File: NumericalLinearAlgebra.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (346 lines) | stat: -rw-r--r-- 9,813 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
newPackage(
    "NumericalLinearAlgebra",
    Version => "1.16", 
    Date => "Dec 2020",
    Authors => {
        {Name => "Robert Krone", 
            Email => "krone@math.gatech.edu"},
	{Name => "Marc Harkonen", 
            Email => "harkonen@gatech.edu"},
    	{Name => "Anton Leykin",
            Email => "anton.leykin@gmail.com"}
    	},
    Headline => "numerically compute local dual space and Hilbert functions",
    Keywords => {"Numerical Linear Algebra"},
    PackageExports => {"LLLBases"},
    AuxiliaryFiles => false
)

export{
    "Tolerance", 
    "Normalize",
    "numericalKernel",
    "numericalRank", "isFullNumericalRank",
    "numericalImage",
    "colReduce"
    }

-- Default tolerance value respectively for exact fields and inexact fields
defaultT = R -> if precision 1_R == infinity then 0 else 1e-6;
getTolerance = true >> opts -> R -> if not opts.?Tolerance or opts.Tolerance === null then defaultT(R) else opts.Tolerance;

-- conjugate all entries of the matrix (should be a part of M2!!!)
conjugate Matrix := Matrix =>M -> matrix(entries M / (row->row/conjugate))
-- installPackage doesn't complain about the absence of conjugate

numericalKernel = method(Options => {Tolerance => null})
numericalKernel (Matrix) := Matrix => o -> M -> (
    R := ring M;
    tol := getTolerance(R,o);
    (m,n) := (numrows M, numcols M);
    if m == 0 then return id_(source M);
    if n == 0 then return map(R^0,R^0,0);
    (S,U,Vh) := SVD M;
    cols := positions(S, sv->(sv > tol));
    K := submatrix'(transpose Vh,,cols);
    if K == 0 then K else conjugate K
    )

numericalRank = method(Options=>{Threshold=>1e-4})
numericalRank Matrix := o -> M -> (
     if not member(class ring M, {RealField,ComplexField}) 
     then error "matrix with real or complex entries expected";
     t := o.Threshold; 
     N := if t<=1 then M -- use t as an absolute cutoff for singular values, otherwise look for a "gap"  
          else matrix apply(entries M, row->(      -- normalize "large" rows (a hack!!!)
	     	  m := max(row/abs);
	     	  if m<1 then row else apply(row,e->e/m)
	     	  ));
     S := first SVD N;
     r := 0; last's := 1;
     for i to #S-1 do (
	 if t>1 then (if t*S#i < last's 
	     then break
	     else (r = r + 1; last's = S#i)
	     )
	 else (
	     if S#i>t then r = r + 1
	     else break 
	     )
	 );
     r 
     )  

isFullNumericalRank = method(Options=>{Threshold=>1e-4}) 
isFullNumericalRank Matrix := o -> M -> (
    r := numericalRank(M,o);
    r == min(numColumns M, numRows M) 
    )

TEST ///
N = matrix {{0.001, 0, 0}, {1, 1, 3}, {2, 2, 5.999}}
assert(numericalRank(N,Threshold=>0.01) == 1)
assert not isFullNumericalRank(N,Threshold=>0.001)
assert isFullNumericalRank(N,Threshold=>0.00001)
///


TEST ///
N = matrix {{0.001, 0, 0}, {1, 1, 3}, {2, 2, 5.999}}
K = numericalKernel(N, Tolerance=>0.001)
assert(numcols K == 2)
assert(norm(N*K) < 0.001)
///

--performs Gaussian reduction on M
colReduce = method(Options => {Tolerance => null, Normalize => true, Reverse => false})
colReduce Matrix := o -> M -> (
    if o.Reverse then M = matrix reverse(entries M);
    tol := getTolerance(ring M,o);
    if tol == 0 then M = gens gb M
    else (
    	M = mutableMatrix sub(M, ultimate(coefficientRing, ring M));
    	(m,n) := (numrows M, numcols M);
    	j := 0; --column of pivot
    	for i in reverse(0..m-1) do (
	    if debugLevel >= 1 then <<i<<"/"<<m-1<<endl;
	    if j >= n then break;
	    a := j + maxPosition apply(j..n-1, l->(abs M_(i,l)));
	    c := M_(i,a);
	    if abs c <= tol then (for k from j to n-1 do M_(i,k) = 0; continue);
	    columnSwap(M,a,j);
	    if o.Normalize then (columnMult(M,j,1/c); c = 1);
	    for k from 0 to n-1 do if k != j then columnAdd(M,k,-M_(i,k)/c,j);
	    j = j+1;
	    );
    	M = (new Matrix from M)_{0..j-1};
    	if precision M < infinity then M = clean(tol,M);
	);
    if o.Reverse then M = matrix reverse(entries M);
    M
    )

TEST ///
N = matrix {{0.001, 0, 0}, {1, 1, 3}, {2, 2, 5.999}}
N = colReduce(N, Tolerance=>0.01)
assert(numcols N == 1)
///

--a list of column indices for a basis of the column space of M
basisIndices = (M, tol) -> (
    M = new MutableMatrix from sub(M, coefficientRing ring M);--sub(M, ultimate(coefficientRing, ring M));
    (m,n) := (numrows M, numcols M);
    i := 0; --row of pivot
    I := new MutableList;
    for j from 0 to n-1 do (
	if i == m then break;
	a := if tol > 0 then i + maxPosition apply(i..m-1, l->(abs M_(l,j)))
	else i + position(i..m-1, l -> M_(l,j) != 0);
	c := M_(a,j);
	if tol > 0 and abs c <= tol then continue;
	I#(#I) = j;
	rowSwap(M,a,i);
	for l from 0 to n-1 do M_(i,l) = M_(i,l)/c; --rowMult(M,i,1/c); is bugged
	for k from 0 to m-1 do rowAdd(M,k,-M_(k,j),i);
	i = i+1;
	);
    new List from I
    )


numericalImage = method(Options => {Tolerance => null})
numericalImage Matrix := o -> M -> (
    R := ultimate(coefficientRing, ring M);
    tol := getTolerance(R,o);
    numericalImage(M,tol)
    )
numericalImage (Matrix, Number) := o -> (M, tol) -> (
    R := ultimate(coefficientRing, ring M);
    M = sub(M, R);
    if numcols M == 0 then return M;
    if numrows M == 0 then return map(R^0,R^0,0);
    if precision 1_(ring M) < infinity then (
	(svs, U, Vt) := SVD M;
	cols := positions(svs, sv->(sv > tol));
	submatrix(U,,cols)
	) else (
	gens image M
	)
    )

TEST ///
M = matrix {{0.999, 2}, {1, 2}}
Mimage = numericalImage(M, 0.01)
assert(numcols Mimage == 1)
///

beginDocumentation()

doc ///
Key
  NumericalLinearAlgebra
Headline
  numerical linear algebra
Description
  Text
    This package collects implementations of numerical linear algebra algorithms.
    
    @UL {
     	{TO numericalRank},
	{TO numericalKernel},
	{TO numericalImage},
	{TO colReduce}
	}@    
///


doc ///
Key 
  Tolerance
Headline
  the tolerance of a numerical computation
///
doc ///
Key 
  "Tolerance(NumericalLinearAlgebra)"
  [numericalKernel,Tolerance]	 
  [colReduce, Tolerance]
  [numericalImage,Tolerance]
Headline
  the tolerance of a numerical computation
Description
  Text 
    The default value {\tt null} sets tolerance to 1e-6.
///

doc ///
     Key
          numericalKernel
	  (numericalKernel,Matrix)
     Headline
          approximate kernel of a matrix
     Usage
          V = numericalKernel(M)
     Inputs
	  M:Matrix
     Outputs
          V:Matrix
     Description
          Text
	       Computes the kernel of a matrix M numerically using singular value decomposition.
	  Example
	       M = matrix {{1., 1, 1}}
	       numericalKernel(M, Tolerance=>0.01)
	  Text
	       Singular values less than the tolerance are treated as zero.
	  Example
	       M = matrix {{1., 1}, {1.001, 1}}
	       numericalKernel(M, Tolerance=>0.01)
///

document {
	Key => {numericalRank, (numericalRank, Matrix), [numericalRank, Threshold],
	    isFullNumericalRank, (isFullNumericalRank,Matrix)},
	Headline => "numerical rank of a matrix",
	Usage => "r = numericalRank M\nB = isFullNumericalRank M",
	Inputs => { 
	    "M"=>Matrix=>"a matrix with real or complex entries"
	     },
	Outputs => {
	    "r"=>ZZ, 
	    "B"=>Boolean
	    },
	PARA {
	    TO numericalRank, " finds an approximate rank of the matrix ", TT "M", "."
	    },
	PARA {
	    TO isFullNumericalRank, " = ", TT "M", " is _not_ rank-deficient."
	    },
	PARA {
	    "Let ", TEX "\\sigma_1,...,\\sigma_n", " be the singular values of ", TT "M", ". "
	    },
	PARA {
	    "If ", TO "Threshold", " is >1, then to establish numerical rank we look 
	    for the first large gap between two consecutive singular values. ",
	    "The gap between ", TEX "\\sigma_i", " and ", TEX "\\sigma_{i+1}", 
	    " is large if ", TEX "\\sigma_i/\\sigma_{i+1} > ", TO "Threshold",
	    "."
	    },
	PARA {
	    "If ", TO "Threshold", " is <=1, then the rank equals 
	    the number of singular values larger then ", TO "Threshold", "." 
	    },
	Caveat => {"We assume ", TEX "\\sigma_0=1", " above."},
        EXAMPLE lines ///
options numericalRank
numericalRank matrix {{2,1},{0,0.001}}
numericalRank matrix {{2,1},{0,0.0001}}
     	///,
     	SeeAlso => {SVD}
	}

doc ///
Key
  colReduce
  (colReduce,Matrix)
  [colReduce,Reverse]
  [colReduce,Normalize]
  Normalize
Headline
  column reduce a matrix
Usage
  N = colReduce M
Inputs
  M:Matrix
Outputs
  N:Matrix
    in reduced column echelon form
Description
  Text
    Performs Gaussian column reduction on a matrix M, retaining only the linearly independent columns.
  Example
    M = matrix {{1., 2, 3}, {2, 4, 0}, {-1, -2, 3}}
    colReduce(M, Tolerance=>0.01) 
  Text
    Entries with absolute value below the tolerance are treated as zero and not used as pivots.
  Example
    N = matrix {{0.001, 0, 0}, {1, 1, 3}, {2, 2, 5.999}}
    colReduce(N, Tolerance=>0.01)
  Text
    The lower rows are treated as the lead terms unless the optional argument {\tt Reverse} is set to true.
  Example
    colReduce(M, Reverse=>true)
  Text
    If the optional argument {\tt Normalize} is set to true (default) each vector is normalized so that the lead entry is 1.  Otherwise this step is skipped.
  Example
    colReduce(M, Normalize=>false)
///

doc ///
     Key
          numericalImage
	  (numericalImage,Matrix,Number)
	  (numericalImage,Matrix)
     Headline
          Image of a matrix
     Usage
          V = numericalImage(M, tol)
     Inputs
	  M:Matrix
	  tol:Number
	       a positive number, the numerical tolerance
     Outputs
          V:Matrix
     Description
          Text
	       Computes the image of a matrix M numerically using singular value decomposition.
	  Example
	       M = matrix {{1., 0, 1}, {0, 1, 1}, {1, 0, 1}}
	       numericalImage(M, 0.01)
	  Text
	       Singular values less than the tolerance are treated as zero.
	  Example
	       M = matrix {{0.999, 2}, {1, 2}}
	       numericalImage(M, 0.01)
///