<< " complex ii(0,1);" << endl
<< " complex c[" << #constants << "]; " << endl
<< " complex node[" << #slp << "];" << endl
<< " complex* n = node;" << endl; -- current node
-- hardcode the constants
scan(#constants, i-> f << "c[" << i << "] = " << "complex(" <<
realPart constants#i << "," << imaginaryPart constants#i << ");" << endl);
scan(#slp, i->(
n := slp#i;
k := first n;
f << " *n = ";
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST
then f << "c[" << n#1#1 << "];"
else error "unknown node type";
)
else if k === slpMULTIsum then (
scan(2..1+n#1, j->(
if class n#j === Option and n#j#0 === CONST
then f << "c[" << n#j#1 << "]"
else if class n#j === ZZ
then f << "node[" << i+n#j << "]"
else error "unknown node type";
if j < 1+n#1 then f << " + ";
));
f << ";";
)
else if k === slpPRODUCT then (
scan(1..2, j->(
if class n#j === Option then (
if n#j#0 === INPUT
then f << "a[" << n#j#1 << "]"
else if n#j#0 === CONST
then f << "c[" << n#j#1 << "]"
else error "unknown node type"
)
else if class n#j === ZZ
then f << "node[" << i+n#j << "]"
else error "unknown node type";
if j < 2 then f << " * ";
));
f << ";";
)
else error "unknown SLP node key";
f << " n++;" << endl
));
f << " // creating output" << endl << " n = b;" << endl;
scan(flatten entries S#2, e->(
f << " *(n++) = node[" << e << "];" << endl
));
f << "}" << endl << close;
)
-- create a file <fn>.c with C code for the function named fn that evaluates a preSLP S
-- format:
-- void fn(const complex* a, complex* b)
-- here: input array a
-- output array b
preSLPtoC = method(TypicalValue=>Nothing, Options=>{System=>MacOsX})
preSLPtoC (Sequence,String) := o-> (S,filename)-> (
constants := S#0;
slp := S#1;
fn := "slpFN"; -- function name
f := openOut(filename);
f << ///
#include<stdio.h>
#include<math.h>
typedef struct
{
double re;
double im;
} complex;
inline void init_complex(complex* c, double r, double i) __attribute__((always_inline));
void init_complex(complex* c, double r, double i)
{ c->re = r; c->im = i; }
/* #define init_complex(c,r,i) { c->re = r; c->im = i; } */
/* register */
static double r_re, r_im;
inline set_r(complex c) __attribute__((always_inline));
inline set_r(complex c)
{ r_re = c.re; r_im = c.im; }
/* #define set_r(c) { r_re = c.re; r_im = c.im; } */
inline copy_r_to(complex* c) __attribute__((always_inline));
inline copy_r_to(complex* c)
{ c->re = r_re; c->im = r_im; }
/* #define copy_r_to(c) { c->re = r_re; c->im = r_im; } */
inline add(complex c) __attribute__((always_inline));
inline add(complex c)
{ r_re += c.re; r_im += c.im; }
/* #define add(c) { r_re += c.re; r_im += c.im; } */
inline mul(complex c) __attribute__((always_inline));
inline mul(complex c)
{
double t_re = r_re*c.re - r_im*c.im;
r_im = r_re*c.im + r_im*c.re;
r_re = t_re;
}
/*#define mul(c) { double t_re = r_re*c.re - r_im*c.im; r_im = r_re*c.im + r_im*c.re; r_re = t_re; } */
/// << endl;
-- if o.System === MacOsX then f << ///#define EXPORT __attribute__((visibility("default")))/// <<endl;
-- if o.System === MacOsX then f << /// extern "C" EXPORT ///;
f << "void " << fn << "(complex* a, complex* b)" << endl
<< "{" << endl
<< " complex c[" << #constants << "]; " << endl
<< " complex node[" << #slp << "];" << endl
<< " complex* cp = c;" << endl
<< " complex* n = node;" << endl; -- current node
-- hardcode the constants
scan(#constants, i-> f << "init_complex(cp," <<
realPart constants#i << "," << imaginaryPart constants#i << "); cp++;" << endl);
scan(#slp, i->(
n := slp#i;
k := first n;
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST
then f << " *n = c[" << n#1#1 << "];"
else error "unknown node type";
)
else if k === slpMULTIsum then (
scan(2..1+n#1, j->(
if class n#j === Option and n#j#0 === CONST
then f << (if j>2 then "add" else "set_r") << "(c[" << n#j#1 << "]); "
else if class n#j === ZZ
then f << (if j>2 then "add" else "set_r") << "(node[" << i+n#j << "]); "
else error "unknown node type";
));
f << "copy_r_to(n);";
)
else if k === slpPRODUCT then (
scan(1..2, j->(
if class n#j === Option then (
if n#j#0 === INPUT
then f << (if j>1 then "mul" else "set_r") << "(a[" << n#j#1 << "]); "
else if n#j#0 === CONST
then f << (if j>1 then "mul" else "set_r") << "(c[" << n#j#1 << "]); "
else error "unknown node type"
)
else if class n#j === ZZ
then f << (if j>1 then "mul" else "set_r") << "(node[" << i+n#j << "]); "
else error "unknown node type";
));
f << "copy_r_to(n);";
)
else error "unknown SLP node key";
f << " n++;" << endl
));
f << " // creating output" << endl << " n = b;" << endl;
scan(flatten entries S#2, e->(
f << " *(n++) = node[" << e << "];" << endl
));
f << "}" << endl << close;
)
///
loadPackage "NumericalAlgebraicGeometry"; debug NumericalAlgebraicGeometry;
R = CC[x,y,z]
g = 3*y^2+(2.1+ii)*x
--g = 1 + 2*x^2 + 3*x*y^2 + 4*z^2
--g = random(3,R)
pre = poly2preSLP g
g3 = concatPreSLPs {pre,pre,pre}
g6 = stackPreSLPs {g3,g3}
eg = evaluatePreSLP(g6,gens R)
eg_(1,1) == g
--preSLPtoCPP(g6,"slpFN")
debug Core
(constMAT, prog) = preSLPinterpretedSLP(3,g6)
rSLP = rawSLP(raw constMAT, prog)
K = CC_53
params = matrix{{ii_K,1_K,-1_K}};
result = rawEvaluateSLP(rSLP, raw params)
sub(g, params) - (map(K,result))_(0,0)
///
----------------- SLPs -----------------------------------------------------
-- SLP = (constants, array of ints)
-- constants = one-row matrix
-- array of ints =
--0 #constants
--1 #inputs
--2 #rows in output
--3 #columns in output
--4 type of program (slpCOMPILED,slpINTERPRETED,slpPREDICTOR)
-- OR the beginning of slp operations list
--
-- if COMPILED then {
--5 integer -> used to create the dynamic library filename
-- }
-- else if PREDICTOR then {
--5 predictor type
--6+ list of catalog numbers of SLPs for Hx,Ht,H
-- } else {
-- list of commands
-- output matrix entries (numbers of nodes)
-- }
preSLPinterpretedSLP = method()
preSLPinterpretedSLP (ZZ,Sequence) := (nIns,S) -> (
-- makes input for rawSLP from pre-slp
consts := S#0;
slp := S#1;
o := S#2;
SLPcounter = SLPcounter + 1;
curNode := #consts+nIns;
p := {};
scan(slp, n->(
k := first n;
if k === slpCOPY then (
if class n#1 === Option and n#1#0 === CONST then p = p | {slpCOPY} | {n#1#1}
else error "unknown node type"
)
else if k === slpMULTIsum then (
p = p | {slpMULTIsum, n#1} | toList apply(2..1+n#1,
j->if class n#j === Option and n#j#0 === CONST then n#j#1
else if class n#j === Option and n#j#0 === INPUT then #consts + n#j#1
else if class n#j === ZZ then curNode+n#j
else error "unknown node type"
)
)
else if k === slpPRODUCT then (
p = p | {slpPRODUCT} | toList apply(1..2, j->(
if class n#j === Option then (
if n#j#0 === INPUT then #consts + n#j#1
else if n#j#0 === CONST then n#j#1
else error "unknown node type"
)
else if class n#j === ZZ then curNode+n#j
else error "unknown node type"
))
)
else error "unknown SLP node key";
curNode = curNode + 1;
));
p = {#consts,nIns,numgens target o, numgens source o} | p | {slpEND}
| apply(flatten entries o, e->e+#consts+nIns);
(map(CC^1,CC^(#consts), {consts}), p)
)
preSLPcompiledSLP = method(TypicalValue=>Nothing, Options=>{System=>MacOsX, Language=>LanguageC})
preSLPcompiledSLP (ZZ,Sequence) := o -> (nIns,S) -> (
-- makes input for rawSLP from pre-slp
consts := S#0;
slp := S#1;
out := S#2;
fname := SLPcounter; SLPcounter = SLPcounter + 1; -- this gives libraries distinct names
-- the name of the function stays the same, should it change?
curNode := #consts+nIns;
p := {#consts,nIns,numgens target out, numgens source out} | {slpCOMPILED}
| { fname }; -- "lib_name"
cppName := libPREFIX | toString fname | if o.Language === LanguageCPP then ".cpp" else ".c";
libName := libPREFIX | toString fname | if o.System === Linux then ".so" else ".dylib";
(if o.Language === LanguageCPP then preSLPtoCPP else preSLPtoC) (S, cppName, System=>o.System);
compileCommand := if o.System === Linux then "gcc -shared -Wl,-soname," | libName | " -o " | libName | " " | cppName | " -lc -fPIC"
else if o.System === MacOsX and version#"pointer size" === 8 then "g++ -m64 -dynamiclib -O2 -o " | libName | " " | cppName
else if o.System === MacOsX then (
"gcc -dynamiclib -O1 -o " | libName | " " | cppName
)
else error "unknown OS";
print compileCommand;
run compileCommand;
(map(CC^1,CC^(#consts), {consts}), p)
)
----------------------------------------------------------------------------------------------------
-- SLPexpressions tests
-- returns (consts,program), modifies pos
appendToProgram = method()
appendToProgram (Gate,List,List,MutableHashTable) := (g,consts,program,pos)->(
)
appendToProgram (InputGate,List,List,MutableHashTable) := (g,consts,program,pos) -> (
if pos#?g then return (consts,program); -- do nothing
if isConstant g then (
pos#g = #consts;
(append(consts,g.Name),program)
) else (
if not pos#?g then error "a variable is not specified as input";
(consts,program)
)
)
appendToProgram (SumGate,List,List,MutableHashTable) := (g,consts,program,pos)->(
if pos#?g then return (consts,program); -- do nothing
scan(g.Inputs,f->(consts,program)=appendToProgram(f,consts,program,pos));
abs'pos := #program;
pos#g = abs'pos;
(
consts,
append(program, {slpMULTIsum} | {#g.Inputs} | apply(g.Inputs,f->
if instance(f,InputGate) then (
if isConstant f then CONST=>pos#f
else INPUT=>pos#f
)
else pos#f-abs'pos))
)
)
appendToProgram (ProductGate,List,List,MutableHashTable) := (g,consts,program,pos)->(
if pos#?g then return (consts,program); -- do nothing
if #g.Inputs!=2 then error "cannot convert products of more than 2 numbers to preSLP";
scan(g.Inputs,f->(consts,program)=appendToProgram(f,consts,program,pos));
abs'pos := #program;
pos#g = abs'pos;
(
consts,
append(program, {slpPRODUCT} | apply(g.Inputs,f->
if instance(f,InputGate) then (
if isConstant f then CONST=>pos#f
else INPUT=>pos#f
)
else pos#f-abs'pos))
)
)
-- assembles a preSLP (see NumericalAlgebraicGeometry/SLP.m2)
-- that takes a list of InputGates and a list of Gates that produce the output
toPreSLP = method()
toPreSLP (List,List) := (inputs,outputs) -> (
consts := {};
program := {};
pos := new MutableHashTable from apply(#inputs,i->inputs#i=>i);
scan(outputs,o->(consts,program)=appendToProgram(o,consts,program,pos));
(consts, program, matrix{outputs/(o->pos#o)})
)
TEST ///
debug needsPackage "NumericalAlgebraicGeometry"
debug needsPackage "SLPexpressions"
-- evaluate toPreSLP == compress
X = inputGate symbol X
Y = inputGate symbol Y
E = inputGate 2
oneGate = inputGate 1
F = product{E*(X*X+E*Y)+oneGate, oneGate}
G = (sub(sub(matrix{{F}},X=>X+Y),Y=>X*Y))_(0,0)
R = CC[x,y]
output = {F, compress diff(X,F), G}
preSLP = toPreSLP({X,Y},output)
out'eval = evaluatePreSLP(preSLP, gens R)
out'comp = matrix applyTable(entries compress sub(matrix{output},{X=>inputGate x,Y=>inputGate y}), g->g.Name)
assert(out'eval == out'comp)
printSLP preSLP
printAsSLP ({X,Y},output)
///
|