1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
|
-- -*- coding: utf-8 -*-
--------------------------------------------------------------------------------
-- Copyright 2024 Nathan Grieve
--
-- This program is free software: you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free Software
-- Foundation, either version 3 of the License, or (at your option) any later
-- version.
--
-- This program is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-- FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
-- details.
--
-- You should have received a copy of the GNU General Public License along with
-- this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------
newPackage(
"AbstractSimplicialComplexes",
Version => "0.1",
Date => "30 September 2024",
Headline => "Abstract Simplicial Complexes",
Authors => {{ Name => "Nathan Grieve", Email => "nathan.m.grieve@gmail.com", HomePage => "https://sites.google.com/view/nathan-grieve"}},
AuxiliaryFiles => false,
DebuggingMode => false,
PackageImports => {"Complexes"},
PackageExports => {"Complexes"},
Keywords => {"Combinatorial Commutative Algebra"}
)
export {"AbstractSimplicialComplex", "abstractSimplicialComplex","simplicialChainComplex", "reducedSimplicialChainComplex", "ambientAbstractSimplicialComplexSize",
"ambientAbstractSimplicialComplex", "abstractSimplicialComplexFacets", "randomAbstractSimplicialComplex", "randomSubSimplicialComplex",
"inducedSimplicialChainComplexMap","inducedReducedSimplicialChainComplexMap"
}
-* Code section *-
---------------------------------------
-- spots
----------------------------------------
-- the spots method is extremely useful
-- but we don't export it
-----------------------------------------
spots = method()
spots Complex := List => (
C -> (c := concentration C; toList(c_0 .. c_1)))
max Complex := K -> max spots K
min Complex := K -> min spots K
---------------------------------------
--------------------------------------
--------------------------
-- Abstract Simplicial Complex
-------------------------
-- The idea is to make an Abstract Simplicial Complex as a Type of HashTable as a means
-- For working with Abstract Simplicial Complexes ---
-- The integer keys will output the list of i-simplicies
AbstractSimplicialComplex = new Type of HashTable
AbstractSimplicialComplex.synonym = "abstract simplicial complex"
AbstractSimplicialComplex.GlobalAssignHook = globalAssignFunction
AbstractSimplicialComplex.GlobalReleaseHook = globalReleaseFunction
describe AbstractSimplicialComplex := K -> net expression K
new AbstractSimplicialComplex := AbstractSimplicialComplex =>(cl) -> (
K := newClass(AbstractSimplicialComplex, new HashTable); -- sigh
K)
spots AbstractSimplicialComplex := List => (
K -> sort select(keys K, i -> class i === ZZ))
-- return the p-faces of a simplicial complex
AbstractSimplicialComplex _ ZZ := AbstractSimplicialComplex => (K,p) -> (
if K#?p then K#p
)
-- given a list of subsets L and A \in L decide if A is maximal
isMaximal :=(x,L) -> (
myList := select(L,i -> isSubset(x,i));
if #myList == 1 then
return true
else return false
)
-- select the maximal subsets (i.e., facets) of a list of subsets
listFacets := (L) -> (
select(L,i-> isMaximal(i,L))
)
--- return the facets of a simplicial complex
abstractSimplicialComplexFacets = method()
abstractSimplicialComplexFacets(AbstractSimplicialComplex) := List => K ->(
L := flatten(apply(spots K, i-> K_i));
return listFacets(L)
)
--- decide if two simplicial complexes are equal
AbstractSimplicialComplex == AbstractSimplicialComplex := Boolean => (K,L) ->(
return (abstractSimplicialComplexFacets K) == (abstractSimplicialComplexFacets L)
)
--- returns the dimension of a simplicial complex
dim AbstractSimplicialComplex := ZZ => (K) -> (
return (max apply(abstractSimplicialComplexFacets(K), i -> #i) - 1)
)
--- Constructors for AbstractSimplicialComplexs
abstractSimplicialComplex = method()
-- the most basic constructor of a AbstractSimplicialComplex
-- The idea is to make a simplical complex starting from a list of faces.
-- The list of faces need not be facets.
-- The constructor returns the simplicial complex (with all of its faces) that is
-- generated by this list of faces
-- By default, it is assumed that the kfaces are all lex ordered positive integers
makeKFaces := (L,k) -> (
toList(set(flatten(apply(#L, i -> subsets(sort L_i,k)))))
)
makeAllFaces := (L) -> (
numberOfFaces := #L;
-- find the highest dimensional face
n := max(apply(numberOfFaces, i-> # (L_i)));
flatten(for k from 0 to n list {k-1 => sort makeKFaces(L,k)})
)
abstractSimplicialComplex(List) := AbstractSimplicialComplex => L -> (
return new AbstractSimplicialComplex from makeAllFaces(L)
)
--- The following method will make the (n-1)-dimensional n-simplex on [n] = {1,...,n}
abstractSimplicialComplex(ZZ) := AbstractSimplicialComplex => (n) -> (
L := for i from 1 to n list i;
return abstractSimplicialComplex({L})
)
--- Make the "r-skeleton" on [n] = {1,...n}
abstractSimplicialComplex(ZZ,ZZ) := AbstractSimplicialComplex => (n,r) -> (
return abstractSimplicialComplex subsets(for i from 1 to n list i,r)
)
--
-- making random simplicial complexes --
-- make a random subset of {1,...,n}
randomSubset = method()
randomSubset(ZZ) := List => (n) -> (
setRandomSeed(currentTime());
k := random(1,n);
sort unique (for i from 1 to k list (random(1,n)))
)
-- random size r subset --
randomSubset(ZZ,ZZ) := List => (n,r) -> (
setRandomSeed(currentTime());
sort unique (for i from 1 to r list (random(1,n)))
)
-- make a random subset of a given set
randomSubset(List) := List => (L) -> (
setRandomSeed(currentTime());
n := #L;
k := random(0,n);
mySubset := subsets(L,k);
mySubset_(random(binomial(n,k)))
)
-- a variant of this is would be to make a random k element subset of a given set --
-- The following will make a "random" simplicial complex on {1,...,n} --
randomAbstractSimplicialComplex = method()
randomAbstractSimplicialComplex(ZZ) := AbstractSimplicialComplex => (n) -> (
setRandomSeed(currentTime());
listLength := 1 + random(2^n);
abstractSimplicialComplex unique(for i from 1 to listLength list randomSubset(n))
)
------
-- It also seems like a good idea to make a random simplicial complex
-- on [n] with dimension at most equal to r
-----
randomAbstractSimplicialComplex(ZZ,ZZ) := AbstractSimplicialComplex =>(n,r) -> (
setRandomSeed(currentTime());
listLength := 1 + random(binomial(n,r));
abstractSimplicialComplex unique(for i from 1 to listLength list randomSubset(n,r))
)
-- can we make the random complex Y_d(n,m) which has vertex set
-- [n] and complete (d − 1)-skeleton, and has exactly m d-dimensional faces,
-- chosen at random from all binomial(binomial(n,d+1),m) possibilities?
-- Such random complexes appear in lots of different contexts including in the article
-- COHEN–LENSTRA HEURISTICS FOR TORSION IN HOMOLOGY OF RANDOM COMPLEXES
-- (MATTHEW KAHLE, FRANK H. LUTZ, ANDREW NEWMAN, AND KYLE PARSONS) --
randomAbstractSimplicialComplex(ZZ,ZZ,ZZ) := (n,m,d) -> (
setRandomSeed(currentTime());
L := for i from 1 to n list i;
dDimlSubsets := subsets(L,d+1);
randomFaces := for i from 1 to m list (dDimlSubsets#(random(binomial(n,d+1))));
append(append(randomFaces,{L}),subsets(L,d));
return abstractSimplicialComplex(randomFaces)
)
randomSubSimplicialComplex = method()
randomSubSimplicialComplex(AbstractSimplicialComplex) := AbstractSimplicialComplex => (K) -> (
setRandomSeed(currentTime());
L := abstractSimplicialComplexFacets K;
abstractSimplicialComplex unique apply(L, i-> randomSubset(i))
)
---
-- ambient simplicial complex
ambientAbstractSimplicialComplexSize = method() -- return the size of the underlying ambient simplex
ambientAbstractSimplicialComplexSize(AbstractSimplicialComplex) := (K) -> (
max flatten(K_0)
)
ambientAbstractSimplicialComplex = method() -- return the underlying ambient simplex
ambientAbstractSimplicialComplex(AbstractSimplicialComplex) := AbstractSimplicialComplex => (K) -> (
return abstractSimplicialComplex(ambientAbstractSimplicialComplexSize(K))
)
---------------------------
--- boundary maps ---
------------------------
-- There are many ways to approach
-- The simplical boundary map
-- For X a given simplicial complex
-- Perhaps the most straight forward way
-- is via
-- \partial_k : C_k(X) \rightarrow C_{k-1}(X)
-- Here C_k(X) is the free
-- \ZZ-module (or \kk-vector space)
-- on the set of k+1 simplicies
-- (i.e., the set of k+1 combinations
-- of {1,...,n})
-- Given input a k+1 lex segment a = [a_0,...,a_k] ---- i.e., a k-face
-- Compute its image under the boundary map
-- It seems most straight forward to give the
-- output as a k+1 tuple with entry i having the
-- form [(-1)^i,d_i(a)]
-- here d_i(a) is a with the i-th lex entry removed
-- the following is more simply just for
-- testing purposes and is not used explicitly in the sequel
--partial := (L) -> (
-- apply(0 .. (#L-1), i -> {(-1)^i, drop(L,{i,i})})
-- The following function seems useful to
-- useful to construct
-- the simplicial chain complex map
-- given a k-face y and a k+1 - face x
-- decide if it equals \partial(x,i)
-- for some i
isDLexSeqI := (y,x) -> (
k := #y;
sign := 0;
for i from 0 to # x do (
z := drop(x,{i,i});
if y == z then (sign = (-1)^i;
break);
);
return sign
)
-- make a constructor for making matrices
-- that represented the simplicial boundary
-- maps of a given simplical complex
-- what follows appears to work OK which is good!
simplicialMakeMatrix = method()
simplicialMakeMatrix(List,List) := (kPlusOneFaces,kFaces) -> (
n := # kPlusOneFaces;
m := # kFaces;
matrixList :=
for i from 0 to m-1 list (
for j from 0 to n-1 list (
isDLexSeqI((kFaces)#i,(kPlusOneFaces)#j))
);
return matrix(matrixList)
)
-- We can finally make the entire reduced homology chain complex in the following way
-- Given as input the simplcial complex represented as a simplicial set --
-- This will produce the reduced chain complex (so the empty set will
-- appear in the chain complex)
reducedSimplicialChainComplex = method() -- return the chain complex (with contribution from the empty face) that is associated to a simplicial set (i.e., an abstract simplicial complex)
reducedSimplicialChainComplex(AbstractSimplicialComplex) := Complex => (L) ->
(
n := max spots L;
if n == -1 then (return complex hashTable {-1 => map(ZZ^0,ZZ^1,zero)})
else(
mapsList := for i from 0 to n list (i => simplicialMakeMatrix(L#i,L#(i-1)));
append(mapsList,-1 => map(ZZ^0,target(mapsList#0)#1,zero)););
return complex hashTable mapsList
)
simplicialChainComplex = method() -- return the non-reduced simplicial chain complex (i.e., the chain complex with no contribution from the empty face)
simplicialChainComplex(AbstractSimplicialComplex) := Complex => (L) ->
(
return(naiveTruncation(reducedSimplicialChainComplex L, 0, infinity))
)
--- Another method that is of interest,
-- is to give an inclusion (or more general a morphism)
---- of simplicial complexes and then compute
-- the induced chain complex morphism of SimplicialChainComplexes
--- An important special case is to view a
-- sub simplicial complex of the full simplicial complex (simplex) and then to compute
--- the corresponding induced inclusion morphism.
--- A first step is to make an k-face inclusion map given an inclusion of simplicial sets
--- Assume that L <= H
--- If L_k has no faces then the method returns an error message
--- Otherwise the method produces the appropriate matrix
--- That induces the corresponding inclusion map
inducedKFaceSimplicialChainComplexMap = method()
inducedKFaceSimplicialChainComplexMap(ZZ,AbstractSimplicialComplex,AbstractSimplicialComplex) := (k,H,L) ->
(
M := L_k;
N := H_k;
n := # M;
m := # N;
myMatrixList := for i from 0 to m-1 list (
for j from 0 to n-1 list (
if N#i == M#j then 1 else 0
)
);
return matrix myMatrixList
)
--If H <= L then give the induced chain complex map for (non-reduced) simplicalChainComplexes
inducedSimplicialChainComplexMap = method()
inducedSimplicialChainComplexMap(AbstractSimplicialComplex,AbstractSimplicialComplex) := (L,H) ->
(
h := simplicialChainComplex H;
l := simplicialChainComplex L;
if ((abstractSimplicialComplex {{}}) == H) then return map(l,h,zero)
else(
f := hashTable apply(spots h, i -> if i == -1 then i => map(l_(-1),h_(-1),zero) else i => inducedKFaceSimplicialChainComplexMap(i,L,H));
return map(l,h,f);
)
)
--If H <= L then give the induced chain complex map for reduced simplicalChainComplexes
inducedReducedSimplicialChainComplexMap = method()
inducedReducedSimplicialChainComplexMap(AbstractSimplicialComplex,AbstractSimplicialComplex) := (L,H) -> (
h := reducedSimplicialChainComplex H;
l := reducedSimplicialChainComplex L;
if ((abstractSimplicialComplex {{}}) == H) then return map(l,h, hashTable {-2 => map(l_(-2),h_(-2),zero), -1 => map(l_(-1),h_(-1),id_(h_(-1)))})
else(
f := hashTable apply(spots h, i -> if i == -1 then i => map(l_(-1),h_(-1),id_(h_(-1))) else i => inducedKFaceSimplicialChainComplexMap(i,L,H));
return map(l,h,f);
)
)
-----
-* Documentation section *-
beginDocumentation()
document {
Key => AbstractSimplicialComplexes,
Headline => "a package for working with abstract simplicial complexes",
"In this package our conventions are that `abstract simplicial complexes' have vertices supported on the set [n] := {1,...,n}.
Our aim is to provide a methology for working with such objects directly.
In this regard our approach differs from that of the package
SimplicialComplexes.m2.
Here, we are especially interested in homological aspects of SimplicialComplexes and our approach is to implement such simplicial complexes as certain graded lists.
In particular, we provide methods for working with the chain complexes that are associated to each abstract simplicial complex.
We also give some functionality for producing random simplicial complexes.",
SUBSECTION "An overview of this package",
UL {
TO "How to make abstract simplicial complexes",
TO "How to make reduced and non-reduced simplicial chain complexes",
TO "Calculations with random simplicial complexes"
},
}
--------------------------------------------
-- Package overview examples ---------------
--------------------------------------------
doc ///
Key
"How to make abstract simplicial complexes"
Headline
Using the type AbstractSimplicialComplexs to represent abstract simplicial complexes
Description
Text
The type AbstractSimplicialComplex is a data type for working with
abstract simplicial complexes with vertices supported on [n] = {1,...,n}.
Here we illustrate some of the most basic ways to interact with this data type.
Text
The simplicial complex that is generated by {1,2,3,4}, {2,3,5} and {1,5} can be
constructed in the following way.
Example
K = abstractSimplicialComplex({{1,2,3,4}, {2,3,5},{1,5}})
Text
The simplex on the vertex set [4] can be constructed as
Example
L = abstractSimplicialComplex(4)
Text
The faces and facets of such simplicial complexes can be accessed as
Example
K_(-1)
K_0
K_1
K_2
abstractSimplicialComplexFacets K
L_(-1)
L_0
L_1
L_2
L_3
abstractSimplicialComplexFacets L
///
doc ///
Key
"How to make reduced and non-reduced simplicial chain complexes"
Headline
Simplicial homological constructors
Description
Text
Non-reduced and reduced simplicial chain complexes can be constructed in the following way.
Example
K = abstractSimplicialComplex({{1,2,3,4}, {2,3,5},{1,5}})
k = simplicialChainComplex K
k.dd
kRed = reducedSimplicialChainComplex K
kRed.dd
///
doc ///
Key
"How to make subsimplical complexes and induced simplicial chain complex maps"
Headline
Induced simplicial chain complex maps via subsimplicial complexes
Description
Text
Given a subsimplicial complex there are induced simplicial chain complex maps.
This is illustrated in the following way.
Example
K = abstractSimplicialComplex(4,3)
L = abstractSimplicialComplex(4,2)
f = inducedSimplicialChainComplexMap(K,L)
isWellDefined f
fRed = inducedReducedSimplicialChainComplexMap(K,L)
isWellDefined fRed
///
doc ///
Key
"Calculations with random simplicial complexes"
Headline
Homological calculations on random simplicial complexes
Description
Text
In what follows we illustrate a collection of homological calculations that
can be performed on random simplicial complexes.
Text
Create a random abstract simplicial complex with vertices supported on a subset of [n] = {1,...,n}.
Example
setRandomSeed(currentTime());
K = randomAbstractSimplicialComplex(4)
prune HH simplicialChainComplex K
Text
Create a random simplicial complex on [n] with dimension at most equal to r.
Example
setRandomSeed(currentTime());
L = randomAbstractSimplicialComplex(6,3)
prune HH simplicialChainComplex L
Text
Create the random complex Y_d(n,m) which has vertex set
[n] and complete (d − 1)-skeleton, and has exactly m dimension d faces,
chosen at random from all binomial(binomial(n,d+1),m) possibilities.
Example
setRandomSeed(currentTime());
M = randomAbstractSimplicialComplex(6,3,2)
prune HH simplicialChainComplex M
Text
Creates a random sub-simplicial complex of a given simplicial complex.
Example
setRandomSeed(currentTime());
K = randomAbstractSimplicialComplex(4)
J = randomSubSimplicialComplex(K)
inducedSimplicialChainComplexMap(K,J)
///
--------------------------------------------
-- Documentation of methods and functions --
--------------------------------------------
--
-- Types
--
doc ///
Key
AbstractSimplicialComplex
Headline
The type of all abstract simplicial complexes
Description
Text
The type AbstractSimplicialComplex is a data type for working with
abstract simplicial complexes with vertices supported on [n] = {1,...,n}.
///
doc ///
Key
(NewMethod, AbstractSimplicialComplex)
///
--
-- Functions and Commands
--
doc ///
Key
(symbol ==,AbstractSimplicialComplex,AbstractSimplicialComplex)
Headline
Decide if two simplicial complexes are equal
Description
Text
Decides if two simplicial complexes are equal.
Example
randomAbstractSimplicialComplex(4) == randomAbstractSimplicialComplex(4)
///
doc ///
Key
randomAbstractSimplicialComplex
(randomAbstractSimplicialComplex,ZZ)
(randomAbstractSimplicialComplex,ZZ,ZZ)
(randomAbstractSimplicialComplex,ZZ,ZZ,ZZ)
Headline
Create a random simplicial set
Description
Text
Create a random abstract simplicial complex with vertices supported on a subset of [n] = {1,...,n}.
Example
setRandomSeed(currentTime());
K = randomAbstractSimplicialComplex(4)
Text
Create a random simplicial complex on [n] with dimension at most equal to r.
Example
setRandomSeed(currentTime());
L = randomAbstractSimplicialComplex(6,3)
Text
Create the random complex Y_d(n,m) which has vertex set
[n] and complete (d − 1)-skeleton, and has exactly m d-dimensional faces,
chosen at random from all binomial(binomial(n,d+1),m) possibilities.
Example
setRandomSeed(currentTime());
M = randomAbstractSimplicialComplex(6,3,2)
SeeAlso
"random"
"randomSquareFreeMonomialIdeal"
///
doc ///
Key
randomSubSimplicialComplex
(randomSubSimplicialComplex,AbstractSimplicialComplex)
Headline
Create a random sub-simplicial complex
Description
Text
Creates a random sub-simplicial complex of a given simplicial complex.
Example
setRandomSeed(currentTime());
K = randomAbstractSimplicialComplex(4)
J = randomSubSimplicialComplex(K)
///
doc ///
Key
ambientAbstractSimplicialComplex
(ambientAbstractSimplicialComplex,AbstractSimplicialComplex)
Headline
The ambient simplex
Description
Text
If an abstract simplicial complex has vertices supported on a subset of [n] = {1,...,n}, and including n,
then it seems useful to regard this simplicial complex as being a subsimplicial
complex of the simplex on [n]. This method returns this simplex as
the ambient simplical complex.
Example
K = abstractSimplicialComplex({{1,2},{3}})
J = ambientAbstractSimplicialComplex(K)
///
doc ///
Key
ambientAbstractSimplicialComplexSize
(ambientAbstractSimplicialComplexSize,AbstractSimplicialComplex)
Headline
The ambient simplex size
Description
Text
If an abstract simplicial complex has vertices supported on a subset of [n] = {1,...,n], and including n,
then it seems useful to regard this simplicial complex as being a subsimplicial
complex of the simplex on [n]. This method simply returns this largest integer n.
Example
K = abstractSimplicialComplex({{1,2},{3}})
J = ambientAbstractSimplicialComplexSize(K)
///
doc ///
Key
inducedSimplicialChainComplexMap
(inducedSimplicialChainComplexMap,AbstractSimplicialComplex,AbstractSimplicialComplex)
Headline
Induced maps that arise via inclusions of abstract simplicial complexes
Description
Text
If an abstract simplicial complex can be regarded as a subsimplicial complex of another
abstract simplicial complex, then it is useful to calculate the induced map at the level of
Simplicial Chain Complexes. This is made
possible by the method inducedSimplicialChainComplexMap.
Example
K = abstractSimplicialComplex({{1,2},{3}})
J = ambientAbstractSimplicialComplex(K)
inducedSimplicialChainComplexMap(J,K)
L = abstractSimplicialComplex {{}}
inducedSimplicialChainComplexMap(L,L)
M = abstractSimplicialComplex {{1}}
L = abstractSimplicialComplex {{}}
inducedSimplicialChainComplexMap(M,L)
SeeAlso
"inducedReducedSimplicialChainComplexMap"
///
doc ///
Key
inducedReducedSimplicialChainComplexMap
(inducedReducedSimplicialChainComplexMap,AbstractSimplicialComplex,AbstractSimplicialComplex)
Headline
Induced maps that arise via inclusions of abstract simplicial complexes
Description
Text
If an abstract simplicial complex can be regarded as a subsimplicial complex of another
abstract simplicial complex, then it is useful to calculate the induced map at the level of
Reduced Simplicial Chain Complexes. This is made
possible by the method inducedReducedSimplicialChainComplexMap.
Example
K = abstractSimplicialComplex({{1,2},{3}})
J = ambientAbstractSimplicialComplex(K)
inducedReducedSimplicialChainComplexMap(J,K)
L = abstractSimplicialComplex {{}}
inducedReducedSimplicialChainComplexMap(L,L)
M = abstractSimplicialComplex {{1}}
L = abstractSimplicialComplex {{}}
inducedReducedSimplicialChainComplexMap(M,L)
SeeAlso
"inducedSimplicialChainComplexMap"
///
doc ///
Key
reducedSimplicialChainComplex
(reducedSimplicialChainComplex,AbstractSimplicialComplex)
Headline
The reduced homological chain complex that is determined by an abstract simplicial complex
Description
Text
This method returns the reduced homological chain complex (i.e., there is a nonzero term in
homological degree -1 that corresponds to the empty face) that is associated
to an abstract simplicial complex. The chain complex is defined over the integers.
Example
K = abstractSimplicialComplex({{1,2,3},{2,4,9},{1,2,3,5,7,8},{3,4}})
reducedSimplicialChainComplex(K)
///
doc ///
Key
simplicialChainComplex
(simplicialChainComplex,AbstractSimplicialComplex)
Headline
The non-reduced homological chain complex that is determined by an abstract simplicial complex
Description
Text
This method returns the (non-reduced) homological chain complex (i.e., there is no nonzero term in
homological degree -1 that corresponds to the empty face) that is associated
to an abstract simplicial complex. The chain complex is defined over the integers.
Example
K = abstractSimplicialComplex({{1,2,3},{1,4,5},{2,4,5,7}})
C = simplicialChainComplex(K)
///
doc ///
Key
abstractSimplicialComplex
(abstractSimplicialComplex,List)
(abstractSimplicialComplex,ZZ)
(abstractSimplicialComplex,ZZ,ZZ)
Headline
The abstractSimplicialComplex that is determined by an abstract simplicial complex
Description
Text
This method returns the AbstractSimplicialComplex that represents a
given abstract simplicial complex.
The input is either a given collection of generating faces or an integer.
These facets need not
be facets. Moreover, the elements of the faces need not be written
in lexiographic order. When the input is an integer, the output is the
corresponding simplex.
Example
abstractSimplicialComplex({{1,2,3,4}})
abstractSimplicialComplex({{4,1,2,3}, {3,2,5},{1,5}})
abstractSimplicialComplex(4)
Text
The simplicial complex on [n] with r-skelton can be constructed as follows.
Example
abstractSimplicialComplex(4,2)
///
doc ///
Key
(symbol _, AbstractSimplicialComplex, ZZ)
Headline
The k faces of a simplicial complex
Description
Text
This method returns the collection of k faces of a given AbstractSimplicialComplex.
Example
K = abstractSimplicialComplex(3)
K_3
K_2
K_1
K_0
K_(-1)
///
doc ///
Key
abstractSimplicialComplexFacets
(abstractSimplicialComplexFacets, AbstractSimplicialComplex)
Headline
The facets of a simplicial complex
Description
Text
This method returns the collection of facets of a given AbstractSimplicialComplex.
Example
K = abstractSimplicialComplex(3)
abstractSimplicialComplexFacets K
///
doc ///
Key
(dim, AbstractSimplicialComplex)
Headline
The dimension of a simplicial complex
Description
Text
This method returns the dimension a given AbstractSimplicialComplex.
Example
K = abstractSimplicialComplex(3)
dim K
///
doc ///
Key
(describe, AbstractSimplicialComplex)
Headline
real description
Usage
describe S
Description
Text
see describe
SeeAlso
describe
///
-* Test section *-
TEST /// -* [insert short title for this test] *-
assert(
K = abstractSimplicialComplex({{1,2},{3}});
J = ambientAbstractSimplicialComplex(K);
isWellDefined inducedReducedSimplicialChainComplexMap(J,K)
)
assert(
K = abstractSimplicialComplex({{1,2},{3}});
J = ambientAbstractSimplicialComplex(K);
isWellDefined inducedSimplicialChainComplexMap(J,K)
)
assert(
L = abstractSimplicialComplex({{}});
isWellDefined inducedReducedSimplicialChainComplexMap(L,L)
)
assert(
M = abstractSimplicialComplex {{1}};
L = abstractSimplicialComplex {{}};
isWellDefined inducedReducedSimplicialChainComplexMap(M,L)
)
-- may have as many TEST sections as needed
///
end--
-* Development section *-
--
--
restart
uninstallPackage "AbstractSimplicialComplexes"
installPackage("AbstractSimplicialComplexes", RemakeAllDocumentation => true)
check "AbstractSimplicialComplexes"
viewHelp"AbstractSimplicialComplexes"
|