1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
|
refKroneLeykin := "R. Krone and A. Leykin, \"Numerical algorithms for detecting embedded components.\", arXiv:1405.7871"
refBeltranLeykin := "C. Beltran and A. Leykin, \"Certified numerical homotopy tracking\", Experimental Mathematics 21(1): 69-83 (2012)"
refBeltranLeykinRobust := "C. Beltran and A. Leykin, \"Robust certified numerical homotopy tracking\", Foundations of Computational Mathematics 13(2): 253-295 (2013)"
refIntroToNAG := "A.J. Sommese, J. Verschelde, and C.W. Wampler, \"Introduction to numerical algebraic geometry\",
in \"Solving polynomial equations\" (2005), 301--338"
refSWbook := "A.J. Sommese and C.W. Wampler, \"The numerical solution of systems of polynomials\",
World Scientific Publishing (2005)"
certifiedTrackingFunctions := UL{
TO randomInitialPair,
TO goodInitialPair,
TO randomSd
}
document {
Key => NumericalAlgebraicGeometry,
Headline => "Numerical Algebraic Geometry",
"The package ", TO "NumericalAlgebraicGeometry", ", also known as ",
EM "NAG4M2 (Numerical Algebraic Geometry for Macaulay2)",
", implements methods of polynomial homotopy continuation
to solve systems of polynomial equations, ",
EXAMPLE lines ///
R = CC[x,y,z];
F = {x^2+y^2+z^2-1, y-x^2, z-x^3};
s = solveSystem F
realPoints s
///,
"and describe positive-dimensional complex algebraic varieties, ",
EXAMPLE lines ///
R = CC[x,y,z];
sph = x^2+y^2+z^2-1;
I = ideal {x*sph*(y-x^2), sph*(z-x^3)};
numericalIrreducibleDecomposition I
///,
PARA {"Basic types (such as ", TO Point, " and ", TO "WitnessSet", ") are defined in the package ", TO NAGtypes, "."},
HEADER3 "Basic functions:",
UL{
TO track,
TO solveSystem,
TO refine,
TO totalDegreeStartSystem,
TO numericalIrreducibleDecomposition,
TO sample,
TO (isSubset,NumericalVariety,NumericalVariety),
},
"Optionally, the user may outsource some basic routines to ", TO "Bertini", " and ", TO "PHCpack",
" (look for ", TO Software, " option).",
HEADER3 "Service functions:",
UL{
{
"Many service functions (such as ",
TO areEqual," and ",TO sortSolutions,") are defined in the package ", TO NAGtypes, "."
},
TO setDefault,
TO getDefault,
TO NAGtrace,
-- TO toAffineChart,
TO newton,
TO isOn,
TO union,
TO removeRedundantComponents,
-- TO ("==",NumericalVariety,NumericalVariety)
},
HEADER3 {"Functions related to ", TO "Certified", " tracking:"},
certifiedTrackingFunctions,
HEADER3 {"References:"},
UL{
refIntroToNAG,
refSWbook,
refBeltranLeykin,
refKroneLeykin
}
}
document {
Key => {setDefault, 1:(setDefault), Attempts, [setDefault, Attempts],
SingularConditionNumber, [setDefault, SingularConditionNumber],
[refine, SingularConditionNumber], [track,SingularConditionNumber],
[setDefault,Precision],
getDefault, (getDefault,Symbol)},
Headline => "set/get the default parameters for continuation algorithms",
Usage => "setDefault(p1=>v1, p2=>v2, ...), v = getDefault p",
Inputs => { {TT "p, p1, p2", ", ", TO "Symbol", "(s), the name(s) of parameter(s)"},
Attempts => {" (meaning Attempts = ", toString DEFAULT.Attempts, "). The maximal number of attempts (e.g., to make a random regular homotopy)."},
SingularConditionNumber => {" (meaning SingularConditionNumber = ", toString DEFAULT.SingularConditionNumber, "). Matrix is considered to be singular
if its condition number is greater than this value."},
Precision =>{" (meaning bits of precision)"}
},
Outputs => {
{TT "setDefault", " returns ", TO null, "."},
{TT "getDefault", " returns ", TT "v", ", the value of the specified parameter ", TT "p", "."} },
PARA {"To see a detailed description of an option click on its name."},
PARA { "These functions set/get values of optional parameters used in the functions ",
TO "track", ", ", TO "solveSystem", ", ", TO "refine",
" as well as higher-level functions (that are under construction)." },
EXAMPLE lines ///
getDefault Predictor
setDefault(Predictor=>Euler, CorrectorTolerance=>1e-10)
getDefault Predictor
///,
SeeAlso => {track, solveSystem, refine, areEqual}
}
document { Key => {AffinePatches, [track,AffinePatches], [setDefault,AffinePatches], DynamicPatch,
SLP, [track,SLP], [setDefault,SLP], HornerForm, CompiledHornerForm,
SLPcorrector, SLPpredictor, [track,SLPcorrector], [setDefault,SLPcorrector],
[track,SLPpredictor], [setDefault,SLPpredictor],
--[trackSegment,AffinePatches], [trackSegment,SLP], [trackSegment,SLPcorrector], [trackSegment,SLPpredictor]
},
Headline => "reserved for developers"
}
document {
Key => {(solveSystem, List),solveSystem,(solveSystem,PolySystem)},
Headline => "solve a system of polynomial equations",
Usage => "s = solveSystem F",
Inputs => { "F"=>"contains polynomials with complex coefficients" },
Outputs => { "s"=>{"contains all complex solutions to the system ", TT "F=0" }},
"Solve a system of polynomial equations using homotopy continuation methods.",
PARA {},
EXAMPLE lines ///
R = CC[x,y];
F = {x^2+y^2-1, x*y};
solveSystem F
///,
EXAMPLE lines ///
R = CC[x,y];
F = {x^2+y^2-1, x*y, x*(y+1)};
solveSystem F
///,
PARA {"The system is assumed to have finitely many solutions. If it is not square (number of equations = number of variables), ",
TO squareUp, " is applied and solutions to the original system are then picked out from the resulting (larger) set of solutions."},
PARA {"The output (produced by ", TO track, " with default options) contains all ", TO2{Point,"points"},
" obtained at the end of homotopy paths when tracking starting at the ", TO totalDegreeStartSystem, ". ",
"In particular, this means that solving a system that
has fewer than Bezout bound many solutions will produce
points that are not marked as regular. See ", TO track, " for detailed examples. "
}
}
document { Key => {"numerical homotopy tracking options",
[track,NumericalAlgebraicGeometry$gamma], [setDefault,NumericalAlgebraicGeometry$gamma], [track,NumericalAlgebraicGeometry$tDegree], [setDefault,NumericalAlgebraicGeometry$tDegree],
[track,tStep], [setDefault,tStep], [track,tStepMin], [setDefault,tStepMin],
NumericalAlgebraicGeometry$gamma, NumericalAlgebraicGeometry$tDegree, tStep, tStepMin,
[track,stepIncreaseFactor], [setDefault,stepIncreaseFactor],
[track, numberSuccessesBeforeIncrease], [setDefault,numberSuccessesBeforeIncrease],
stepIncreaseFactor, numberSuccessesBeforeIncrease,
Predictor, [track,Predictor], [setDefault,Predictor], RungeKutta4, Multistep, Tangent, Euler, Secant,
MultistepDegree, [track,MultistepDegree], [setDefault,MultistepDegree],
[track,EndZoneFactor], [setDefault,EndZoneFactor], [track,maxCorrSteps], [setDefault,maxCorrSteps],
[track,InfinityThreshold], [setDefault,InfinityThreshold],
EndZoneFactor, maxCorrSteps, InfinityThreshold,
Projectivize, [track,Projectivize], [setDefault,Projectivize],
CorrectorTolerance, [track,CorrectorTolerance], [setDefault,CorrectorTolerance],
[track,NoOutput], [setDefault,NoOutput],
[track,Normalize], [setDefault,Normalize],
NoOutput,
[refine, Iterations], [setDefault,Iterations], [refine, Bits], [setDefault,Bits],
[refine,ErrorTolerance], [setDefault,ErrorTolerance],
[refine, ResidualTolerance], [setDefault,ResidualTolerance],
Iterations, Bits, ErrorTolerance, ResidualTolerance,
-- solveSystem
[solveSystem,CorrectorTolerance], [solveSystem,EndZoneFactor], [solveSystem,gamma], [solveSystem,InfinityThreshold],
[solveSystem,maxCorrSteps], [solveSystem,Normalize], [solveSystem,numberSuccessesBeforeIncrease],
[solveSystem,Predictor], [solveSystem,Projectivize], [solveSystem,SingularConditionNumber],
[solveSystem,stepIncreaseFactor], [solveSystem,tDegree], [solveSystem,tStep], [solveSystem,tStepMin],
[solveSystem,Precision],[solveSystem,ResidualTolerance],
-- endGameCauchy
[endGameCauchy,InfinityThreshold], [endGameCauchy,EndZoneFactor], [endGameCauchy,maxCorrSteps], [endGameCauchy,numberSuccessesBeforeIncrease], [endGameCauchy,stepIncreaseFactor], [endGameCauchy,CorrectorTolerance], [endGameCauchy,tStep], [endGameCauchy,tStepMin],
-- trackHomotopy
[trackHomotopy,EndZoneFactor], [trackHomotopy,maxCorrSteps], [trackHomotopy,Predictor], [trackHomotopy,stepIncreaseFactor], [trackHomotopy,Precision], [trackHomotopy,tStep], [trackHomotopy,CorrectorTolerance], [trackHomotopy,NoOutput], [trackHomotopy,InfinityThreshold], [trackHomotopy,Software], [trackHomotopy,numberSuccessesBeforeIncrease], [trackHomotopy, tStepMin],
-- segmentHomotopy
[segmentHomotopy,gamma]
},
Headline => "options for core functions of Numerical Algebraic Geometry",
UL apply({
NumericalAlgebraicGeometry$gamma => {" (default gamma = ", toString DEFAULT.NumericalAlgebraicGeometry$gamma, "). A parameter in the homotopy: ", TEX "H(t)=(1-t)^{tDegree} S + \\gamma t^{tDegree} T."},
NumericalAlgebraicGeometry$tDegree =>{" (default tDegree = ", toString DEFAULT.NumericalAlgebraicGeometry$tDegree, "). A parameter in the homotopy: ", TEX "H(t)=(1-t)^{tDegree} S + \\gamma t^{tDegree} T."},
tStep => {" (default tStep = ", toString DEFAULT.tStep, "). Initial step size."},
tStepMin => {" (default tStepMin = ", toString DEFAULT.tStepMin, "). Minimal step size."},
stepIncreaseFactor => {" (default stepIncreaseFactor = ", toString DEFAULT.stepIncreaseFactor, "). Determines how the step size is adjusted."},
numberSuccessesBeforeIncrease => {
" (default numberSuccessesBeforeIncrease = ", toString DEFAULT.numberSuccessesBeforeIncrease,
"). Determines how the step size is adjusted."},
Predictor => {" (default Predictor = ", toString DEFAULT.Predictor,
"). A method to predict the next point on the homotopy path: choose between ",
TO "RungeKutta4", ", ", TO "Tangent", ", ",
TO "Euler", ", ", TO "Secant", ", ", TO "Multistep", ", ", TO "Certified",
". The option ", TO "Certified", " provides certified tracking."},
MultistepDegree => {" (default MultistepDegree = ", toString DEFAULT.MultistepDegree,
"). Degree of the Multistep predictor."},
maxCorrSteps => {" (default maxCorrSteps = ", toString DEFAULT.maxCorrSteps,
"). Max number of steps corrector takes before a failure is declared."},
CorrectorTolerance => {" (default CorrectorTolerance = ", toString DEFAULT.CorrectorTolerance, "). Corrector succeeds if the relative error does not exceed this tolerance."},
EndZoneFactor => {" (default EndZoneFactor = ", toString DEFAULT.EndZoneFactor, "). Determines the size of the \"end zone\", the interval at the end of the path where ", TO CorrectorTolerance, " is tighter." },
InfinityThreshold => {" (default InfinityThreshold = ", toString DEFAULT.InfinityThreshold, "). Paths are truncated if the norm of the approximation exceeds the threshold."},
Projectivize => {" (default Projectivize = ", toString DEFAULT.Projectivize, "). If true then the system is homogenized and the projective tracker is executed."},
Normalize => {" (default Normalize = ", toString DEFAULT.Normalize, "). Normalize the start and target systems w.r.t. the Bombieri-Weyl norm."},
NoOutput => {" (default NoOutput = ", toString DEFAULT.NoOutput, "). If true, no output is produced (used by developers)."},
Iterations => {" (default Iterations = ", toString DEFAULT.Iterations, "). Number of refining iterations of Newton's method."},
Bits => {" (default Bits = ", toString DEFAULT.Bits, "). Number of bits of precision."},
ErrorTolerance => {" (default ErrorTolerance = ", toString DEFAULT.ErrorTolerance, "). A bound on the desired estimated error."},
ResidualTolerance => {" (default ResidualTolerance = ", toString DEFAULT.ResidualTolerance, "). A bound on desired residual."},
Precision => {" (default Precision = ", toString DEFAULT.Precision, "). Precision of the floating-point numbers used in computation. If set to ",
TO "infinity", "(EXPERIMENTAL!) the precision in homotopy continuation adapts according to numerical conditioning. ",
"The default setting, ", TT "DoublePrecision", ", forces fast arithmetic and linear algebra in standard precision. (Other settings invoke MPFR library.)"}
},
item -> {TT "[", TT toString item#0, TT "]: "} | item#1
)
}
document {Key => { (track, List, List, List), track, (track,PolySystem,PolySystem,List) },
Headline => "track a linear segment homotopy given start and target system",
Usage => "solsT = track(S,T,solsS)",
Inputs => {
"S" => {" contains the polynomials in the start system"},
"T" => {" contains the polynomials in the target system"},
"solsS" => {" contains start solutions"},
},
Outputs => {{ TT "solsT", " is a list of ", TO2{AbstractPoint,"points"}, " that are solutions of ", TT "T=0", " obtained by continuing ", TT "solsS", " of ", TT "S=0" }},
"Polynomial homotopy continuation techniques are used to obtain solutions
of the target system given a start system. ",
"For an introduction to the subject see ", UL{
{refIntroToNAG}, {refSWbook}
},
"The package implements a most commonly used homotopy:",
PARA{
TEX "H(t) = \\gamma t^d T + (1-t)^d S"
},
"where ", TEX "S", " and ", TEX "T", " are square systems (number of equations = number of variables) of polynomials over ", TO CC, ", ",
TEX "t", " is in the interval ", TEX "[0,1]", " and ",
TEX "d = ", TO "tDegree",
". ", PARA {"Here is an example with regular solutions at the ends of all homotopy paths:"},
EXAMPLE lines ///
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, x*y};
solsS = {(1,-1),(1,1),(-1,1),(-1,-1)};
track(S,T,solsS)
///,
PARA {
"Another outcome of tracking a path is divergence (established heuristically).
In that case the divergent paths are marked with an ", TT "I",
" (", TO2{AbstractPoint, "status"}, " is set to ", TO Infinity, "). "
},
EXAMPLE lines ///
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, x-y};
solsS = {(1,-1),(1,1),(-1,1),(-1,-1)};
track(S,T,solsS,gamma=>0.6+0.8*ii)
///,
PARA {
"Some divergent paths as well as most of the paths ending in singular (multiplicity>1)
or near-singular (clustered) solutions are marked with an ", TT "M",
" (", TO2{AbstractPoint, "status"}, " is set to ", TO MinStepFailure, "). "
},
EXAMPLE lines ///
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, (x-y)^2};
solsS = {(1,-1),(1,1),(-1,1),(-1,-1)};
track(S,T,solsS)
///,
PARA {
"Tracking in the projective space uses the homotopy corresponding to an arc of a great circle
on a unit sphere in the space of homogeneous polynomial systems of a fixed degree.
In particular, this is done for certified homotopy tracking (see "|refBeltranLeykin|"):"
},
EXAMPLE lines ///
R = CC[x,y,z];
S = {x^2-z^2,y^2-z^2};
T = {x^2+y^2-z^2, x*y};
solsS = {(1,-1,1),(1,1,1),(-1,1,1),(-1,-1,1)};
track(S,T,solsS,Predictor=>Certified,Normalize=>true)
///,
PARA {
"Note that the projective tracker is invoked either if the target system is a homogeneous system or if ", TO "Projectivize", TT"=>true",
" is specified. "
},
SeeAlso => {solveSystem, setDefault, Point},
Caveat => {"Predictor=>Certified works only with (Software=>M2 or Software=>M2engine) and Normalize=>true. ",
PARA{"Unspecified optional arguments (with default values ", TO null,
") have their actual values taken from a local hashtable of defaults controlled by the functions ",
TO getDefault, " and ", TO setDefault, "."}
}
}
document {
Key => {[solveSystem,PostProcess],PostProcess},
Headline => "specifies whether to postprocess the solutions",
"Postprocessing includes refinement and clustering the solutions.",
Caveat=>{"Postprocessing is coded in top-level M2 language
and can be much slower than the homotopy continuation done without postprocessing."},
SeeAlso=>{refine}
}
document {
Key => {
(refine, List, List), refine,
(refine,AbstractPoint), (refine,PolySystem,List), (refine,PolySystem,AbstractPoint),
},
Headline => "refine numerical solutions to a system of polynomial equations",
Usage => "solsR = refine(T,sols)",
Inputs => {
"T" => {"contains the polynomials of the system (may be of type ", TO PolySystem, ")"},
"sols" => {"contains (a) solution(s) (", TO2{AbstractPoint,"points"},
" or lists of coordinates of points)"},
},
Outputs => {"solsR" => {"contains refined solutions (as ", TO2{AbstractPoint, "points"}, ")" }},
"Uses Newton's method to correct the given solutions so that the resulting approximation
has its estimated relative error bounded by min(", TO "ErrorTolerance", ",2^(-", TO "Bits", ")). ",
"The number of iterations made is at most ", TO "Iterations", ".",
-- Caveat => {"If option ", TT "Software=>M2engine", " is specified,
-- then the refinement happens in the M2 engine and it is assumed that the last path tracking procedure
-- took place with the same option and was given the same target system.
-- Any other value of this option would launch an M2-language procedure."},
PARA {},
EXAMPLE lines ///
R = CC[x];
F = polySystem {x^2-2};
P := refine(F, point{{1.5+0.001*ii}}, Bits=>1000)
first coordinates P
R = CC[x,y];
T = {x^2+y^2-1, x*y};
sols = { {1.1,-0.1}, {0.1,1.2} };
refine(T, sols, Software=>M2, ErrorTolerance=>.001, Iterations=>10)
///,
PARA {},
"In case of a singular (multiplicity>1) solution, while ", TO solveSystem, " and ", TO track,
" return the end of the homotopy paths marked as a 'failure', it is possible to improve the quality of approximation with ",
TO refine, ". The resulting point will be marked as singular:",
PARA {},
EXAMPLE lines ///
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, (x-y)^2};
solsS = {(1,1),(-1,-1)};
solsT = track(S,T,solsS)
solsT / coordinates
refSols = refine(T, solsT)
refSols / status
///,
PARA {},
"The failure to complete the refinement procedure is indicated
by warning messages and the resulting point is displayed as ", TT "[R]", ".",
PARA {},
EXAMPLE lines ///
R = CC[x];
F = polySystem {x^2-2};
Q := refine(F, point{{1.5+0.001*ii}}, Bits=>1000, Iterations=>2)
peek Q
///,
PARA {},
Caveat => {"There are 2 'safety' bits in the computation.
If the condition of the system at the refined point is poor
the number of correct bits may be much smaller than requested."},
SeeAlso => {solveSystem, track}
}
document { Key => {[setDefault,Tolerance]},
Headline => "specifies the tolerance of a numerical computation"
}
document {
Key => {(totalDegreeStartSystem, List), totalDegreeStartSystem},
Headline => "construct a start system for the total degree homotopy",
Usage => "(S,solsS) = totalDegreeStartSystem T",
Inputs => {
"T"=>{"polynomials of the target system"}
},
Outputs => { {"where ", TT "S", " is the list of polynomials in the start system and ",
TT "solsS", " is the list of start solutions"} },
"Given a square target system, constructs a start system
for a total degree homotopy together with the total degree (Bezout bound) many start solutions.",
PARA {"For details see: ", refIntroToNAG},
EXAMPLE lines ///
R = CC[x,y,z];
T = {x^2+y^2-1, x*y^2, x^5+y*z+3};
totalDegreeStartSystem T
///,
SeeAlso => { track, solveSystem }
}
document {
Key => {Software,
[solveSystem,Software],[track,Software],[refine, Software],[setDefault,Software],
[regeneration,Software],[parameterHomotopy,Software],[isOn,Software],
[numericalIrreducibleDecomposition,Software], [hypersurfaceSection,Software],
--[trackSegment,Software],
M2,M2engine,M2enginePrecookedSLPs},
Headline => "specify internal or external software",
"One may specify which software is used in homotopy continuation.
Possible values for internal software are:",
UL{
{"M2", " -- use top-level Macaulay2 homotopy continuation routines"},
{"M2engine", " -- use subroutines implemented in Macaulay2 engine (DEFAULT)"},
{"M2enginePrecookedSLPs", " -- (reserved for developers)"},
},
"An external program may be used to replace a part of functionality of the package
provide the corresponding software is installed:",
UL{
TO "PHCPACK",
TO "BERTINI",
TO "HOM4PS2"
}
}
document {
Key => BERTINI,
Headline => "use Bertini for homotopy continuation",
"Available at ", TT "http://www.nd.edu/~sommese/bertini/",
SeeAlso => Software
}
document {
Key => HOM4PS2,
Headline => "use HOM4PS for homotopy continuation",
"Available at ", TT "http://hom4ps.math.msu.edu/HOM4PS_soft.htm",
SeeAlso => Software
}
document {
Key => PHCPACK,
Headline => "use PHCpack for homotopy continuation",
"Available at ", TT "http://www.math.uic.edu/~jan/download.html",
PARA {"PHCpack interface provided via the ", TO "PHCpack::PHCpack", " package."},
SeeAlso => Software
}
///--getSolution and SolutionAttributes are not exported anymore
document {
Key => {(getSolution, ZZ), getSolution, SolutionAttributes, [getSolution,SolutionAttributes]},
Headline => "get various attributes of the specified solution",
Usage => "s = getSolution i, s = getSolution(i,SolutionAttributes=>...)",
Inputs => {
{"i", ", the number of the solution"}
},
Outputs => {{ TT "s", ", (an) attributes of the solution"}},
"Returns attribute(s) of the ", TT "i", "-th solution specified in the option",
TO "SolutionAttributes",
", which could be either a sequence or a single attribute. ",
"SolutionAttributes include:",
UL{
{"Coordinates", " -- the list of coordinates"},
{"SolutionStatus", " -- Regular, Singular, Infinity, MinStepFailure"},
{"NumberOfSteps", " -- number of steps taken on the corresponding homotopy path"},
{"LastT", " -- the last value of the continuation parameter"},
{"ConditionNumber", "-- the condition number at the last step of Newton's method"}
},
Caveat => {"Requires a preceding run of " , TO "track", " or ", TO "solveSystem",
" with the (default) option ", TT "Software=>M2engine"},
EXAMPLE lines "
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, x*y};
track(S,T,{(1,1),(1,-1)})
getSolution 0
getSolution(0, SolutionAttributes=>LastT)
getSolution(1, SolutionAttributes=>(Coordinates, SolutionStatus, ConditionNumber))
"
}
///
document {
Key => {(NAGtrace, ZZ), NAGtrace},
Headline => "set the trace level in NumericalAlgebraicGeometry package",
Usage => "a = NAGtrace b",
Inputs => {
{TT "b", ", the new level"}
},
Outputs => {{ TT "a", ", the old level"}},
"Determines how talkative the procedures of NumericalAlgebraicGeometry are. The most meaningful values are:",
UL{
{"0", " -- silent"},
{"1", " -- progress and timings"},
{"2", " -- more messages than 1"}
},
"The progress is displayed as follows: ",
UL{
{TT ".", " = regular solution found" },
{TT "S", " = singular solution (or encountered a singular point on the path)" },
{TT "I", " = a homotopy path diverged to infinity"},
{TT "M", " = minimum step bound reached"}
},
EXAMPLE lines ///
R = CC[x,y];
S = {x^2-1,y^2-1};
T = {x^2+y^2-1, x+y};
NAGtrace 1
track(S,T,{(1,1),(1,-1),(-1,1),(-1,-1)})
///
}
document {
Key => {(randomSd, List), randomSd},
Headline => "a random homogeneous system of polynomial equations",
Usage => "T = randomSd d",
Inputs => {
"d"=>"contains the degrees"
},
Outputs => {"T"=>"contains polynomials"},
"Generates a system of homogeneous polynomials ", TEX "T_i", " such that ", TEX "deg(T_i) = d_i", ".
The system is normalized, so that it is on the unit sphere in the Bombieri-Weyl norm.",
PARA {},
EXAMPLE lines ///
T = randomSd {2,3}
(S,solsS) = goodInitialPair T;
M = track(S,T,solsS,gamma=>0.6+0.8*ii,Software=>M2)
///,
SeeAlso => {Certified,track}
}
document {
Key => {(goodInitialPair, List), goodInitialPair, [goodInitialPair,GeneralPosition], GeneralPosition},
Headline => "make an initial pair conjectured to be good by Shub and Smale",
Usage => "(S,sol) = goodInitialPair T",
Inputs => {
"T" => {"contains homogeneous polynomials"},
GeneralPosition => {"make a random unitary change of coordinates"}
},
Outputs => {"S"=>"contains homogeneous polynomials",
"sol"=>"contains one solution of S"},
"Generates a start system ", TT "S", " that is conjectured to have good complexity when used in linear homotopy
with target system ", TT "T", " leading to one solution. ", "For more details see: ", refBeltranLeykin,
PARA {},
EXAMPLE lines ///
T = randomSd {2,3};
(S,solsS) = goodInitialPair T
M = track(S,T,solsS,gamma=>0.6+0.8*ii,Software=>M2)
///,
SeeAlso => {Certified, track}
}
document {
Key => {randomInitialPair, (randomInitialPair, List)},
Headline => "a random initial pair",
Usage => "(S,sol) = randomInitialPair T",
Inputs => {
"T"=>"contains homogeneous polynomials"
},
Outputs => {
"S"=>"contains homogeneous polynomials",
"sol"=>"contains one solution of S"},
"Generates a start system ", TT "S", " that has an equal chance of reaching any of the solutions of
the target system ", TT "T", ". ",
"For more details see: ", refBeltranLeykin,
PARA {},
EXAMPLE lines ///
T = randomSd {2,3};
(S,solsS) = randomInitialPair T
M = track(S,T,solsS,gamma=>0.6+0.8*ii,Software=>M2)
///,
SeeAlso => {Certified}
}
document {
Key => {Certified},
Headline => "a value for the option Predictor that triggers certified tracking",
PARA {
"Tells basic functions, e.g., ", TO track, ", to use ", EM "soft", " certification described in"
},
refBeltranLeykin,
PARA {
"The code for ", EM "robust", " certification is not incorporated in this package at the moment; the location of this stand-alone code is in the references of "
},
refBeltranLeykinRobust,
PARA{"The functions related to this paper are:"},
certifiedTrackingFunctions,
EXAMPLE lines ///
R = CC[x,y,z];
S = {x^2-z^2,y^2-z^2};
T = {x^2+y^2-z^2, x*y};
solsS = {(1,-1,1),(1,1,1)};
track(S,T,solsS,Predictor=>Certified,Normalize=>true)
///
}
document {
Key => {(regeneration, List),regeneration,[regeneration,Output],Output},
Headline => "solve a system of polynomial equations with regeneration method",
Usage => "Ws = regeneration F",
Inputs => { "F"=>"contains polynomials with complex coefficients" },
Outputs => { "Ws"=>{"contains ", TO2{WitnessSet,"witness sets"}, " for equidimensional components of the variety ", TT "{x|F(x)=0}" }},
"Regeneration is a blackbox method that obtains a numerical description of an algebraic variety. ",
"Note that ", TT "Ws", " are not necessarily irreducible witness sets; use ",
TO (decompose, WitnessSet), " to decompose into irreducibles. ",
EXAMPLE lines ///
R = CC[x,y]
F = {x^2+y^2-1, x*y};
regeneration F
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1);
regeneration {sph*(x-1)*(y-x^2), sph*(y-2)*(z-x^3)}
///,
-- EXAMPLE lines /// -- nonreduced scheme
-- setRandomSeed 7
-- R = CC[x,y]
-- F = {x^2+y^2-1, x*y};
-- regeneration F
-- R = CC[x,y,z]
-- sph = (x^2+y^2+z^2-1);
-- I = ideal {sph*(x-1)*(y-x^2), sph*(y-1)*(z-x^3)};
-- cs = regeneration I_*
-- ///,
Caveat => {"This function is under development. It may not work well if the input represents a nonreduced scheme.",
"The (temporary) option ", TO Output, " can take two values: ", TO Regular, " (default) and ", TO Singular, ".
It specifies whether the algorithm attempts to keep singular points." },
SeeAlso=>{(decompose, WitnessSet)}
}
document {
Key => {(decompose,WitnessSet)},
Headline => "decompose a witness set into irreducibles",
Usage => "Ws = decompose W",
Inputs => { "W"=>"represents an equidimensional component of a variety" },
Outputs => { "Ws"=>{"contains irreducible witness sets ", TO2{WitnessSet,"witness sets"}, ", the union of which is ", TT "W"}},
"Monodromy driven decomposition is followed by the linear trace test. ",
EXAMPLE lines ///
R = CC[x,y]
F = {x^2+y^2-1, x*y};
W = first components regeneration F
decompose W
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1);
decompose \ components regeneration {sph*(x-1)*(y-x^2), sph*(y-2)*(z-x^3)}
///,
Caveat => {"This function is under development. It can not decompose nonreduced components at the moment.
If monodromy breakup algorithm fails to classify some points, the unnclassified points appear
as one witness set (that is not marked as irreducible)." },
SeeAlso=>{regeneration}
}
document {
Key => {(numericalIrreducibleDecomposition, Ideal), numericalIrreducibleDecomposition},
Headline => "constructs a numerical variety defined by the given ideal",
Usage => "V = numericalIrreducibleDecomposition I",
Inputs => { "I"=>"contained in the ring of polynomials with complex coefficients" },
Outputs => { "V" },
"The ", TO2{WitnessSet,"witness sets"}, " of the ", TO2{NumericalVariety,"numerical variety"}, TT "V",
" are in one-to-one correspondence with irreducible components of the variety defined by ", TT "I", ". ",
EXAMPLE lines ///
R = CC[x,y,z]
sph = (x^2+y^2+z^2-1);
I = ideal {sph*(y-x^2), sph*(z-x^3)};
numericalIrreducibleDecomposition I
///,
Caveat => {"This function is under development. It may not work well if the input represents a nonreduced scheme." },
SeeAlso=>{(decompose, WitnessSet)}
}
document {
Key => {isOn, (isOn,AbstractPoint,Ideal), (isOn,AbstractPoint,NumericalVariety),
(isOn,AbstractPoint,RingElement), (isOn,AbstractPoint,WitnessSet), (isOn,AbstractPoint,WitnessSet,ZZ),
[isOn,Tolerance]
},
Headline => "determines if a point belongs to a variety",
Usage => "B = isOn(P,V)",
Inputs => {
"P"=>AbstractPoint,
"V"=>{ofClass NumericalVariety, ", ", ofClass WitnessSet, ", ", ofClass Ideal, ", or ", ofClass RingElement}
},
Outputs => { "B"=>Boolean },
"Determines whether the given point is (approximately) on the given variety,
which is either represented numerically or defines by polynomials.",
EXAMPLE lines ///
R = CC[x,y]
I = ideal((x^2+y^2+2)*x,(x^2+y^2+2)*y);
e = 0.0000001
W = witnessSet(ideal I_0 , ideal(x-y), {point {{ (1-e)*ii,(1-e)*ii}},point {{ -(1+e)*ii,-(1+e)*ii}}})
isOn(point {{sqrt 5*ii,sqrt 3}},W)
///,
SeeAlso=>{Point,NumericalVariety}
}
document {
Key => {newton,
-*(newton,System,Matrix),*-
(newton,System,AbstractPoint)},
Headline => "Newton-Raphson method",
"Performs one step of the Newton-Raphson method.",
Caveat=>{"Works for a regular square or overdetermined system."}
}
document {
Key => {(union,NumericalVariety,NumericalVariety), union},
Headline => "union of numerical varieties",
Usage => "VW=union(V,W)",
Inputs => { "V","W" },
Outputs => { "VW"=>NumericalVariety },
"Constructs the union of numerical varieties",
Caveat => {"The resulting numerical variety may have redundant components."},
SeeAlso=>{removeRedundantComponents}
}
document {
Key => {(removeRedundantComponents,NumericalVariety), removeRedundantComponents, [removeRedundantComponents,Tolerance]},
Headline => "remove redundant components",
Usage => "removeRedundantComponents V",
Inputs => { "V"},
-- Outputs => { "" },
"Removes components contained in other components of the variety. (This is done \"in place\".)",
SeeAlso=>{(isSubset,WitnessSet,WitnessSet)}
}
document {
Key => {(sample,WitnessSet), sample, [sample,Tolerance]},
Headline => "sample a point on a component",
Usage => "P = sample W",
Inputs => { "W" },
Outputs => { "P"=>Point },
"Gets a random point on a component represented numerically.",
EXAMPLE lines ///
R = CC[x,y,z]
W = witnessSet(ideal {x^2+y^2+z^2-1, z^2}, matrix "1,0,0,0", {{{0,1,0_CC}},{{0,-1,0_CC}}}/point )
P := sample(W, Tolerance=>1e-15)
isOn(P,W)
///,
Caveat => {"not yet working for singular components"},
SeeAlso=>{WitnessSet, isOn}
}
document {
Key => {deflate,(deflate,Ideal),(deflate,PolySystem,List),(deflate,PolySystem,Matrix),
(deflate,PolySystem,AbstractPoint),(deflate,PolySystem,Sequence),(deflate,PolySystem,ZZ),
Deflation, DeflationSequence, DeflationRandomMatrix, -- attached to a PolySystem
liftPointToDeflation,(liftPointToDeflation,AbstractPoint,PolySystem,ZZ),
LiftedSystem, LiftedPoint, SolutionSystem, DeflationSequenceMatrices, -- attached to a Point
deflateAndStoreDeflationSequence, (deflateAndStoreDeflationSequence,AbstractPoint,PolySystem),
SquareUp, [deflateAndStoreDeflationSequence,SquareUp], -- whether to square up at each step
[deflate,Variable]
},
Headline => "first-order deflation",
Usage => "r = deflate(F,P); r = deflate(F,r); r = deflate(F,B), ...",
Inputs => { "P"=>Point, "F"=>PolySystem, "r"=>ZZ, "B"=>Matrix },
Outputs => { "r"=>ZZ=>"the rank used in the (last) deflation"},
PARA{
"The purpose of deflation is to restore quadratic convergence of Newton's method in a neighborhood of a singular
isolated solution P. This is done by constructing an augmented polynomial system with a solution of strictly lower multiplicity projecting to P."},
Consequences => {{"Attaches the keys ", TO Deflation, " and ", TO DeflationRandomMatrix,
" which are MutableHashTables that (for rank r, a potential rank of the jacobian J of F) store ",
" the deflated system DF and a matrix B used to obtain it. ",
" Here B is a random matrix of size n x (r+1), where n is the number of variables
and DF is obtained by appending to F the matrix equation J*B*[L_1,...,L_r,1]^T = 0.
The polynomials of DF use the original variables and augmented variables L_1,...,L_r."}},
PARA{
"Apart from ", TT "P", ", ", ofClass Point,", one can pass various things as the second argument."
},
UL {
{ofClass ZZ, " ", TT "r", " specifies the rank of the Jacobian dF (that may be known to the user)"},
{ofClass Matrix, " ", TT "B", " specifies a fixed (r+1)-by-n matrix to use in the deflation construction."},
{"a pair of matrices ", TT "(B,M)", " specifies additionally a matrix that is used to ", TO squareUp, "."},
{"a list", TT "{(B1,M1),(B2,M2),...}",
" prompts a chain of successive deflations using the provided pairs of matrices."},
},
"The option ", TT "Variable", " specifies the base name for the augmented variables.",
EXAMPLE lines ///
CC[x,y,z]
F = polySystem {x^3,y^3,x^2*y,z^2}
P0 = point matrix{{0.000001, 0.000001*ii,0.000001-0.000001*ii}}
isFullNumericalRank evaluate(jacobian F,P0)
r1 = deflate (F,P0)
P1' = liftPointToDeflation(P0,F,r1)
F1 = F.Deflation#r1
P1 = newton(F1,P1')
isFullNumericalRank evaluate(jacobian F1,P1)
r2 = deflate (F1,P1)
P2' = liftPointToDeflation(P1,F1,r2)
F2 = F1.Deflation#r2
P2 = newton(F2,P2')
isFullNumericalRank evaluate(jacobian F2,P2)
P = point {take(coordinates P2, F.NumberOfVariables)}
assert(residual(F,P) < 1e-50)
///,
Caveat => {"Needs more documentation!!!"},
SeeAlso=>{PolySystem,newton}
}
document {
Key => {(isSubset,NumericalVariety,NumericalVariety), (isSubset,WitnessSet,WitnessSet)},
Headline => "check containment",
Usage => "B = isSubset(V,W)",
Inputs => {
"V"=>{" or ", ofClass WitnessSet},
"W"=>{" or ", ofClass WitnessSet}
},
Outputs => { "B"=>Boolean },
"Checks containment of one variety represented numerically in the other.",
Caveat => {"Does not work for singular components."},
SeeAlso=>{WitnessSet,isOn}
}
document {
Key => {squareUp, (squareUp,System), (squareUp,System,ZZ), (squareUp,System, Matrix),
SquaredUpSystem, SquareUpMatrix,
(squareUp, AbstractPoint, AbstractPoint, GateSystem),
(squareUp, AbstractPoint, GateSystem),
[squareUp,Strategy],
[squareUp,Field],
[squareUp,Verbose]
},
Headline => "square up a polynomial system",
Usage => "G = squareUp F
G = squareUp(F,M)
G = squareUp(F,n)
G = squareUp(x0,F)
G = squareUp(p0,x0,F)
",
Inputs => {
"F"=>System,
"M"=>Matrix=>{" used to square up the system (by default a random matrix is picked)"},
"n"=>ZZ=>{" the number of polynomials to be formed (by default, this equals the number of variables)"},
"x0"=>Point=>{" used to compute the dimension of the tangent space (approximately)"},
"p0"=>Point=>{" parameters specialization (in case of a parametric system)"}
},
Outputs => { "G"=>PolySystem },
PARA {"There are two flavors of this method: both aimed at producing a regular sequence (either global or local)."},
PARA {"The first squares up an overdetermined polynomial system (usually assuming that the user is interested in the isolated solutions; i.e., the components of dimension 0) and attaches keys ",
TO SquareUpMatrix, " and ", TO SquaredUpSystem,
" to ", TT "F", "."},
EXAMPLE lines ///
CC[X,Y]; F = polySystem {X^2+Y^2,X^3+Y^3,X^4+Y^4}
G := squareUp F
peek F
///,
PARA {
"The other computes ", TO "numericalRank", " ", TT "r",
" of the Jacobian of ", TT "F", " and picks out the first ", TT"r",
" polynomials who give the same (approximate) rank at the specified point."
},
EXAMPLE lines ///
X = gateMatrix{toList vars(x,y,z)}
P = gateMatrix{toList vars(a..d)}
F = gateSystem(P,X,gateMatrix{{y^2-x*z},{x^2*y-z^2},{x^3-y*z},{a*x+b*y+c*z+d}})
X0 = point{{1,1,1_CC}}
P0 = point{{1,1,1,-3_CC}}
norm evaluate(F, P0, X0) -- should be small
numericalRank evaluateJacobian(F, P0, X0) -- should equal number of variables
G = squareUp(P0, X0, F)
netList entries gateMatrix G
///,
PARA {"Optional parameters are:"},
UL apply({
"block size" => {" (default = 1) How many rows of Jacobian are evaluated at each step when squaring up a system at a specified Point."},
"target rank" => {" (default = full rank) The target rank of the subsystem. "},
Field => {" (default = null). If null, then the coefficient ring is used for ", TO PolySystem, " and CC is used for ", TO GateSystem, "."},
Strategy => {" (default = \"random matrix\"). Given an overdetermined system, a random matrix is used to construct
as many random linear combinations of the equations as there are variables. ",
"(Another option \"slack variables\" has not been implemented yet.)"},
Verbose => {" (default = false)."}
},
item -> {TT "[", TT toExternalString item#0, TT "]: "} | item#1
)
,
SeeAlso=>{PolySystem,GateSystem}
}
document {
Key => {
numericalIntersection, (numericalIntersection,NumericalVariety,Ideal),
(numericalIntersection,NumericalVariety,NumericalVariety), (numericalIntersection,WitnessSet,WitnessSet),
hypersurfaceSection, (hypersurfaceSection,NumericalVariety,RingElement)
},
Headline => "intersection of numerical varieties",
Caveat => {"Under construction!!!"}
}
document {
Key => {(isSolution,AbstractPoint,PolySystem), isSolution, [isSolution,Tolerance] },
Headline => "check if a point satisfies a polynomial system approximately",
Caveat => {"Either rewrite or phase out!!!"}
}
document {
Key => {(parameterHomotopy,List,List,List),parameterHomotopy},
Headline => "solve a parametric system of equations",
Usage => "sols = parameterHomotopy(F,varsP,valuesP)",
Inputs => {
"F" => {" contains the polynomials in the system"},
"varsP" => {" names of the parameters"},
"valuesP" => {" contains (possibly several sets of) values of the parameters"}
},
Outputs => { "sols"=>" lists of lists of solutions for each set of the parameters" },
"Solves a parametric polynomial system for several values of parameters.",
EXAMPLE lines ///
R = CC[u1,u2,u3,x,y]
f1 = u1*(y-1)+u2*(y-2)+u3*(y-3)
f2 = (x-11)*(x-12)*(x-13)
try parameterHomotopy({f1,f2},{u1,u2,u3},{{1,0,0},{0,1+2*ii,0}}, Software=>BERTINI) else "need to install Bertini to run these lines"
///,
Caveat => {"Available only with Software=>BERTINI at the moment..."}
}
-*
document {
Key => {(trackSegment,PolySystem,Number,Number,List), trackSegment},
Headline => "track the one-parametric homotopy",
"Tracks a homotopy on a linear segment in complex plane..",
Caveat => {"Experimental: implemented only with SLPs at the moment!!!"}
}
*-
document {
Key => {(solveGenericSystemInTorus,List), solveGenericSystemInTorus, (solveGenericSystemInTorus,PolySystem)},
Headline => "solve a generic system of sparse polynomial equations in the torus",
Usage => "s = solveGenericSystemInTorus F",
Inputs => { "F"=>"contains polynomials with complex coefficients" },
Outputs => { "s"=>{"contains all complex solutions in the torus
(i.e., with no zero coordinates) to ", TT "G=0",
", where ", TT "G",
" is a generic system with the same monomial support as ", TT "F" }
},
"Polyhedral homotopy approach is used to compute the solutions in the torus.
The number of the solutions equals the ", EM "mixed volume",
" of the Newton polytopes of polynomials in ", TT "F", ".",
Caveat => {"PHCpack needs to be installed."},
SeeAlso=>{PHCPACK, PHCpack, solveSystem}
}
-*-------- TEMPLATE ------------------
document {
Key => {,},
Headline => "",
Usage => "",
Inputs => { ""=>"" },
Outputs => { "" },
"",
EXAMPLE lines ///
///,
Caveat => {"" },
SeeAlso=>{()}
}
*-
doc ///
Key
evaluateHt
(evaluateHt,Homotopy,Matrix,Number)
(evaluateHt,ParameterHomotopy,Matrix,Matrix,Number)
(evaluateHt,SpecializedParameterHomotopy,Matrix,Number)
(evaluateHt,GateHomotopy,Matrix,Number)
Headline
evaluates the derivative of the homotopy with respect to the continuation parameter
///
doc ///
Key
evaluateHx
(evaluateHx,Homotopy,Matrix,Number)
(evaluateHx,ParameterHomotopy,Matrix,Matrix,Number)
(evaluateHx,SpecializedParameterHomotopy,Matrix,Number)
(evaluateHx,GateHomotopy,Matrix,Number)
Headline
evaluates the jacobian of the homotopy
///
doc ///
Key
evaluateH
(evaluateH,Homotopy,Matrix,Number)
(evaluateH,ParameterHomotopy,Matrix,Matrix,Number)
(evaluateH,SpecializedParameterHomotopy,Matrix,Number)
(evaluateH,GateHomotopy,Matrix,Number)
Headline
evaluates the homotopy
///
document {
Key => {(gateHomotopy, GateMatrix, GateMatrix, InputGate),
gateHomotopy,
GateHomotopy,
(numVariables,GateHomotopy)
},
Headline => "homotopy implemented via straight line programs",
Usage => "HS = gateHomotopy(H,X,T)",
Inputs => {
"H"=>"a family of systems (given by a column vector)",
"X"=>"(a row vector of) variables",
"T"=>"homotopy (continuation) parameter"
},
Outputs => { "HS", {
ofClass {GateHomotopy, GateParameterHomotopy},
", a homotopy that can be used with some routines of ", TO "NumericalAlgebraicGeometry" }},
"Optional arguments:",
UL{
{TO "Software", "-- specifies how the homotopy is evaluated: ", TT "(M2,M2engine)"}
},
EXAMPLE lines ///
X = inputGate symbol X
Y = inputGate symbol Y
T = inputGate symbol T
F = {X*X-1, Y*Y*Y-1}
G = {X*X+Y*Y-1, X*X*X+Y*Y*Y-1}
H = (1 - T) * F + T * G
HS = gateHomotopy(transpose matrix {H},matrix{{X,Y}},T)
///,
Caveat => {"The order of inputs for unexported internal evaluation functions (evaluateH, etc.) is fixed as follows: ",
TT "Parameters, X, T", "."},
SeeAlso=>{GateHomotopy,GateParameterHomotopy,specialize}
}
doc ///
Key
[gateHomotopy,Software]
Headline
specifies where evaluation should be done (M2=top level, M2engine=core)
///
doc ///
Key
[gateHomotopy,Parameters]
Headline
specifies parameter names
///
doc ///
Key
[gateHomotopy,Strategy]
Headline
strategy is either to "compress" or not (any other value)
///
document {
Key => "DoublePrecision",
Headline => "a constant equal to 53 (the number of bits of precision)"
}
doc ///
Key
gateSystem
(gateSystem,GateMatrix,GateMatrix)
(gateSystem,GateMatrix,GateMatrix,GateMatrix)
(gateSystem,Matrix)
(gateSystem,PolySystem)
(gateSystem,PolySystem,List)
(gateSystem,BasicList,BasicList,GateMatrix)
Headline
a constructor for GateSystem
Usage
gateSystem(params,variables,M)
gateSystem(variables,M)
Inputs
M:GateMatrix
parameters:GateMatrix
variables:GateMatrix
Description
Text
@TO GateMatrix@ {\tt M} is expected to have 1 column.
Matrices {\tt params} and {\tt variables} are expected to have 1 row.
(Later addition: TO DO say something about less restritive syntax.)
Example
variables = declareVariable \ {x,y}
F = gateSystem(matrix{variables}, matrix{{x*y-1},{x^3+y^2-2}})
evaluate(F,point{{0.1,0.2+ii}})
evaluate(F,point{{1/2,1/3}})
evaluate(F,point{{2_(ZZ/101),3}})
Text
Systems with parameters are allowed.
Example
params = declareVariable \ {a,b}
Fab = gateSystem(matrix{params}, matrix{variables}, matrix{{a*x*y-1},{x^3+y^2-b}})
evaluate(Fab,point{{1,2}},point{{0.1,0.2+ii}})
Caveat
Note for developers: there is a version of the constructor that builds @TO GateSystem@ from @TO PolySystem@.
Its variant that takes the list of variables to treat as parameters is likely to disappear.
SeeAlso
System
PolySystem
GateSystem
///
doc ///
Key
(specialize, GateSystem, AbstractPoint)
Headline
specialize parameters in a gate system
Usage
specialize(G,p)
Description
Text
Returns a @TO GateSystem@ with parameters specialized to the given values.
Example
variables = declareVariable \ {x,y}
params = declareVariable \ {a,b}
Fab = gateSystem(matrix{params}, matrix{variables}, matrix{{a*x*y-1},{x^3+y^2-b}})
F = specialize(Fab, point{{1,2}})
p0 = point{{0.1,0.2+ii}}
evaluate(F,p0)
evaluateJacobian(F,p0)
///
doc ///
Key
(symbol ^, GateSystem, List)
Headline
a subsystem with specified equations
Usage
G^L
Inputs
G:
L:"indices of the equations"
Description
Example
variables = declareVariable \ {x,y}
F = gateSystem(matrix{variables}, matrix{{x*y-1},{x^3+y^2-2},{x^2+2*y-3}})
gateMatrix F
G = F^{0,2}
gateMatrix G
///
doc ///
Key
(polySystem, GateSystem, PolynomialRing)
Headline
classical polynomial system associated to a gate system
Usage
F = polySystem(G,R)
Inputs
G:
R:
Outputs
F: PolySystem
Description
Text
Given a gate system and a polynomial ring,
this function constructs a classical (represented via M2 polynomial map) polynomial system.
Example
variables = declareVariable \ {x,y}
G = gateSystem(matrix{variables}, matrix{{x*y-1},{x^3+y^2-2},{x^2+2*y-3}})
R = CC[X,Y]
F = polySystem(G,R)
evaluate(F,matrix{{1,2}})
evaluate(G,matrix{{1,2}})
Text
The ring is expected to be of the form {\tt K[x_1..x_n]} or {\tt K[a_1..a_m][x_1..x_n]}.
In the latter case, the gate system is expected to take {\tt m} parameters.
Example
variables = declareVariable \ {x,y}
params = declareVariable \ {a,b,c}
G = gateSystem(matrix{params}, matrix{variables}, matrix{{x*y-1},{a*x^2+b*y^2-c}})
R = CC[A,B,C][X,Y]
F = polySystem(G,R)
equations F
///
undocumented {
(toExternalString,GateSystem),
(evaluateJacobian,GateSystem,Matrix),
(evaluateJacobian,GateSystem,Matrix,Matrix),
(evaluateJacobian,GateSystem,AbstractPoint),
(evaluateJacobian,GateSystem,AbstractPoint,AbstractPoint)
}
doc ///
Key
(jacobian,GateSystem)
(jacobian,List,GateSystem)
Headline
jacobian of a (gate) system
///
undocumented{
(texMath, GateSystem)
}
doc ///
Key
endGameCauchy
(endGameCauchy,GateHomotopy,Number,AbstractPoint)
(endGameCauchy,GateHomotopy,Number,MutableMatrix)
Headline
Cauchy end game for getting a better approximation of a singular solution
Usage
endGameCauchy(H,t'end,p0)
endGameCauchy(H,t'end,points)
Inputs
H:GateHomotopy
t'end:Number
p0:AbstractPoint
points:MutableMatrix
Description
Text
Refines an approximation of a (singular) solution to a polynomial system which was obtained via homotopy continuation.
This method is used for posprocessing in the blackbox solver implemented in @TO solveSystem@.
Example
CC[x,y]
T = {(x-2)^3,y-x+x^2-x^3}
sols = solveSystem(T,PostProcess=>false);
p0 = first sols;
peek p0
t'end = 1
p = endGameCauchy(p0.cache#"H",t'end,p0)
SeeAlso
refine
///
doc ///
Key
(trackHomotopy,Homotopy,List)
trackHomotopy
(trackHomotopy,Matrix,List)
(trackHomotopy,Sequence,List)
Field
[trackHomotopy, Field]
Usage
trackHomotopy(H,S)
Inputs
H:Homotopy
S:List
start solutions
Headline
follow points along a homotopy
Description
Text
This method implements homotopy continuation: it follows a given list {\tt S} of start solutions along a @TO Homotopy@ {\tt H}.
Option @TO Field@ (the default is @TO CC@, but one can imagine using @TO RR@)
specifies which @TO InexactFieldFamily@ to use when adaptive precision is requested via {\tt Precision=>infinity}.
The rest are a subset of @TO "numerical homotopy tracking options"@.
Caveat
Note for developers: the old implementation @TO track@ eventually will be replaced by a call to @TO trackHomotopy@.
Alternative ways for calling ({\tt H} could be a Sequence (a preSLP), Matrix, etc.) are deprecated and are for debugging purposes only.
SeeAlso
GateHomotopy
segmentHomotopy
AbstractPoint
///
doc ///
Key
GateSystem
(net, GateSystem)
(numVariables,GateSystem)
(numFunctions,GateSystem)
(numParameters,GateSystem)
(evaluate,GateSystem,Matrix,Matrix)
Headline
a system of functions evaluated via a straightline program
Description
Text
An object of this type is a system of functions evaluated via an SLP
that is constructed using the tools of package @TO SLPexpressions@.
An object of this type (constructed with @TO gateSystem@)
is a @TO System@ of functions represented via a @TO GateMatrix@.
In particular, polynomial systems and systems of rational functions can be represented this way.
Unlike @TO PolySystem@, the functions of a @TO GateSystem@ do not belong to a ring and can be evaluated on @TO Number@s and @TO RingElement@s
as long as the constants in the evaluation circuits can be promoted to the corresponding @TO Ring@s.
SeeAlso
gateSystem
(gateMatrix,GateSystem)
(vars,GateSystem)
(parameters,GateSystem)
System
PolySystem
///
doc ///
Key
(gateMatrix,GateSystem)
Headline
evaluation circuit used for the system
Description
Text
This method returns the @TO GateMatrix@ used to evaluate the system.
///
doc ///
Key
(vars,GateSystem)
Headline
the variable gates in the evaluation circuit used for the system
Description
Text
This method returns the 1-row @TO GateMatrix@ that contains @TO InputGate@s
that are considered variables for the evaluation circuit.
///
doc ///
Key
(parameters,GateSystem)
Headline
the parameter gates in the evaluation circuit used for the system
Description
Text
This method returns the 1-row @TO GateMatrix@ that contains @TO InputGate@s
that are considered parameters for the evaluation circuit.
///
--- HOMOTOPY ---------------------------------
doc ///
Key
Homotopy
Headline
a homotopy abstract type
Description
Text
A type that inherits from this {\bf abstract} type should supply methods for
evaluating a homotopy.
///
doc ///
Key
ParameterHomotopy
Headline
a homotopy that involves parameters
Description
Text
An abstract type that of homotopy that involves parameters.
Can be specialized to produce @TO SpecializedParameterHomotopy@.
SeeAlso
specialize
///
doc ///
Key
SpecializedParameterHomotopy
Headline
a homotopy obtained from a parameter homotopy by specializing parameters
///
doc ///
Key
Parameters
Headline
a collection of parameters
///
doc ///
Key
GateParameterHomotopy
Headline
a homotopy that involves parameters and is implemented via straight line programs
Description
Text
An object of this type specializes to a @TO Homotopy@ given values of the parameters.
It is related to @TO GateHomotopy@.
///
doc ///
Key
(parameters,ParameterHomotopy)
Headline
the parameters in the parameter homotopy
Description
Text
This method returns the 1-row @TO GateMatrix@ that contains @TO InputGate@s
that are considered parameters in the evaluation circuit for the homotopy,
excluding the continuation parameter.
///
doc ///
Key
(numParameters,ParameterHomotopy)
Headline
the number of parameters in the parameter homotopy
///
doc ///
Key
(numVariables,ParameterHomotopy)
Headline
the number of variables in the parameter homotopy
///
doc ///
Key
(numVariables,SpecializedParameterHomotopy)
Headline
the number of variables in the parameter homotopy
///
doc ///
Key
(specialize, ParameterHomotopy, Matrix)
specialize
Headline
specialize a parameter homotopy
Usage
Hp = specialize(H,p)
Inputs
H:
homotopy
p:
values of parameters
Outputs
Hp:SpecializedParameterHomotopy
specialized homotopy
///
doc ///
Key
(evaluateH,GateParameterHomotopy,Matrix,Matrix,Number)
(evaluateHt,GateParameterHomotopy,Matrix,Matrix,Number)
(evaluateHx,GateParameterHomotopy,Matrix,Matrix,Number)
Headline
evaluate (gate) parameter homotopy and its derivatives
///
doc ///
Key
segmentHomotopy
(segmentHomotopy,GateSystem,GateSystem)
(segmentHomotopy,PolySystem,PolySystem)
(segmentHomotopy,List,List)
Headline
a segment homotopy
Usage
H = segmentHomotopy(S,T)
Inputs
S:System
start system (could be GateSystem, PolySystem, or list of polynomials)
T:System
target system (could be GateSystem, PolySystem, or list of polynomials)
Outputs
H:GateHomotopy
Description
Text
This method produces a @TO Homotopy@ @TEX "(1-t) S+ t \\gamma T, t\\in[0,1]"@.
Example
R = QQ[x,y]
T = {random(3,R)-1, random(2,R)-2}
(S,solsS) = totalDegreeStartSystem T
H = segmentHomotopy(S,T,gamma=>1+ii)
evaluateH(H,transpose matrix first solsS,0)
///
doc ///
Key
parametricSegmentHomotopy
(parametricSegmentHomotopy,GateSystem)
(parametricSegmentHomotopy,PolySystem)
Headline
creates an ansatz for a segment homotopy
Usage
PH = parametricSegmentHomotopy F
Inputs
F:System
either a @TO GateSystem@ or a @TO PolySystem@
Outputs
PH:GateParameterHomotopy
Description
Text
This method returns a homotopy that after specialization of parameters is akin
to the output of @TO segmentHomotopy@. There are {\bf 2 m} parameters in{\tt PH}
where {\bf m} is the number of parameters in {\tt F}.
The first {\bf m} parameters correspond to the starting point A in the parameter space.
The last {\bf m} parameters correspond to the end point B in the parameter space.
Example
variables = declareVariable \ {x,y}
params = declareVariable \ {a,b}
F = gateSystem(matrix{params}, matrix{variables}, matrix{{a*x*y-1},{x^3+y^2-b}})
PH = parametricSegmentHomotopy F;
parameters PH
(a0,b0) = (1,2); startSolution = point{{1,1}};
(a1,b1) = (2,1);
H01 = specialize(PH, matrix{{a0,b0,a1,b1}});
targetSolution = first trackHomotopy(H01,{startSolution})
assert(norm evaluate(F,matrix{{a1,b1}},matrix targetSolution) < 0.0001)
///
|