1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
|
--this file is in the public domain
newPackage( "Divisor",
Version => "0.3",
Date => "May 30th, 2018",
Authors => {
{Name => "Karl Schwede", Email=> "kschwede@gmail.com", HomePage=> "http://www.math.utah.edu/~schwede"},
{Name=> "Zhaoning Yang", Email=> "zyy5054@gmail.com"}},
Headline => "Weil divisors",
Keywords => {"Commutative Algebra"},
PackageImports => { "IntegralClosure", "RationalMaps" },
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "https://msp.org/jsag/",
"article title" => "Divisor Package for Macaulay2",
"acceptance date" => "31 August 2018",
"published article URI" => "https://msp.org/jsag/2018/8-1/p09.xhtml",
"published article DOI" => "10.2140/jsag.2018.8.87",
"published code URI" => "https://msp.org/jsag/2018/8-1/jsag-v8-n1-x09-Divisor.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Divisor.m2",
"release at publication" => "0e40b423ff375d6eb0a98d6fbbe7be8b2db95a98", -- git commit number in hex
"version at publication" => "0.3",
"volume number" => "8",
"volume URI" => "https://msp.org/jsag/2018/8-1/"
}
)
export{
--objects
"BasicDivisor",
"WeilDivisor",
"QWeilDivisor",
"RWeilDivisor",
--methods for defining divisors and related operations
"divisor", --checks verified
"zeroDivisor", --added checks
--accessing data
"primes", --added checks
"getPrimeCount", --added checks
"gbs", --added checks
"cleanSupport", --added checks
"clearCache", --NEED TO CHECK, NEEDS DOCUMENTATION
"getPrimeDivisors", --added checks
--simple operations
"positivePart", --added checks
"negativePart", --added checks
"applyToCoefficients", --added checks
--conversion
"toWeilDivisor", --added checks
"toQWeilDivisor", --added checks
"toRWeilDivisor", --added checks
--divisors to modules and functorial properties
--"pullback", --added checks
"findElementOfDegree", --added checks
"getLinearDiophantineSolution", --added checks --has Safe option
"canonicalDivisor", --added checks --has IsGraded option
"ramificationDivisor", --added checks
--tests and related constructions
--ideal, --cached
--OO, --cached
"isWeilDivisor", --added checks
"isEffective", --added checks
"isPrincipal", --added checks, has IsGraded option, cached
"isReduced", --added checks
"isCartier", --added checks, has IsGraded option, cached
"isLinearEquivalent", --added checks has IsGraded option
"isQCartier", --added checks, has IsGraded option, cached
"isQLinearEquivalent", --added checks, has IsGraded option
"nonCartierLocus", --added checks, has IsGraded option, cached
"isSNC", --added checks, has IsGraded option, cached
"isZeroDivisor", --added checks
--"isVeryAmple", --added checks,
--functions for getting maps to projective space from divisors (graded only)
"baseLocus", --added checks
"mapToProjectiveSpace", --added checks
--general useful functions not directly related to divisors
"idealPower", --added checks
"reflexify", --added checks
--"isReflexive", --added checks
"reflexivePower", --added checks
"torsionSubmodule", --added checks
"dualize", --added checks
"embedAsIdeal", --added checks, has IsGraded option
"isDomain", --added checks
--"isSmooth", --added checks, has IsGraded option
--options
"Safe", --an option, if set true then the above commands avoid doing any checks
"CoefficientType", --an option, one can set the coefficient type
"AmbientRing", --an option, one can specify the ambient ring during divisor construction
"MTries", --an option, used to try to embed a module into a ring as an ideal in a random way
--"keyPlus",
"KnownCartier", --an option, used to specify that the divisor is known to be Cartier
"KnownDomain", --an option, used to specify that the ring is known to be a integral domain
"IsGraded", --an option, if you specify it in several arguments it assumes we are working on a projective variety
"ReturnMap", --an option, for embedAsIdeal which returns the map from the module to R^1
"Primes", --a potential value for the pullback Strategy option
"Sheaves", --a potential value for the pullback Strategy option
"ModuleStrategy", --a strategy option for dualizing & reflexifying
"IdealStrategy", --a strategy option for dualizing & reflexifying
"NoStrategy", -- no strategy specified
-- "ReturnMap" --an option used to return the map instead of just a module
"Section", --an option for specifying a section when find a divisor corresponding to a module
--hashtable keys
"ideals"
}
----------------------------------------------------------------
--************************************************************--
--Structure of our divisor objects and their display------------
--************************************************************--
----------------------------------------------------------------
----------------------------------------------------------------
---The divisor object is a hashtable
---Some keys are groebner bases of height 1 prime ideals
-----These evaluate to a list with the coefficient of the ideal.
-----It is ASSUMED that the only keys which evaluate to basic lists are gbs
---
---Another key is the ambient ring
---
---Another key is the cache
-----The cache always has a key (symbol ideals)
-------This key evaluates to a HashTable, the keys of which are Groebner bases,
-------the values are the ideals the user entered
-----Other common cache values include:
BasicDivisor = new Type of HashTable;
RWeilDivisor = new Type of BasicDivisor;
QWeilDivisor = new Type of RWeilDivisor;
WeilDivisor = new Type of QWeilDivisor;
--Divisors have keys equal to Grobner bases of prime height-1 ideals. They have values which are pairs. The first entry in the value is the coefficient, the second is an ideal which hopefully the user will recognize.
--we can also control how they display
--they should display as something like
--**************************************
-- 5*Div(x,y) + -2*Div(y,z) of QQ[x,y,z]/(y^2-x*z)
--*************************************
---TODO: Change if we change internal structure
net BasicDivisor := t -> (
valList := coefficients(t);
primeList := primes(t);
myStr := "";
i := 0;
j := 0;
genList := {};
if (#valList > 0) then (
while (i < #valList) do(
if (i > 0) then myStr = myStr | " + ";
if (valList#i == 1) then (
myStr = myStr | "Div(";
)
else if (valList#i == -1) then (
myStr = myStr | "-Div(";
)
else (
myStr = myStr | toString(valList#i) | "*Div(";
);
genList = first entries gens (primeList#i);
for j from 0 to (#genList-1) do (
if (j > 0) then myStr = myStr | ", ";
myStr = myStr | toString(genList#j);
);
myStr = myStr | ")";
i = i+1
);
)
else(
myStr = "0, the zero divisor"
);
myStr
)
BasicDivisor#{Standard,AfterPrint} = BasicDivisor#{Standard,AfterNoPrint} = (D) -> (
<< endl; -- double space
<< concatenate(interpreterDepth:"o") << lineNumber << " : " << toString(class D) << " on " << toString(ring(D)) << endl;
)
----------------------------------------------------------------
--************************************************************--
--Divisor construction -----------------------------------------
--************************************************************--
----------------------------------------------------------------
--the following is an internal function for divisors, it's basically the collision function
keyPlus = (l1, l2) ->( --there can be two kinds of inputs, ordinary divisor pairs and ambient rings,
--the cache is thrown away
--TODO change if we change internal structure
if ((instance(l1, BasicList) ) and (instance(l2, BasicList))) then (
return {l1#0 + l2#0} --add the coefficients
)
else if ((instance(l1, Ring) ) and (instance(l2, Ring))) then (
return l1 --keep the ring
)
else if ((instance(l1, CacheTable) ) and (instance(l2, CacheTable) )) then (
return mergeDivisorCache(l1, l2);
);
null
)
mergeDivisorCache = (c1, c2) -> (--this takes two caches of a divisor, and merges them
C1 := new HashTable from c1#(symbol ideals);
C2 := new HashTable from c2#(symbol ideals);
L := {symbol ideals => new MutableHashTable from merge(C1, C2, (t1, t2) -> t1) };
-- print L;
-- 1/0;
return new CacheTable from L;
)
--the following is the basic construction function for the divisor
--it is passed a list of coefficients and a list of prime height one ideals
--several options are available
divisor = method(Options => {CoefficientType => ZZ, AmbientRing => null, Section => null, IsGraded => false});
divisor(BasicList, BasicList) := BasicDivisor => o ->(l1, l2) ->
(
divList := new List from {}; --the Weil Divisor
coeffList := l1; --list of coefficient
idealList := l2; --list of height one prime ideals
N := #coeffList;
RTest := o.AmbientRing;
--initial specification of the ambient ring
--and some basic checks
if (N > 0) then ( --if there are ideals to compare
RTest = ring ( idealList#0 );
if (( not (o.AmbientRing === null)) and (not (RTest === o.AmbientRing) ) ) then (
error "divisor: Specified ambient ring does not match the ideals given.";
);
)
else ( --otherwise use the users ambient ring
RTest = o.AmbientRing;
if (RTest === null) then RTest = ZZ; --or specify ZZ if the user didn't use one
);
--next we check to make sure the user passed something reasonable (ie, the lists have the same length)
M := #idealList;
if (N != M) then
(
error "divisor: lists should have the same length";
);
--check that all the ideals are really ideals
if ( not all(idealList, z->instance(z, Ideal)) ) then (error "divisor: all ideals should actually be ideals"; );
divList = toList(apply(0..(N-1), i -> ( (first entries gens (gb idealList#i) ) => {coeffList#i} ) ));
divList2 := toList(apply(0..(N-1), i -> ( (first entries gens (gb idealList#i) ) => idealList#i ) ));
idealHash := new MutableHashTable from divList2;
divList = append(divList, symbol ring => RTest);
divList = append(divList, symbol cache => new CacheTable from {symbol ideals => idealHash}); --the list of ideal descriptions is stored in the cache table
--print hashTable(divList);
--if we have a common coefficient ring type
--TODO change if we change internal structure
if (o.CoefficientType === ZZ) then
new WeilDivisor from ( hashTable(keyPlus, divList) )
else if (o.CoefficientType === QQ) then
new QWeilDivisor from ( hashTable(keyPlus, divList) )
else if (o.CoefficientType === RR) then
new RWeilDivisor from ( hashTable(keyPlus, divList) )
else
new BasicDivisor from ( hashTable(keyPlus, divList) )
);
--the user may also pass in a single list consisting of pairs {n, P} where n is a coefficient and P is a height 1 prime ideal
divisor(BasicList) := BasicDivisor => o ->(myList) -> (
myList2 := transpose myList;
divisor(myList2#0, myList2#1, CoefficientType=>o.CoefficientType, AmbientRing=>o.AmbientRing)
);
--gives an effective divisor corresponding to the ideal, i.e. V(I)
--however, if Section=> is specified, and non-null, the divisor(Ideal, Section=>f) finds a divisor D such that O(D) is isomorphic to the Ideal and such that the section corresponds
divisor(Ideal) := WeilDivisor => o ->(I1) -> (
if (I1 == 0*I1) then (error "(divisor, Ideal): cannot form divisor from the zero ideal";);
--question, is it faster to reflexify the ideal before computing minimal primes? It seems so, but I'm not sure.
I2 := reflexify(I1);
L2 := {}; --the list of minimal primes
if ( isSubset(ideal sub(1, ring I2), I2) == false ) then (L2 = minimalPrimes(I2););
L0 := {}; --list of coefficients/integers
top1 := 1;
bottom1 := 0;
i1 := 0;
tmp := 0;
flag := false;
for i1 when (i1 < #L2) do (
flag = true;
top1 = 1;
--we will do a binary search, but first we need to find out how high to go (exponential search, it should be fast)
while (flag == true) do (
top1 = top1*2;
flag = isSubset(I2, reflexify(idealPower(top1, (L2#i1)))); --ideal power gives us a huge speedup again
);
--now we do the binary search
flag = true;
bottom1 = 0;
while (top1 > bottom1+1) do(
tmp = floor((top1 + bottom1)/2);
flag = isSubset(I2, reflexify(idealPower(tmp, (L2#i1))));
if (flag == false) then top1 = tmp else bottom1 = tmp;
);
L0 = join(L0, {bottom1});
);
--for the users display purposes, if the ideal was prime we need to handle it differently
if (#L0 == 1) then (
if (L0#0 == 1) then (
--the problem is minimalPrimes(I2) or even reflexify(I1) can change the displayed generators of the ideal. This might not be optimal.
if (I2 == I1) then (
L2 = {I1};
);
)
);
if (instance(o.Section, RingElement)) then (
--NOTE the flipping of the sign in this case.
D1 := -divisor(L0, L2, AmbientRing=>(ring I1), CoefficientType=>o.CoefficientType);
D2 := divisor(o.Section);
D2 + D1
)
else (
--NOTE the sign is not flipped unlike when Section is specified.
divisor(L0, L2, AmbientRing=>(ring I1), CoefficientType=>o.CoefficientType)
)
);
--gives an effective divisor corresponding to a ring element
divisor(RingElement) := WeilDivisor => o ->(f1) -> (
if (instance(ring f1, FractionField) ) then (
divisor(ideal(numerator(f1)), CoefficientType => o.CoefficientType) - divisor(ideal(denominator(f1)), CoefficientType => o.CoefficientType))
else (
divisor(ideal(f1), CoefficientType=>o.CoefficientType)
)
);
divisor( Matrix ) := WeilDivisor => o -> (mat) ->
(
L := embedAsIdeal(mat);
divisor(L#1, Section => L#0)
);
--the following function was previously called moduleToDivisor
--moduleToDivisor = method(Options => {IsGraded => false});
--it creates a divisor D such that OO(D) is isomorphic to the given module M.
--if IsGraded is set to true, then it works as if we are on a projective variety
divisor( Module ) := WeilDivisor => o -> ( M ) ->
(
I := 0;
R1 := ring M;
if (instance(o.Section, Matrix)) then (
if (not (target(o.Section) == M)) then error "(divisor, Module, Section=>Matrix): target of matrix is not the given module.";
return divisor(o.Section);
);
if (o.IsGraded == false) then (
I = embedAsIdeal(R1, M);
-divisor( I )
)
else(
L1 := embedAsIdeal(R1, M, IsGraded => true);
I = L1#0;
l := (-1)*L1#1;
D1 := -divisor(I);
--next we find an element of degree l
els := findElementOfDegree(l, R1);
D1 - divisor(els#0) + divisor(els#1)
)
);
zeroDivisor = method();
zeroDivisor(Ring) := BasicDivisor => (R1) -> (
divisor(sub(1, R1))
);
----------------------------------------------------------------
--************************************************************--
--Verifying divisor data----------------------------------------
--************************************************************--
----------------------------------------------------------------
--the following function is used to verify that a divisor is valid, it checks to make sure the coefficients are the right type, that the ideals are prime and height 1, etc. It was formerly called verifyDivisor
isWellDefined(BasicDivisor) := Boolean => (D1) -> (
myType := class D1;
myList := coefficients(D1);
flag := true;
curFlag := true;
--first we check the coefficients
if (myType === WeilDivisor) then (
curFlag = all(myList, z->instance(z, ZZ));
if ((curFlag == false) and (debugLevel > 0)) then (print "(isWellDefined, BasicDivisor): Not all coefficients are integers");
flag = flag and curFlag;
);
if (myType === QWeilDivisor) then (
curFlag = all(myList, z->instance(z, QQ));
if ((curFlag == false) and (debugLevel > 0)) then (print "(isWellDefined, BasicDivisor): Not all coefficients are rational numbers");
flag = flag and curFlag;
);
if (myType === RWeilDivisor) then (
curFlag = all(myList, z->instance(z, RR));
if ((curFlag == false) and (debugLevel > 0)) then (print "(isWellDefined, BasicDivisor): Not all coefficients are real numbers");
flag = flag and curFlag;
);
--now check to see if the ideals are prime and height one and in the same ambient ring
--it only does these checks if the others were successful since they are time consuming
if (flag == true) then(
myList = primes(D1);
myAmb := ring D1;
--first we check the ambient ring
flag = all(myList, z -> (myAmb === ring z));
if ((flag == false) and (debugLevel > 0)) then (
print "(isWellDefined, BasicDivisor): Not all ideals have the same ambient ring";
);
--next we check primality
if (flag == true) then (
flag = all(myList, z->(isPrime(z)));
if ((flag == false) and (debugLevel > 0)) then (print "(isWellDefined, BasicDivisor): Not all ideals are prime");
);
--finally we check dimension
if (flag == true) then (
d1 := dim myAmb;
flag = all(myList, z->(d1 - dim(z) == 1));
if ((flag == false) and (debugLevel > 0)) then (print "(isWellDefined, BasicDivisor): Not all ideals are height one");
);
);
flag
);
----------------------------------------------------------------
--************************************************************--
--Accessing divisor data----------------------------------------
--************************************************************--
----------------------------------------------------------------
--Get the list of height one prime ideals of a divisor. This returns the primes as the user entered them.
primes = method();
--TODO change if we change internal structure
primes( BasicDivisor ) := List => ( D ) ->
(
--we don't want the ambient ring in our prime list do we
--D1 := select(D, z -> instance(z, BasicList));
--Dkeys := keys D;
gbKeys := gbs D; --select(keys D, z -> instance(z, GroebnerBasis)); --get the set of keys from the divisor that are Groebner bases
return apply(gbKeys, g -> ( if ((D#cache#(symbol ideals))#?g) then ( (D#cache#(symbol ideals))#g ) else (return ideal g)));
-- D1 := select((D#cache), z->instance(z, BasicList));
-- valList := values D1;
-- if (#valList > 0) then (
-- valList2 := transpose valList;
-- return valList2#1;
-- )
-- else (
-- return
-- )
);
--get the number of primes
--TODO change if we change internal structure
getPrimeCount = method();
getPrimeCount( BasicDivisor ) := ZZ => ( D ) ->
(
gbKeys := gbs(D);
-- D1 := select(D, z -> instance(z, BasicList));
#gbKeys
);
--we can also get the list of Grobner bases
--TODO change if we change internal structure
gbs = method();
gbs(BasicDivisor) := List => (D) -> (
-- D1 := select(D, z -> instance(z, BasicList));
-- keys D1
gbKeys := select(keys D, z->instance(z, BasicList));
gbKeys
);
--Get the list of coefficients of a divisor
--TODO change if we change internal structure
coefficients( BasicDivisor ) := List => o-> ( DD ) -> (
gbKeys := gbs(DD);
return apply(gbKeys, z -> DD#z#0);
-- D1 := select(DD, z -> instance(z, BasicList));
-- valList := values D1;
-- if (#valList > 0) then (
-- valList2 := transpose valList;
-- valList2#0
-- )
-- else {}
);
--Given a divisor D and a irreducible codimensional one subspace C
--we would like to know what is the coefficient of this component inside this divisor
--it does NOT check whether or not P is prime
--TODO change if we change internal structure
coefficient(Ideal, BasicDivisor) := Number => (P, D) ->
(
n := 0;
if (instance(D, WeilDivisor)) then ( n = 0; )
else if (instance(D, QWeilDivisor)) then ( n = 0/1; )
else if (instance(D, RWeilDivisor)) then ( n = 0.0; );
-- flag := D #? (first entries gens (gb P) );
-- if( flag == true ) then ( n = (D # (first entries gens (gb P) ))#0 );
gbListP := first entries gens (gb P);
if (D #? gbListP) then ( n = (D#gbListP)#0 );
n
);
--TODO change if we change internal structure
--in this version, the second argument is a list of generators of the appropriate Groebner basis
coefficient(BasicList, BasicDivisor) := Number => (l1, D) ->
(
n := 0;
if (instance(D, WeilDivisor)) then ( n = 0; )
else if (instance(D, QWeilDivisor)) then ( n = 0/1; )
else if (instance(D, RWeilDivisor)) then ( n = 0.0; );
-- flag := D #? l1;
if( D #? l1 ) then ( n = (D # l1)#0 );
n
);
--Given a divisor D, we want to know what is the ambient ring.
--TODO change if we change internal structure
ring(BasicDivisor) := Ring => (D1) ->
(
return D1#(symbol ring);
);
--The next function gets a list of prime divisors of a given divisor
--warning, it accesses the underlying structure of the HashTable,
getPrimeDivisors = method();
--TODO change if we change internal structure
getPrimeDivisors( BasicDivisor ) := List => (D) ->
(
gbList := gbs(D);
ambRing := ring D;
myList := apply(gbList, z -> {z => {1}, symbol ring => ambRing, symbol cache => new CacheTable from {symbol ideals => new MutableHashTable from {z => ((D#cache)#(symbol ideals))#z }}});
apply(myList, z -> new WeilDivisor from z)
);
----------------------------------------------------------------
--************************************************************--
--Other basic common methods for divisors.----------------------
--************************************************************--
----------------------------------------------------------------
--cleanSupport simply removes prime divisors with coefficient 0 (it also keeps the flag specifying the ambient ring of course)
cleanSupport = method();
--TODO change if we change internal structure
cleanSupport( BasicDivisor ) := BasicDivisor => (D) -> (
cleaned := select(D, x -> ( if (instance(x, Ring)) then true else if (instance(x, CacheTable)) then false else (x#0 != 0) )); --this cleans the divisor itself
newCleaned := new (class D) from ((pairs cleaned) | {(symbol cache, new CacheTable from D#cache)});
--now to clean the cache
scan(keys ((newCleaned#cache)#(symbol ideals)), t -> if (not (newCleaned#?t)) then remove((newCleaned#cache)#(symbol ideals), t) );
return newCleaned;
);
--clearCache removes all entries in the cache except ideals (in particular, it removes all computed entries)
clearCache = method();
clearCache( BasicDivisor ) := BasicDivisor => (D) -> (
--D#cache = new CacheTable from {cache => D#cache#(symbol ideals)}; --doesn't work divisor is immutable hash table derived
newCache := new CacheTable from pairs (D#cache);
scan(keys newCache, t -> if (not (t === (symbol ideals))) then remove(newCache, t)); --this is a cache with all the computed values removed
D1 := new (class D) from (pairs( select(D, t -> not (t === cache))) | {{ symbol cache, newCache}});
return D1;
);
--applyFunctionToDivisorCoefficients applies the function to the coefficients of the divisor
applyToCoefficients = method(Options => {CoefficientType => null, Safe => false});
--TODO change if we change internal structure
applyToCoefficients( BasicDivisor, Function) := BasicDivisor => o -> (D, hhh) -> (
myClass := class D;
if (o.CoefficientType === ZZ) then (myClass = WeilDivisor)
else if (o.CoefficientType === QQ) then (myClass = QWeilDivisor)
else if (o.CoefficientType === RR) then (myClass = RWeilDivisor);
tempDiv := cleanSupport(new myClass from applyValues(D, x -> (if (instance(x, Ring)) then x else if (instance(x, CacheTable)) then new CacheTable from {symbol ideals => x#(symbol ideals)} else {hhh(x#0)} )) );
if (o.Safe == true) then (
if (not (isWellDefined(tempDiv))) then (error "applyToCoefficients: the output of this function is not a valid divisor, did you set the CoefficientType option properly?";);
);
tempDiv
);
---------------------------------
--this function cleans the support of the divisor
--and trims the ideals that are displayed
---------------------------------
--TODO change if we change internal structure
trim( BasicDivisor ) := BasicDivisor => o -> (DD) -> (
myClass := class DD;
tempDiv := cleanSupport(DD);
scan(keys ((DD#cache)#(symbol ideals)), t -> ((DD#cache)#(symbol ideals)#t = trim(((DD#cache)#(symbol ideals)#t))));
tempDiv
);
--Given a rational/real divisor, we return a Weil Divisor, such that new coefficients are obtained
--from taking ceilings from the given one
ceiling( RWeilDivisor ) := WeilDivisor => ( D ) -> ( applyToCoefficients(D, ceiling, CoefficientType=>ZZ) );
--new WeilDivisor from applyValues(D, x -> (if (instance(x, Ring)) then x else {ceiling (x#0), x#1} )) );
--Given a rational/real divisor, we return a Weil divisor for which new coefficients are obtained
--from taking floors from the given one
floor( RWeilDivisor ) := WeilDivisor => ( D ) -> ( applyToCoefficients(D, floor, CoefficientType=>ZZ) );
--Given a divisor D, we want to return positive/negative part of D
positivePart = method();
--TODO change if we change internal structure
positivePart( RWeilDivisor ) := RWeilDivisor => (D) -> (
cacheless := select(D, x -> (if (instance(x, Ring)) then true else if (instance(x, CacheTable)) then false else (x#0) > 0) ); --first make a divisor without its cache
L := (pairs cacheless) | {{symbol cache, new CacheTable}};--grab the pairs, and make a clean cache
cached := new (class D) from L;
(cached#cache)#(symbol ideals) = new MutableHashTable from (D#cache)#(symbol ideals);
-- 1/0;
cleanSupport(cached)
);
negativePart = method();
--TODO change if we change internal structure
negativePart( RWeilDivisor ) := RWeilDivisor => (D) ->
(
-- := select(D, x -> (if (instance(x, Ring)) then true else if (instance(x, CacheTable)) then false else ((x#0) < 0)) );
-- applyValues(E, x -> (if (instance(x, Ring)) then x else {(-1) * (x#0), x#1}))
positivePart(-D)
);
----------------------------------------------------------------
--************************************************************--
--Conversion and Comparing method among divisors.---------------
--************************************************************--
----------------------------------------------------------------
--Comparing Divisors
--Given two real Divisors, we want to test whether or not they are equal.
RWeilDivisor == RWeilDivisor := Boolean => (D, E) ->
(
if (not (ring D === ring E)) then error "Expected divisors to have the same ring.";
divDiff := cleanSupport( D - E );
isZeroDivisor(divDiff)
);
--Conversion among divisors
--Given a Weil Divisor, it is naturally a rational divisor.
--since Weil divisors are Q-divisors
toQWeilDivisor = method();
toQWeilDivisor( WeilDivisor ) := QWeilDivisor => (D) ->
(
E := cleanSupport( D );
coeffList := apply(coefficients E, x -> (1/1) * x );
divisor(coeffList, primes E, AmbientRing=>ring(D), CoefficientType=>QQ )
);
toQWeilDivisor( QWeilDivisor ) := QWeilDivisor => (D) -> ( D ); --do nothing to an honest Q-divisor
--Given a Weil Divisor, it is naturally a real divisor.
toRWeilDivisor = method();
toRWeilDivisor( WeilDivisor ) := RWeilDivisor => (D) ->
(
E := cleanSupport( D );
coeffList := apply(coefficients E, x -> (1.0) * x );
divisor(coeffList, primes E, AmbientRing=>ring(D), CoefficientType=>RR)
);
--Given a rational Divisor, it is naturally a real divisor
--since QWeilDivisor is a subclass of RWeilDivisor
toRWeilDivisor( QWeilDivisor ) := RWeilDivisor => (D) ->
(
E := cleanSupport( D );
coeffList := apply(coefficients E, x -> (1.0) * x );
divisor(coeffList, primes E, AmbientRing=>ring(D), CoefficientType=>RR)
);
toRWeilDivisor( RWeilDivisor ) := RWeilDivisor => (D) -> ( D ); --do nothing to an honest R-divisor
--Given a rational/real divisor, if all its coefficients are of the integer type, we want to turn it to a Weil Divisor.
toWeilDivisor = method();
--TODO change if we change internal structure
toWeilDivisor( RWeilDivisor ) := WeilDivisor => ( D ) ->
(
coeffList := new List from {};
if ( isWeilDivisor( D ) != true ) then
(
error "toWeilDivisor: this is not a Weil divisor"
)
else
(
coeffList = apply(coefficients D, x -> floor x);
divisor(coeffList, primes D, AmbientRing=>ring(D))
)
);
----------------------------------------------------------------
--************************************************************--
--Group operations on divisors.---------------------------------
--************************************************************--
----------------------------------------------------------------
--Multiplication of a divisor by scalar (integer, rational, real numbers).
--TODO change if we change internal structure
Number * BasicDivisor := BasicDivisor=> (n, D) ->
(
D1 := clearCache D;
cleanSupport( applyValues(D1, x -> if (instance(x, Ring)) then x else if (instance(x, CacheTable)) then x else {n * (x#0)}) )
);
QQ * WeilDivisor := QWeilDivisor => (r, D) ->
(
E := toQWeilDivisor( D );
r * E
);
--TODO change if we change internal structure
QQ * RWeilDivisor := RWeilDivisor => (r, D) ->
(
D1 := clearCache D;
clearCache(cleanSupport( applyValues(D1, x -> if (instance(x, Ring)) then x else if (instance(x, CacheTable)) then x else {r * (x#0)}) ))
);
RR * QWeilDivisor := RWeilDivisor => (x, D) ->
(
E := toRWeilDivisor( D );
x * E
);
--TODO change if we change internal structure
RR * RWeilDivisor := RWeilDivisor => (y, D) ->
(
D1 := clearCache D;
clearCache(cleanSupport( applyValues(D1, x -> if (instance(x, Ring)) then x else if (instance(x, CacheTable)) then x else {y * (x#0)}) ) )
);
--Addition
--TODO change if we change internal structure
BasicDivisor + BasicDivisor := BasicDivisor => (D, E) ->
(
myType := Nothing;
if ( not (ring D === ring E) ) then
(
error "(BasicDivisor + BasicDivisor): the two divisors should have the same ambient ring"
)
else
(
myType = BasicDivisor;
if (instance(D, WeilDivisor)) then myType = class E
else if (instance(E, WeilDivisor)) then myType = class D
else if (instance(D, QWeilDivisor)) then myType = class E
else if (instance(E, QWeilDivisor)) then myType = class D
else if (instance(D, RWeilDivisor)) then myType = class E
else if (instance(E, RWeilDivisor)) then myType = class D;
cleanSupport( new myType from merge(D, E, keyPlus) )
)
);
--Subtraction between two divisors
BasicDivisor - BasicDivisor := BasicDivisor => (D, E) -> (D + (-E) );
--Negative of a divisor
-BasicDivisor := BasicDivisor => (D) -> ( (-1) * D );
----------------------------------------------------------------
--************************************************************--
--Functorial Properties and divisor module identifications------
--************************************************************--
----------------------------------------------------------------
--Given a divisor D, we want to construct its corresponding sheaf O(D).
--The internal version is called divisorToModule.
--The external version is now called OO, so you can use it like OO(D)
divisorToModule = method ();
divisorToModule( WeilDivisor ) := Module => (D) ->
(
if (D#cache#?divisorToModule == true) then (
return D#cache#divisorToModule;
);
R := ring( D );
E := positivePart( D );
F := negativePart( D );
E1 := apply(getPrimeCount(E), i -> ( idealPower( (coefficients E)#i, (primes E)#i) ) ); --idealPower here yields a massive speedup
F1 := apply(getPrimeCount(F), i -> ( idealPower( (coefficients F)#i, (primes F)#i) ) );
prodE := ideal(sub(1, R));
prodF := ideal(sub(1, R));
if ( #(E1) != 0 ) then --these two computations might be reasonable to eventually put in separate threads
(
prodE = product( E1 )
);
if ( #(F1) != 0 ) then
(
prodF = product( F1 )
);
-- prodE = reflexify(prodE); --these lines seem to speed things up, sometimes... (and more often they slow things down)
-- prodF = reflexify(prodF); --but when they speed things up it seems like a huge benefit, and when it slows things down it's only ~3 times slower
--maybe eventually this could be something that is done with multiple threads... (I'm leaving them commented out for now)
dual := (prodE*R^1) ** ( Hom(prodF*R^1, R^1) );
M := Hom(dual, R^1);
D#cache#divisorToModule = M;
M
);
divisorToModule( QWeilDivisor ) := Module => (D) ->
(
divisorToModule( floor(D) )
);
divisorToModule( RWeilDivisor ) := Module => (D) ->
(
divisorToModule( floor(D) )
);
installMethod( symbol SPACE, OO, RWeilDivisor, (OO, D1) ->(divisorToModule(D1)) );
--Given a divisor D,
--ideal D
--produces an ideal isomorphic to the sheaf O(-D). If D is effective, this will be the honest ideal corresponding to O(-D),
--otherwise it will just produce some ideal abstractly isomorphic to O(-D) (as a module)
ideal(WeilDivisor) := Ideal=> (D) -> (
if (D#cache#?ideal == true) then (
return D#cache#ideal;
);
R := ring( D );
E := positivePart( D );
F := negativePart( D );
J := null;
E1 := apply(getPrimeCount(E), i -> ( idealPower( (coefficients E)#i, (primes E)#i) ) ); --this seems to result in a huge speedup
F1 := apply(getPrimeCount(F), i -> ( idealPower( (coefficients F)#i, (primes F)#i) ) );
prodE := ideal sub(1, R);
prodF := ideal sub(1, R);
if ( #(E1) != 0 ) then
(
prodE = product( E1 )
);
if ( #(F1) != 0 ) then
(
prodF = product( F1 )
);
if (#(F1) != 0) then (
mydual := (prodF) * ( dualize(prodE) );
J = dualize(mydual);
D#cache#ideal = J;
return J;
)
else (
J = reflexify(prodE);
D#cache#ideal = J;
return J;
)
);
ideal( QWeilDivisor ) := Ideal=> (D) ->
(
ideal( ceiling(D) )
);
ideal( RWeilDivisor ) := Ideal=> (D) ->
(
ideal( ceiling(D) )
);
--Give a ring map f: R -> S for which we assume is finite or flat, we want to construct its pullback from Div X to Div Y
--where Div X = Spec S and Div Y = Spec R. If the map is neither finite or flat, then this method can produce unexpected results unless the divisor is Cartier (which the function checks for).
pullback(RingMap, RWeilDivisor) := BasicDivisor => {Strategy => Primes} >> o -> (f, D) ->
(
if ( not (ring D === source f) ) then error "(pullback, WeilDivisor): Expected the Divisor and the source of the map to have the same ambient ring.";
if (o.Strategy === Primes) then (--we pull back individual prime ideals
E := divisor({}, {}, AmbientRing => (target f));
L := coefficients D;
PL := primes D;
for i when (i < #L ) do
(
E = E + L#i * divisor( f( PL#i ) )
);
E
)
else if (o.Strategy === Sheaves) then ( --we pullback a sheaf
if (isWeilDivisor(D) == false) then ( error "(pullback, WeilDivisor): If you use the sheaf strategy, you must pullback a WeilDivisor"; );
toWeilDivisor(D);
DM := negativePart(D);
IM := ideal(DM);
g1 := 0;
i := 0;
genList := first entries gens IM;
myFlag := false;
while (myFlag == false) do (
g1 = genList#i;
i = i+1;
myFlag = (f(g1) != 0);
);
if (myFlag == false) then (error "(pullback, WeilDivisor): this divisor cannot pull back, it has a component which vanishes on the image of the map (this error will only occur for terms with negative coefficients)";);
--the point of all that is that D + divisor(g1) is effective
J := ideal(D + divisor(g1));
J = f(J);
divisor(J) - divisor(f(g1))
)
);
--one can also call pullback via the following method
installMethod(symbol ^*, RingMap, f1-> (D1 -> pullback(f1, D1)));
--the following method returns an element of a given degree, it returns two elements {a,b} for the numerator and denominator, it returns {0,0} if no such element is possible
--first a purely internal function, given a list of integers {a,b,c,...}, this returns the list of coefficients {xa, xb, xc, ...} so that xa*a + xb*b + xc*c + ... = gcd{a,b,c,...}
bezoutNumbers := (l1) -> (
mySize := #l1;
if (mySize == 1) then ({1}) else (
l2 := take(l1, 2);
l3 := take(l1, -(mySize - 2));
temp := gcdCoefficients toSequence l2;
tempCoeff := take(temp, -2);
tempGCD := temp#0;
recursiveList := bezoutNumbers(prepend(tempGCD, l3));
recursiveList2 := take(recursiveList, -(mySize-2));
newCoeff := recursiveList#0;
(newCoeff*tempCoeff) | recursiveList2
)
);
--this finds an element of a specified degree. Unfortunately, right now the second entry has to be an integer so this doesn't work for multi-degrees
findElementOfDegree = method();
findElementOfDegree(ZZ, Ring) := List => (n1, R1) -> (
varList := first entries vars R1;
degList := flatten (degrees R1); --apply(varList, q -> (degree(q))#0);
myGCD := gcd(degList);
if (not (n1%(myGCD) == 0)) then error "findElementOfDegree: No element of the specified degree can be obtained";
bezoutList := floor(n1/myGCD)*bezoutNumbers(degList);
bezoutPositive := apply(bezoutList, z->max(0, z));
bezoutNegative := (-1)*apply(bezoutList, z->min(0, z));
{sub(product( apply(#varList, i -> (varList#i)^(bezoutPositive#i) ) ), R1), sub(product( apply(#varList, i -> (varList#i)^(bezoutNegative#i) ) ), R1)}
);
--sometimes elements are given by multidegrees
findElementOfDegree(BasicList, Ring) := List => (l1, R1) -> (
if (not (all(l1, z->instance(z, ZZ)) ) ) then error "Expected a list with integer entries";
if (#l1 == 0) then (error "findElementOfDegree: Expected a list of positive length";)
else if (#l1 > 1) then (
varList := first entries vars R1;
degList := degrees R1;
if ( not (#l1 == #(degList#0)) ) then error "findElementOfDegree: Vector is the wrong length";
neg := sub(1, R1);
pos := sub(1, R1);
sol := apply(getLinearDiophantineSolution(l1, degList), z->floor(z));
i := 0;
while (i < #sol) do (
if (sol#i > 0) then (pos = pos*((varList#i)^(sol#i)))
else if (sol#i < 0) then (neg = neg*((varList#i)^(-sol#i)));
i = i+1;
);
{pos, neg}
)
else ( --if this list is length 1, just use the euclidean algorithm as that as it may be faster
findElementOfDegree(l1#0, R1)
)
);
--Given a list of vectors v1, v_2, ... , vn, and a vector w all in ZZ^m we want to find integers a1, a2, ... an such that
--w = a1 * v1 + a2 * v2 + ... + an * vn. We return error if there is no such solution. The way to find a1, a2, ... , an
--requires some knowledge on Smith Normal Form which says for any m * n integer matrix A, A = L* D * R where both L is in SL(m, ZZ)
--R is in SL(n, ZZ), and D = diag(d1, d2, ..., dr ) where di divides di + 1 (r = rank A).
--For the sake of simplicity, our basic list input will be a list of column vectors (which we immediately transpose).
--***it might be better to use Hermite matrices***
getLinearDiophantineSolution = method(Options => {Safe => true});
getLinearDiophantineSolution(BasicList, BasicList) := BasicList => o ->(l1, l2) -> ( --the first entry is the target vector because that is simpler
rowList := transpose l2; --the list of integer rows that forms the integer matrix A
bEntries := l1; --making the entries of target vector into a list
b := vector( bEntries ); --the target vector in the LDE Ax = b
flag := true; --a boolean value used for checking
m := #rowList; --the number of rows of integer matrix A
testNumber := 0;
if (o.Safe == true ) then (
--We need to check all vectors have integer entry. And the length of the row list is equal to the length of vector b
if( #bEntries != #rowList ) then (
error "Number of rows in the matrix should match the length of target vector"
);
if ( not( all(bEntries, i -> ( instance(i, ZZ) ) ) ) ) then (
error "Each entry of the target vector should be an integer"
);
for i when (i < #rowList ) do (
if ( not( all (rowList#i, j ->( instance(j, ZZ) ) ) ) ) then (
error "Each entry of the ith row should be an integer"
)
);
if ( m == 0) then (
error "The number of rows in the integer matrix of the linear Diophantine equation should be nonzero"
) else (
testNumber = #(rowList#0);
if ( not( all(rowList, x -> (#x == testNumber) ) ) ) then (
error "The length of each row vector should be equal"
)
)
);
n := #(rowList#0); --the number of columns of the integer matrix A
if ( n == 0 ) then (
error "The number of columns in the integer matrix of the linear Diophantine equation should be nonzero"
);
A := matrix( rowList ); --the integer matrix A in the matrix equation Ax = b
smithList := toList( smithNormalForm( A ) ); --smith normal form (D = L * A * R )
D := smithList#0; --the diagonal matrix in smith normal form
L := smithList#1; --matrix multiply A on the left which corresponds to column operations on A
R := smithList#2; --matrix multiply A on the right which corresponds to row operations on A
c := L * b; --important vector for checking the existence of equation Ax = b
cEntry := entries c;
--The principle is here: the matrix solution Ax = b is equivalent to LAx = Lb = c. Now if we let y = R^(-1)x then
--the equation becomes (LAR)y = c which is Dy = c. So to check existence of Ax = b, it's enough to check the existence
--of equation Dy = c which means we have to check is ci divisible by di for the first r entries.
diagMatrixEntry := entries D;--the row lists of the diagonal matrix D from SNF of A
diagList := apply(min{m, n}, i -> ( diagMatrixEntry#i )#i ); --the list of diagonal entries of D in SNF of A
diagList = select( diagList, x -> ( x != 0 ) );
r := #(diagList); --the number of nonzero elements in D
--To check if the system D y = c has a solution is very easy, we just need to check if each ci is divisible by di
if ( not( all(r, i -> ( (cEntry#i)%(diagList#i) == 0 ) ) ) ) then (
error "The linear Diophantine equation does not have a solution";
);
y := vector ( apply(n, i -> ( if (i > r - 1) then ( 0 ) else( (cEntry#i)/(diagList#i) ) ) ) ); --the solution of equation Dy = c
--As we said previously, y = R^(-1)x. So to get the solution of equation Ax = b, we only need to apply R to the vector y.
--output := flatten entries ( (inverse( R ) ) * (matrix y) );
flatten entries ( R * (matrix y) )
);
--this solves A*x = l1
getLinearDiophantineSolution(BasicList, Matrix) := BasicList => o-> (l1, A) -> (
L := entries transpose A;
getLinearDiophantineSolution(l1, L, Safe => o.Safe)
);
--used for construction of canonical divisors
canonicalDivisor = method(Options => {IsGraded => false});
canonicalDivisor(Ring) := WeilDivisor => o->(R1) -> (
S1 := ambient R1;
I1 := ideal R1;
dR := dim R1;
dS := dim S1;
varList := first entries vars S1;
degList := {};
if (#varList > 0) then ( --then there are no variables
if (#(degree(varList#0)) == 1) then (
degList = apply(varList, q -> (degree(q))#0); )
else (
degList = apply(varList, q -> (degree(q))); );
);
M1 := Ext^(dS - dR)(S1^1/I1, S1^{-(sum degList)});
divisor(M1**R1, IsGraded=>o.IsGraded)
);
--computes a ramification divisor of a finite map Y -> X of normal varieties. It can also compute the relative canonical divisor of things like blowups (in which case, make sure the IsGraded flag is set to true)
--warning, the IsGraded functionality may not work properly if X is not smooth (it is experimental)
ramificationDivisor = method(Options => {IsGraded => false});
--pass it an injective map between normal rings f1 : R1 -> S1 such that S1 is a finite R1 module. The function assumes the two rings use the same coefficientRing.
ramificationDivisor(RingMap) := WeilDivisor => o->( f1 ) ->
(
R1 := source f1;
S1 := target f1;
kk := coefficientRing S1;
--do some sanity checking to prevent the user from getting an incorrect value because the format was wrong.
if (o.IsGraded == false) then (
if (not (kk === coefficientRing R1)) then error "Expected the map to be between rings with the same coefficient ring when IsGraded is set to false.";
)
else (
if (not (kk === R1)) then error "Expected the coefficientRing of the target to be equal to the source when IsGraded is set to true.";
);
gradedMod := 0; --this is subtracted from a dimension later, it is set to 1 if IsGraded == true
if (o.IsGraded == true) then gradedMod = 1;
sourceList := first entries vars ambient R1;
targetList := first entries vars ambient S1;
numVars := #(targetList);
YYY := local YYY;
myMon := monoid[(sourceList|toList(YYY_1..YYY_numVars))];
--R2 maps to S1 with flattened variables
R2 := kk(myMon);
f2 := map(S1, R2, (apply(sourceList,t->f1(t))) |targetList);
K2 := ker f2;
--R3 is the same ring with unflattened variables
myMon3 := monoid[toList(YYY_1..YYY_numVars)];
R3 := R1(myMon3);
S3 := R3/(sub(K2, R3)); --a ring isomorphic to S1, we just wrote S3 = R3[stuff]
J3 := minors(numVars-gradedMod, jacobian S3); --this should give us the locus where the map is not smooth
J2 := sub(J3, R2); --sub this back into R2 (flattened variables)
if (J2 == ideal(sub(0,R2))) then error "Cannot create divisor. This map seems to be ramified everywhere, is the map inseparable?";
divisor(f2(J2))
);
----------------------------------------------------------------
--************************************************************--
--Tests in divisors.--------------------------------------------
--************************************************************--
----------------------------------------------------------------
--Given a rational/real divisor, we want to test if this is a Weil Divisor
isWeilDivisor = method();
isWeilDivisor( RWeilDivisor ) := Boolean => ( D ) ->
(
coeffList := coefficients ( cleanSupport( D ) );
all(coeffList, x -> (ceiling x == floor x) )
);
--Given a divisor, we want to test is this divisor is effective or not.
isEffective = method();
isEffective(BasicDivisor) := Boolean => (D) -> (
coeffList := coefficients ( cleanSupport( D ) );
all(coeffList, x->(x >= 0))
);
--Given a divisor D, we want to know is this divisor is prime or not.
isPrime(BasicDivisor) := {} >> o -> (D1) -> (
(coefficients (cleanSupport D1) ) == {1}
);
--Given a divisor D, we want to know is this divisor is reduced or not.
isReduced = method();
isReduced( BasicDivisor ) := Boolean => (D) ->
(
coeffList := coefficients ( cleanSupport( D ) );
all(coeffList, x->(x == 1))
);
--Given a divisor, we want to check if the corresponding module is globally principal or not
isPrincipal = method(Options => {IsGraded => false});
isPrincipal( WeilDivisor ):= Boolean => o -> (D) ->
(
if (D#cache#?isPrincipal == true) then (
if (D#cache#isPrincipal#0 == o.IsGraded) then (
return D#cache#isPrincipal#1;
);
);
M := prune OO(D);
flag := false;
if (o.IsGraded == false) then(
flag = isFreeModule ( M );
if ((flag == false) and (isHomogeneous(D) == false)) then ( --let's try some other tricks to see if we can make it principal
J1 := embedAsIdeal(M);
if (#(first entries gens J1) == 1) then (flag = true;);
if (flag == false) then (
J1 = trim (J1 : (J1^0));
if (#(first entries gens J1) == 1) then (flag = true;);
);
if (flag == false) then ( flag = (1 == #(first entries gens gb J1)); );
if (flag == false) then print "Warning, isPrincipal may give a false negative for a divisor defined by non-homogeneous ideals";
)
)
else ( --TODO: Perhaps It would be faster to check whether or not M has a section that doesn't vanish anywhere instead of pruning M.
if (isHomogeneous(D) == false) then error "isPrincipal: Expected argument to be homogeneous if the IsGraded option is set to true.";
if (isFreeModule ( M ) ) then(
flag = (degrees M == {{0}})
);
);
D#cache#isPrincipal = {o.IsGraded, flag};
flag
);
--Given a divisor, we want to check if the corresponding module is Cartier
isCartier = method(Options => {IsGraded => false});
isCartier( WeilDivisor ) := Boolean => o -> (D) ->
( --we rely on the fact that an ideal corresponds to a Cartier divisor if and only if I*I^{-1} is reflexive
--David Eisenbud pointed out another option would be to compute a bunch of minors and see if they generate the unit ideal... I'll try this in some examples and see which is faster (but I haven't done so yet)
if ((D#cache#?isCartier == true)) then (
if ((D#cache#isCartier)#0 == o.IsGraded) then (
return D#cache#isCartier#1;
);
);
flag := false;
R := ring( D );
if (o.IsGraded == false) then (
ID := ideal( D );
IDminus := dualize(ID);
myProduct := ID*IDminus;
flag = (myProduct == reflexify(myProduct))
)
else (
if (isHomogeneous(D) == false) then error "isCartier: Expected argument to be homogeneous if the IsGraded option is set to true.";
myMax := getIrrelevantIdeal(R);
J1 := nonCartierLocus(D);
L := saturate(J1, myMax);
flag = isSubset(ideal(sub(1, R)), L)
);
D#cache#isCartier = {o.IsGraded, flag};
flag
);
--Get the non-Cartier locus
nonCartierLocus = method(Options => {IsGraded => false});
--TODO: Compare this with computing minors of a presentation, I'm not sure if this will be faster or slower, there can be a lot of minors... (David Eisenbud suggested this)
nonCartierLocus( WeilDivisor ) := Ideal => o -> (D) ->
(
if ((D#cache#?nonCartierLocus) == true) then (
if ((D#cache#nonCartierLocus)#0 == o.IsGraded) then (
return (D#cache#nonCartierLocus#1);
);
);
R := ring( D );
OD := ideal( D ); --I woulder if it would be better to saturate this first in the graded case... (or if we have multiple threads, do it at the same time we do the next command).
ODminus:= dualize(OD);
I := OD*ODminus;
J := annihilator ((reflexify(I)*R^1) / (I*R^1));
if (o.IsGraded == true) then (
if (isHomogeneous(D) == false) then error "nonCartierLocus: Expected argument to be homogeneous if the IsGraded option is set to true.";
J = saturate(J, getIrrelevantIdeal(R));
);
D#cache#nonCartierLocus = {o.IsGraded, J};
J
);
--Given two divisors D and E, we want to know whether they are linear equivalent or not.
isLinearEquivalent = method(Options => {IsGraded => false});
isLinearEquivalent( WeilDivisor, WeilDivisor ):= Boolean => o->(D, E) ->
(
isPrincipal(D-E, IsGraded=>o.IsGraded)
);
--Given two rational divisor, we want to see if they are linearly equivalent after removing denominators
isQLinearEquivalent = method(Options => {IsGraded => false});
isQLinearEquivalent(ZZ, QWeilDivisor, QWeilDivisor ):= Boolean => o->(nn, D1, D2) ->
(
if (not (ring D1 === ring D2) ) then error "isQLinearEquivalent: Expected the two divisors to have the same ambient ring";
D1 = toQWeilDivisor(D1);
D2 = toQWeilDivisor(D2);
La := coefficients(D1);
L1 := apply(#La, i -> denominator( La#i ) ); --list of denominators of coefficients of D1
La = coefficients(D2);
L2 := apply(#La, i -> denominator( La#i ) ); --list of denominators of coefficients of D2
m1 := 1; if (#L1 > 0) then m1 = lcm( toSequence L1 );
m2 := 1; if (#L2 > 0) then m2 = lcm( toSequence L2 );
m := lcm(m1, m2);
--first we check whether the two divisors are already linearly equivalent after clearing denominators
E1 := toWeilDivisor( m * D1);
E2 := toWeilDivisor( m * D2);
returnVal := isLinearEquivalent( E1, E2, IsGraded=>o.IsGraded );
i := 2;
while( (i <= nn) and (returnVal == false)) do(
returnVal = isLinearEquivalent(i*E1, i*E2, IsGraded=>o.IsGraded);
i = i+1;
);
return returnVal;
);
--checks whether mD1 is Cartier for any m from 1 to n1, if it is Cartier, it returns the Cartier-index. If it is not Q-Cartier or if the Q-Cartier index is greater than n1, then it returns 0. This can be quite slow for large values of n1.
--it would be good to compare this with a function that also uses the idealPower function
isQCartier = method(Options => {IsGraded => false});
isQCartier( ZZ, WeilDivisor ):= Boolean => o->(n1, D1) -> (
if (n1 < 1) then error "isQCartier: Expected the first argument to be a positive integer";
i := 1;
if ((D1#cache#?isQCartier) == true) then (
if ((D1#cache#isQCartier)#0 == o.IsGraded) then (
if ((D1#cache#isQCartier)#1 > 0) then (return ((D1#cache#isQCartier)#1));-- else (i = (D1#cache#isQCartier#2));
if ((D1#cache#isQCartier)#2 > n1) then (return 0); --we've already computed this far
);
);
-- M1 := ideal(i*D1);
-- curModule := M1;
-- S1 := ring M1;
-- minusCurModule := dualize(curModule);
-- tempModule := trim (curModule*minusCurModule);
S1 := ring D1;
J := 0;
if (o.IsGraded==false) then (
M1 := ideal(i*D1);
curModule := M1;
minusCurModule := dualize(curModule);
tempModule := trim (curModule*minusCurModule);
flag := isReflexive(tempModule);
while ((flag == false) and (i <= n1)) do(
curModule = M1*curModule;
minusCurModule = dualize(curModule);
curModule = dualize(minusCurModule);
tempModule = trim (curModule*minusCurModule);
flag = isReflexive(tempModule);
i = i+1;
);
if (flag == false) then ( --store what we've done in the cache
D1#cache#isQCartier={o.IsGraded, 0, i}; --we aren't currently using the i value
i = 0;
)
else (
D1#cache#isQCartier={o.IsGraded, i, i};
);
)
else ( --homogeneous case
if (isHomogeneous(D1) == false) then error "isQCartier: Expected second argument to be homogeneous if the IsGraded option is set to true.";
myMax := getIrrelevantIdeal(S1);
J = nonCartierLocus(D1);
L := saturate(J, myMax);
gflag := isSubset(ideal(sub(1, S1)), L);
while ((gflag == false) and (i <= n1)) do(
J = nonCartierLocus(i*D1);
L = saturate(J, myMax);
gflag = isSubset(ideal(sub(1, S1)), L);
i = i+1;
);
if (gflag == false) then ( --store what we've done in the cache
D1#cache#isQCartier={o.IsGraded, 0, i}; --we aren't currently using the i value
i = 0;
)
else (
D1#cache#isQCartier={o.IsGraded, i, i};
);
);
i
);
--a function to get the irrelevant ideal, it is internal only
getIrrelevantIdeal = method();
getIrrelevantIdeal(Ring) := Ideal => (R1) -> (
ideal select(first entries vars R1, zz -> (degree(zz)) > degree(sub(1,R1)))
);
--we also can check it for Q-divisors
isQCartier(ZZ, QWeilDivisor) := Boolean => o->(n1, D1) -> (
La := coefficients(D1);
L1 := apply(#La, i -> denominator( La#i ) ); --list of denominators of coefficients of D1
m1 := lcm( toSequence L1 ); --this number clears the denominators
m1*isQCartier(ceiling(n1/m1), IsGraded=>o.IsGraded, toWeilDivisor(m1*D1))
);
isHomogeneous (BasicDivisor) := Boolean => (D1) -> (
pList := primes(D1);
all(pList, isHomogeneous)
);
--checks whether a divisor is a SNC divisor
isSNC = method(Options => {IsGraded => false});
isSNC(BasicDivisor) := Boolean => o->(D1) -> (
if ((D1#cache#?isSNC) == true) then (
if ((D1#cache#isSNC)#0 == o.IsGraded) then (
return (D1#cache#isSNC#1);
);
);
D1 = cleanSupport(D1);
j := 0;
R1 := ring(D1);
d1 := dim R1;
pList := primes(D1);
idealSubsets := subsets pList;
nonemptySubsets := select(idealSubsets, z->(#z > 0));
toModOutBy := apply(nonemptySubsets, z -> sum(z));
flag := isSmooth(ideal(sub(0, ring(D1))), IsGraded=>o.IsGraded);
irrIdeal := getIrrelevantIdeal(R1);
while ( (j < #toModOutBy) and flag ) do (
if (o.IsGraded == false) then (
flag = ((d1 - #(nonemptySubsets#j) == dim(R1/toModOutBy#j)) or (dim(R1/toModOutBy#j) < 0) );
if (flag == true) then flag = isSmooth(toModOutBy#j);
)
else (
if (isHomogeneous(toModOutBy#j) == false) then error "isSNC: Expected a homogeneous ideal";
flag = ((d1 - #(nonemptySubsets#j) == dim(R1/toModOutBy#j)) or (saturate(toModOutBy#j, irrIdeal) == ideal(sub(1, R1)) ) );
if (flag == true) then flag = isSmooth(toModOutBy#j, IsGraded=>o.IsGraded);
);
j = j+1
);
D1#cache#isSNC = {o.IsGraded, flag};
flag
);
isZeroDivisor = method();
isZeroDivisor(BasicDivisor) := Boolean => (D1) -> (
D1 = cleanSupport(D1);
(#(primes(D1)) == 0)
);
----------------------------------------------------------------
--************************************************************--
--Global sections for divisors (base point free, etc)-----------
--************************************************************--
----------------------------------------------------------------
--given a Cartier divisor, we can find the map to projective space from the corresponding module
mapToProjectiveSpace = method(Options => {KnownCartier=>true, Variable=>"YY"});
mapToProjectiveSpace(WeilDivisor) := RingMap => o->(D1) -> (
if (isHomogeneous(D1) == false) then (error "mapToProjectiveSpace: Expected a graded/homogeneous divisor.";);
if (o.KnownCartier == false) then (if (isCartier(D1, IsGraded=>true) == false) then (error "mapToProjectiveSpace: Expected a Cartier divisor."); );
--this might be slower than the method done in the tutorial, say calling
--ideal(positivePart(D1)) and ideal(negativePart(D1))
--and then proceeding as they did might be faster
newVar := null;
if ( instance(o.Variable, Symbol) ) then (
newVar = o.Variable;
)
else if (instance(o.Variable, String) ) then (
newVar = getSymbol o.Variable;
)
else(
error "mapToProjectiveSpace: expected option Variable to be a string or a symbol.";
);
R1 := ring(D1);
M1 := prune OO(D1);
L1 := embedAsIdeal(M1, IsGraded=>true);
d1 := L1#1;
M1 = L1#0*R1^{d1};
b1 := super ((basis(degree sub(1,R1), M1))**R1);
n1 := #(first entries b1);
K1 := coefficientRing R1;
myMon := monoid[toList(newVar_1..newVar_n1)];
S1 := K1 myMon;
varTargetList := first entries b1;
--do some defense against degree zero stuff
--this defense should be better than it is...
--basically, by default if D = 0, then the map produced by the above corresponds to kk[newVar] -> R1
--which sends newVar to 1. The kernel is not homogeneous in that case, which doesn't make sense of course.
--and this can break other functions. Thus, in this case, we fix it by turning the map into an equivalent map
if ( instance(d1, List) ) then(
if (#d1 >= 1) then (
if (instance(d1#0, Number)) then (
if (d1#0 == 0) then (
R1varList := first entries vars R1;
if (#R1varList > 0) then (
vv := (first entries vars R1)#0;
varTargetList = apply(varTargetList, ss -> ss*vv);
);
);
);
);
);
map(R1, S1, varTargetList)
);
--finds the base locus of a module or divisor
baseLocus = method();
baseLocus(Module) := Ideal => (M1) -> (
b1 := basis(0, M1);
saturate ann coker b1
);
baseLocus(WeilDivisor) := Ideal => (D1) -> (
M1 := OO(D1);
baseLocus(M1)
);
isVeryAmple WeilDivisor := { Verbose => false } >> o -> D1 -> (
if (D1#cache#?isVeryAmple == true) then (
return D1#cache#isVeryAmple;
);
mapFromD1 := mapToProjectiveSpace(D1);
if (#(first entries vars source mapFromD1) == 0) then (
D1#cache#isVeryAmple = false;
false)
else (
val := 0;
if (o.Verbose) then val = 2;
flag := isEmbedding(mapFromD1, Verbosity=>val);
D1#cache#isVeryAmple = flag;
flag
)
);
----------------------------------------------------------------
--************************************************************--
--Useful functions which don't interact with the divisor class--
--************************************************************--
----------------------------------------------------------------
idealPower = method(); -- it seems to be massively faster to reflexify ideals with few generators than ideals with many generators, at least some of the time...
idealPower(ZZ, Ideal) := Ideal => (n, J) -> (
genList := first entries gens J;
ideal( apply(genList, z->z^n))
);
dualize = method(Options => {KnownDomain=>true, Strategy =>NoStrategy});
dualize(Ideal) := Ideal => o->(I1) -> (
if (o.Strategy == ModuleStrategy) then (
S1 := ring I1;
mydual := Hom(I1*S1^1, S1^1);
embedAsIdeal(mydual)
)
else (
dualizeIdeal(I1, KnownDomain=>o.KnownDomain)
)
);
dualize(Module) := Module => o->(M1) -> (
S1 := ring M1;
if (o.Strategy == IdealStrategy) then (
I1 := embedAsIdeal(M1);
(dualizeIdeal(I1, KnownDomain=>o.KnownDomain))*(S1)^1
)
else (
Hom(M1, S1^1)
)
);
--the following is an internal function for dualizing an ideal (finding an ideal isomorphic to Hom(I, R))
dualizeIdeal = method(Options => {KnownDomain=>true});
dualizeIdeal(Ideal) := Ideal => o->(I1) -> (
S1 := ring I1;
assumeNormal := false;
if (o.KnownDomain == true) then (assumeNormal = true;) else (assumeNormal = isNormal(S1););
if (assumeNormal) then (
if (I1 == ideal sub(0, S1)) then (
I1
)
else(
x := sub(0, S1);
i := 0;
genList := first entries gens I1;
while ((i < #genList) and (x == sub(0, S1))) do(
x = genList#i;
i = i+1;
);
ideal(x) : I1
)
)
else (
-- inc := inducedMap(S1^1, I1*(S1^1));
mydual := Hom(I1*S1^1, S1^1);
embedAsIdeal(mydual)
)
);
--Given an ideal, we will frequently want to double-dualize / find the S2-ification. The following function does this.
reflexify = method(Options => {Strategy => NoStrategy, KnownDomain=>true, ReturnMap => false});
--the first variant simply reflexifies an ideal
reflexify(Ideal) := Ideal => o->(I1) -> (
if (o.Strategy == ModuleStrategy) then (
--the user specified we use the ModuleStrategy
S1 := ring I1;
inc := inducedMap(S1^1, I1*(S1^1));
ddual := Hom(Hom(inc, S1^1), S1^1);
annihilator(coker ddual)
)
else ( --otherwise we use the default ideal strategy
reflexifyIdeal(I1, KnownDomain=>o.KnownDomain)
)
);
--an internal function that reflexifies an ideal
reflexifyIdeal = method(Options => {KnownDomain=>true});
reflexifyIdeal(Ideal) := Ideal => o->(I1) -> (
S1 := ring I1;
assumeDomain := false;
if (o.KnownDomain == true) then (assumeDomain = true;) else (assumeDomain = isDomain(S1););
if (assumeDomain) then (
if (I1 == ideal sub(0, S1)) then (
I1
)
else(
x := sub(0, S1);
i := 0;
genList := first entries gens I1;
while ((i < #genList) and (x == sub(0, S1))) do(
x = genList#i;
i = i+1;
);
ideal(x) : (ideal(x) : I1)
)
)
else (
inc := inducedMap(S1^1, I1*(S1^1));
ddual := Hom(Hom(inc, S1^1), S1^1);
annihilator(coker ddual)
)
);
--we also reflexify modules
reflexify(Module) := Module => o-> (M1) -> (
S1 := ring M1;
if (o.Strategy == IdealStrategy) then (
--the user specified we use the ideal strategy, this only works if the module can be embedded as an ideal
I1 := embedAsIdeal(M1);
I2 := reflexifyIdeal(I1, KnownDomain => o.KnownDomain);
if (o.ReturnMap == true) then (
inducedMap(I2*S1^1, I1*S1^1)
)
else (
I2*S1^1
)
)
else (
reflexifyModule(M1, ReturnMap => o.ReturnMap)
)
);
reflexifyModule = method(Options=>{ReturnMap=>false});
reflexifyModule(Module) := Module => o-> (M1) -> (
S1 := ring M1;
if (o.ReturnMap == true) then (
gensMatrix := gens M1;
h := map(M1, source gensMatrix, id_(source gensMatrix));
ddh := Hom(Hom(h, S1^1), S1^1);
map(target ddh, M1, matrix ddh)
)
else (
(Hom(Hom(M1, S1^1), S1^1))
)
);
isReflexive Module := Boolean => { Strategy => NoStrategy, KnownDomain => true } >> o -> M1 -> (
g := reflexify(M1, ReturnMap => true, Strategy => o.Strategy, KnownDomain=>o.KnownDomain);
(-1 == dim coker g)
);
isReflexive Ideal := Boolean => { Strategy => NoStrategy, KnownDomain => true } >> o -> I1 -> (
J1 := reflexify(I1, Strategy => o.Strategy, KnownDomain=>o.KnownDomain);
(J1 == I1)
);
--we can also grab the torsion submodule since we are here
torsionSubmodule = method(Options => {Strategy => NoStrategy, KnownDomain=>false});
torsionSubmodule(Module) := Module => o -> (M1) -> (
ker reflexify(M1, ReturnMap => true, Strategy=>o.Strategy, KnownDomain=>o.KnownDomain)
);
--this method embeds a rank 1 module as a divisorial ideal
--this method is based on and inspired by code originally written by Moty Katzman, earlier versions can be found in
-- http://katzman.staff.shef.ac.uk/FSplitting/ParameterTestIdeals.m2
--under canonicalIdeal
embedAsIdeal = method(Options => {MTries =>10, IsGraded=>false, ReturnMap=>false, Section=>null});
embedAsIdeal(Module) := Ideal => o -> (M1) -> (
S1 := ring M1;
embedAsIdeal(S1, M1, MTries=>o.MTries, IsGraded=>o.IsGraded, ReturnMap=>o.ReturnMap, Section=>o.Section)
)
embedAsIdeal(Matrix) := Ideal => o -> (Mat1) -> (
S1 := ring Mat1;
embedAsIdeal(S1, Mat1, MTries=>o.MTries, IsGraded=>o.IsGraded, ReturnMap=>o.ReturnMap)
)
embedAsIdeal(Ring, Module) := Ideal => o ->(R1, M2) ->(
if (instance(o.Section, Matrix)) then ( --if we are passing a section
if (target o.Section == M2) then (
embedAsIdeal(R1, o.Section, MTries=>o.MTries, IsGraded=>o.IsGraded, ReturnMap=>o.ReturnMap)
)
else (
error "embedAsIdeal: the target of the section is not equal to the given module.";
)
)
else(
internalModuleToIdeal(R1, M2, MTries=>o.MTries, IsGraded=>o.IsGraded, ReturnMap=>o.ReturnMap)
)
)
embedAsIdeal(Ring, Matrix) := Ideal => o->(R1, Mat2) -> (
internalModuleWithSectionToIdeal(R1, Mat2, MTries=>o.MTries, IsGraded=>o.IsGraded, ReturnMap=>o.ReturnMap)
)
internalModuleToIdeal = method(Options => {MTries=>10, IsGraded=>false, ReturnMap=>false});
internalModuleToIdeal(Ring, Module) := Ideal => o ->(R1, M2) ->
(--turns a module to an ideal of a ring
-- S1 := ambient R1;
flag := false;
answer:=0;
if (M2 == 0) then ( --don't work for the zero module
answer = ideal(sub(0, R1));
if (o.IsGraded==true) then (
answer = {answer, degree (sub(1,R1))};
);
if (o.ReturnMap==true) then (
if (#entries gens M2 == 0) then (
answer = flatten {answer, map(R1^1, M2, sub(matrix{{}}, R1))};
)
else (
answer = flatten {answer, map(R1^1, M2, {apply(#(first entries gens M2), st -> sub(0, R1))})};
);
);
return answer;
);
-- M2 := prune M1;
-- myMatrix := substitute(relations M2, S1);
-- s1:=syz transpose substitute(myMatrix,R1);
-- s2:=entries transpose s1;
s2 := entries transpose syz transpose presentation M2;
h := null;
--first try going down the list
i := 0;
t := 0;
d1 := 0;
while ((i < #s2) and (flag == false)) do (
t = s2#i;
h = map(R1^1, M2**R1, {t});
if (isWellDefined(h) == false) then error "internalModuleToIdeal: Something went wrong, the map is not well defined.";
if (isInjective(h) == true) then (
flag = true;
answer = trim ideal(t);
if (o.IsGraded==true) then (
--print {degree(t#0), (degrees M2)#0};
d1 = degree(t#0) - (degrees M2)#0;
answer = {answer, d1};
);
if (o.ReturnMap==true) then (
answer = flatten {answer, h};
)
);
i = i+1;
);
-- if that doesn't work, then try a random combination/embedding
i = 0;
while ((flag == false) and (i < o.MTries) ) do (
coeffRing := coefficientRing(R1);
d := sum(#s2, z -> random(coeffRing, Height=>100000)*(s2#z));
-- print d;
h = map(R1^1, M2**R1, {d});
if (isWellDefined(h) == false) then error "internalModuleToIdeal: Something went wrong, the map is not well defined.";
if (isInjective(h) == true) then (
flag = true;
answer = trim ideal(d);
if (o.IsGraded==true) then (
d1 = degree(d#0) - (degrees M2)#0;
answer = {answer, d1};
);
if (o.ReturnMap==true) then (
answer = flatten {answer, h};
)
);
i = i + 1;
);
if (flag == false) then error "internalModuleToIdeal: No way found to embed the module into the ring as an ideal, are you sure it can be embedded as an ideal?";
answer
);
--this variant takes a map from a free module of rank 1 and maps to another rank 1 module. The function returns the second module as an ideal combined with the element
internalModuleWithSectionToIdeal = method(Options => {MTries=>10, ReturnMap=>false, IsGraded=>false});
internalModuleWithSectionToIdeal(Ring, Matrix) := Ideal => o->(R1, f1)->
(
M1 := source f1;
M2 := target f1;
if ((isFreeModule M1 == false) or (not (rank M1 == 1))) then error ("internalModuleWithSectionToIdeal: Error, source is not a rank-1 free module";);
flag := false;
answer:=0;
s2 := entries transpose syz transpose presentation M2;
h := null;
--first try going down the list
i := 0;
t := 0;
d1 := 0;
while ((i < #s2) and (flag == false)) do (
t = s2#i;
h = map(R1^1, M2**R1, {t});
if (isWellDefined(h) == false) then error "internalModuleWithSectionToIdeal: Something went wrong, the map is not well defined.";
if (isInjective(h) == true) then (
flag = true;
answer = trim ideal(t);
if (o.IsGraded==true) then (
--print {degree(t#0), (degrees M2)#0};
d1 = degree(t#0) - (degrees M2)#0;
answer = {answer, d1};
);
if (o.ReturnMap==true) then (
answer = flatten {answer, h};
);
);
i = i+1;
);
-- if that doesn't work, then try a random combination/embedding
while ((flag == false) and (i < o.MTries) ) do (
coeffRing := coefficientRing(R1);
d := sum(#s2, z -> random(coeffRing, Height=>100000)*(s2#z));
h = map(R1^1, M2**R1, {d});
if (isWellDefined(h) == false) then error "internalModuleWithSectionToIdeal: Something went wrong, the map is not well defined.";
if (isInjective(h) == true) then (
flag = true;
answer = trim ideal(d);
if (o.IsGraded==true) then (
d1 = degree(d#0) - (degrees M2)#0;
answer = {answer, d1};
);
if (o.ReturnMap==true) then (
answer = flatten {answer, h};
);
);
);
if (flag == false) then error "internalModuleWithSectionToIdeal: No way found to embed the module into the ring as an ideal, are you sure it can be embedded as an ideal?";
newMatrix := h*f1;
flatten {first first entries newMatrix, answer}
);
isDomain = method();
isDomain(Ring) := Boolean => (R1) -> (
isPrime( ideal(sub(0, R1)))
);
--checks whether R/J1 is regular
isSmooth(Ideal) := Boolean => {IsGraded => false} >> o -> J1 -> (
--empty schemes are smooth (which is why we are first check whether ideals are the whole ring or contain the irrelevant ideal
flag := false;
if (o.IsGraded == true) then (
if (isHomogeneous(J1) == false) then (error "isSmooth: Expected a homogeneous ideal");
if (not isField(coefficientRing ring J1)) then (error "isSmooth: expected a standard graded ring over a field if IsGraded=>true");
myMax := getIrrelevantIdeal(ring J1);
if (isSubset(myMax, J1)) then (flag = true) else (flag = (saturate((ideal singularLocus J1)*(ring J1), myMax) == ideal(sub(1, ring J1))));
--(isSubset(myMax, (ideal singularLocus J1)*(ring J1)))
)
else (
if (isSubset(ideal(sub(1, ring J1)), J1)) then (flag = true) else (flag = (dim singularLocus J1 < 0));
);
flag
);
reflexivePower = method(Options=>{Strategy=>IdealStrategy});
reflexivePower(ZZ, Ideal) := Ideal => o -> (n1, I1) -> (
reflexify(idealPower(n1, I1), Strategy=>o.Strategy)
);
--****************************************************--
--*****************Documentation**********************--
--****************************************************--
beginDocumentation();
document {
Key => Divisor,
Headline => "divisors",
EM "Divisor", " is a package for working with (Q/R)-Weil divisors on ", EM "normal", " affine and projective varieties (equivalently, on commutative, normal and graded rings).",
BR{},BR{},
"This package introduces a type ", TO "WeilDivisor", " which lets the user work with Weil divisors similar to the way one might in algebraic geometry. We highlight a few important functions below.",
BR{},BR{},
BOLD "Useful functions:",BR{},
UL {
{TO "isCartier", " or ", TO "isQCartier", " can let you determine if a divisor is Cartier or if a power is Cartier."},
{TO "isVeryAmple", " lets you check if a divisor is very ample." },
{TO "baseLocus", " lets you compute the base locus of the complete linear system corresponding to a divisor on a projective variety." },
{TO "mapToProjectiveSpace", " returns the map to projective space determined by the complete linear system determined by the divisor." },
{TO "canonicalDivisor", " lets you compute the canonical divisor on some affine or projective variety." },
{TO "ramificationDivisor", " lets you compute the relative canonical divisor of a finite map varieties." },
},
BR{},
"This package also includes some functions for interacting with ideals and modules which might be independently useful.", BR{},
UL {
{TO "embedAsIdeal", " embeds a rank one module as an ideal."},
{TO "reflexify", " computes the reflexification, Hom(Hom(M, R), R) of a module M or ideal."},
{TO "reflexivePower", " computes the reflexification of a power of an ideal quickly."},
{TO "torsionSubmodule", " find the torsion submodule of a module."},
}, BR{},
"We emphasize once more that the functions in this package might produce unexpected results on non-normal rings.",BR{},BR{},
BOLD "Acknowledgements:",BR{},BR{},
"The authors would like to thank Tommaso de Fernex, David Eisenbud, Daniel Grayson, Anurag Singh, Greg Smith, Mike Stillman and the referee for useful conversations and comments on the development of this package.",BR{}
}
doc ///
Key
BasicDivisor
RWeilDivisor
QWeilDivisor
WeilDivisor
Headline
the Types of divisors
Description
Text
The BasicDivisor is the class of divisors whose coefficients are unspecified, a base class. Not typically for use. All subtypes have the same essential structure.
Text
RWeilDivisor is a subclass which has real coefficients.
Text
QWeilDivisor is a further subclass with rational coefficients.
Text
WeilDivisor is a subclass with integer coefficients.
Text
The basic structure is a HashTable. There is one key which has a value which specifies the ambient ring. Another key is cache which points to a CacheTable. The remaining keys are a Groebner basis $L$ for each prime ideal $P$ in the support with corresponding value a list with one entry {$n$} where $n$ is the coefficient of the height one prime.
Example
R = QQ[x,y,z];
D = divisor(x*y^2*z^3)
H = new HashTable from D
(2/3)*D
0.6*D
///
--doc ///
-- Key
-- (net, BasicDivisor)
-- Headline
-- controls how divisors are displayed to the user
-- Description
-- Text
-- Currently divisors are listed as sums with the ambient ring stated at the end.
--///
doc ///
Key
Safe
Headline
an option used to tell functions whether not to do checks.
Description
Text
If set to {\tt true}, then certain functions will perform checks to make sure the user didn't pass something unreasonable. You can use {\tt isWellDefined} to ensure that a constructed divisor is constructed correctly.
SeeAlso
isWellDefined
///
doc ///
Key
CoefficientType
Headline
an option used to tell divisor construction that a particular type of coefficients are expected.
Description
Text
Can be set to {\tt ZZ}, {\tt QQ} or {\tt RR} (or any other {\tt Thing}) when divisor is called, it checks whether the coefficient list is a list of instances of this type. If it is set to {\tt ZZ}, {\tt QQ} or {\tt RR} then a {\tt WeilDivisor}, {\tt QWeilDivisor} or {\tt RWeilDivisor} are created. Default value is {\tt ZZ}.
///
doc ///
Key
AmbientRing
Headline
an option used to tell divisor construction that a particular ambient ring is expected.
Description
Text
If set to a ring, then when calling divisor, the primes are all checked whether they are ideals in that ring.
///
doc ///
Key
MTries
Headline
an option used by embedAsIdeal how many times to try embedding the module as an ideal in a random way.
Description
Text
After making some canonical attempts, embedAsIdeal tries to embed the module into a ring as an ideal in a random way. The value of this option is how many times that random embedding is attempted. The default value is 10.
///
doc ///
Key
IsGraded
Headline
an option used by numerous functions which tells it to treat the divisors as if we were working on the Proj of the ambient ring.
Description
Text
An option used by numerous functions which tells it to treat the divisors as if we were working on the Proj of the ambient ring. In other words, setting it to {\tt true} tells the function to ignore behavior at the irrelevant ideal (the ideal generated by vars Ring). Default value is {\tt false}.
///
doc ///
Key
divisor
(divisor, BasicList, BasicList)
(divisor, BasicList)
(divisor, Ideal)
(divisor, Module)
(divisor, Matrix)
(divisor, RingElement)
[divisor, CoefficientType]
[divisor, AmbientRing]
[divisor, Section]
[divisor, IsGraded]
Headline
constructor for (Weil/Q/R)-divisors
Usage
divisor(l1, l2)
divisor( l3)
divisor( I )
divisor( f )
divisor( M )
divisor( Mat )
Inputs
l1: BasicList
which describes the list of coefficients in integers
l2: BasicList
which describes the list of height one prime ideals that corresponds to codimension one irreducible subspaces
l3: BasicList
a list of pairs {c, P} where c is a coefficient and P is a prime ideal
I: Ideal
construct a divisor out of the vanishing locus of I
f: RingElement
construct a divisor out of the vanishing locus of ideal(f)
M: Module
construct a divisor such that O(D) is isomorphic to M
Mat: Matrix
a matrix, construct an effective divisor such that O(D) is isomorphic to the target of Mat based on the section
CoefficientType => ZZ
specify the coefficients of your divisor
AmbientRing => Ring
specify the ambient ring in the divisor constructor
Section => RingElement
specify a global section of the ideal I used to construct an effective divisor
Section => Matrix
specify a global section of a module M used to construct an effective divisor
IsGraded => Boolean
specify a that a divisor constructed from a module should view the module as a graded object
Outputs
: BasicDivisor
Description
Text
This is the general function for constructing divisors. There are many ways to call it. In our first example, we construct divisors on $A^3$ (which can also be viewed as divisors on $P^2$ since the ideals are homogeneous). The following creates the same Weil divisor with coefficients 1, 2 and 3 in five different ways.
Example
R = QQ[x,y,z];
D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)})
E = divisor(x*y^2*z^3)
F = divisor(ideal(x*y^2*z^3))
G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}})
H = divisor(x) + 2*divisor(y) + 3*divisor(z)
Text
Next we construct the same divisor in two different ways. We are working on the quadric cone, and we are working with a divisor of a ruling of the cone. This divisor is not Cartier, but 2 times it is.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
D = divisor({2}, {ideal(x,y)})
E = divisor(y)
Text
Here is a similar example in a slightly more complicated Veronese ring.
Example
R = QQ[x,y,z];
S = QQ[x3,x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3];
f = map(R, S, {x^3, x^2*y, x^2*z, x*y^2, x*y*z, x*z^2, y^3, y^2*z, y*z^2, z^3});
A = S/(ker f);
D = divisor(x3)
E = divisor(y2z)
Text
We can construct a Q-divisor as well. Here are two ways to do it (we work in $A^2$ this time).
Example
R = ZZ/7[x,y];
D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoefficientType=>QQ)
D = (-1/2)*divisor(y^2-x^3) + (2/1)*divisor(x)
Text
Or an R-divisor. This time we work in the cone over $P^1 \times P^1$.
Example
R = ZZ/11[x,y,u,v]/ideal(x*y-u*v);
D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, CoefficientType=>RR)
D = 1.1*divisor(ideal(x,u)) - 3.14159*divisor(ideal(x,v))
Text
You can also pass it an element of the ring or even the fraction field.
Example
R = QQ[x,y];
divisor(x)
divisor(x/y)
Text
Given a rank 1 reflexive module {\tt M}, {\tt divisor(M)} finds a divisor $D$ such that $O(D)$ is isomorphic to {\tt M}. If {\tt IsGraded} is {\tt true} (it is {\tt false} by default) this assumes we are working on the Proj of the ambient ring.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
M = (ideal(y*x,y*z))*R^1;
divisor(M)
divisor(M, IsGraded=>true)
Text
Finally, {\tt divisor(Matrix)} assumes that the matrix is a map from a rank-1 free module to the module corresponding to $O(D)$. In that case, this function returns the effective divisor corresponding to that section. The same behavior can also be obtained by calling {\tt divisor(Module, Section=>Matrix)} where the {\tt Matrix} is a map from a rank-1 free module to {\tt M}. In the following example, we demonstrate this by considering a rank-1 module (on the cone of $P^1 \times P^1$), and considering the map from $R^1$ mapping to the first generator of the module.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
M = (ideal(x,u))*R^1;
matr = map(M, R^1, {{1},{0}});
divisor(matr)
divisor(M, Section=>matr)
Text
One can also obtain the same behavior (as {\tt divisor(Matrix)}) by passing the divisor either an ideal or a module and then specifying a global section of that object (which will produce the corresponding effective divisor). In particular, if the main argument in the divisor is an Ideal, the option {\tt Section=>f} specifies that we should find the unique effective divisor $D$ such that I is isomorphic to $O(D)$ and such that {\tt f} maps to 1 under that isomorphism.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v)
D = divisor(ideal(x,u), Section=>x)
Text
Note if the section is not in $I$, then it is interpreted as a rational section and the produced divisor $D$ may not be effective.
Text
If the main argument in the divisor is a module, then the Matrix {\tt Mat} should be a matrix mapping a free module to {\tt M}. In this case {\tt divisor} constructs the unique effective divisor $D$ such that {\tt M} is isomorphic to $O(D)$ and so that $1$ in the matrix map is mapped to $1$ in $O(D)$.
Example
R = QQ[x];
D = divisor(R^1, Section=>matrix{{x^2}})
///
doc ///
Key
(isWellDefined, BasicDivisor)
Headline
whether a divisor is valid
Usage
isWellDefined( D1 )
Inputs
D1: BasicDivisor
Outputs
: Boolean
Description
Text
This function tries to verify that this is a valid divisor. It checks that the coefficients are from the right ring (in the {\tt WeilDivisor/QWeilDivisor/RWeilDivisor} cases at least). It also checks to make sure all the ideals are from the same ring, are prime, and have height one. If debugLevel > 0, the function will print an message explaining why the divisor was not valid.
Example
debugLevel = 1;
R = QQ[x,y];
isWellDefined(divisor({1}, {ideal(x)} ))
isWellDefined(divisor({1/2}, {ideal(x)} ))
isWellDefined(divisor({1/2}, {ideal(x)}, CoefficientType=>QQ))
isWellDefined(divisor({1}, {ideal(x,y)}))
isWellDefined(divisor({1}, {ideal(x^2)}))
S = QQ[a,b];
isWellDefined(divisor({1,2}, {ideal(x), ideal(a)}))
SeeAlso
divisor
///
doc ///
Key
primes
(primes, BasicDivisor)
Headline
get the list of height-one primes in the support of a divisor
Usage
primes( D1 )
Inputs
D1: BasicDivisor
Outputs
: List
Description
Text
This function returns the list of height-one prime ideals corresponding to the components of a {\tt BasicDivisor}. Note that if you don't call {\tt cleanSupport}, this can return primes with coefficient equal to zero.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x)
primes(D)
E = divisor(x*u)
primes(E)
F = divisor({0}, {ideal(x,u)})
primes(F)
primes(cleanSupport F)
primes(1*F)
SeeAlso
(coefficients, BasicDivisor)
gbs
///
doc ///
Key
getPrimeCount
(getPrimeCount, BasicDivisor)
Headline
get the number of height-one primes in the support of the divisor
Usage
getPrimeCount( D1 )
Inputs
D1: BasicDivisor
Outputs
: List
Description
Text
This function returns the number of height one prime ideals corresponding to the components of a {\tt BasicDivisor}. Note that if you don't call {\tt cleanSupport}, this can return primes with coefficient equal to zero.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x)
getPrimeCount(D)
E = divisor(x*u)
getPrimeCount(E)
F = divisor({0}, {ideal(x,u)})
getPrimeCount(F)
getPrimeCount(cleanSupport F)
getPrimeCount(1*F)
Text
This is equivalent to {\tt #primes}.
SeeAlso
(coefficients, BasicDivisor)
gbs
///
doc ///
Key
gbs
(gbs, BasicDivisor)
Headline
get the list of Groebner bases corresponding to the height-one primes in the support of a divisor
Usage
gbs( D1 )
Inputs
D1: BasicDivisor
Outputs
: List
Description
Text
This function returns the list of Groebner bases associated to the height-one prime ideals corresponding to the components of a {\tt BasicDivisor} (or a {\tt WeilDivisor}, {\tt QWeilDivisor} or {\tt RWeilDivisor}). Note that this list of Groebner bases is made when the divisor is constructed.
Example
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x)
gbs(D)
Text
Note, the Grobner basis can be different from a minimal set of generators the user provides.
Example
R = ZZ/2[x,y,z]/ideal(z^2+x*y*z+x^2*y+x*y^2);
J = ideal(x+y, x^2+z);
D = divisor({2}, {J})
gbs(D)
primes(D)
SeeAlso
(coefficients, BasicDivisor)
primes
///
doc ///
Key
(coefficients, BasicDivisor)
Headline
get the list of coefficients of a divisor
Usage
coefficients( D1 )
Inputs
D1: BasicDivisor
Outputs
: List
Description
Text
Get the list of coefficients of a {\tt BasicDivisor} (or a {\tt WeilDivisor}, {\tt QWeilDivisor} or {\tt RWeilDivisor}).
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x);
coefficients(D)
E = divisor(x*u);
coefficients(E)
F = divisor({0, 1/2, -2/3}, {ideal(y, u), ideal(x,u), ideal(x,v)}, CoefficientType => QQ)
coefficients(F)
G = divisor({0.5, -0.667}, {ideal(x,u), ideal(x,v)}, CoefficientType => RR)
coefficients(G)
SeeAlso
(coefficient, Ideal, BasicDivisor)
primes
gbs
///
doc ///
Key
cleanSupport
(cleanSupport, BasicDivisor)
Headline
removes primes with coefficient zero from a divisor
Usage
cleanSupport( D1 )
Inputs
D1: BasicDivisor
Outputs
: BasicDivisor
Description
Text
This function returns a divisor where all entries with coefficient zero are removed.
Example
R = QQ[x,y,z];
D = divisor({1,0,-2}, {ideal(x), ideal(y), ideal(z)})
cleanSupport(D)
///
doc ///
Key
clearCache
(clearCache, BasicDivisor)
Headline
creates a new divisor with most entries from the cache removed
Usage
clearCache( D1 )
Inputs
D1: BasicDivisor
Outputs
: BasicDivisor
Description
Text
This function returns a divisor where the only entries left in the cache is the key ideals (which points to how the ideals should be displayed to the user).
Example
R = QQ[x,y,z];
D = divisor(x);
isPrincipal(D)
peek (D#cache)
E = clearCache(D);
peek (E#cache)
///
doc ///
Key
(trim, BasicDivisor)
Headline
trims the ideals displayed to the user and removes primes with coefficient zero
Usage
trim( D1 )
Inputs
D1: BasicDivisor
Outputs
: BasicDivisor
Description
Text
This function returns a divisor where all entries with coefficient zero are removed and where the ideals displayed to the user are trimmed.
Example
R = QQ[x,y,z]/ideal(x*y-z^2);
D = divisor({1,0,-2}, {ideal(x, z), ideal(x-z,y-z), ideal(y+z, z)});
cleanSupport(D)
trim(D)
D == trim(D)
///
doc ///
Key
(coefficient, Ideal, BasicDivisor)
Headline
get the coefficient of an ideal for a fixed divisor
Usage
coefficient(P, D)
Inputs
P: Ideal
the height one prime ideal that we want to find the coefficient of
D: BasicDivisor
the divisor in question
Outputs
: Number
Description
Text
This function returns the coefficient of $D$ along the prime divisor associated to $P$.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x)
coefficient(ideal(x,u), D)
E = divisor(x*u)
coefficient(ideal(x,u), E)
SeeAlso
(coefficient, BasicList, BasicDivisor)
(coefficients, BasicDivisor)
///
doc ///
Key
(coefficient, BasicList, BasicDivisor)
Headline
get the coefficient of an ideal for a fixed divisor
Usage
coefficient(L, D)
Inputs
L: BasicList
the list of elements in a Grobner basis of a height one prime ideal that we want to find the coefficient of
D: BasicDivisor
the divisor in question
Outputs
: Number
Description
Text
This function returns the coefficient of $D$ along the prime divisor generated by $L$ assuming $L$ is the ordered list of an element
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
E = divisor(x*u)
coefficient({u, x}, E)
coefficient({x, u}, E)
SeeAlso
(coefficient, Ideal, BasicDivisor)
(coefficients, BasicDivisor)
///
doc ///
Key
(ring, BasicDivisor)
Headline
get the ambient ring of a divisor
Usage
ring( D1 )
Inputs
D1: BasicDivisor
Outputs
: Ring
Description
Text
This function returns the ambient ring of a divisor.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
ring( D )
///
doc ///
Key
(isVeryAmple, WeilDivisor)
[(isVeryAmple, WeilDivisor), Verbose]
Headline
whether a divisor is very ample.
Usage
isVeryAmple( D1 )
Inputs
D1: WeilDivisor
Verbose => Boolean
pass the verbose option to the called isEmbedding method
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is very ample, otherwise it returns {\tt false}. It works by calling {\tt isEmbedding} from the {\tt RationalMaps} package. If {\tt Verbose} is set to {\tt true}, it will print {\tt Verbose} output from {\tt isEmbedding}.
Example
R = QQ[x, y, z]/ideal(x^3 + y^3 - z^3);
D = divisor(ideal(x, y-z));
isVeryAmple(D)
isVeryAmple(2*D)
isVeryAmple(3*D)
Text
The output value of this function is stored in the divisor's cache.
///
doc ///
Key
getPrimeDivisors
(getPrimeDivisors, BasicDivisor)
Headline
get the list of prime divisors of a given divisor
Usage
getPrimeDivisors( D1 )
Inputs
D1: BasicDivisor
Outputs
: List
Description
Text
This function returns the list of prime divisors of a given divisor. The prime divisors are all of the class {\tt WeilDivisor}. If you do not call {\tt cleanSupport}, you may obtain divisors with zero coefficients.
Example
R = QQ[x, y, z];
D = divisor({-8, 2, 0}, {ideal(x), ideal(y), ideal(x^2+z)})
getPrimeDivisors( D )
getPrimeDivisors( cleanSupport D )
///
doc ///
Key
(ceiling, RWeilDivisor)
(floor, RWeilDivisor)
Headline
produce a WeilDivisor whose coefficients are ceilings or floors of the divisor
Usage
ceiling( E1 )
floor( E1 )
Inputs
E1: RWeilDivisor
Outputs
: WeilDivisor
Description
Text
Start with a rational or real Weil divisor. We form a new divisor whose coefficients are obtained by applying the {\tt ceiling} or {\tt floor function} to them.
Example
R = QQ[x, y, z] / ideal(x *y - z^2);
D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
ceiling( D )
floor( D )
E = divisor({0.3, -0.7}, {ideal(x, z), ideal(y,z)}, CoefficientType => RR)
ceiling( E )
floor( E )
///
doc ///
Key
positivePart
(positivePart, RWeilDivisor)
negativePart
(negativePart, RWeilDivisor)
Headline
get the effective part or anti-effective part of a divisor
Usage
positivePart( F1 )
negativePart( F1 )
Inputs
F1: RWeilDivisor
Outputs
: RWeilDivisor
an effective divisor
Description
Text
This function returns the positive part of a divisor
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D = divisor({1, -2, 3, -4}, {ideal(x, u), ideal(y, u), ideal(x, v), ideal(y, v)})
positivePart( D )
negativePart( D )
D == positivePart(D) - negativePart(D)
E = divisor({0, 1}, {ideal(x,u), ideal(y,u)})
positivePart(E)
negativePart(E)
E == positivePart(E) - negativePart(E)
///
doc ///
Key
(symbol ==, RWeilDivisor, RWeilDivisor)
Headline
whether two divisors are equal
Usage
(D == E)
Inputs
D: RWeilDivisor
E: RWeilDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the two divisors are equal
Example
R = QQ[x,y];
D = divisor(x*y);
E = divisor(x);
F = divisor(y);
D == E
D == E+F
Text
Here is an example with rational coefficients compared with integer coefficients.
Example
R = QQ[x,y];
D = (1/2)*divisor(x)
D == 2*D
D + D == 2*D
E = divisor(x)
D == E
2*D == E
///
doc ///
Key
toQWeilDivisor
(toQWeilDivisor, WeilDivisor)
(toQWeilDivisor, QWeilDivisor)
Headline
create a Q-Weil divisor from a Weil divisor
Usage
toQWeilDivisor( D )
Inputs
D: QWeilDivisor
Outputs
: QWeilDivisor
Description
Text
Turn a Weil divisor into a Q-divisor (or do nothing to a Q-divisor).
Example
R = ZZ/5[x, y];
D = divisor(x);
E = toQWeilDivisor(D)
toQWeilDivisor(E)
F = divisor({3, 0, -2}, {ideal(x), ideal(y), ideal(x+y)})
SeeAlso
toWeilDivisor
toRWeilDivisor
///
doc ///
Key
toRWeilDivisor
(toRWeilDivisor, WeilDivisor)
(toRWeilDivisor, QWeilDivisor)
(toRWeilDivisor, RWeilDivisor)
Headline
create a R-divisor from a Q or Weil divisor
Usage
toRWeilDivisor( D1 )
toRWeilDivisor( E1 )
Inputs
D1: WeilDivisor
E1: QWeilDivisor
E1: RWeilDivisor
Outputs
: RWeilDivisor
Description
Text
Turn a Weil divisor or a Q-divisor into a R-divisor (or do nothing to a R-divisor).
Example
R = ZZ/5[x,y];
D = divisor({2, 0, -4}, {ideal(x), ideal(y), ideal(x-y)})
E = (1/2)*D
F = toRWeilDivisor(D)
G = toRWeilDivisor(E)
F == 2*G
SeeAlso
toWeilDivisor
toQWeilDivisor
///
doc ///
Key
toWeilDivisor
(toWeilDivisor, RWeilDivisor)
Headline
create a Weil divisor from a Q or R-divisor
Usage
toWeilDivisor( E1 )
Inputs
E1: RWeilDivisor
Outputs
: WeilDivisor
Description
Text
Given a divisor with rational or real coefficients, but whose coefficients are actually integers, we first check if all coefficients are integers.
If so we make this Weil divisor. Otherwise, an error is thrown.
Example
R=QQ[x];
D=divisor({3/2}, {ideal(x)}, CoefficientType=>QQ)
E=divisor({1.5}, {ideal(x)}, CoefficientType=>RR)
toWeilDivisor(2*D)
toWeilDivisor(2*E)
isWeilDivisor(D)
try toWeilDivisor(D) then print "converted to a WeilDivisor" else print "can't be converted to a WeilDivisor"
Text
Notice in the final computation, {\tt D} cannot be converted into a Weil divisor since $D$ has non-integer coefficients, but {\tt 2*D} can be converted into a Weil divisor.
SeeAlso
toQWeilDivisor
toRWeilDivisor
isWeilDivisor
///
doc ///
Key
(symbol *, Number, BasicDivisor)
(symbol *, QQ, WeilDivisor)
(symbol *, RR, QWeilDivisor)
(symbol *, QQ, RWeilDivisor)
(symbol *, RR, RWeilDivisor)
Headline
multiply a divisor by a number
Usage
n * D
Inputs
n: Number
D: BasicDivisor
Outputs
: BasicDivisor
Description
Text
Multiply a divisor by an integer or a real or rational number.
Example
R = QQ[x,y];
D = divisor(x^2*y/(x+y));
E = divisor({1/2, -5/3}, {ideal(x), ideal(y)}, CoefficientType=>QQ)
F = divisor({1.5, 0, -3.2}, {ideal(x), ideal(y), ideal(x^2-y^3)}, CoefficientType=>RR)
8*D
(-2/3)*D
0.0*D
(3/2)*E
(-1.414)*E
6*F
(-3/2)*F
///
doc ///
Key
(symbol +, BasicDivisor, BasicDivisor)
(symbol -, BasicDivisor, BasicDivisor)
(symbol -, BasicDivisor)
Headline
add or subtract two divisors, or negate a divisor
Usage
A + B
A - B
-A
Inputs
A:BasicDivisor
B:BasicDivisor
Outputs
:BasicDivisor
Description
Text
We can add or subtract two divisors:
Example
R = QQ[x, y, z];
D1 = divisor({1, 3, 2}, {ideal(x), ideal(y), ideal(z)})
D2 = divisor({-2, 3, -5}, {ideal(z), ideal(y), ideal(x)})
D1 + D2
D1 - D2
Text
We can also add or subtract divisors with different coefficients.
Example
R = QQ[x,y];
D1 = divisor({3, 1}, {ideal(x), ideal(y)})
D2 = divisor({3/2, -1}, {ideal(x), ideal(y)}, CoefficientType=>QQ)
D3 = divisor({1.25}, {ideal(x)}, CoefficientType=>RR)
D1+D2
D1+D3
D2+D3
Text
Finally, we can negate a divisor.
Example
R = ZZ/3[x,y,z]/ideal(x^2-y*z);
D = divisor({3, 0, -1}, {ideal(x,z), ideal(y,z), ideal(x-y, x-z)})
-D
E = divisor({3/2, -2/3}, {ideal(x, z), ideal(y, z)})
-E
///
doc ///
Key
(symbol SPACE, OO, RWeilDivisor)
Headline
calculate module corresponding to divisor
Usage
OO( D1 )
Inputs
D1: RWeilDivisor
Outputs
: Module
Description
Text
Get the associated module $O(D)$ of a Weil Divisor $D$. In the affine case, $O(D)$ is by definition the set of elements $f$ of the fraction field such that $D + Div(f) \geq 0$. We represent this as a module. In the projective case, $O(D)$ is the coherent sheaf of such elements, and hence we represent it as a graded module. For example, consider the following modules on $P^2$.
Example
R = ZZ/7[x,y,z];
D = divisor(x);
OO(D)
OO(2*D)
OO(0*D)
OO(-3*D)
Text
Next, consider an example on $P^1 \times P^1$.
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D1 = divisor(ideal(x, u))
D2 = divisor(ideal(x, v))
OO( D1 )
OO(D1 + D2)
Text
To get the associated module $O(D)$ for a rational/real divisor $D$, we first obtain a new divisor $D'$ whose coefficients are the floor of the coefficients of $D$, and take $O(D')$ as $O(D)$.
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D2 = divisor({3/5, -4/7, 9/4, -7/8}, {ideal(x, u), ideal(x, v), ideal(y, u), ideal(y, v)}, CoefficientType=>QQ)
OO( D2 )
OO( floor(D2) )
Text
Note that you can call the {\tt divisor} constructor on the module you construct, but it will only produce a divisor up to linear equivalence (which can mean different things depending on whether or not you are keeping track of the grading).
Example
R = ZZ/11[x,y];
D = divisor(x*y/(x+y))
divisor(OO(D))
divisor(OO(D), IsGraded=>true)
Text
The output value of this function is stored in the divisor's cache.
SeeAlso
(ideal, RWeilDivisor)
///
doc ///
Key
idealPower
(idealPower, ZZ, Ideal)
Headline
compute the ideal generated by the generators of the ideal raised to a power
Usage
idealPower(n, I)
Inputs
n: ZZ
I: Ideal
Outputs
: Ideal
Description
Text
If {\tt I} is generated by $(f1, ..., fk)$ then {\tt idealPower(n, I)} is the ideal generated by $(f1^n, ..., fk^n)$. This is relevant because {\tt idealPower(n, I)} and {\tt I^n} have the same reflexification, but {\tt idealPower(n, I)} can be much faster to compute with since it has fewer generators typically.
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
I = ideal(x, u);
idealPower(5, I)
I^5
SeeAlso
reflexify
///
doc ///
Key
(ideal, RWeilDivisor)
(ideal, QWeilDivisor)
(ideal, WeilDivisor)
Headline
calculate the corresponding module of a divisor and represent it as an ideal
Usage
ideal( D1 )
Inputs
D1: RWeilDivisor
Outputs
: Ideal
Description
Text
Get an ideal associated to $O(-D)$ of a Weil Divisor $D$. Recall that on an affine scheme, $O(-D)$ is by definition the subset of the fraction field made up of elements such that $Div(f) - D \geq 0$. If $D$ is effective, this will produce the ideal corresponding to $O(-D)$. Otherwise, it will produce some ideal isomorphic to a module corresponding to $O(-D)$.
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D1 = divisor({1, -2, 3, -4}, {ideal(x, u), ideal(x, v), ideal(y, u), ideal(y, v)})
ideal( D1 )
D2 = divisor(ideal(x,u))
ideal(D2)
Text
Note, if the divisor has non-integer coefficients, their ceilings will be taken, since $O(-D) = O({\tt floor}(-D)) = O(-{\tt ceiling}(D))$.
Example
R = QQ[x,y,z]/(ideal(x^3 + y^3 - z^3));
D1 = 1.3*divisor(ideal(x, y-z))
ideal D1
I1 = ideal (ceiling(D1))
I2 = ideal (-ceiling(D1))
reflexify(I1*I2)
Text
The output value of this function is stored in the divisor's cache.
SeeAlso
(symbol SPACE, OO, RWeilDivisor)
///
doc ///
Key
mapToProjectiveSpace
(mapToProjectiveSpace, WeilDivisor)
[mapToProjectiveSpace, KnownCartier]
[mapToProjectiveSpace, Variable]
Headline
compute the map to projective space associated with the global sections of a Cartier divisor
Usage
mapToProjectiveSpace( D )
Inputs
D: WeilDivisor
KnownCartier => Boolean
specify whether the divisor is known to be Cartier
Variable => Symbol
Variable => String
specify the variable to use in the construction of the target projective space
Outputs
: RingMap
Description
Text
Given a Cartier divisor $D$ on a projective variety (represented by a divisor on a normal standard graded ring), this function returns the map to projective space induced by the global sections of $O(D)$. If {\tt KnownCartier} is set to {\tt false} (default is {\tt true}), the function will also check to make sure the divisor is Cartier away from the irrelevant ideal.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor( ideal(x, u) )
mapToProjectiveSpace(D)
Text
The user may also specify the variable name of the new projective space.
Example
R = ZZ/7[x,y,z];
D = divisor(x*y)
mapToProjectiveSpace(D, Variable=>"Z")
SeeAlso
isCartier
///
doc ///
Key
baseLocus
(baseLocus, WeilDivisor)
(baseLocus, Module)
Headline
compute the locus where a graded module (or O(D) of a Weil divisor) is not globally generated
Usage
I = baseLocus(D)
I = baseLocus(M)
Inputs
D: WeilDivisor
M: Module
Outputs
I: Ideal
Description
Text
Given a graded module $M$ with degree 0 global sections $s1, ..., sd$, this computes the locus where the $si$ do not generate $M$. Given a Weil divisor $D$, this computes the base locus of $O(D)$. For example, consider the rulings on $P^1 \times P^1$.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor( ideal(x,u) )
baseLocus(D)
Text
Next we consider an example of a point on an elliptic curve.
Example
R = QQ[x,y,z]/ideal(y^2*z-x*(x+z)*(x-z));
D = divisor(ideal(y, x))
baseLocus(D)
baseLocus(2*D)
///
doc ///
Key
reflexify
(reflexify, Ideal)
(reflexify, Module)
[reflexify, Strategy]
[reflexify, ReturnMap]
[reflexify, KnownDomain]
Headline
calculate the double dual of an ideal or module Hom(Hom(M, R), R)
Usage
reflexify( I1 )
reflexify( M1 )
Inputs
I1: Ideal
M1: Module
b: Boolean
Strategy => Symbol
specify a strategy for reflexify
ReturnMap => Boolean
tell reflexify to return a map from the original module to the reflexification
KnownDomain => Boolean
make reflexify more efficient if the ambient ring is a domain
Outputs
: Ideal
: Module
Description
Text
Get the reflexification or double dual (in the case of a normal ring, S2-ification) of an ideal $I$ or module $M$. Recall the double dual is defined to be $Hom(Hom(M, R), R)$.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
m = ideal(x,y,z);
reflexify(m)
I = ideal(x,y);
reflexify(I)
reflexify(I^2)
reflexify(I^3)
Text
We also have an example of reflexifying a module.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
m = ideal(x,y,z);
prune reflexify(m*R^2)
I = ideal(x,y);
prune reflexify(I*R^1)
prune reflexify(I^2*R^1)
Text
There is a canonical map from a module $M$ to its reflexification, $Hom(Hom(M, R), R)$. If reflexify is passed the option {\tt ReturnMap => true}, then instead of returning a module, reflexify returns that map. This is not necessary for ideals since an ideal is canonically a subsetset of its reflexification.
Example
R = QQ[x,y];
m = ideal(x,y);
M = m*R^1;
f = reflexify( M, ReturnMap => true )
source f
target f
Text
Generally speaking, it is faster to reflexify ideals as opposed to modules. Consider the following example of a point on an elliptic curve.
Example
R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
I = ideal(x-z,y-2*z);
J = I^21;
time reflexify(J);
time reflexify(J*R^1);
Text
Because of this, there are two strategies for computing a reflexification (at least if the module embeds as an ideal).
Text
{\tt IdealStrategy}. In the case that $R$ is a domain, and our module is isomorphic to an ideal $I$, then one can compute the reflexification by computing colons.
Text
{\tt ModuleStrategy}. This computes the reflexification simply by computing $Hom$ twice.
Text
{\tt ModuleStrategy} is the default strategy for modules, {\tt IdealStrategy} is the default strategy for ideals. In our experience, {\tt IdealStrategy} is faster on average. Note that calling {\tt ModuleStrategy} for ideals or {\tt IdealStrategy} for modules creates overhead which can slow things down substantially (since we must embed various modules as ideals).
Example
R = ZZ/13[x,y,z]/ideal(x^3 + y^3-z^11*x*y);
I = ideal(x-4*y, z);
J = I^20;
M = J*R^1;
J1 = time reflexify( J, Strategy=>IdealStrategy )
J2 = time reflexify( J, Strategy=>ModuleStrategy )
J1 == J2
time reflexify( M, Strategy=>IdealStrategy );
time reflexify( M, Strategy=>ModuleStrategy );
Text
However, sometimes {\tt ModuleStrategy} is faster, especially for Monomial ideals.
Example
R = QQ[x,y,u,v]/ideal(x*y-u*v);
I = ideal(x,u);
J = I^20;
M = I^20*R^1;
time reflexify( J, Strategy=>IdealStrategy )
time reflexify( J, Strategy=>ModuleStrategy )
time reflexify( M, Strategy=>IdealStrategy );
time reflexify( M, Strategy=>ModuleStrategy );
Text
For ideals, if {\tt KnownDomain} is false (default value is {\tt true}), then the function will check whether it is a domain. If it is a domain (or assumed to be a domain), it will reflexify using a strategy which can speed up computation, if not it will compute using a sometimes slower method which is essentially reflexifying it as a module.
Text
Consider the following example showing the importance of making the correct assumption about the ring being a domain.
Example
R = QQ[x,y]/ideal(x*y);
I = ideal(x,y);
reflexify(I, KnownDomain=>false)
reflexify(I, KnownDomain=>true)
J = ideal(x-y, x+y);
reflexify(J, KnownDomain=>false)
reflexify(I, KnownDomain=>true)
Text
In the above, when KnownDomain=>true (an incorrect assumption), this function returns the incorrect answer for $I$.
SeeAlso
(isReflexive, Ideal)
dualize
///
doc ///
Key
dualize
(dualize, Ideal)
(dualize, Module)
[dualize, KnownDomain]
[dualize, Strategy]
Headline
finds an ideal or module isomorphic to Hom(M, R)
Usage
dualize( I1 )
dualize( M1 )
Inputs
I1: Ideal
M1: Module
KnownDomain => Boolean
assume the ambient ring is a domain
Strategy => Symbol
specify the strategy of dualize
Outputs
: Ideal
: Module
Description
Text
This computes $Hom_R(M, R)$.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
m = ideal(x,y,z);
dualize(m)
I = ideal(x,y);
dualize(I)
dualize(I^2)
dualize(I^3)
Text
If {\tt Strategy => IdealStrategy}, then dualize assume the module is isomorphic to an ideal, embeds it as an ideal, and computes the dual by forming a colon. ModuleStrategy simply computes the Hom. The default Strategy for modules is ModuleStrategy, and the default Strategy for ideals is IdealStrategy. This is because there is overhead using the opposite strategy (involving embedding modules as ideals). Frequently {\tt IdealStrategy} is faster, but not always. Consider first a D4 singularity in characteristic 2.
Example
R = ZZ/2[x,y,z]/ideal(z^2-x*y*z-x^2*y-x*y^2);
m = ideal(x,y,z);
J = m^9;
M = J*R^1;
time dualize(J, Strategy=>IdealStrategy);
time dualize(J, Strategy=>ModuleStrategy);
time dualize(M, Strategy=>IdealStrategy);
time dualize(M, Strategy=>ModuleStrategy);
time embedAsIdeal dualize(M, Strategy=>ModuleStrategy);
Text
For monomial ideals in toric rings, frequently ModuleStrategy appears faster.
Example
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
I = ideal(x,u);
J = I^15;
time dualize(J, Strategy=>IdealStrategy);
time dualize(J, Strategy=>ModuleStrategy);
Text
{\tt KnownDomain} is an option for {\tt dualize}. If it is {\tt false} (default is {\tt true}), then the computer will first check whether the ring is a domain, if it is not then it will revert to {\tt ModuleStrategy}. If {\tt KnownDomain} is set to {\tt true} for a non-domain, then the function can return an incorrect answer.
Example
R = QQ[x,y]/ideal(x*y);
J = ideal(x,y);
dualize(J, KnownDomain=>true)
dualize(J, KnownDomain=>false)
SeeAlso
reflexify
///
doc ///
Key
reflexivePower
(reflexivePower, ZZ, Ideal)
[reflexivePower, Strategy]
Headline
computes a reflexive power of an ideal in a normal domain
Usage
reflexivePower( n, I )
Inputs
I: Ideal
n: ZZ
Strategy => Symbol
specify the strategy passed to reflexify
Outputs
: Ideal
Description
Text
This function returns the $n$-th reflexive power of $I$. By definition this is the reflexification of $I^n$, or in other words, $Hom(Hom(I^n, R), R)$.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
J = ideal(x,y);
reflexivePower(5, J)
reflexivePower(6, J)
Text
This function is typically much faster than reflexifying $I^n$ however. We can obtain this speedup, because in a normal domain, the reflexification of $I^n$ is the same as the reflexification of the ideal generated by the $n$-th powers of the generators of $I$. Consider the example of a cone over a point on an elliptic curve.
Example
R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
I = ideal(x-z,y-2*z);
time J20a = reflexivePower(20, I);
I20 = I^20;
time J20b = reflexify(I20);
J20a == J20b
Text
This passes the {\tt Strategy} option to a {\tt reflexify} call. Valid options are {\tt IdealStrategy} and {\tt ModuleStrategy}.
Example
R = QQ[x,y,z]/ideal(-y^2*z +x^3 + x^2*z + x*z^2+z^3);
I = ideal(x-z,y-2*z);
time J1 = reflexivePower(20, I, Strategy=>IdealStrategy);
time J2 = reflexivePower(20, I, Strategy=>ModuleStrategy);
J1 == J2
SeeAlso
reflexify
(isReflexive, Ideal)
///
doc ///
Key
IdealStrategy
ModuleStrategy
NoStrategy
Headline
a valid value for the Strategy option in dualize or reflexify
Description
Text
This is a valid input for the {\tt Strategy} option of dualize or reflexify.
SeeAlso
dualize
reflexify
///
doc ///
Key
KnownDomain
Headline
an option used to specify to certain functions that we know that the ring is a domain
Description
Text
If true, then some functions will not check whether or not the ring is domain, they will assume it and proceed.
///
doc ///
Key
KnownCartier
Headline
an option used to specify to certain functions that we know that the divisor is Cartier
Description
Text
If true, then some functions will not check whether or not the divisor is Cartier, they will assume it is and proceed.
///
doc ///
Key
Section
Headline
an option used in a number of functions
Description
Text
Used to specify a (global) section of an ideal or module, in order to construct an effective divisor.
///
doc ///
Key
Primes
Headline
a value for the option Strategy for the pullback method
Description
Text
If {\tt Strategy=>Primes} then the pullback method will pull back each prime individually.
SeeAlso
(pullback, RingMap, RWeilDivisor)
Sheaves
///
doc ///
Key
Sheaves
Headline
a value for the option Strategy for the pullback method
Description
Text
If {\tt Strategy => Sheaves} then the pullback method will pull back the sheaf $O(D)$.
SeeAlso
(pullback, RingMap, RWeilDivisor)
Primes
///
doc ///
Key
ReturnMap
Headline
an option for embedAsIdeal
Description
Text
If {\tt ReturnMap} is set to {\tt true}, then instead of {\tt embedAsIdeal} converting a module into an isomorphic ideal, this also returns the map from the module to the ring.
SeeAlso
embedAsIdeal
///
doc ///
Key
isDomain
(isDomain, Ring)
Headline
whether a ring is a domain
Usage
isDomain(R)
Inputs
R: Ring
Outputs
: Boolean
Description
Text
This function returns {\tt true} if {\tt R} is an integral domain, otherwise it returns {\tt false}. It simply checks whether the zero ideal is prime.
Example
R = QQ[x,y,z]/ideal(x^2-y*z)
isDomain(R)
S = ZZ/5[x,y]/ideal(x^2*y^3)
isDomain(S)
///
doc ///
Key
(isReflexive, Ideal)
(isReflexive, Module)
[(isReflexive, Ideal), Strategy]
[(isReflexive, Ideal), KnownDomain]
[(isReflexive, Module), Strategy]
[(isReflexive, Module), KnownDomain]
Headline
whether an ideal or module is reflexive
Usage
isReflexive I
Inputs
I:{Ideal,Module}
Strategy => Symbol
specify a strategy for the internal call to reflexify
KnownDomain => Boolean
assume the ambient ring is a domain for the internal call to reflexify
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the module or ideal is reflexive, otherwise it returns {\tt false}. In other words this checks if $M \cong Hom(Hom(M, R))$. This function calls {\tt reflexify} and passes the options {\tt Strategy} and {\tt KnownDomain} specified in its call.
Example
R = QQ[x,y,z]/ideal(x^2-y*z);
m = ideal(x,y,z);
isReflexive(m)
isReflexive(m*R^1)
I = ideal(x,y);
isReflexive(I)
isReflexive(I*R^1)
SeeAlso
reflexify
Strategy
KnownDomain
///
doc ///
Key
torsionSubmodule
(torsionSubmodule, Module)
[torsionSubmodule, Strategy]
[torsionSubmodule, KnownDomain]
Headline
create the torsion submodule of a module
Usage
torsionSubmodule( M1 )
Inputs
M1: Module
Strategy => Symbol
specify a strategy for the internal call to reflexify
KnownDomain => Boolean
assume the ambient ring is a domain for the internal call to reflexify
Outputs
: Module
Description
Text
Finds the torsion submodule of a module. It does this by computing the kernel of the map from {\tt M1} to its reflexification. The options {\tt Strategy} and {\tt KnownDomain} are passed along when the function {\tt reflexify} is called.
Example
R = QQ[x,y];
m = ideal(x,y);
M = (R^1/m) ++ R^1
prune torsionSubmodule M
SeeAlso
reflexify
///
doc ///
Key
embedAsIdeal
(embedAsIdeal, Ring, Module)
(embedAsIdeal, Module)
(embedAsIdeal, Ring, Matrix)
(embedAsIdeal, Matrix)
[embedAsIdeal, MTries]
[embedAsIdeal, IsGraded]
[embedAsIdeal, ReturnMap]
[embedAsIdeal, Section]
Headline
embed a module as an ideal of a ring
Usage
I = embedAsIdeal(R, M, MTries=>n, IsGraded=>false)
L = embedAsIdeal(R, M, MTries=>n, IsGraded=>true)
L = embedAsIdeal(R, M, MTries=>n, ReturnMap=>true)
L = embedAsIdeal(R, M, MTries=>n, ReturnMap=>true, IsGraded=>true)
Inputs
M: Module
R: Ring
MTries => ZZ
how many times random attempts to embed the module should be attempted if the first attempt fails
IsGraded => Boolean
specify that the module is graded and instruct the function to return the degree shift of the embedding
ReturnMap => Boolean
specify that the function should also return a map from the module to R^1, identifying the embedding
Section => RingElement
used to specify that the function will keep track of a certain element
Outputs
I: Ideal
the module embedded as an ideal
L: List
if IsGraded is true, then this function returns the degree shift of the embedding as a second entry in a list. Further if ReturnMap is true, then a map from the module to the ring is also returned as another entry in this list. Finally, if a matrix defining is passed to the function, then the first entry in the list is this ring element.
Description
Text
Tries to embed the module $M$ as an ideal in $R$. It will make several automatic tries followed by {\tt MTries => n} attempts (the default {\tt n} value is 10). Parts of this function were based on code originally written in the Macaulay2 Divisor tutorial and also based on code by Mordechai Katzman, see the {\tt canonicalIdeal} function in http://katzman.staff.shef.ac.uk/FSplitting/ParameterTestIdeals.m2
Example
R = QQ[x,y]
M = (ideal(x^2,x*y))*R^1
embedAsIdeal(M)
Text
It also works for non-domains
Example
R = QQ[x,y]/ideal(x*y);
M = (ideal(x^3, y^5))*R^1;
embedAsIdeal(M)
N = (ideal(x,y))*R^1;
embedAsIdeal(N)
Text
Note that the answer is right even if you don't recognize it at first. Next, consider the {\tt IsGraded} option. If this is set to {\tt true}, then the system returns the degree as well (as you can see in the example below). The default value for the option {\tt IsGraded} is {\tt false}.
Example
R = QQ[x,y];
M = R^{-3};
embedAsIdeal(M, IsGraded=>true)
Text
Next consider the {\tt ReturnMap} option. What this does is also return the map from {\tt M} to {\tt R^1} of which the map is based upon. Note that if both {\tt IsGraded} and {\tt ReturnMap} are enabled, then the map comes after the degree.
Example
R = QQ[x,y];
M = ideal(x^2, x*y)*R^1;
L = embedAsIdeal(M, ReturnMap=>true)
target L#1
source L#1
Text
Alternately, instead of passing an ideal you can pass {\tt embedAsIdeal} a {\tt Matrix}, where the source is a free module of rank one and the target is the module you wish to embed. (This can also be accomplished by passing the same matrix via the Section option). In this case, the first output will be a ring element corresponding to the section.
Example
R = QQ[x,y];
M = (ideal(x^2,x*y))*R^1;
mat = map(M, R^1, {{1}, {1}});
embedAsIdeal(mat)
embedAsIdeal(M, Section=>mat)
///
doc ///
Key
(pullback, RingMap, RWeilDivisor)
[(pullback, RingMap, RWeilDivisor), Strategy]
Headline
pullback a divisor under a ring map
Usage
pullback(f, D1)
Inputs
f: RingMap
D1: RWeilDivisor
Strategy => Symbol
specify the strategy used by pullback
Outputs
: BasicDivisor
Description
Text
This function computes the pullback of a divisor under a ring map. There are two potential strategies, {\tt Primes} and {\tt Sheaves} ({\tt Primes} is the default strategy). The {\tt Primes} strategy pulls back each prime individually. It can be faster, but it only works for ring maps that are either finite or flat (unless each prime is also Cartier). For more general maps, it can give incorrect results. The other option for {\tt Strategy} is {\tt Sheaves}. This can be slower, especially for divisors with large coefficients, but it will successfully pull back any Cartier divisor. The option {\tt Sheaves} also requires the divisor passed to be a {\tt WeilDivisor}.
Example
R = QQ[x,y,z,w]/ideal(z^2-y*w,y*z-x*w,y^2-x*z);
T = QQ[a,b];
f = map(T, R, {a^3, a^2*b, a*b^2, b^3});
D = divisor(y*z)
pullback(f, D, Strategy=>Primes)
pullback(f, D, Strategy=>Sheaves)
Text
Let us also consider pulling back a divisor under a blowup map.
Example
R = QQ[x,y];
S = QQ[a,b];
f = map(S, R, {a*b, b});
D = divisor(x*y*(x+y));
D1 = pullback(f, D)
f^* D
Text
As illustrated by the previous example, the same functionality can also be accomplished by {\tt f^*} (which creates a function which sends a divisor $D$ to $f^* D$).
SeeAlso
Primes
Sheaves
///
doc ///
Key
findElementOfDegree
(findElementOfDegree, ZZ, Ring)
(findElementOfDegree, BasicList, Ring)
Headline
find an element of a specified degree
Usage
findElementOfDegree( n, R )
findElementOfDegree( l, R )
Inputs
R: Ring
n: ZZ
l: BasicList
Outputs
: BasicList
Description
Text
Given a singly graded ring and an integer $n$, this function tries to find an element of degree $n$. If successful, it returns a list with two elements {$a,b$} such that $a/b$ has degree $n$. If it is impossible, it gives an error. If instead of an integer, you pass it a basic list corresponding to a multi-degree, it still tries to find $a, b$ in R such that $a/b$ has the provided multidegree. It only works on rings with flattened variables (ie, no Rees algebras).
First we do an example without multidegrees.
Example
R = ZZ/7[x,y,Degrees=>{3, 5}];
output = findElementOfDegree(1, R)
output#0/output#1
findElementOfDegree(-2, R)
Text
We also do an example with multidegrees
Example
R = QQ[x,y,Degrees=>{{1,2}, {3, 5}}];
output = findElementOfDegree({1, 3}, R)
output#0/output#1
SeeAlso
[divisor, IsGraded]
getLinearDiophantineSolution
///
doc ///
Key
getLinearDiophantineSolution
(getLinearDiophantineSolution, BasicList, BasicList)
(getLinearDiophantineSolution, BasicList, Matrix)
[getLinearDiophantineSolution, Safe]
Headline
find a solution of the linear Diophantine equation Ax = b
Usage
getLinearDiophantineSolution(l, L)
getLinearDiophantineSolution(l, A)
Inputs
L: BasicList
l: BasicList
A: Matrix
Safe => Boolean
turns on or off routine checks in the function
Outputs
: List
Description
Text
Given a linear Diophantine equation $Ax = b$ (i.e. an integer matrix with target vector also integer), we want to find a solution of this equation.
Example
colList = {{1,3,7}, {2,4,-31}, {1,6,101}, {3,-2,47}, {8,9,1}};
A = transpose matrix colList;
b = {1, 2, 3}
getLinearDiophantineSolution(b, A)
sol = getLinearDiophantineSolution(b, colList )
sum apply(#sol, i->(sol#i)*(colList#i) )
Text
When the context is clear, set the {\tt Safe} option to {\tt false} in order to avoid routine checks.
Example
A = matrix{ {1, 0, 0, 0, 0}, {0, 2, 0, 0, 0}, {3, 4, 5, 6, 8} }
b = {1, 2, 3}
getLinearDiophantineSolution(b, A, Safe => false)
SeeAlso
findElementOfDegree
///
doc ///
Key
applyToCoefficients
(applyToCoefficients, BasicDivisor, Function)
[applyToCoefficients, CoefficientType]
[applyToCoefficients, Safe]
Headline
apply a function to the coefficients of a divisor
Usage
applyToCoefficients(D1, h)
Inputs
D1: BasicDivisor
h: Function
CoefficientType => Number
specifies what the coefficients of the output divisor should be
Safe => Boolean
specifies that the system checks whether the output is a valid divisor
Outputs
: WeilDivisor
Description
Text
applyToCoefficients applies the function {\tt h} to the coefficients of the divisor of {\tt D1}. Specifying the {\tt CoefficientType=>ZZ}, {\tt CoefficientType=>QQ}, {\tt CoefficientType=>RR}, will force the returned divisor to be of a certain form ({\tt WeilDivisor, QWeilDivisor, RWeilDivisor} respectively), otherwise the class of the output {\tt D} is the same as the class of the input {\tt D1} ({\tt WeilDivisor, QWeilDivisor, RWeilDivisor, BasicDivisor}). If {\tt Safe} is set to {\tt true} (the default is {\tt false}), then the function will check to make sure the output is a valid divisor.
Example
R = QQ[x, y, z];
D = divisor(x*y^2/z)
applyToCoefficients(D, u->5*u)
SeeAlso
(floor, RWeilDivisor)
(ceiling, RWeilDivisor)
///
doc ///
Key
canonicalDivisor
(canonicalDivisor, Ring)
[canonicalDivisor, IsGraded]
Headline
compute a canonical divisor of a ring
Usage
canonicalDivisor( R )
Inputs
R: Ring
IsGraded => Boolean
specify that the returned canonical divisor should reflect the grading of the ring
Outputs
: WeilDivisor
Description
Text
Compute the canonical divisor of a ring (warning, the canonical divisor is not unique, but only unique up to linear equivalence). If the {\tt IsGraded} option is set to {\tt true} (default {\tt false}), then it will return a canonical divisor for the $Proj$ of $R$, otherwise it will return one for only the $Spec$. The graded version only works reliably for graded rings over a field (for instance, if you have a Rees algebra you will need to flatten the variables).
Example
R = QQ[x,y,z];
canonicalDivisor(R)
canonicalDivisor(R, IsGraded=>true)
Text
Note the {\tt IsGraded} option makes a difference. Consider now a non-Gorenstein singularity.
Example
R = QQ[a,b,c,d]/ideal(c^2-b*d, b*c-a*d, b^2-a*c);
canonicalDivisor(R)
Caveat
Text
This function assumes that the {\tt coefficientRing} of the ambient ring is a field (or at least Gorenstein). If the {\tt coefficientRing} is a more general ring, this function will produce a relative canonical divisor of the ring over its {\tt coefficientRing}.
///
doc ///
Key
ramificationDivisor
(ramificationDivisor, RingMap)
[ramificationDivisor, IsGraded]
Headline
compute the ramification divisor of a finite inclusion of normal domains or a blowup over a smooth base
Usage
ramificationDivisor( f )
Inputs
f: RingMap
b: Boolean
IsGraded => Boolean
specify true to compute the relative canonical divisor of blowup over a smooth base
Outputs
: WeilDivisor
Description
Text
Compute the ramification (relative canonical) divisor corresponding the finite inclusion of normal domains. If you pass it a non-finite map, it will compute the divisorial part of the locus where the map is not smooth. If {\tt IsGraded} is set to {\tt false} (the default value), then the coefficient ring of both the source and target of $f$ must be equal.
Example
R = QQ[x];
S = QQ[y];
f = map(S, R, {y^3});
ramificationDivisor(f)
Text
The next example is a Veronese which is étale in codimension 1.
Example
R = QQ[x,y];
T = QQ[a,b,c,d];
h = map(R, T, {x^3, x^2*y, x*y^2, y^3});
S = T/ker h;
f = map(R, S, {x^3, x^2*y, x*y^2, y^3});
ramificationDivisor(f)
Text
Here is an example with wild ramification.
Example
R = ZZ/2[t];
S = ZZ/2[x];
f = map(S, R, {x^2*(1+x)});
ramificationDivisor(f)
Text
If the option {\tt IsGraded} is set to {\tt true}, then the function will assume that the source of {\tt f} is affine, and the target is projective over the source. In this case, the coefficient ring of the target must be equal to the source ring. This can be useful when computing things like relative canonical divisors over regular bases (it may not give the expected answer over non-regular bases). For example, this is useful if you want to compute the relative canonical divisor of a blowup.
Example
R = QQ[x,y];
S = reesAlgebra(ideal(x,y^2));
f = map(S, R);
ramificationDivisor(f,IsGraded=>true)
SeeAlso
canonicalDivisor
///
doc ///
Key
isWeilDivisor
(isWeilDivisor, RWeilDivisor)
Headline
whether a rational/real divisor is in actuality a Weil divisor
Usage
isWeilDivisor( D2 )
Inputs
D2: RWeilDivisor
Outputs
: Boolean
Description
Text
Check if a rational/real divisor is a Weil divisor
Example
R = QQ[x, y, z];
D1 = divisor({1/1, 2/2, -6/3}, {ideal(x), ideal(y), ideal(z)}, CoefficientType=>QQ)
D2 = divisor({1/2, 3/4, 5/6}, {ideal(y), ideal(z), ideal(x)}, CoefficientType=>QQ)
isWeilDivisor( D1 )
isWeilDivisor( D2 )
SeeAlso
toWeilDivisor
///
doc ///
Key
isEffective
(isEffective, BasicDivisor)
Headline
whether a divisor is effective
Usage
isEffective( D1 )
Inputs
D1: WeilDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is effective (all coefficients nonnegative), otherwise it returns {\tt false}.
Example
R = ZZ/31[x, y, u, v] / ideal(x * y - u * v);
D1 = divisor({1, -2, 3, -4}, {ideal(x, u), ideal(x, v), ideal(y, u), ideal(y, v)})
D2 = divisor({1, 39, 5, 27}, {ideal(x, v), ideal(y, v), ideal(x, u), ideal(x, u)})
isEffective( D1 )
isEffective( D2 )
///
doc ///
Key
(isPrime, BasicDivisor)
Headline
whether a divisor is prime
Usage
isPrime( D1 )
Inputs
D1: BasicDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is prime (with coefficient 1), otherwise it returns {\tt false}.
Example
R = QQ[x, y];
D1 = divisor(x^2 * y)
D2 = divisor(x^2)
D3 = divisor(y)
isPrime( D1 )
isPrime( D2 )
isPrime( D3 )
///
doc ///
Key
isReduced
(isReduced, BasicDivisor)
Headline
whether a divisor is reduced
Usage
isReduced( D1 )
Inputs
D1: WeilDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is reduced (all coefficients equal to 1), otherwise it returns {\tt false}.
Example
R = QQ[x, y, z];
D1 = divisor(x^2 * y^3 * z)
D2 = divisor(x * y * z)
isReduced( D1 )
isReduced( D2 )
///
doc ///
Key
isPrincipal
(isPrincipal, WeilDivisor)
[isPrincipal, IsGraded]
Headline
whether a Weil divisor is globally principal
Usage
isPrincipal( D, IsGraded => b )
Inputs
D: WeilDivisor
b: Boolean
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the Weil divisor {\tt D} is principal, otherwise {\tt false}. If {\tt IsGraded} is set to {\tt true}, then this checks whether the divisor corresponds to a principal divisor on the Proj of the ambient ring. Note that this function may return a false negative if the defining equations of the divisor are not homogeneous (it warns the user if this occurs).
Example
R = QQ[x, y, z];
D = divisor(x);
isPrincipal(D, IsGraded => true)
Text
By default, {\tt IsGraded} is set to {\tt false}. Regardless of the format, the check is done by determining whether or not $O(D)$ is free.
Example
R = QQ[x, y, z]/ideal(x^2 - y*z);
D = divisor(x);
E = divisor(ideal(x,z));
isPrincipal( D )
isPrincipal( E )
Text
The output value of this function is stored in the divisor's cache with the value of the last {\tt IsGraded} option. If you change the {\tt IsGraded} option, the value will be recomputed.
SeeAlso
(symbol SPACE, OO, RWeilDivisor)
///
doc ///
Key
isCartier
(isCartier, WeilDivisor)
[isCartier, IsGraded]
Headline
whether a Weil divisor is Cartier
Usage
isCartier( D )
Inputs
D: WeilDivisor
IsGraded => Boolean
set to true to assume that we are doing this check on a projective variety
Outputs
: Boolean
Description
Text
Check if a Weil divisor is Cartier. For example, the following divisor is not Cartier
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D = divisor({2, -3}, {ideal(x, u), ideal(y, v)})
isCartier( D )
Text
Neither is this divisor.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
isCartier( D )
Text
Of course the next divisor is Cartier.
Example
R = QQ[x, y, z];
D = divisor({1, 2}, {ideal(x), ideal(y)})
isCartier( D )
Text
If the option {\tt IsGraded} is set to {\tt true} (it is {\tt false} by default), this will check as if {\tt D} is a divisor on the $Proj$ of the ambient graded ring.
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D = divisor({2, -3}, {ideal(x, u), ideal(y, v)})
isCartier(D, IsGraded => true)
Example
R = QQ[x, y, z] / ideal(x * y - z^2);
D = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
isCartier(D, IsGraded => true)
Text
The output value of this function is stored in the divisor's cache with the value of the last {\tt IsGraded} option. If you change the {\tt IsGraded} option, the value will be recomputed.
SeeAlso
(symbol SPACE, OO, RWeilDivisor)
isQCartier
///
doc ///
Key
nonCartierLocus
(nonCartierLocus, WeilDivisor)
[nonCartierLocus, IsGraded]
Headline
the non-Cartier locus of a Weil divisor
Usage
nonCartierLocus( D, IsGraded=>b)
Inputs
D: WeilDivisor
IsGraded => Boolean
specify that we are computing this locus on a projective variety
Outputs
: Ideal
Description
Text
This function returns an ideal which vanishes on the locus where {\tt D} is not Cartier.
Example
R = QQ[x, y, u, v]/ideal(x * y - u * v);
D = divisor({1, -3, -5, 8}, {ideal(x, u), ideal(y, v), ideal(x, v), ideal(y, u)})
nonCartierLocus( D )
Text
If the option {\tt IsGraded} is set to {\tt true} (by default it is {\tt false}), it saturates with respect to the homogeneous maximal ideal.
Example
R = QQ[x, y, u, v]/ideal(x * y - u * v);
D = divisor({1, -3, -5, 8}, {ideal(x, u), ideal(y, v), ideal(x, v), ideal(y, u)})
nonCartierLocus( D, IsGraded => true )
Text
The output value of this function is stored in the divisor's cache with the value of the last {\tt IsGraded} option. If you change the {\tt IsGraded} option, the value will be recomputed.
SeeAlso
isCartier
isQCartier
///
doc ///
Key
isLinearEquivalent
(isLinearEquivalent, WeilDivisor, WeilDivisor)
[isLinearEquivalent, IsGraded]
Headline
whether two Weil divisors are linearly equivalent
Usage
flag = isLinearEquivalent(D1, D2)
Inputs
D1: WeilDivisor
D2: WeilDivisor
IsGraded => Boolean
specify that we are doing this computation on a projective algebraic variety
Outputs
flag: Boolean
Description
Text
Given two Weil divisors, this method checks whether they are linearly equivalent.
Example
R = QQ[x, y, z]/ ideal(x * y - z^2);
D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
isLinearEquivalent(D1, D2)
Text
If {\tt IsGraded} is set to {\tt true} (by default it is {\tt false}), then it treats the divisors as divisors on the $Proj$ of their ambient ring.
Example
R = QQ[x, y, z]/ ideal(x * y - z^2);
D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)})
D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)})
isLinearEquivalent(D1, D2, IsGraded => true)
SeeAlso
(symbol SPACE, OO, RWeilDivisor)
isQLinearEquivalent
///
doc ///
Key
isQCartier
(isQCartier, ZZ, WeilDivisor)
(isQCartier, ZZ, QWeilDivisor)
[isQCartier, IsGraded]
Headline
whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
Usage
isQCartier(n1, D1 )
isQCartier(n1, D2 )
Inputs
D1: WeilDivisor
D2: QWeilDivisor
n1: ZZ
IsGraded => Boolean
specify that we should do this computation on a projective algebraic variety
Outputs
b: Boolean
Description
Text
Check whether $m$ times a Weil or Q-divisor $D$ is Cartier for each $m$ from {\tt 1} to a fixed positive integer {\tt n1} (if the divisor is a {\tt QWeilDivisor}, it can search slightly higher than n1). If {\tt m * D1} is Cartier, it returns {\tt m}. If it fails to find an {\tt m}, it returns {\tt 0}.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
isQCartier(10, D1)
isQCartier(10, D2)
Example
R = QQ[x, y, u, v] / ideal(x * y - u * v);
D1 = divisor({1, 2}, {ideal(x, u), ideal(y, v)})
D2 = divisor({1/2, -3/4}, {ideal(y, u), ideal(x, v)}, CoefficientType => QQ)
isQCartier(10, D1)
isQCartier(10, D2)
Text
If the option {\tt IsGraded} is set to {\tt true} (by default it is {\tt false}), then it treats the divisor as a divisor on the $Proj$ of their ambient ring.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D1 = divisor({1, 2}, {ideal(x, z), ideal(y, z)})
D2 = divisor({1/2, 3/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
isQCartier(10, D1, IsGraded => true)
isQCartier(10, D2, IsGraded => true)
Text
The output value of this function is stored in the divisor's cache with the value of the last {\tt IsGraded} option. If you change the {\tt IsGraded} option, the value will be recomputed.
SeeAlso
isCartier
///
doc ///
Key
isQLinearEquivalent
(isQLinearEquivalent, ZZ, QWeilDivisor, QWeilDivisor)
[isQLinearEquivalent, IsGraded]
Headline
whether two Q-divisors are linearly equivalent
Usage
isQLinearEquivalent(n, D1, D2)
Inputs
n: ZZ
D1: QWeilDivisor
D2: QWeilDivisor
IsGraded => Boolean
specify that we should do this computation on a projective algebraic variety
Outputs
: Boolean
Description
Text
Given two rational divisors, this method returns {\tt true} if they linearly equivalent after clearing denominators or if some further multiple up to {\tt n} makes them linearly equivalent. Otherwise it returns {\tt false}.
Example
R = QQ[x, y, z] / ideal(x * y - z^2);
D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
E = divisor({3/4, 5/2}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
isQLinearEquivalent(10, D, E)
Text
In the above ring, every pair of divisors is Q-linearly equivalent because the Weil divisor class group is isomorphic to Z/2. However, if we don't set {\tt n} high enough, the function will return {\tt false}.
Example
R = QQ[x,y,z] / ideal(x * y - z^2);
D = divisor(x);
E = divisor(ideal(x,z));
isQLinearEquivalent(1, D, E)
isQLinearEquivalent(3, D, E)
Text
If {\tt IsGraded=>true} (the default is {\tt false}), then it treats the divisors as if they are divisors on the $Proj$ of their ambient ring.
Example
R = QQ[x, y, z] / ideal(x * y - z^2);
D = divisor({1/2, 3/4}, {ideal(x, z), ideal(y, z)}, CoefficientType => QQ)
E = divisor({3/2, -1/4}, {ideal(y, z), ideal(x, z)}, CoefficientType => QQ)
isQLinearEquivalent(10, D, E, IsGraded => true)
isQLinearEquivalent(10, 3*D, E, IsGraded => true)
Text
SeeAlso
(symbol SPACE, OO, RWeilDivisor)
isLinearEquivalent
///
doc ///
Key
(isHomogeneous, BasicDivisor)
Headline
whether the divisor is graded (homogeneous)
Usage
isHomogeneous(D)
Inputs
D: BasicDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is graded (homogeneous), otherwise it returns {\tt false}.
Example
R = QQ[x, y, z];
D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})
isHomogeneous( D )
Example
R = QQ[x, y, z];
D = divisor({1, 2}, {ideal(x * y - z^2), ideal(y^2 - z^3)})
isHomogeneous( D )
///
doc ///
Key
ideals
Headline
a symbol used as a key within the divisor cache
Description
Text
Each divisor has a cache (a {\tt CacheTable}). One of the keys of this cache is always {\tt (symbol ideals)}. This points to a {\tt MutableHashTable} whose keys are lists of elements in a Groebner basis and which themselves point to how the ideal should be displayed. Note the {\tt trim} command trims these ideals.
SeeAlso
(trim, BasicDivisor)
///
doc ///
Key
(isSmooth, Ideal)
[(isSmooth, Ideal), IsGraded]
Headline
whether R mod the ideal is smooth
Usage
isSmooth( I )
Inputs
I: Ideal
IsGraded => Boolean
specify that we should do this computation on a projective algebraic variety
Outputs
flag: Boolean
Description
Text
This function returns {\tt true} if $R/I$ is regular where $R$ is the ambient ring of $I$, otherwise it sets to {\tt false}.
Example
R = QQ[x, y, z];
I = ideal(x * y - z^2 )
isSmooth( I )
Example
R = QQ[x, y, u, v];
I = ideal(x * y - u * v)
isSmooth( I )
Example
R = QQ[x, y, z];
J = ideal( x )
isSmooth( J )
Text
If {\tt IsGraded} is set to {\tt true} (default {\tt false}) then it treats $I$ as an ideal on $Proj R$ (and it assumes $R$ is standard graded over a field). In particular, singularities at the origin (corresponding to the irrelevant ideal) are ignored.
Example
R = QQ[x, y, z];
I = ideal(x * y - z^2 )
isSmooth(I)
isSmooth(I, IsGraded => true)
Example
R = QQ[x, y, u, v];
I = ideal(x * y - u * v)
isSmooth(I)
isSmooth(I, IsGraded => true)
///
doc ///
Key
isSNC
(isSNC, BasicDivisor)
[isSNC, IsGraded]
Headline
whether the divisor is simple normal crossings
Usage
isSNC( D )
Inputs
D: BasicDivisor
IsGraded => Boolean
specify that we should do this computation on a projective algebraic variety
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is simple normal crossings, this includes checking that the ambient ring is regular.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
isSNC( D )
Example
R = QQ[x, y];
D = divisor(x*y*(x+y))
isSNC( D )
Example
R = QQ[x, y];
D = divisor(x*y*(x+1))
isSNC( D )
Text
If {\tt IsGraded} is set to {\tt true} (default {\tt false}), then the divisor is treated as if it is on the $Proj$ of the ambient ring. In particular, non-SNC behavior at the origin is ignored.
Example
R = QQ[x, y, z] / ideal(x * y - z^2 );
D = divisor({1, -2}, {ideal(x, z), ideal(y, z)})
isSNC( D, IsGraded => true )
Example
R = QQ[x, y];
D = divisor(x*y*(x+y))
isSNC( D, IsGraded => true )
Example
R = QQ[x,y,z];
D = divisor(x*y*(x+y))
isSNC( D, IsGraded => true)
Text
The output value of this function is stored in the divisor's cache with the value of the last {\tt IsGraded} option. If you change the {\tt IsGraded} option, the value will be recomputed.
///
doc ///
Key
isZeroDivisor
(isZeroDivisor, BasicDivisor)
Headline
whether the divisor is the zero divisor
Usage
isZeroDivisor(D)
Inputs
D: BasicDivisor
Outputs
: Boolean
Description
Text
This function returns {\tt true} if the divisor is zero, otherwise it returns {\tt false}.
Example
R = QQ[x, y, z];
D = divisor({1, 2, -3, 4}, {ideal(x), ideal(y), ideal(z), ideal(y)});
isZeroDivisor( D )
Example
R = QQ[x, y, z];
E = divisor({1, 2, -3, 4, 5, -9, 13, 2, -15}, {ideal(x), ideal(x), ideal(x), ideal(y), ideal(y), ideal(y), ideal(z), ideal(z), ideal(z)});
isZeroDivisor( E )
///
doc ///
Key
zeroDivisor
(zeroDivisor, Ring)
Headline
constructs the zero Weil divisor for the ring
Usage
zeroDivisor(R)
Inputs
R: Ring
Outputs
: WeilDivisor
Description
Text
Constructs the zero Weil divisor for the input ring
Example
R = QQ[x, y, z] / ideal(x * y - z^2);
D = zeroDivisor( R )
///
TEST /// --check #0 (divisor, zeroDivisor)
---check constructors and verify equality of them. this also checks some comparison
R = QQ[x,y,z]/ideal(x^2-y*z);
D = divisor(x^2);
E = divisor({2,2}, {ideal(x,y), ideal(x,z)});
F = 2*divisor(ideal(x));
G = divisor({{2, ideal(x,z)}, {2, ideal(x,y)}});
--now do a check with a divisor with a zero coefficient
H = divisor({2, 2, 0}, {ideal(x,y), ideal(x,z), ideal(x-y, x-z)});
assert( (D == E) and (E == F) and (D == F) and (D == G) and (E == G) and (F == G) and (H == D) and (H == E) and (H == F) and (H == G) );
assert( (zeroDivisor(R) == 0*D) and (zeroDivisor(R) == D-E) )
///
TEST /// --check #1 (divisor)
---check constructors and verify that they don't produce the same value with different inputs
R = QQ[x,y,z]/ideal(x^2-y*z);
D = divisor(x);
E = divisor({1,2}, {ideal(x,y), ideal(x,z)});
F = 2*divisor(ideal(x));
G = divisor({{3, ideal(x,z)}, {1, ideal(x,y)}});
assert( not ((D == E) or (E == F) or (D == F) or (D == G) or (E == G) or (F == G)) )
///
TEST /// --check #2 (coefficient, divisor)
--more construction testing, and coeff testing
R = ZZ/5[x,y,z]/ideal(x^2-y*z);
D = divisor(y^5);
assert( coefficient(ideal(y,x), D) == 10)
///
TEST /// --check #3 (primes)
R = ZZ/5[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x);
L = primes D;
assert ( (L == {ideal(x,u), ideal(x,v)}) or (L == {ideal(x,v), ideal(x,u)}) )
///
TEST /// --check #4 (getPrimeCount, cleanSupport)
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x);
assert ( (getPrimeCount(D) == 2) and (getPrimeCount(-2*D) == 2) and (getPrimeCount(0/1*D) == 0) );
E = divisor({-2, 0, 1}, {ideal(x,u), ideal(y,u), ideal(x,v)});
assert ( (getPrimeCount(E) == 3) and (getPrimeCount(cleanSupport(E)) == 2) );
F = divisor({0, 0}, {ideal(x,u), ideal(x,v)});
assert ( (getPrimeCount(cleanSupport(F)) == 0) and (getPrimeCount(cleanSupport(zeroDivisor(R))) == 0) and (getPrimeCount(0*D) == 0) );
///
TEST /// --check #5 (trim)
R = QQ[x,y,z]/(x*y-z^2);
D = divisor({2}, {ideal(x+z, z)});
I1 = (primes(D))#0;
I2 = (primes(trim(D)))#0;
s1 = set(first entries gens I1);
s2 = set(first entries gens I2);
assert( (isSubset(set{x+z,z}, s1)) and (isSubset(s1, set{x+z,z})) and (isSubset(set{x,z}, s2)) and (isSubset(s2, set{x,z})) );
assert( D == trim(D));
///
TEST /// --check #6 (gbs)
S = QQ[a,b,c,d];
T = QQ[x,y];
f = map(T, S, {x^3, x^2*y, x*y^2, y^3});
I = ker f;
R = S/I;
J = ideal(sub(b, R));
S1 = set{first entries gens gb sub(ideal(a,b,c), R), first entries gens gb sub(ideal(b,c,d), R) };
D = divisor(J);
S2 = gbs(D);
assert(isSubset(S1, S2) and isSubset(S2, S1));
assert(#(gbs(zeroDivisor(S))) == 0);
///
TEST /// --check #7 (getPrimeDivisors)
R = QQ[x,y];
D = 2*divisor(x) - 3*divisor(y) + 5*divisor(x^2 - y);
S1 = set{divisor(x), divisor(y), divisor(x^2-y)};
S2 = set(getPrimeDivisors(D));
assert( isSubset(S1, S2) and isSubset(S2, S1) and (#getPrimeDivisors(zeroDivisor(R)) == 0) );
///
TEST /// --check #8 (positivePart, negativePart)
R = QQ[x,y];
D = divisor({1, 0, -2}, {ideal(x), ideal(y), ideal(x+y)});
E = divisor({1/2, 0, -5/3}, {ideal(x^2 - y), ideal(y^2-x^3), ideal(y^2 - x^3 - x)}, CoefficientType => QQ);
F = divisor({1, 2}, {ideal(x), ideal(y)});
assert( (positivePart(D) == divisor({1}, {ideal(x)})) and (negativePart(D) == divisor({2}, {ideal(x+y)})) );
assert( (positivePart(E) == divisor({1/2}, {ideal(x^2-y)})) and (negativePart(E) == (5/3)*divisor(y^2-x^3-x)) );
assert( (not(positivePart(D) == positivePart(E))) and (not(positivePart(D) == positivePart(E))) );
assert( (not(positivePart(F) == zeroDivisor(R))) and (negativePart(F) == zeroDivisor(R)) );
///
TEST /// --check #9 (applyToCoefficients, coefficient)
R = QQ[x,y];
D = divisor({1, 0, -4}, {ideal(x), ideal(y), ideal(x^2-y^3)});
E = applyToCoefficients(D, t -> t^2);
assert( E == divisor({1, 0, 16}, {ideal(x), ideal(y), ideal(x^2-y^3)}) );
assert(applyToCoefficients(zeroDivisor(R), t->1/t) == zeroDivisor(R));
assert(applyToCoefficients(cleanSupport(D), t -> 0) == zeroDivisor(R));
assert(not ( applyToCoefficients(D, t -> -3*t) == zeroDivisor(R)) );
///
TEST ///--check #10 (toWeilDivisor, toQWeilDivisor, toRWeilDivisor)
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x*u);
E = (2/2)*D;
F = (1.0)*E;
G = toWeilDivisor(E);
H = toWeilDivisor(F);
assert((D == G) and (D == H) and (not(2*D == G)) );
assert( (not instance(toQWeilDivisor(D), WeilDivisor)) and (instance(toQWeilDivisor(D), QWeilDivisor)) );
assert( (not instance(toRWeilDivisor(D), QWeilDivisor)) and (instance(toRWeilDivisor(D), RWeilDivisor)) );
assert( (not instance(toRWeilDivisor(zeroDivisor(R)), WeilDivisor)) and (instance(toRWeilDivisor(zeroDivisor(R)), RWeilDivisor)) );
///
TEST /// --check #11, test functoriality for a finite map
R = QQ[x,y,z,w]/ideal(z^2-y*w,y*z-x*w,y^2-x*z);
T = QQ[a,b];
h = map(T, R, {a^3, a^2*b, a*b^2, b^3}); --this is the natural inclusion map
D = divisor(y*z);
E = divisor(x*w);
H = 3*divisor(a*b);
assert( (pullback(h, D, Strategy=>Primes) == H) and (pullback(h, E, Strategy=>Primes) == H) and (pullback(h, zeroDivisor(R), Strategy=>Primes) == zeroDivisor(T)) );
assert( (pullback(h, D, Strategy=>Sheaves) == H) and (pullback(h, E, Strategy=>Sheaves) == H) and (pullback(h, zeroDivisor(R), Strategy=>Sheaves) == zeroDivisor(T)) );
///
TEST /// --check #12, test functoriality for pullback under localization (ie, a flat but not finite map)
R = QQ[x,y];
S = QQ[a,b,c]/ideal(a*c-1);
h = map(S, R, {a,b});
D = divisor((x)*(y^2));
E = divisor(b^2);
assert ( (pullback(h, D, Strategy=>Primes) == E) and (not (pullback(h, D, Strategy=>Primes) == zeroDivisor(S)) ) and (pullback(h, 3*divisor(x), Strategy=>Primes) == zeroDivisor(S)) );
assert ( (pullback(h, D, Strategy=>Sheaves) == E) and (not (pullback(h, D, Strategy=>Sheaves) == zeroDivisor(S)) ) and (pullback(h, 3*divisor(x), Strategy=>Sheaves) == zeroDivisor(S)) );
///
TEST /// --check #13, test functoriality for the sheaf strategy for a blowup and check the isSNC function
R = QQ[x,y];
S = QQ[a,b];
h = map(S, R, {a*b, b});
D = divisor(x*y*(x+y));
E = divisor(y^3-x^2);
D1 = pullback(h, D, Strategy=>Sheaves);
E1 = pullback(h, E, Strategy=>Sheaves);
assert( (isSNC(D1) == true) and (isSNC(E1) == false) and (coefficient(ideal(b), D1) == 3) and (coefficient(ideal(b), E1) == 2) );
assert( (isSNC(D1) == true) and (isSNC(E1) == false)); --check cache
///
TEST /// --check #14, (findElementOfDegree)
R = QQ[x,y,z, Degrees=>{6, 10, 15}];
tt = findElementOfDegree(1, R);
ss = findElementOfDegree(7, R);
rr = findElementOfDegree(-3, R);
uu = findElementOfDegree(0, R);
vv = findElementOfDegree(-11, R);
assert( degree( (tt#0)/(tt#1) ) == {1});
assert( degree( (ss#0)/(ss#1) ) == {7});
assert( degree( (rr#0)/(rr#1) ) == {-3});
assert( degree( (uu#0)/(uu#1) ) == {0});
assert( degree( (vv#0)/(vv#1) ) == {-11});
///
TEST /// --check #15 (linear diophantine solution)
A = matrix{{2,1,4},{-5,2,6}};
b = {17, -13};
x = getLinearDiophantineSolution(b, A);
assert(entries(A*vector(x)) == b);
///
TEST /// --check #16 (canonicalDivisor, isCartier)
---check a canonical divisor and verify it is Cartier
R = QQ[x,y,z]/ideal(x^2-y*z);
K = canonicalDivisor(R);
assert(isCartier(K) == true);
assert(isCartier(K) == true) --verifying cache
///
TEST /// --check #17(canonicalDivisor, isCartier, isQCartier)
--- check a canonical divisor and verify it is not Cartier
R = QQ[a,b,c,d]/ideal(c^2-b*d, b*c-a*d, b^2-a*c);
K = canonicalDivisor(R);
assert((isCartier(K) == false) and (isQCartier(10, K) == 3));
assert((isCartier(K) == false) and (isQCartier(10, K) == 3)) --verifying cache
///
TEST /// --check #18 ([canonicalDivisor, IsGraded], isLinearEquivalent)
---some linear equivalence tests
R = QQ[x,y,z];
K = canonicalDivisor(R, IsGraded=>true);
Z = zeroDivisor(R);
D = -divisor(x*y*z);
assert(isLinearEquivalent(K, D, IsGraded=>true) and (not isLinearEquivalent(K, Z, IsGraded=>true)) and isLinearEquivalent(K, Z, IsGraded=>false) )
///
TEST /// --check #19 ([canonicalDivisor, IsGraded], isLinearEquivalent, [isQCartier, IsGraded]), some random checks on a determinantal variety
R = QQ[a,b,c,d,e,f]/ideal(a*d-b*c, a*f-b*e, c*f-d*e);
K1 = canonicalDivisor(R);
K2 = canonicalDivisor(R, IsGraded=>true);
Z = zeroDivisor(R);
assert( (isQCartier(10, K1) == 0) and (isLinearEquivalent(K1, K2) == true) and (isLinearEquivalent(Z, K1) == false));
assert( (isQCartier(10, K1) == 0)); --check cache
assert(isQCartier(10, K2, IsGraded=>true) == 1);
assert(isQCartier(10, K2, IsGraded=>true) == 1); --check cache
///
TEST /// --check #20 (canonicalDivisor), no variable case
R = QQ[];
assert(canonicalDivisor(R) == zeroDivisor(R))
///
TEST /// --check #21 (ramificationDivisor)
--- verify ramification divisor in a simple (tamely ramified) case
R = ZZ/5[x];
S = ZZ/5[y];
f = map(S, R, {y^3});
D = ramificationDivisor(f);
assert(D == divisor(y^2))
///
TEST /// --check #22 (ramificationDivisor)
--- verify the ramificationDivisor in one case where both source and target are nonsmooth
T = QQ[x,y];
R = QQ[a,b,c];
g = map(T, R, {x^2,x*y,y^2});
R = R/ker g;
S = QQ[m,n,o,p,q]
h = map(T, S, {x^4,x^3*y,x^2*y^2,x*y^3,y^4});
S = S/ker h;
f = map(R, S, {a^2,a*b,b^2,b*c,c^2});
D = ramificationDivisor(f);
assert(isZeroDivisor(D))
///
TEST /// --check #23 (ramificationDivisor)
--- do some wild ramification (due p dividing powers)
R = ZZ/3[x];
S = ZZ/3[y];
f = map(S, R, {y^3*(y+1)});
g = map(S, R, {y^3*(y^2+2)});
assert( (ramificationDivisor(f) == 3*divisor(y)) and (ramificationDivisor(g) == 4*divisor(y)) )
///
TEST /// --check #24 (ramificationDivisor,pullback)
--- do some wild ramification (due to inseparable residue field extension)
R = ZZ/3[a,b];
S = ZZ/3[x,y,z]/ideal(z^3-x*z-y^2);
f = map(S, R, {x,y});
assert( (ramificationDivisor(f) == divisor(x)) and (pullback(f, divisor(a)) == divisor(x)) )
///
TEST /// --check #25 [ramificationDivisor, IsGraded=>true] (some blowup examples)
R = QQ[x,y];
A = reesAlgebra(ideal(x,y));
B = reesAlgebra(ideal(x^2,y));
C = reesAlgebra((ideal(x,y))*(ideal(x^2,y)));
f = map(A, R);
g = map(B, R);
h = map(C, R);
D = ramificationDivisor(f, IsGraded=>true);
E = ramificationDivisor(g, IsGraded=>true);
F = ramificationDivisor(h, IsGraded=>true);
assert( (coefficients(D) == {1}) and (coefficients(E) == {2}) and ((coefficients(F) == {1,2}) or (coefficients(F) == {2,1})) )
///
TEST /// --check #26 [ramificationDivisor, IsGraded=>true] (some blowup examples in higher dimension)
R = QQ[x,y,z];
A = reesAlgebra(ideal(x,y,z));
f = map(A, R);
D = ramificationDivisor(f, IsGraded=>true);
assert( coefficients(D) == {2} )
///
TEST /// --check #27 (divisor, coefficient)
R = QQ[x,y,z]/ideal(x^2-y*z);
D = divisor(ideal(y));
assert( coefficient(ideal(x, y), D) == 2)
///
TEST /// --check #28 (divisor)
---checking divisor
R = QQ[x,y,z]/ideal(x^2-y*z);
J = ideal(x,y,z);
assert(isZeroDivisor(divisor(ideal(x,y,z))))
///
TEST /// --check #29 (isWeilDivisor)
R = QQ[x,y];
D = divisor({1/2, 0, -3/2}, {ideal(x), ideal(x+y), ideal(y)}, CoefficientType => QQ);
assert( (not isWeilDivisor(D)) and (isWeilDivisor(2*D)) )
///
TEST /// --check #30 (isWellDefined)
R = ZZ/101[x,y];
assert( isWellDefined(divisor({1}, {ideal(x)} )) );
assert( not isWellDefined(divisor({1/2}, {ideal(x)} )) );
assert( isWellDefined(divisor({1/2}, {ideal(x)}, CoefficientType=>QQ)) );
assert( not isWellDefined(divisor({1}, {ideal(x,y)})) );
assert( not isWellDefined(divisor({1}, {ideal(x^2)})) );
assert( not isWellDefined(divisor({-1.333}, {ideal(x+y)})) );
assert( not isWellDefined(divisor({-1.333}, {ideal(x+y)}, CoefficientType => QQ)) );
assert( isWellDefined(divisor({-1.333}, {ideal(x+y)}, CoefficientType => RR)) );
assert( isWellDefined(zeroDivisor(R)) );
assert( isWellDefined(divisor({1, 0}, {ideal(x), ideal(y)})) );
///
TEST /// --check #31 (isPrincipal)
R = ZZ/13[x, y, z]/ideal(x^2 - y*z);
assert( isPrincipal(zeroDivisor(R)) );
assert( isPrincipal(divisor({2, 0}, {ideal(x,y), ideal(x,z)})) );
D = 2*divisor(ideal(x,y));
assert( isPrincipal(D) );
assert( isPrincipal(D) ); --checking the cache
E = divisor(ideal(x,y));
assert( not isPrincipal(E) );
assert( not isPrincipal(E) ); --checking the cache
///
TEST /// --check #32 ([isPrincipal, isGraded=>true])
R = ZZ/5[x, y, z]/ideal(y^2*z - x^3 - x*z^2);
D = divisor(ideal(x-2*z, y)); --a point of order 2 on the elliptic curve
O = divisor(ideal(x,z));
assert( not isPrincipal(D, IsGraded=>true) );
assert( not isPrincipal(D, IsGraded=>true) ); --checking the cache
assert( not isPrincipal(2*D, IsGraded=>true) );
assert( isPrincipal(2*D-2*O, IsGraded=>true) );
///
TEST /// --check #33 (isReduced)
R = QQ[x,y,z];
assert( not isReduced(divisor(x^2)) );
assert( isReduced(divisor(x*y*(x-y^2))) );
assert( not isReduced(divisor(x/y)) );
assert( isReduced(divisor({1/1, 0}, {ideal(x), ideal(y)}, CoefficientType=>QQ)) );
assert( isReduced(divisor({1.0, 2.0/2.0}, {ideal(x), ideal(y)}, CoefficientType=>QQ)) );
assert( isReduced(zeroDivisor(R)) );
///
TEST /// --check #34 (isCartier)
---checking (divisor, Module) and isCartier
R = QQ[x,y,z]/ideal(x^2-y*z);
M = ideal(x^2,x*y,x*z)*R^1;
D = divisor(M);
E = divisor(ideal(x,y));
assert( (isCartier(D)) and (not isCartier(E)) );
assert( (isCartier(D)) and (not isCartier(E)) ) --verifying cache
///
--we also do some tests with IsGraded=>true
TEST /// --check #35 [isCartier, IsGraded=>true]
---checking and isCartier in the graded setting
R = QQ[x,y,z]/ideal(x^2-y*z);
D = divisor(ideal(x,z));
assert(isCartier(D, IsGraded=>true) and (not isCartier(D, IsGraded=>false)));
assert(isQCartier(5, D, IsGraded=>true) == 1);
assert(isQCartier(5, D, IsGraded=>true) == 1); --check cache
assert(isQCartier(5, D, IsGraded=>false) == 2);
assert(isQCartier(5, D, IsGraded=>false) == 2); --check cache
S = ZZ/5[x,y,z]/ideal(x^3+y^3-z^3); --elliptic curve
E = divisor(ideal(x,y-z));
assert(isCartier(E, IsGraded=>true));
assert(isCartier(E, IsGraded=>true)); --verifying cache
assert((not isCartier(E)) );
assert((not isCartier(E)) ); --verifying cache
///
TEST /// --check #36 [isCartier, IsGraded=>true]
---checking and isCartier in the graded setting again
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(ideal(x,u));
assert(isCartier(D, IsGraded=>true) and (not isCartier(D, IsGraded=>false)) and (isQCartier(5, D, IsGraded=>true) == 1) and (isQCartier(10, D, IsGraded=>false) == 0) );
///
TEST /// --check #37 (isLinearEquivalent)
--- checking (divisor, Module) and linearEquivalence
R = QQ[x,y,z]/ideal(x^2-y*z);
M = ideal(x, y)*R^1;
D = divisor(M);
E = divisor({-1, 2}, {ideal(x,y), ideal(x, z)});
assert(isLinearEquivalent(D, E))
///
TEST /// --check #38 [isLinearEquivalent, IsGraded=>true]
R = QQ[x,y,z];
D = 2*divisor(x);
E = divisor(y^2-x*z);
F = divisor(y^2*z - x^3 - x*z^2);
G = divisor(x-y+z);
assert(isLinearEquivalent(D,E, IsGraded=>true));
assert(isLinearEquivalent(F-G, E, IsGraded=>true));
assert(not isLinearEquivalent(G, D, IsGraded=>true));
assert(not isLinearEquivalent(E, -F, IsGraded=>true));
assert(isLinearEquivalent(zeroDivisor(R), F - G-D));
///
TEST ///--check #39 (sums a+b==b+a)
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x);
E = divisor({1,2}, {ideal(x,u), ideal(y,u)});
assert(D+E == E+D)
///
TEST ///--check #40 (sums 3*a==a+a+a but not 2*a = a+a+a)
R = ZZ/7[x,y,u,v]/ideal(x*y-u*v);
D = divisor(x);
assert((3*D == D + D+ D) and (not(2*D == D + D + D)))
///
TEST ///--check #41 (isQCartier)
R = QQ[x,y,z]/ideal(x*y-z^2);
D = divisor(ideal(x,z));
assert( isQCartier(10, D) == 2);
assert( isQCartier(10, 1/3*D) == 6);
assert( isQCartier(10, zeroDivisor(R)) == 1);
///
TEST ///--check #41 (isQCartier)
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(ideal(x,u));
assert( isQCartier(10, D) == 0);
assert( isQCartier(10, D, IsGraded=>true) == 1);
///
TEST ///--check #42 (isQCartier)
R= ZZ/13[x,y,z]/(z*y^2 - x^3 + z^2*x);
D = divisor(ideal(x-5*z, y-4*z)); --should be a point of order 4
O = divisor(ideal(z, x)); --point at infinity, cone over has order 3 in divisor class group since inflection point
assert(isQCartier(20, D-O) == 4);
assert(isQCartier(20, D) == 12); --gcd(3,4) = 12
assert(isQCartier(20, D) == 12); --check cache
assert(isQCartier(20, D, IsGraded=>true) == 1);
assert(isQCartier(20, D, IsGraded=>true) == 1); --check cache
///
TEST ///--check #43 (isQCartier)
R = ZZ/13[x,y,z]/(z*y^2-x^3-2*x*z^2);
D = divisor(ideal(x-11*z, y-1*z)); --point such that P-O has order 10
O = divisor(ideal(x,z)); --point at infinity, order 3
assert(isQCartier(20, D-O) == 10);
assert(isQCartier(20, D-O) == 10); --check cache
///
TEST ///--check #44 (isQLinearEquivalent)
R = QQ[x,y,z]/ideal(x*y-z^2);
D = divisor(ideal(x,z));
assert(not isQLinearEquivalent(1, D, zeroDivisor(R)));
assert(isQLinearEquivalent(2, D, zeroDivisor(R)));
///
TEST /// --check #45 [isQLinearEquivalent, IsGraded=>true]
R = ZZ/7[x,y,z];
Z = zeroDivisor(R);
D = 1/3*divisor(x^3+y^3+z^3);
E = divisor(x+y+z);
assert( (isQLinearEquivalent(1, D, E, IsGraded=>true) == true) and (isQLinearEquivalent(1, Z, D, IsGraded=>true) == false) and (isQLinearEquivalent(1, D, Z, IsGraded=>false) == true) )
///
TEST /// --check #46 (nonCartierLocus)
---some nonCartierLocus tests
R = QQ[x,y,z]/ideal(x^2-y*z);
m = ideal(x,y,z);
D = divisor(ideal(x,y));
assert( (radical(nonCartierLocus(D)) == m));
assert( (radical(nonCartierLocus(D)) == m)); --checking the cache
assert( (nonCartierLocus(D, IsGraded=>true) == ideal(sub(1, R))) );
assert( (nonCartierLocus(D, IsGraded=>true) == ideal(sub(1, R))) ); --checking the cache
assert( (nonCartierLocus(zeroDivisor(R)) == ideal(sub(1,R))) );
///
TEST /// --check #47 (isSNC)
R = QQ[x,y,z];
D = divisor(x*y*(x+1)*z*(z-1));
E = divisor(x*y*z);
F = divisor(x*y*z*(x+y+z));
G = divisor(x*y-z^2);
assert( (isSNC(D) == true) and (isSNC(E) == true) and (isSNC(F) == false) and (isSNC(G) == false) );
assert( (isSNC(D) == true) and (isSNC(E) == true) and (isSNC(F) == false) and (isSNC(G) == false) );--check cache
///
TEST /// --check #48 (zeroDivisor, isSNC, isQCartier, mapToProjectiveSpace)
R = QQ[x,y,z];
D = 0*divisor(x);
E = zeroDivisor(R);
assert( (D == E) and (isCartier(D) == true) and (isQCartier(5, D) == 1) and (dim source mapToProjectiveSpace(D) == 1) and (isSNC(D) == true) and (D == floor(D)) );
assert(isFreeModule OO(D) == true);
assert(isFreeModule OO(D) == true) --verifying the cache
///
TEST /// --check #49 (isZeroDivisor)
R = QQ[x,y,z];
D = divisor({0, 0}, {ideal(x), ideal(y)});
assert(isZeroDivisor(D));
assert(isZeroDivisor(zeroDivisor(R)));
assert(not isZeroDivisor(2*divisor(x)));
assert(not isZeroDivisor(-3/2*divisor(y)));
assert(not isZeroDivisor(-11.111*divisor(z)));
///
TEST /// --check #50 (isVeryAmple) checks for very ample divisors #1 (divisors on elliptic curves)
R = QQ[x,y,z]/ideal(x^3+y^3-z^3);
D = divisor(ideal(x, y-z));
D2 = 2*D;
D3 = 3*D;
assert( (isVeryAmple(0*D) == false) and (isVeryAmple(1*D) == false) and (isVeryAmple(D2) == false));
assert (isVeryAmple(D2) == false); --check cache
assert (isVeryAmple(D3) == true);
assert (isVeryAmple(D3) == true); --check cache
///
TEST /// --check #51 (isVeryAmple) checks for very ample divisors #2 (divisors on P^1 x P^1)
R = QQ[x,y,u,v]/ideal(x*y-u*v);
D = divisor(ideal(x,u));
E = divisor(ideal(x, v));
DE = D+E;
assert( (isVeryAmple(D) == false) and (isVeryAmple(E) == false) and (isVeryAmple(DE) == true) );
assert(isVeryAmple(DE) == true); --check cache
assert(isVeryAmple(zeroDivisor(R)) == false);
Dn = -D;
assert(isVeryAmple(Dn) == false);
assert(isVeryAmple(Dn) == false); --check cache
///
TEST /// --check #52 (mapToProjectiveSpace)
R = QQ[x,y];
D = 3*divisor(x);
h = mapToProjectiveSpace(D);
assert(#(first entries vars source h) == 4);
g = mapToProjectiveSpace(zeroDivisor(R));
assert(#(first entries vars source g) == 1);
f = mapToProjectiveSpace(-D);
assert(#(first entries vars source f) == 0);
///
TEST /// --check #53 (idealPower)
R = QQ[x,y];
I = ideal(x,y);
Z = ideal(sub(0, R));
W = ideal(sub(1, R));
assert( (idealPower(5, I) == ideal(x^5, y^5)) and (idealPower(3, Z) == Z) and (idealPower(11, W) == W) );
///
TEST /// --check #54 (reflexify, Ideal) and isReflexive
R = QQ[x,y];
I = ideal(x*y, x^2);
assert(reflexify(I) == ideal(x));
assert(not isReflexive(I));
assert(isReflexive(reflexify I));
J = ideal(x,y);
assert(reflexify(J) == ideal(sub(1,R)));
///
TEST /// --check #55 (reflexify, Module) and isReflexive
R = ZZ/5[x,y,z];
M = (ideal(x,y,z)*R^1)++R^1;
assert(isFreeModule(reflexify M) and (rank reflexify(M) == 2));
assert(not isReflexive(M));
assert(isReflexive(reflexify M));
///
TEST /// --check #56 (reflexivePower)
R = QQ[x,y,u,v]/ideal(x*y-u*v);
I = ideal(x,u);
Istar = reflexivePower(5, I);
assert(isSubset(set{Istar}, set primaryDecomposition(I^5)));
///
TEST /// --check #57 (torsionSubmodule)
R = QQ[x,y];
M = R^1 ++ (R^1/ideal(x^2*y));
N = R^1 ++ (R^1/ideal(x,y));
assert(ann(torsionSubmodule(M)) == ideal(x^2*y));
assert(ann(torsionSubmodule(N)) == ideal(x,y));
assert(ann(torsionSubmodule(R^0)) == ideal(sub(1, R)));
assert(ann(torsionSubmodule(R^1)) == ideal(sub(1, R)));
///
TEST /// --check #58 (dualize, Ideal)
R = QQ[x,y,u,v]/ideal(x*y-u*v);
I = ideal(x,u);
assert( isPrincipal(divisor(I) + divisor(dualize(I))) );
///
TEST /// --check #59 (dualize, Module)
R = QQ[x];
M = R^1/ideal(x^3);
assert( ann(dualize(M)) == ideal(sub(1, R)) );
S = QQ[a,b]/ideal(a*b);
N = S^1/ideal(a);
assert( ann(dualize(N)) == ideal(a) );
///
TEST /// --check #60 (isDomain)
R = QQ[x,y,z]/ideal(x^2-y*z)
assert(isDomain(R))
S = ZZ/5[x,y]/ideal(x^2*y^3)
assert(not isDomain(S))
///
TEST /// --check #61 (isSmooth)
R = QQ[x, y, u, v];
I = ideal(x * y - u * v);
assert(not isSmooth(I));
assert(isSmooth(I, IsGraded => true));
///
TEST /// --check #62 (baseLocus, mapToProjectiveSpace)
R = QQ[x,y,z]/ideal(x^3+y^3-z^3);
P = divisor(ideal(x, y- z)); --point on an elliptic curve
assert(baseLocus(P) == ideal(x,y-z));
assert(baseLocus(2*P) == ideal(sub(1,R)) );
g = mapToProjectiveSpace(2*P);
assert(instance(source(g), PolynomialRing));
assert(#(first entries vars source g) == 2); --we are mapping to P^1
///
TEST /// --check #63 (isEffective)
R = QQ[x,y];
assert( isEffective(divisor(x)) );
assert( isEffective(zeroDivisor(R)) );
assert( isEffective(0.001*divisor(x^2)) );
assert( not isEffective(divisor(x/y)) );
assert( not isEffective(divisor({2, -1}, {ideal(x), ideal(y)})) );
assert( not isEffective(divisor({2, 0, -1}, {ideal(x), ideal(x-y), ideal(y)})) );
assert( isEffective(divisor({2, 0}, {ideal(x), ideal(y)})) );
///
TEST ///--check #64 (isPrime)
R = QQ[x,y];
assert(isPrime(divisor(x)));
assert(isPrime(divisor(y^2-x^3)));
assert(not isPrime(2*divisor(y^2-x^3)));
assert(not isPrime(-3*divisor(y^2-x^3)));
assert(not isPrime(zeroDivisor(R)));
assert(not isPrime(divisor(x*y)));
///
TEST ///--check #64 (isHomogeneous)
R = QQ[x,y,z];
assert(isHomogeneous(divisor(x)));
assert(isHomogeneous(divisor(x) + 3*divisor(x^3+y^3-z^3) - 2*divisor(y^2-x*y)));
assert(isHomogeneous(zeroDivisor(R)));
assert(not isHomogeneous(divisor({1,0,2}, {ideal(x), ideal(y-x^2), ideal(z)})));
assert(isHomogeneous(cleanSupport divisor({1,0,2}, {ideal(x), ideal(y-x^2), ideal(z)})));
assert(not isHomogeneous(divisor(y^2+x^3-z^5)));
///
TEST /// --check #65 (embedAsIdeal)
R = ZZ/5[x,y];
M = ideal(x^2,x*y)*R^1;
J = embedAsIdeal(M, ReturnMap=>true);
assert(ann( (reflexify(J#0)*R^1)/((J#0)*R^1) ) == ideal(x,y));
assert(dim (ker(J#1)) <= -1);
///
TEST /// --check #66 (embedAsIdeal) (test extreme situations)
R = ZZ/5[x,y]/ideal(x*y);
M = R^1/ideal(x); --should embed as x
J = trim embedAsIdeal(M, MTries=>100);
assert(ann(R^1/J) == ideal(y));
assert(embedAsIdeal(R^0) == ideal(sub(0, R)));
///
TEST /// --check #67 (isSNC) (IsGraded=>true)
R = QQ[x,y,z]/ideal(x^3+y^3-z^3);
D = divisor(ideal(x, y-z)) + divisor(ideal(y, x-z));
assert(isSNC(D, IsGraded=>true));
assert(isSNC(D, IsGraded=>true)); --check cache
assert(not isSNC(D, IsGraded=>false));
assert(not isSNC(D, IsGraded=>false)); --check cache
assert(isSNC(zeroDivisor(R), IsGraded=>true));
///
TEST /// --check #68 (ideal(Divisor))
R = ZZ/5[x,y,z]/ideal(x^2-y*z);
D = divisor(ideal(x,z));
E = 2*D;
assert (ideal(D) == ideal(x,z));
assert (ideal(D) == ideal(x,z));--checking the cache
assert (ideal(E) == ideal(z));
assert (ideal(E) == ideal(z));--checking the cache
///
end
---***************************
---*******CHANGELOG***********
---***************************
--changes 0.3
------Addressed referee comments and made other changes
------ In particular
------------ AmbRing -> AmbientRing (throughout)
------------ CoeffType -> CoefficientType (throughout)
------------ Changed isQLinearEquivalent to take an index for which to check Q-linear equivalence up to.
------------ Added the ideal names/generators to the cache
------------ Added nonCartierLocus to the cache and added checking (updated documentation to list this as being cached)
------------ Added isPrincipal to the cache and added checking (updated documentation to list this as being cached)
------------ Added ideal(Divisor) to the cache and added checking (updated documentation to list this as being cached)
------------ Added OO(Divisor) to the cache and added checking (updated documentation to list this as being cached)
------------ Added isCartier to the cache and added checking (updated documentation to list this as being cached)
------------ Added isQCartier to the cache and added checking (updated documentation to list this as being cached)
------------ Added isSNC to the cache and added checking (updated documentation to list this as being cached)
------------ Added isVeryAmple to the cache and added checking (updated documentation to list this as being cached)
------------ The Unsafe option has been changed to Safe
------------ Numerous improvements to the documentation.
------------ The internal structure of the divisor has changed.
--changes 0.2
------Addressed referee comments and made other changes
------ In particular:
------------ removed rationalDivisor and realDivisor
------------ added cache to BasicDivisor
------------ changes to (net, BasicDivisor) changing how divisors are displayed
------------ various functions simplified
------------ various functions now do not crash when passing them boundary case input
------------ functions now specify the Type of their output
------------ verifyDivisor is now isWellDefined (also removed some checking from the constructor)
------------ coeff is now coefficient
------------ getCoeffList is now coefficients
------------ getGBList is now gbs
------------ getAmbientRing(BasicDivisor) is now ring(BasicDivisor)
------------ the key specifying the ambient ring in a BasicDivisor is now a symbol, not a string
------------ simplifyDiv is now cleanSupport,
------------ trim is now a function that calls cleanSupport and also trims the ideals displayed to the user
------------ divPlus / divMinus are now positivePart / negativePart
------------ removed isDivAmbient and sameDivAmbient
------------ renamed toQDiv -> toQWeilDivisor and toRDiv -> toRWeilDivisor and toWDiv -> toWeilDivisor
------------ renamed divisorToModule(D) -> OO(D)
------------ renamed divisorToIdeal(D) -> ideal(D)
------------ merged the WithSection versions to include a option Section=> instead
------------ idealToDivisor(Ideal) is now just divisor(Ideal)
------------ moduleToDivisor(Module) is now just divisor(Module)
------------ add support for pullback using the notation f^* D
------------ renamed moduleToIdeal -> embedAsIdeal
------------ isWDiv -> isWeilDivisor
------------ divPullBack -> pullback
------------ isDivPrime -> isPrime
------------ isDivReduced -> isReduced
------------ isDivPrincipal -> isPrincipal
------------ isDivGraded -> isHomogeneous
------------ reflexifyIdeal -> reflexify and reflexifyModule -> reflexify
------------ dualizeIdeal -> dualize and dualizeModule -> dualize
------------ added Strategy options to reflexify, dualize, isReflexive, torsionSubmodule
------------ many improvements to the documentation
------------ renamed getPrimesList -> primes
------------ added Option to choose the variable in mapToProjectiveSpace Variable=> ...
------------ substantially expanded tests
--changes 0.1sa
------Made isVeryAmple not crash if you passed it a divisor with an empty linear system
--changes 0.1s
------Added the command isVeryAmple
--changes 0.1r
------Added the command ramificationDivisor
--changes 0.1o
------Added quotes to the exports for compatibility with 1.8
--changes 0.1q
------modified moduleToIdeal to allow the user to also output the map via the ReturnMap flag.
------fixed a bug in moduleToIdeal which caused it to sometimes not produce the right output for domains.
--changes 0.1p
------added verifyDivisor
------added applyToCoefficients
------fixed some typos in documentation
------renamed module2Ideal to moduleToIdeal for consistency
------added additional testing (in particular checking things for the zero divisor)
--changes 0.1m
------added getPrimeDiviors
------renamed divAmbientRing to getAmbientRing for consistency
------substantial speed improvement for moduleToDivisor in the graded case via a change of moduleToIdeal (adding an IsGraded option)
------fixed bug in moduleToDivisor which would sometimes provide the wrong shift
------added mapToProjectiveSpace
------made divisorToIdeal work slightly better for anti-effective divisors
------added a second algorithm to pullback which works for Cartier divisors even in the map is not flat or finite
------added getLinearDiophantineSolution which makes findElementOfDegree work in the multigraded setting
----FUTURE PLANS------
--cache various computations for later use
--speed up the divisor stuff by doing some simultaneous dimension computations for checking for the zero divisor (seems to be faster frequently)
--refine the ability to compute relative canonical divisors. Right now it should handle things pretty well, but there are some ways it can be improved (can we do canonical bundle formulas for fibrations I wonder?)
--for not necessarily S2 graded rings, handle things (this should be pretty easy, it just takes some re-coding)
--can we check ampleness, is there a better way to do this than to check if some power is very ample? Hm, how do we prove that something is *not* ample...
--can we check semi-ampleness, is there a better way to do this than to check if some power induces a base point free morphism? Hm, how do we prove something is *not* semi-ample
--we ought to be able to do bigness by seeing if nD - (ample) has a section for large n (or at least give an affirmative answer)
--do lots of optimization when the IsGraded flag is true (I'm sure things can be speeded up)
--compare the current nonCartierLocus with the approach that David suggested, using minors of a presentation matrix, probably what's there now is faster but...
--making checking principalness and checking linearEquivalence work better for non-homogeneous rings and ideals. Sometimes it can give false negatives now, although the user is warned about before a (false?) negative is provided, this might be unavoidable but maybe it can give fewer false negatives.
|