1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
------------------------------------------------------
-- deflation and numerical rank
-- (loaded by ../NumericalAlgebraicGeometry.m2)
------------------------------------------------------
export { "deflate",
"SolutionSystem", "Deflation", "DeflationRandomMatrix", "liftPointToDeflation",
"deflateAndStoreDeflationSequence", "DeflationSequence", "DeflationSequenceMatrices",
"LiftedPoint", "LiftedSystem", "SquareUp"
}
deflate = method(Options=>{Variable=>null})
-- creates and stores (if not stored already) a deflated system and the corresponding random matrix
-- returns the deflation rank
deflate (PolySystem, AbstractPoint) := o -> (F,P) -> (
J := evaluate(jacobian F, P);
r := numericalRank J;
deflate(F,r,o);
r
)
-- creates and stores (if not stored already)
-- returns a deflated system for rank r
deflate (PolySystem, ZZ) := o -> (F,r) -> (
if not F.?Deflation then (
F.Deflation = new MutableHashTable;
F.DeflationRandomMatrix = new MutableHashTable;
);
if not F.Deflation#?r then (
C := coefficientRing ring F;
B := random(C^(F.NumberOfVariables),C^(r+1));
deflate(F,B,o);
);
F.Deflation#r
)
-- deflate using a matrix
deflate(PolySystem, Matrix) := o -> (F,B) -> (
if not F.?Deflation then (
F.Deflation = new MutableHashTable;
F.DeflationRandomMatrix = new MutableHashTable;
);
r := numcols B - 1;
L := if o.Variable === null then symbol L else o.Variable;
C := coefficientRing ring F;
R := C (monoid [gens ring F, L_1..L_r]);
LL := transpose matrix{ take(gens R, -r) | {1_C} };
RFtoR := map(R, ring F);
F.Deflation#r = polySystem (RFtoR F.PolyMap || (RFtoR jacobian F)*B*LL);
F.DeflationRandomMatrix#r = B;
F.Deflation#r
)
-- deflate using a pair of matrices: one for deflation, the other for squaring up
deflate(PolySystem, Sequence) := o -> (F,BM) -> (
(B,M) := BM;
FD := deflate(F,B,o); -- passing non-null option may not work!!!
squareUp(FD,M)
)
-- deflate according to the sequence of matrices (or pairs of matrices if squaring up)
deflate(PolySystem, List) := o -> (F, seq) -> (
scan(seq, B -> F = deflate(F,B,o)); -- here B is either a Matrix or (Matrix,Matrix)
F
)
-- deflation ideal
deflate Ideal := o -> I -> (
C := coefficientRing ring I;
F := polySystem transpose gens I;
B := map C^(F.NumberOfVariables) | map(C^(F.NumberOfVariables),C^1,0);
ideal deflate(F,B,o)
)
liftPointToDeflation = method()
-- approximates the coordinates corresponding to the augmented deflation variables
-- for the deflation of F of rank r
liftPointToDeflation (AbstractPoint,PolySystem,ZZ) := (P,F,r) -> (
if F.NumberOfVariables == (F.Deflation#r).NumberOfVariables then P
else (
A := evaluate(jacobian F, P)*(F.DeflationRandomMatrix#r);
last'column := numColumns A-1;
point {
coordinates P |
flatten entries solve(submatrix'(A,{last'column}),-submatrix(A,{last'column}),ClosestFit=>true)
}
)
)
TEST ///
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z^2}
P0 = point sub(matrix{{0.000001, 0.000001*ii,0.000001-0.000001*ii}},C)
assert not isFullNumericalRank evaluate(jacobian F,P0)
r1 = deflate (F,P0)
P1' = liftPointToDeflation(P0,F,r1)
F1 = F.Deflation#r1
P1 = newton(F1,P1')
assert not isFullNumericalRank evaluate(jacobian F1,P1)
r2 = deflate (F1,P1)
P2' = liftPointToDeflation(P1,F1,r2)
F2 = F1.Deflation#r2
P2 = newton(F2,P2')
assert isFullNumericalRank evaluate(jacobian F2,P2)
P = point {take(coordinates P2, F.NumberOfVariables)}
assert(residual(F,P) < 1e-50)
NP2 = newton(F2,P2)
NNP2 = newton(F2,NP2)
assert(P2.cache.ErrorBoundEstimate^2 > NP2.cache.ErrorBoundEstimate)
///
deflateAndStoreDeflationSequence = method(Options=>{SquareUp=>true})
deflateAndStoreDeflationSequence(AbstractPoint,PolySystem) := o -> (P,F) -> (
P0 := P;
F0 := F;
d'seq := {}; -- deflation sequence: a sequence of matrices used for deflation
d'seq'mat := {}; -- ... corresponding matrices
assert isSolution(P,F);
if (status P =!= Regular or (not P.?SolutionSystem) or P.SolutionSystem =!= F) then
while not isFullNumericalRank evaluate(jacobian F0,P0) do (
r := deflate (F0,P0);
d'seq = d'seq | {r};
new'mat'or'pair := F0.DeflationRandomMatrix#r;
P0' := liftPointToDeflation(P0,F0,r);
F0 = F0.Deflation#r;
if o.SquareUp then (
F0' := squareUp F0;
new'mat'or'pair = (new'mat'or'pair, squareUpMatrix F0);
F0 = F0';
);
d'seq'mat = d'seq'mat | {new'mat'or'pair};
P0 = newton(F0,P0');
);
P = point{take(coordinates P0, F.NumberOfVariables)};
if #d'seq>0 then P.cache.ErrorBoundEstimate = P0.cache.ErrorBoundEstimate;
P.cache.DeflationSequence = d'seq;
P.cache.DeflationSequenceMatrices = d'seq'mat;
P.cache.SolutionSystem = F;
P.cache.LiftedSystem = P0.cache.SolutionSystem = F0;
P.cache.LiftedPoint = P0;
P.cache.SolutionStatus = if #d'seq > 0 then Singular else Regular;
P
)
TEST ///
setRandomSeed 1
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z*(z-1)^2}
P = point sub(matrix{{0.000001, 0.000001*ii,1.000001-0.000001*ii}},C)
P = deflateAndStoreDeflationSequence(P,F)
assert(P.cache.DeflationSequence == {0,1})
assert(10-*a not too large constant*-*P.cache.ErrorBoundEstimate^2 > (newton(P.cache.LiftedSystem,P.cache.LiftedPoint)).cache.ErrorBoundEstimate)
///
partitionViaDeflationSequence = method()
partitionViaDeflationSequence (List,PolySystem) := (pts,F) -> (
H := new MutableHashTable;
for p in pts do (
if not p.cache.?DeflationSequence or p.cache.SolutionSystem =!= F
then p = deflateAndStoreDeflationSequence(p,F);
ds := p.cache.DeflationSequence;
if H#?ds then H#ds = H#ds | {p}
else H#ds = {p};
);
values H
)
TEST ///
C=CC_200
C[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z*(z^2-1)^2}
e = 0.0000001
pts = {
point sub(matrix{{e, e*ii,e-e*ii}},C),
point sub(matrix{{e, e*ii,1+e-e*ii}},C),
point sub(matrix{{e, e*ii,-1-e-e*ii}},C)
}
debug NumericalAlgebraicGeometry
partitionViaDeflationSequence(pts,F)
///
--------------------------------
-- OLD deflation
--------------------------------
///
dMatrix = method()
dMatrix (List,ZZ) := (F,d) -> dMatrix(ideal F, d)
dMatrix (Ideal,ZZ) := (I, d) -> (
-- deflation matrix of order d
R := ring I;
v := flatten entries vars R;
n := #v;
ind := toList((n:0)..(n:d)) / toList;
ind = select(ind, i->sum(i)<=d and sum(i)>0);
A := transpose diff(matrix apply(ind, j->{R_j}), gens I);
scan(select(ind, i->sum(i)<d and sum(i)>0), i->(
A = A || transpose diff(matrix apply(ind, j->{R_j}), R_i*gens I);
));
A
)
dIdeal = method()
dIdeal (Ideal, ZZ) := (I, d) -> (
-- deflation ideal of order d
R := ring I;
v := gens R;
n := #v;
ind := toList((n:0)..(n:d)) / toList;
ind = select(ind, i->sum(i)<=d and sum(i)>0);
A := dMatrix(I,d);
newvars := apply(ind, i->getSymbol("x"|concatenate(i/toString)));
S := (coefficientRing R)[newvars,v];
sub(I,S) + ideal(sub(A,S) * transpose (vars S)_{0..#ind-1})
)
deflatedSystem = method()
deflatedSystem(Ideal, Matrix, ZZ, ZZ) := memoize (
(I, M, r, attempt) -> (
-- In: gens I = the original (square) system
-- M = deflation matrix
-- r = numerical rank of M (at some point)
-- Out: (square system of n+r equations, the random matrix SM)
R := ring I;
n := numgens R;
SM := randomOrthonormalCols(numcols M, r+1);
d := local d;
S := (coefficientRing R)(monoid[gens R, d_0..d_(r-1)]);
DF := sub(M,S)*sub(SM,S)*transpose ((vars S)_{n..n+r-1}|matrix{{1_S}}); -- new equations
--print DF;
(
flatten entries squareUp ( sub(transpose gens I,S) || DF ),
SM
)
)
) -- END memoize
liftSolution = method(Options=>{Tolerance=>null}) -- lifts a solution s to a solution of a deflated system dT (returns null if unsuccessful)
liftSolution(List, List) := o->(s,dT)->liftSolution(s, transpose matrix{dT},o)
liftSolution(List, Matrix) := o->(c,dT)->(
R := ring dT;
n := #c;
N := numgens R;
if N<=n then error "the number of variables in the deflated system is expected to be larger";
newVars := (vars R)_{n..N-1};
specR := (coefficientRing R)(monoid[flatten entries newVars]);
dT0 := (map(specR, R, matrix{c}|vars specR)) dT;
ls := first solveSystem flatten entries squareUpSystem dT0; -- here a linear system is solved!!!
if status ls =!= Regular then return null;
ret := c | coordinates ls;
-- if norm sub(dT, matrix{ret}) < o.Tolerance * norm matrix{c} then ret else null
ret
)
///
|