1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
newPackage(
"Complexes",
Version => "0.999995",
Date => "1 May 2023",
Authors => {
{ Name => "Gregory G. Smith",
Email => "ggsmith@mast.queensu.ca",
HomePage => "http://www.mast.queensu.ca/~ggsmith"
},
{ Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike"
}},
Headline => "beta testing new version of chain complexes",
Keywords => {"Homological Algebra"},
PackageExports => { "Truncations" },
AuxiliaryFiles => true
)
export {
"component",
-- types
"Complex",
"ComplexMap",
-- functions/methods
"augmentationMap",
"canonicalMap",
"canonicalTruncation",
"complex",
"concentration",
"connectingMap",
"connectingExtMap",
"connectingTorMap",
"cylinder",
"epicResolutionMap",
"freeResolution",
"homotopyMap",
"horseshoeResolution",
"koszulComplex",
"longExactSequence",
"isComplexMorphism",
"isExact",
"isFree", -- TODO: move to Core, use for freemodules too
"isQuasiIsomorphism",
"isNullHomotopic",
"isNullHomotopyOf",
"isShortExactSequence",
"liftMapAlongQuasiIsomorphism",
-- "minimalBetti",
"minimizingMap",
"nullHomotopy",
--"nullhomotopy" => "nullHomotopy",
"naiveTruncation",
"randomComplexMap",
-- "res" => "resolution",
-- "resolution",
"resolutionMap",
"tensorCommutativity",
"torSymmetry",
"yonedaExtension",
"yonedaExtension'",
"yonedaMap",
"yonedaMap'",
"yonedaProduct",
-- Option names
"FreeToExact", -- used in nullHomotopy
"OverField",
"OverZZ",
"Homogenization",
"Nonminimal",
"Concentration",
"Cycle",
"Boundary",
"InternalDegree",
"UseTarget"
}
-- keys into the type `Complex`
protect modules
-- These are keys used in the various ResolutionObject's
protect SyzygyList
protect compute
protect SchreyerOrder
protect isComputable
--------------------------------------------------------------------
-- code to be migrated to M2 Core ----------------------------------
--------------------------------------------------------------------
tensorCommutativity = method()
tensorCommutativity(Module, Module) := Matrix => (M,N) -> (
-- implement the isomorphism M ** N --> N ** M
MN := M ** N;
NM := N ** M;
m := numgens source gens M;
n := numgens source gens N;
perm := flatten for i from 0 to m - 1 list
for j from 0 to n - 1 list (
-- (i,j) (in M**N) to m*i + j
-- map to column (j,i) <--> n*j + i
m*j+i
);
FMN := source gens MN;
f := ((id)_FMN)_perm;
map(NM, MN, f)
)
homTensorAdjoint = method()
homTensorAdjoint(Module, Module, Module) := (L, M, N) -> (
-- returns the natural map: Hom(L ** M, N) --> Hom(L, Hom(M, N))
-- phi -> (ell |-> (m |-> phi(ell ** m)))
)
--------------------------------------------------------------------
-- package code ----------------------------------------------------
--------------------------------------------------------------------
load "Complexes/ChainComplex.m2"
load "Complexes/FreeResolutions.m2"
load "Complexes/ChainComplexMap.m2"
load "Complexes/Tor.m2"
load "Complexes/Ext.m2"
--------------------------------------------------------------------
-- interface code to legacy types ----------------------------------
--------------------------------------------------------------------
chainComplex Complex := ChainComplex => (cacheValue symbol ChainComplex) (C -> (
(lo,hi) := concentration C;
D := new ChainComplex;
D.ring = ring C;
for i from lo to hi do D#i = C_i;
for i from lo+1 to hi do D.dd#i = dd^C_i;
D
))
complex ChainComplex := Complex => {} >> opts -> (cacheValue symbol Complex)(D -> (
(lo,hi) := (min D, max D);
while lo < hi and (D_lo).numgens == 0 do lo = lo+1;
while lo < hi and (D_hi).numgens == 0 do hi = hi-1;
if lo === hi then
complex(D_lo, Base => lo)
else
complex hashTable for i from lo+1 to hi list i => D.dd_i
))
chainComplex ComplexMap := ChainComplexMap => f -> (
g := new ChainComplexMap;
g.cache = new CacheTable;
g.source = chainComplex source f;
g.target = chainComplex target f;
g.degree = degree f;
(lo,hi) := concentration f;
for i from lo to hi do g#i = f_i;
g
)
complex ChainComplexMap := ComplexMap => {} >> opts -> g -> (
map(complex target g, complex source g, i -> g_i, Degree => degree g)
)
--------------------------------------------------------------------
-- package documentation -------------------------------------------
--------------------------------------------------------------------
beginDocumentation()
undocumented{
(net, Complex),
(net, ComplexMap),
(texMath, Complex),
(texMath, ComplexMap),
(expression, ComplexMap),
(component,Module,Thing),
component
}
load "Complexes/ChainComplexDoc.m2"
load "Complexes/ChainComplexMapDoc.m2"
--------------------------------------------------------------------
-- documentation for legacy type conversion ------------------------
--------------------------------------------------------------------
doc ///
Key
(complex, ChainComplex)
Headline
translate between data types for chain complexes
Usage
D = complex C
Inputs
C:ChainComplex
Outputs
D:Complex
Description
Text
Both ChainComplex and Complex are Macaulay2 types that
implement chain complexes of modules over rings.
The plan is to replace ChainComplex with this new type.
Before this happens, this function allows interoperability
between these types.
Text
The first example is the minimal free resolution of the
twisted cubic curve.
Example
R = ZZ/32003[a..d];
I = monomialCurveIdeal(R, {1,2,3})
M = R^1/I
C = resolution M
D = complex C
D1 = freeResolution M
assert(D == D1)
Text
In the following example, note that a different choice of sign
is chosen in the new Complexes package.
Example
C1 = Hom(C, R^1)
D1 = complex C1
D2 = Hom(D, R^1)
D1.dd_-1
D2.dd_-1
assert(D1 != D2)
Caveat
This is a temporary method to allow comparisons among the data types,
and will be removed once the older data structure is replaced
SeeAlso
(chainComplex, Complex)
(chainComplex, ComplexMap)
(complex, ChainComplexMap)
///
doc ///
Key
(chainComplex, Complex)
Headline
translate between data types for chain complexes
Usage
C = chainComplex D
Inputs
D:Complex
Outputs
C:ChainComplex
Description
Text
Both ChainComplex and Complex are Macaulay2 types that
implement chain complexes of modules over rings.
The plan is to replace ChainComplex with this new type.
Before this happens, this function allows interoperability
between these types.
Text
The first example is the minimal free resolution of the
twisted cubic curve.
Example
R = ZZ/32003[a..d];
I = monomialCurveIdeal(R, {1,2,3})
M = R^1/I
C = resolution M
D = freeResolution M
C1 = chainComplex D
assert(C == C1)
Text
The tensor products make the same choice of signs.
Example
D2 = D ** D
C2 = chainComplex D2
assert(C2 == C1 ** C1)
Caveat
This is a temporary method to allow comparisons among the data types,
and will be removed once the older data structure is replaced
SeeAlso
(complex, ChainComplex)
(complex, ChainComplexMap)
(chainComplex, ComplexMap)
///
doc ///
Key
(complex, ChainComplexMap)
Headline
translate between data types for chain complex maps
Usage
g = complex f
Inputs
f:ChainComplexMap
Outputs
g:ComplexMap
Description
Text
Both ChainComplexMap and ComplexMap are Macaulay2 types that
implement maps between chain complexes.
The plan is to replace ChainComplexMap with this new type.
Before this happens, this function allows interoperability
between these types.
Text
The first example is the minimal free resolution of the
twisted cubic curve.
Example
R = ZZ/32003[a..d];
I = monomialCurveIdeal(R, {1,2,3})
M = R^1/I
C = resolution M
f = C.dd
g = complex f
isWellDefined g
D = freeResolution M
assert(D.dd == g)
Text
The following two extension of maps between modules to
maps between chain complexes agree.
Example
J = ideal vars R
C1 = resolution(R^1/J)
D1 = freeResolution(R^1/J)
f = extend(C1, C, matrix{{1_R}})
g = complex f
g1 = extend(D1, D, matrix{{1_R}})
assert(g == g1)
Caveat
This is a temporary method to allow comparisons among the data types,
and will be removed once the older data structure is replaced
SeeAlso
(chainComplex, ComplexMap)
(complex, ChainComplex)
(chainComplex, Complex)
///
doc ///
Key
(chainComplex, ComplexMap)
Headline
translate between data types for chain complexes
Usage
f = chainComplex g
Inputs
g:ComplexMap
Outputs
f:ChainComplexMap
Description
Text
Both ChainComplexMap and ComplexMap are Macaulay2 types that
implement maps between chain complexes.
The plan is to replace ChainComplexMap with this new type.
Before this happens, this function allows interoperability
between these types.
Text
The first example is the minimal free resolution of the
twisted cubic curve.
Example
R = ZZ/101[a..d];
I = monomialCurveIdeal(R, {1,2,3})
M = R^1/I
D = freeResolution M
C = resolution M
g = D.dd
f = chainComplex g
assert(f == C.dd)
Text
We construct a random morphism of chain complexes.
Example
J = ideal vars R
C1 = resolution(R^1/J)
D1 = freeResolution(R^1/J)
g = randomComplexMap(D1, D, Cycle => true)
f = chainComplex g
assert(g == complex f)
assert(isComplexMorphism g)
Caveat
This is a temporary method to allow comparisons among the data types,
and will be removed once the older data structure is replaced
SeeAlso
(complex, ChainComplexMap)
(complex, ChainComplex)
(chainComplex, Complex)
///
--------------------------------------------------------------------
-- package tests ---------------------------------------------------
--------------------------------------------------------------------
load "Complexes/ChainComplexTests.m2"
load "Complexes/FreeResolutionTests.m2"
end------------------------------------------------------------
restart
uninstallPackage "Complexes"
restart
installPackage "Complexes"
check "Complexes"
viewHelp Complexes
restart
needsPackage "Complexes"
doc ///
Key
Headline
Usage
Inputs
Outputs
Description
Text
Example
Caveat
SeeAlso
///
S = ZZ/101[a..d]
K = freeResolution coker vars S
L = K ** K
-- would be nice if these were fast(er):
elapsedTime L**L;
elapsedTime (oo ** K)
elapsedTime (K ** ooo)
|