1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
// Copyright 2015 Anton Leykin and Mike Stillman
// Anton Leykin's code in this file is in the public domain.
#ifndef _mutable_mat_imp_hpp_
#define _mutable_mat_imp_hpp_
template <typename Mat>
M2SLEvaluator* MutableMat<Mat>::createSLEvaluator(M2SLProgram* P,
M2_arrayint constsPos,
M2_arrayint varsPos) const
{
if (n_rows() != 1 || n_cols() != constsPos->len) {
ERROR("1-row matrix expected; or numbers of constants don't match");
return nullptr;
} else return new M2SLEvaluator(
new SLEvaluatorConcrete<typename Mat::CoeffRing> (&(P->value()), constsPos, varsPos, this)
);
}
template <typename Mat>
M2SLEvaluator* MutableMat<Mat>::createCompiledSLEvaluator(
M2_string libName,
int nInputs,
int nOutputs) const
{
return new M2SLEvaluator(
new SLEvaluatorConcrete<typename Mat::CoeffRing> (libName, nInputs, nOutputs, this)
);
}
template <typename T>
size_t MutableMat<T>::rank() const
{
return MatrixOps::rank(mat);
}
template <typename T>
const RingElement* MutableMat<T>::determinant() const
{
ring_elem det;
typename T::Element a(mat.ring());
MatrixOps::determinant(mat, a);
// MatrixOps::BasicLinAlg<MatType>::determinant(mat, a);
mat.ring().to_ring_elem(det, a);
return RingElement::make_raw(get_ring(), det);
}
template <typename T>
MutableMatrix* MutableMat<T>::invert() const
{
assert(n_rows() == n_cols());
MutableMat<T>* result = makeZeroMatrix(n_rows(), n_cols());
bool val = MatrixOps::inverse(mat, result->mat);
if (!val)
{
delete result;
return 0;
}
return result;
}
template <typename T>
MutableMatrix* MutableMat<T>::rowReducedEchelonForm() const
{
MutableMat<T>* result = makeZeroMatrix(n_rows(), n_cols());
try
{
// ignore returned value (the rank of mat):
MatrixOps::rowReducedEchelonForm(mat, result->mat);
return result;
} catch (const exc::engine_error& e)
{
delete result;
throw;
}
}
template <typename T>
MutableMatrix* MutableMat<T>::solveLinear(const MutableMatrix* B) const
{
const T* B1 = B->coerce_const<T>();
if (B1 == 0) throw exc::engine_error("expected matrices of the same type");
if (B->get_ring() != get_ring())
throw exc::engine_error("expected same ring");
if (B->n_rows() != n_rows())
throw exc::engine_error("expected matrices with same number of rows");
MutableMat<T>* solns = makeZeroMatrix(0, 0);
bool retval = MatrixOps::solveLinear(mat, *B1, solns->mat);
if (retval) return solns;
delete solns;
return NULL;
}
template <typename T>
MutableMatrix* MutableMat<T>::solveInvertible(const MutableMatrix* B) const
{
const T* B1 = B->coerce_const<T>();
if (B1 == 0) throw exc::engine_error("expected matrices of the same type");
if (B->get_ring() != get_ring())
throw exc::engine_error("expected same ring");
if (n_rows() != n_cols()) throw exc::engine_error("expected a square matrix");
if (B->n_rows() != n_rows())
throw exc::engine_error("expected matrices with same number of rows");
MutableMat<T>* solns = makeZeroMatrix(0, 0);
bool retval = MatrixOps::solveInvertible(mat, *B1, solns->mat);
if (retval) return solns;
delete solns;
return NULL;
}
template <typename T>
MutableMatrix* MutableMat<T>::nullSpace() const
{
MutableMat<T>* ker = makeZeroMatrix(0, 0);
MatrixOps::nullSpace(mat, ker->mat); // ignore return value of nullSpace...
return ker;
}
template <typename T>
MutableMatrix /* or null */* MutableMat<T>::mult(const MutableMatrix* B) const
{
// First, make sure B has the same ring/type as 'this'.
const T* B1 = B->coerce_const<T>();
if (B1 == 0)
{
ERROR(
"mutable matrix/ring type for (mutable) matrix multiplication "
"required to be the same");
return 0;
}
// Second, make sure the sizes are correct.
if (mat.numColumns() != B1->numRows())
{
ERROR("matrix sizes do not match in matrix multiplication");
return 0;
}
// create the result matrix
MutableMat<T>* result = makeZeroMatrix(n_rows(), B1->numColumns());
MatrixOps::mult(mat, *B1, result->mat);
return result;
}
template <typename T>
void MutableMat<T>::addMultipleTo(const MutableMatrix* A,
const MutableMatrix* B)
{
// First: make sure that A, B have the right ring/matrix type
const T* A1 = A->coerce_const<T>();
const T* B1 = B->coerce_const<T>();
if (A1 == 0 or B1 == 0)
throw exc::engine_error(
"mutable matrix/ring type for (mutable) matrix multiplication required "
"to be the same");
if (mat.numRows() != A1->numRows() or mat.numColumns() != B1->numColumns())
throw exc::engine_error(
"expected matrix sizes to be compatible with matrix multiplication");
MatrixOps::addMultipleTo(mat, *A1, *B1);
}
template <typename T>
void MutableMat<T>::subtractMultipleTo(const MutableMatrix* A,
const MutableMatrix* B)
{
// First: make sure that A, B have the right ring/matrix type
const T* A1 = A->coerce_const<T>();
const T* B1 = B->coerce_const<T>();
if (A1 == 0 or B1 == 0)
throw exc::engine_error(
"mutable matrix/ring type for (mutable) matrix multiplication required "
"to be the same");
if (mat.numRows() != A1->numRows() or mat.numColumns() != B1->numColumns())
throw exc::engine_error(
"expected matrix sizes to be compatible with matrix multiplication");
MatrixOps::subtractMultipleTo(mat, *A1, *B1);
}
template <typename T>
M2_arrayintOrNull MutableMat<T>::rankProfile(bool row_profile) const
{
// LUComputation<T> C(mat);
// return C.rankProfile(row_profile);
return MatrixOps::rankProfile(mat, row_profile);
}
template <typename T>
M2_arrayintOrNull MutableMat<T>::LU(MutableMatrix* L, MutableMatrix* U) const
{
T* L1 = L->coerce<T>();
T* U1 = U->coerce<T>();
if (L1 == 0 or U1 == 0)
throw exc::engine_error("expected matrices of the same ring/type");
return MatrixOps::LU(mat, *L1, *U1);
}
template <typename T> // T should be a matrix type, generally DMat<RT>
M2_arrayintOrNull MutableMat<T>::LUincremental(std::vector<size_t>& P,
const MutableMatrix* v,
int m)
{
T* LU1 = this->coerce<T>();
const T* v1 = const_cast<MutableMatrix*>(v)->coerce<T>();
if (LU1 == nullptr or v1 == nullptr)
throw exc::engine_error("expected matrices of the same ring/type");
return MatrixOps::LUincremental(P, *LU1, *v1, m);
}
template <typename T> // T should be a matrix type, generally DMat<RT>
void MutableMat<T>::triangularSolve(MutableMatrix* x,
int m,
int strategy)
{
T* Lv1 = this->coerce<T>();
T* x1 = x->coerce<T>();
if (Lv1 == nullptr or x1 == nullptr)
throw exc::engine_error("expected matrices of the same ring/type");
MatrixOps::triangularSolve(*Lv1, *x1, m, strategy);
}
template <typename T>
bool MutableMat<T>::eigenvalues(MutableMatrix* eigenvals,
bool is_symm_or_hermitian) const
{
if (!is_dense())
throw exc::engine_error(
"'eigenvalues' is only implemented for dense matrices");
if (is_symm_or_hermitian)
{
auto E1 = eigenvals->coerce<DMat<HermitianEigenvalueType> >();
if (E1 == 0)
throw exc::engine_error("eigenvalue matrix is of the wrong type/ring");
return MatrixOps::eigenvaluesHermitian(mat, *E1);
}
else
{
auto E1 = eigenvals->coerce<DMat<EigenvalueType> >();
if (E1 == 0)
throw exc::engine_error("eigenvalue matrix is of the wrong type/ring");
return MatrixOps::eigenvalues(mat, *E1);
}
}
template <typename T>
bool MutableMat<T>::eigenvectors(MutableMatrix* eigenvals,
MutableMatrix* eigenvecs,
bool is_symm_or_hermitian) const
{
if (!is_dense())
throw exc::engine_error(
"'eigenvalues' is only implemented for dense matrices");
if (is_symm_or_hermitian)
{
DMat<HermitianEigenvalueType>* E1 =
eigenvals->coerce<DMat<HermitianEigenvalueType> >();
DMat<HermitianEigenvectorType>* evecs1 =
eigenvecs->coerce<DMat<HermitianEigenvectorType> >();
if (E1 == 0 or evecs1 == 0)
throw exc::engine_error(
"eigenvalue/vector matrix is of the wrong type/ring");
return MatrixOps::eigenvectorsHermitian(mat, *E1, *evecs1);
}
else
{
DMat<EigenvalueType>* E1 = eigenvals->coerce<DMat<EigenvalueType> >();
DMat<EigenvectorType>* evecs1 =
eigenvecs->coerce<DMat<EigenvectorType> >();
if (E1 == 0 or evecs1 == 0)
throw exc::engine_error(
"eigenvalue/vector matrix is of the wrong type/ring");
return MatrixOps::eigenvectors(mat, *E1, *evecs1);
}
}
template <typename T>
bool MutableMat<T>::least_squares(const MutableMatrix* B,
MutableMatrix* X,
bool assume_full_rank) const
{
const T* B1 = B->coerce_const<T>();
T* X1 = X->coerce<T>();
if (B1 == 0 or X1 == 0)
throw exc::engine_error("expected matrices of the same type");
bool retval = MatrixOps::leastSquares(mat, *B1, *X1, assume_full_rank);
return retval;
}
template <typename T>
bool MutableMat<T>::QR(MutableMatrix* Q, MutableMatrix* R, bool return_QR) const
{
if (!is_dense())
throw exc::engine_error("'QR' is only implemented for dense matrices");
auto Q1 = Q->coerce<DMat<CoeffRing> >();
if (Q1 == 0) throw exc::engine_error("Q matrix is of the wrong type/ring");
auto R1 = R->coerce<DMat<CoeffRing> >();
if (R1 == 0) throw exc::engine_error("R matrix is of the wrong type/ring");
return MatrixOps::QR(mat, *Q1, *R1, return_QR);
}
template <typename T>
bool MutableMat<T>::SVD(MutableMatrix* Sigma,
MutableMatrix* U,
MutableMatrix* Vt,
bool use_divide_and_conquer) const
{
auto Sigma2 = Sigma->coerce<DMat<HermitianEigenvalueType> >();
T* U2 = U->coerce<T>();
T* Vt2 = Vt->coerce<T>();
if (Sigma2 == 0 || U2 == 0 || Vt2 == 0)
throw exc::engine_error("expected matrices of the same type");
int strategy = (use_divide_and_conquer ? 1 : 0);
return MatrixOps::SVD(mat, *Sigma2, *U2, *Vt2, strategy);
}
template <typename Mat>
engine_RawArrayIntPairOrNull MutableMat<Mat>::LQUPFactorizationInPlace(
bool transpose)
{
throw exc::engine_error(
"LU decomposition currently not implemented for this ring and matrix "
"type");
}
template <typename T>
void MutableMat<T>::clean(gmp_RR epsilon)
{
MatrixOps::clean(epsilon, mat);
}
template <typename T>
gmp_RRorNull MutableMat<T>::norm() const
{
if (get_ring()->get_precision() == 0)
throw exc::engine_error("expected a matrix over RR or CC");
gmp_RRmutable nm = getmemstructtype(gmp_RRmutable);
mpfr_init2(nm, get_ring()->get_precision());
mpfr_set_si(nm, 0, MPFR_RNDN);
MatrixOps::increase_norm(nm, mat);
return moveTo_gmpRR(nm);
}
#endif
// Local Variables:
// compile-command: "make -C $M2BUILDDIR/Macaulay2/e "
// indent-tabs-mode: nil
// End:
|