File: Complexes.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (410 lines) | stat: -rw-r--r-- 12,142 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
newPackage(
    "Complexes",
    Version => "0.999995",
    Date => "1 May 2023",
    Authors => {
        {   Name => "Gregory G. Smith", 
            Email => "ggsmith@mast.queensu.ca", 
            HomePage => "http://www.mast.queensu.ca/~ggsmith"
            },
        {   Name => "Mike Stillman", 
            Email => "mike@math.cornell.edu", 
            HomePage => "http://www.math.cornell.edu/~mike"
            }},
    Headline => "beta testing new version of chain complexes",
    Keywords => {"Homological Algebra"},
    PackageExports => { "Truncations" },
    AuxiliaryFiles => true
    )

export {
    "component",
    -- types
    "Complex",
    "ComplexMap",
    -- functions/methods
    "augmentationMap",
    "canonicalMap",
    "canonicalTruncation",
    "complex",
    "concentration",
    "connectingMap",
    "connectingExtMap",
    "connectingTorMap",
    "cylinder",
    "epicResolutionMap",
    "freeResolution",
    "homotopyMap",
    "horseshoeResolution",
    "koszulComplex",
    "longExactSequence",
    "isComplexMorphism",
    "isExact",
    "isFree", -- TODO: move to Core, use for freemodules too
    "isQuasiIsomorphism",
    "isNullHomotopic",
    "isNullHomotopyOf",
    "isShortExactSequence",
    "liftMapAlongQuasiIsomorphism",
--    "minimalBetti",
    "minimizingMap",
    "nullHomotopy",
    --"nullhomotopy" => "nullHomotopy",
    "naiveTruncation",
    "randomComplexMap",
--    "res" => "resolution",
--    "resolution",
    "resolutionMap",
    "tensorCommutativity",
    "torSymmetry",
    "yonedaExtension",
    "yonedaExtension'",
    "yonedaMap",
    "yonedaMap'",
    "yonedaProduct",
    -- Option names
    "FreeToExact", -- used in nullHomotopy
    "OverField",
    "OverZZ",
    "Homogenization",
    "Nonminimal",
    "Concentration",
    "Cycle",
    "Boundary",
    "InternalDegree",
    "UseTarget"
    }

-- keys into the type `Complex`
protect modules

-- These are keys used in the various ResolutionObject's
protect SyzygyList
protect compute
protect SchreyerOrder
protect isComputable

--------------------------------------------------------------------
-- code to be migrated to M2 Core ----------------------------------
--------------------------------------------------------------------
tensorCommutativity = method()
tensorCommutativity(Module, Module) := Matrix => (M,N) -> (
    -- implement the isomorphism M ** N --> N ** M
    MN := M ** N;
    NM := N ** M;
    m := numgens source gens M;
    n := numgens source gens N;
    perm := flatten for i from 0 to m - 1 list
      for j from 0 to n - 1 list (
          -- (i,j) (in M**N) to m*i + j
          -- map to column (j,i) <--> n*j + i
          m*j+i
          );
    FMN := source gens MN;
    f := ((id)_FMN)_perm;
    map(NM, MN, f)
    )

homTensorAdjoint = method()
homTensorAdjoint(Module, Module, Module) := (L, M, N) -> (
    -- returns the natural map: Hom(L ** M, N) --> Hom(L, Hom(M, N))
    -- phi -> (ell |-> (m |-> phi(ell ** m)))
    )

--------------------------------------------------------------------
-- package code ----------------------------------------------------
--------------------------------------------------------------------
load "Complexes/ChainComplex.m2"
load "Complexes/FreeResolutions.m2"
load "Complexes/ChainComplexMap.m2"
load "Complexes/Tor.m2"
load "Complexes/Ext.m2"

--------------------------------------------------------------------
-- interface code to legacy types ----------------------------------
--------------------------------------------------------------------
chainComplex Complex := ChainComplex => (cacheValue symbol ChainComplex) (C -> (
    (lo,hi) := concentration C;
    D := new ChainComplex;
    D.ring = ring C;
    for i from lo to hi do D#i = C_i;
    for i from lo+1 to hi do D.dd#i = dd^C_i;
    D
    ))

complex ChainComplex := Complex => {} >> opts -> (cacheValue symbol Complex)(D -> (
    (lo,hi) := (min D, max D);
    while lo < hi and (D_lo).numgens == 0 do lo = lo+1;
    while lo < hi and (D_hi).numgens == 0 do hi = hi-1;
    if lo === hi then
        complex(D_lo, Base => lo)
    else 
        complex hashTable for i from lo+1 to hi list i => D.dd_i
    ))

chainComplex ComplexMap := ChainComplexMap => f -> (
    g := new ChainComplexMap;
    g.cache = new CacheTable;
    g.source = chainComplex source f;
    g.target = chainComplex target f;
    g.degree = degree f;
    (lo,hi) := concentration f;
    for i from lo to hi do g#i = f_i;
    g
    )

complex ChainComplexMap := ComplexMap => {} >> opts -> g -> (
    map(complex target g, complex source g, i -> g_i, Degree => degree g)
    )
--------------------------------------------------------------------
-- package documentation -------------------------------------------
--------------------------------------------------------------------
beginDocumentation()

undocumented{
    (net, Complex),
    (net, ComplexMap),
    (texMath, Complex),
    (texMath, ComplexMap),
    (expression, ComplexMap),
    (component,Module,Thing),
    component
    }

load "Complexes/ChainComplexDoc.m2"
load "Complexes/ChainComplexMapDoc.m2"

--------------------------------------------------------------------
-- documentation for legacy type conversion ------------------------
--------------------------------------------------------------------
doc ///
    Key
        (complex, ChainComplex)
    Headline
        translate between data types for chain complexes
    Usage
        D = complex C
    Inputs
        C:ChainComplex
    Outputs
        D:Complex
    Description
        Text
            Both ChainComplex and Complex are Macaulay2 types that
            implement chain complexes of modules over rings.
            The plan is to replace ChainComplex with this new type.
            Before this happens, this function allows interoperability
            between these types.
        Text
            The first example is the minimal free resolution of the
            twisted cubic curve.
        Example
            R = ZZ/32003[a..d];
            I = monomialCurveIdeal(R, {1,2,3})
            M = R^1/I
            C = resolution M
            D = complex C
            D1 = freeResolution M
            assert(D == D1)
        Text
            In the following example, note that a different choice of sign
            is chosen in the new Complexes package.
        Example
            C1 = Hom(C, R^1)
            D1 = complex C1
            D2 = Hom(D, R^1)
            D1.dd_-1
            D2.dd_-1
            assert(D1 != D2)
    Caveat
        This is a temporary method to allow comparisons among the data types,
        and will be removed once the older data structure is replaced
    SeeAlso
        (chainComplex, Complex)
        (chainComplex, ComplexMap)
        (complex, ChainComplexMap)
///

doc ///
    Key
        (chainComplex, Complex)
    Headline
        translate between data types for chain complexes
    Usage
        C = chainComplex D
    Inputs
        D:Complex
    Outputs
        C:ChainComplex
    Description
        Text
            Both ChainComplex and Complex are Macaulay2 types that
            implement chain complexes of modules over rings.
            The plan is to replace ChainComplex with this new type.
            Before this happens, this function allows interoperability
            between these types.
        Text
            The first example is the minimal free resolution of the
            twisted cubic curve.
        Example
            R = ZZ/32003[a..d];
            I = monomialCurveIdeal(R, {1,2,3})
            M = R^1/I
            C = resolution M
            D = freeResolution M
            C1 = chainComplex D
            assert(C == C1)
        Text
            The tensor products make the same choice of signs.
        Example
            D2 = D ** D
            C2 = chainComplex D2
            assert(C2 == C1 ** C1)
    Caveat
        This is a temporary method to allow comparisons among the data types,
        and will be removed once the older data structure is replaced
    SeeAlso
        (complex, ChainComplex)
        (complex, ChainComplexMap)
        (chainComplex, ComplexMap)
///

doc ///
    Key
        (complex, ChainComplexMap)
    Headline
        translate between data types for chain complex maps
    Usage
        g = complex f
    Inputs
        f:ChainComplexMap
    Outputs
        g:ComplexMap
    Description
        Text
            Both ChainComplexMap and ComplexMap are Macaulay2 types that
            implement maps between chain complexes.
            The plan is to replace ChainComplexMap with this new type.
            Before this happens, this function allows interoperability
            between these types.
        Text
            The first example is the minimal free resolution of the
            twisted cubic curve.
        Example
            R = ZZ/32003[a..d];
            I = monomialCurveIdeal(R, {1,2,3})
            M = R^1/I
            C = resolution M
            f = C.dd
            g = complex f
            isWellDefined g
            D = freeResolution M
            assert(D.dd == g)
        Text
            The following two extension of maps between modules to
            maps between chain complexes agree.
        Example
            J = ideal vars R
            C1 = resolution(R^1/J)
            D1 = freeResolution(R^1/J)
            f = extend(C1, C, matrix{{1_R}})
            g = complex f
            g1 = extend(D1, D, matrix{{1_R}})
            assert(g == g1)
    Caveat
        This is a temporary method to allow comparisons among the data types,
        and will be removed once the older data structure is replaced
    SeeAlso
        (chainComplex, ComplexMap)
        (complex, ChainComplex)
        (chainComplex, Complex)
///

doc ///
    Key
        (chainComplex, ComplexMap)
    Headline
        translate between data types for chain complexes
    Usage
        f = chainComplex g
    Inputs
        g:ComplexMap
    Outputs
        f:ChainComplexMap
    Description
        Text
            Both ChainComplexMap and ComplexMap are Macaulay2 types that
            implement maps between chain complexes.
            The plan is to replace ChainComplexMap with this new type.
            Before this happens, this function allows interoperability
            between these types.
        Text
            The first example is the minimal free resolution of the
            twisted cubic curve.
        Example
            R = ZZ/101[a..d];
            I = monomialCurveIdeal(R, {1,2,3})
            M = R^1/I
            D = freeResolution M
            C = resolution M
            g = D.dd
            f = chainComplex g
            assert(f == C.dd)
        Text
            We construct a random morphism of chain complexes.
        Example
            J = ideal vars R
            C1 = resolution(R^1/J)
            D1 = freeResolution(R^1/J)
            g = randomComplexMap(D1, D, Cycle => true)
            f = chainComplex g
            assert(g == complex f)
            assert(isComplexMorphism g)
    Caveat
        This is a temporary method to allow comparisons among the data types,
        and will be removed once the older data structure is replaced
    SeeAlso
        (complex, ChainComplexMap)
        (complex, ChainComplex)
        (chainComplex, Complex)
///

--------------------------------------------------------------------
-- package tests ---------------------------------------------------
--------------------------------------------------------------------
load "Complexes/ChainComplexTests.m2"
load "Complexes/FreeResolutionTests.m2"

end------------------------------------------------------------

restart
uninstallPackage "Complexes"

restart
installPackage "Complexes"
check "Complexes"
viewHelp Complexes
restart
needsPackage "Complexes"

doc ///
    Key
    Headline
    Usage
    Inputs
    Outputs
    Description
        Text
        Example
    Caveat
    SeeAlso
///


S = ZZ/101[a..d]
K = freeResolution coker vars S
L = K ** K
-- would be nice if these were fast(er):
elapsedTime L**L;
elapsedTime (oo ** K)
elapsedTime (K ** ooo)