1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
newPackage(
"EigenSolver",
Version => "0.1",
Date => "June 2020",
Authors => {
{Name => "Laurent Busé",
Email => "Laurent.Buse@inria.fr"},
{Name => "Justin Chen",
Email => "justin.chen@math.gatech.edu"},
{Name => "Kisun Lee",
Email => "kil004@ucsd.edu"},
{Name => "Anton Leykin",
Email => "anton.leykin@gmail.com"},
{Name => "Tomas Pajdla",
Email => "pajdla@cvut.cz"},
{Name => "Erika Pirnes",
Email => "pirnes@wisc.edu"}
},
Headline => "polynomial system solver via eigen-computations",
Keywords => {"Numerical Algebraic Geometry"},
PackageExports => {"NAGtypes"},
AuxiliaryFiles => false,
DebuggingMode => false
)
export {
"zeroDimSolve",
"Basis",
"Multiplier"
}
zeroDimSolve = method(Options => {
symbol Basis => null,
symbol Multiplier => 0,
Strategy => "Stickelberger",
Tolerance => 0.000001
})
zeroDimSolve Ideal := List => opts -> I -> ( -- Assume I is radical
if opts.Strategy == "Stickelberger" then return eigSolve1(I, opts)
else if opts.Strategy == "elimMatrixP1P1" then return eigSolveP1P1(I, opts)
else if opts.Strategy == "elimMatrixP2" then return eigSolveP2(I, opts)
else error "Unknown strategy";
)
reduceCoeffs = (A, I, m) -> transpose sub(last coefficients(A % I, Monomials => m), coefficientRing ring I)
eigSolve1 = method(Options => options zeroDimSolve) -- based on Tomas' function SolvePolyEqByEigV
eigSolve1 Ideal := List => opts -> I -> (
R := ring I;
B := if opts.Basis =!= null then opts.Basis else sub(basis(R/I), R);
f := if opts.Multiplier =!= 0 then opts.Multiplier else random(1, R);
M := reduceCoeffs(f*B, I, B);
(E, V) := eigenvectors M;
V = V*inverse diagonalMatrix V^{0};
(entries transpose(reduceCoeffs(vars R, I, B)*V))/(p -> point{p})
)
eigSolveP1P1 = method(Options => options zeroDimSolve) -- based on Laurent's code
eigSolveP1P1 Ideal := List => opts -> J -> ( -- currently assumes dim R = 2 et 2 equations, homogenizes to P^1 x P^1
R := ring J;
FF := coefficientRing R;
Lvar := vars R;
(xx0, yy0) := (symbol xx0, symbol yy0);
nR := FF[xx0,Lvar_(0,0),yy0,Lvar_(0,1)];
E0 := homogenize(homogenize(sub(J_0,nR),xx0,{1,1,0,0}),yy0,{0,0,1,1});
E1 := homogenize(homogenize(sub(J_1,nR),xx0,{1,1,0,0}),yy0,{0,0,1,1});
JnR := ideal(E0,E1); -- homogenized equations
nnR := FF[xx0,Lvar_(0,0),yy0,Lvar_(0,1),Degrees=>{{1,0},{1,0},{0,1},{0,1}}];
JnnR := sub(JnR,nnR); -- homogenized equations in the bigraded ring
deg := degrees JnnR;
satind := {(deg_0)_0+(deg_1)_0-1,(deg_0)_1+(deg_1)_1-1};
psi := map(nnR^{{0,0}}, nnR^(-(JnnR_*/degree)), gens JnnR);
elimMat := matrix basis(satind,psi);
elimMatTr := transpose sub(elimMat,CC);
numrk := numericalRank elimMatTr;
K := numericalKernel(elimMatTr,Tolerance=>opts.Tolerance);
numroots := rank source K; -- expected number of roots
D0 := K^{0..numroots-1}; -- indexed by the basis 1,y_1,..
D1 := K^{satind_1+1..satind_1+numroots}; -- indexed by the basis x_1*1,x_1*y_1,...
(EVal,EVec) := eigenvectors (inverse(D0)*D1); -- NEED GENERALIZED EIGENVALUES
EVect := D0*EVec;
apply(#EVal, i -> point{{EVal_i,EVect_(1,i)/EVect_(0,i)}}) -- roots (x_1,y_1) assuming x0=y0=1
)
eigSolveP2 = method(Options => options zeroDimSolve) -- based on Laurent's code
eigSolveP2 Ideal := List => opts -> J -> ( -- currently assumes dim R = 2 et 2 (nonlinear) equations, homogenizes to P^2
R := ring J;
FF := coefficientRing R;
Lvar := vars R;
xx0 := symbol xx0;
nR := FF[xx0,gens R];
E0 := homogenize(sub(J_0,nR),xx0);
E1 := homogenize(sub(J_1,nR),xx0);
JnR := ideal(E0,E1); -- homogenized equations
deg := degrees JnR;
satind := (deg_0)_0+(deg_1)_0-1;
psi := map(nR^{0}, nR^(-(JnR_*/degree)), gens JnR);
elimMat := matrix basis(satind,psi);
elimMatTr := transpose sub(elimMat,CC);
K := numericalKernel(elimMatTr,Tolerance=>opts.Tolerance);
numroots := rank source K; -- expected number of roots
B := flatten entries basis(satind, nR);
H := hashTable apply(#B, i -> B#i => i);
preB0 := select(B, b -> member(nR_1*b // nR_0, B));
B0 := {first preB0};
D0 := K^{H#(B0_0)}; -- assumption here
i := 0; -- initialization
-- to be optimized
while (numericalRank(D0) < numroots) and (i < numrows K) do (
i=i+1;
b := preB0_i;
addRow := K^{H#b};
if numericalRank (D0||addRow) > numericalRank(D0) then (
D0=D0||addRow;
B0=B0|{b};
);
);
--B0 := select(numroots, B, b -> member(nR_1*b // nR_0, B)); -- !! must be numerically full rank
--D0 := K^(apply(B0, b -> H#b));
B1 := apply(B0, b -> (b*nR_1)//nR_0);
D1 := K^(apply(B1, b -> H#b));
(EVal,EVec) := eigenvectors (inverse(D0)*D1); -- NEED GENERALIZED EIGENVALUES (provisionally assume no solutions at infinity, separated by x_1)
EVect := D0*EVec;
<< "numerical rank of D0=" << numericalRank D0 << endl;
apply(#EVal, i -> point{{EVal_i,EVect_(2,i)/EVect_(0,i)}}) -- BE CAREFUL: we are assuming that the three rows are indexed by 1,x1,x2.
)
-- needs "laurent-eigensolving.m2"
-- needs "documentation.m2"
TEST ///
-- Problem 2.11 in https://math.berkeley.edu/~bernd/cbms.pdf
n = 3
R = QQ[a_1..a_(n-1),b_1..b_(n-1)]
S = R[x,y]/ideal(x*y-1)
f = sum(n-1, i -> R_i*x^(i+1) + R_(n-1+i)*y^(i+1)) + x^n + y^n
I = sub(ideal apply(toList(2..2*n-1), i -> last coefficients(f^i, Monomials => {1_S})), R)
sols = zeroDimSolve(I, Multiplier => (3/8)*a_1+(3/7)*a_2+(1/3)*b_1+(5/8)*b_2)
realPts = realPoints sols
assert(#sols == 66 and #realPts == 6)
sort apply(sols, p -> norm evaluate(gens I, p))
///
TEST ///
needsPackage "ExampleSystems"
cyc6 = ideal cyclic(6, QQ)
elapsedTime sols = zeroDimSolve cyc6;
sort apply(sols, p -> norm evaluate(gens cyc6, p))
///
TEST ///
A = QQ[x0,x1,y0,y1,Degrees=>{{1,0},{1,0},{0,1},{0,1}}]
I = ideal(random({2,5},A),random({2,5},A))
R = QQ[x1,y1]
spe = map(R,A,matrix{{1,x1,1,y1}})
J=spe I
listSol = zeroDimSolve(J, Strategy => "elimMatrixP1P1")
assert(#listSol == 20)
B = QQ[x0,x1,x2]
I = ideal(random(2,B), random(2,B))
R = QQ[x1,x2]
spe = map(R,B,matrix{{1,x1,x2}})
J = spe I
elapsedTime listSol = zeroDimSolve(J, Strategy => "elimMatrixP2")
sort apply(listSol, p -> norm evaluate(gens J, p))
zSol= zeroDimSolve(J, Strategy => "Stickelberger")
netList zSol
sort apply(zSol, p -> norm evaluate(gens J, p))
assert(#listSol == product(I_*/degree/first))
///
TEST /// -- Example from Roser and Olga
needsPackage "GraphicalModels"
G=graph{{1,2},{2,3},{3,4},{1,4}}
R=gaussianRing(G)
K=undirectedEdgesMatrix R
d=4
numS=lift(d*(d+1)/2,ZZ);
lpRvar=apply(numgens(R)-numS,i->(gens(R))_i);
R2=coefficientRing(R)[lpRvar]
R2map=apply(numgens(R),i-> if i<= numgens(R)-numS-1 then (gens(R2))_i else 0)
F=map(R2,R,R2map)
K2=F(K)
X=random(ZZ^4,ZZ^4)
S=X*transpose(X)
I=ideal{jacobian ideal{determinant(K2)}-determinant(K2)*jacobian(ideal{trace(K2*S)})}
J=saturate(I,ideal{determinant(K2)})
sols = zeroDimSolve J
assert(#sols == 5)
///
beginDocumentation()
doc ///
Key
EigenSolver
Headline
polynomial system solver via eigen-computations
Description
Text
This package implements a solver for zero-dimensional polynomial systems
based on eigenvalue/eigenvector computations. The theoretical basis for this is
Stickelberger's Theorem (cf. [1, Theorem 2.6], also [2]), which states that if
I is a zero-dimensional ideal in a polynomial ring $R$ over an algebraically closed
field $k$, then the points of V(I) can be obtained as eigenvalues of multiplication
matrices corresponding to variables, on the finite-dimensional $k$-vector space $R/I$.
Since the main solving is done via linear algebra, this solver can be significantly quicker
than other solvers performing nonlinear computations. However, a Grobner basis of the
ideal I is still needed, e.g. in order to obtain the sizes of the multiplication matrices.
Example
needsPackage "ExampleSystems"
I = ideal cyclic(6, QQ)
elapsedTime sols = zeroDimSolve I;
#sols -- 156 solutions
Text
The authors would like to acknowledge the June 2020 Macaulay2 workshop held
virtually at Warwick, where this package was first developed.
Text
{\bf References}:
Code
UL {
"[1] Sturmfels, Bernd. Solving systems of polynomial equations. No. 97. American Mathematical Soc., 2002",
"[2] Cox, David A. Stickelberger and the Eigenvalue Theorem. https://arxiv.org/abs/2007.12573"
}
///
doc ///
Key
zeroDimSolve
(zeroDimSolve, Ideal)
Basis
Multiplier
Headline
zero-dimensional polynomial system solver
Usage
zeroDimSolve(I)
Inputs
I:Ideal
a zero-dimensional ideal
Outputs
:List
of points on V(I)
Description
Text
This function is a general-purpose solver for zero-dimensional
polynomial systems. The default {\tt Strategy} is {\tt "Stickelberger"},
which leverages Stickelberger's theorem to compute the coordinates
of solution points as (joint) eigenvalues of multiplication matrices
corresponding to the variables of the ring.
The option {\tt Multiplier} allows the user to specify the linear form
used to construct the multiplication matrix. For example, if the ambient
polynomial ring is $QQ[x,y,z]$ and only the $y$-coordinates of solutions
are needed, then one can specify {\tt Multiplier => y} (and ignore the
coordinates of other solution points). By default, a random linear form is
used: due to this, it may be helpful to run this function a couple of times
to minimize the likelihood of a "bad" linear form being chosen.
The option {\tt Basis} allows the user to specify a basis of the quotient
$R/I$, if one is known. The default value is null, in which case a basis
for $R/I$ will be computed via a Grobner basis computation.
In general, {\tt Strategy => "Stickelberger"} does not require the
input ideal I to be radical, so solutions may appear with multiplicity:
Example
R = QQ[x,y]
I = ideal"x2,xy,y3"
sols = zeroDimSolve I
#sols == 4 and all(sols, p -> clean(1e-16, matrix p) == 0)
SeeAlso
"solveSystem"
///
end--
restart
needsPackage "EigenSolver"
loadPackage("EigenSolver", Reload => true)
installPackage("EigenSolver", RemakeAllDocumentation => true)
check "EigenSolver"
|