1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
|
-*
Copyright 2013 Luis David Garcia Puente, Sonja Petrovic,
Mike Stillman, Seth Sullivant.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
Copyright 2020 Carlos Amendola, Luis David Garcia Puente, Roser Homs Pons,
Olga Kuznetsova, Harshit J Motwani.
You may redistribute this file under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of
the License, or any later version.
*-
-- -*- coding: utf-8-unix -*-
newPackage(
"GraphicalModels",
Version => "2.0",
Date => "November, 2020",
Authors => {
{Name=> "Carlos Amendola",
Email=> "carlos.amendola@tum.de",
HomePage=>"http://www.carlos-amendola.com/"},
{Name => "Luis David Garcia Puente",
Email => "lgarcia@shsu.edu",
HomePage => "http://www.shsu.edu/~ldg005"},
{Name=> "Roser Homs Pons",
Email=> "roser.homs@tum.de",
HomePage=>"https://personal-homepages.mis.mpg.de/homspons/index.html"},
{Name=> "Olga Kuznetsova",
Email=> "kuznetsova.olga@gmail.com",
HomePage=>"https://okuznetsova.com"},
{Name=> "Harshit J Motwani",
Email=> "harshitmotwani2015@gmail.com",
HomePage=>"https://sites.google.com/view/harshitjmotwani/home"},
{Name=> "Sonja Petrovic",
Email=> "sonja@psu.edu",
HomePage=>"http://www.personal.psu.edu/sxp61"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/~mike/"},
{Name=> "Seth Sullivant",
Email=> "smsulli2@ncsu.edu",
HomePage=>"http://www4.ncsu.edu/~smsulli2/"}
--{Name=> "Contributing authors and collaborators: Alexander Diaz, Shaowei Lin, David Murrugarra",
-- Email=> "",
-- HomePage=>""}
},
Headline => "discrete and Gaussian graphical models",
Keywords => {"Algebraic Statistics", "Graph Theory"},
PackageExports => { "Graphs","StatGraphs" },
PackageImports => { "IntegralClosure", "Elimination" },
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "https://msp.org/jsag/",
"article title" => "Graphical Models",
"acceptance date" => "2013-03-05",
"published article URI" => "https://msp.org/jsag/2013/5-1/p01.xhtml",
"published article DOI" => "10.2140/jsag.2013.5.1",
"published code URI" => "https://msp.org/jsag/2013/5-1/jsag-v5-n1-x01-code.zip",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/GraphicalModels.m2",
"release at publication" => "68f41d641fadb0a1054023432eb60177f1d7cbd9",
"version at publication" => "1.0",
"volume number" => "5",
"volume URI" => "https://msp.org/jsag/2013/5-1/"
},
DebuggingMode => false
)
export {"bidirectedEdgesMatrix",
"Coefficients",
"conditionalIndependenceIdeal",
"covarianceMatrix",
"directedEdgesMatrix",
"discreteVanishingIdeal",
"gaussianMatrices",
"gaussianParametrization",
"gaussianVanishingIdeal",
"gaussianRing",
"globalMarkov",
"hiddenMap",
"identifyParameters",
"inverseMarginMap",
"localMarkov",
"markovMatrices",
"markovRing",
"marginMap",
"pairMarkov",
"trekIdeal",
"trekSeparation",
"SimpleTreks",
"undirectedEdgesMatrix",
"VariableName",
"sVariableName",
"kVariableName",
"lVariableName",
"pVariableName",
"graphType",
"gaussianRingData",
"sVar",
"kVar",
"pVar",
"lVar",
"nn",
"compU",
"compW",
"OldVersion" --optional argument in gaussianVanishingIdeal to use old method for gaussianRings coming from directed graphs
}
markovRingData = local markovRingData
markovVariables = local markovVariables
gaussianVariables = local gaussianVariables
numberOfEliminationVariables = local numberOfEliminationVariables
--**************************--
-- INTERNAL ROUTINES --
--**************************--
--*************************************--
-- Functions used by Markov methods --
--*************************************--
--------------------------------------------
-- bayesBall
-- A is a set in 1..n (n = #G)
-- C is a set in 1..n (the "blocking set")
-- G is a DAG
-- Returns the subset B of 1..n which is independent of A given C.
-- The algorithm is the Bayes Ball algorithm, as implemented by Luis Garcia-Puente,
-- after the paper of Ross D. Shachter.
--------------------------------------------
bayesBall = (A,C,G) -> (
V := vertices G; -- it was: sort vertices G;
visited := new MutableHashTable from apply(V, k-> k=>false);
blocked := new MutableHashTable from apply(V, k-> k=>false);
up := new MutableHashTable from apply(V, k-> k=>false);
down := new MutableHashTable from apply(V, k-> k=>false);
top := new MutableHashTable from apply(V, k-> k=>false);
bottom := new MutableHashTable from apply(V, k-> k=>false);
vqueue := new MutableList from toList A; -- toList A;
-- Now initialize vqueue, set blocked
scan(vqueue, a -> up#a = true);
scan(toList C, c -> blocked#c = true);
local pa;
local ch;
while #vqueue > 0 do (
v := vqueue#-1;
vqueue = drop(vqueue,-1);
visited#v = true;
if not blocked#v and up#v
then (
if not top#v then (
top#v = true;
pa = toList parents(G,v);
scan(pa, i -> up#i = true);
vqueue = join(vqueue,pa);
);
if not bottom#v then (
bottom#v = true;
ch = toList children(G,v);
scan(ch, i -> down#i = true);
vqueue = join(vqueue,ch);
);
);
if down#v
then (
if blocked#v and not top#v then (
top#v = true;
pa = toList parents(G,v);
scan(pa, i -> up#i = true);
vqueue = join(vqueue,pa);
);
if not blocked#v and not bottom#v then (
bottom#v = true;
ch = toList children(G,v);
scan(ch, i -> down#i = true);
vqueue = join(vqueue,ch);
);
);
);
set toList select(V, i -> not blocked#i and not bottom#i)
)
--*************************************--
-- Functions (local) used throughout --
--*************************************--
---------------------------------------------------------------
-- cartesian
-- cartesian({d_1,...,d_n}) returns the cartesian product
-- of {0,...,d_1-1} x ... x {0,...,d_n-1}
---------------------------------------------------------------
cartesian := (L) -> (
if #L == 1 then
return toList apply (L#0, e -> 1:e);
L0 := L#0;
Lrest := drop (L,1);
C := cartesian Lrest;
flatten apply (L0, s -> apply (C, c -> prepend (s,c))))
--------------------------------------------
-- position of an element x in a list h
--------------------------------------------
pos := (h, x) -> position(h, i->i===x)
--------------------------------------------------------------------------
-- possibleValues ((d_1,...,d_n),A) returns the cartesian product
-- of all d_i's such that the vertex i is a member of the list A
-- it assumes that the list A is a list of integers.
--------------------------------------------------------------------------
possibleValues := (d,A) ->
cartesian (toList apply(0..#d-1, i ->
if member(i,A)
then toList(1..d#i)
else {0}))
-------------------------------------------------------
-- prob((d_1,...,d_n),(s_1,dots,s_n))
-- Note: this function assumes that R is a markovRing
-------------------------------------------------------
prob := (R,s) -> (
d := R.markovRingData;
p := i -> R.markovVariables#i;
L := cartesian toList apply (#d, i ->
if s#i === 0
then toList(1..d#i)
else {s#i});
sum apply (L, v -> p v))
-------------------------------------------------------------------------------
-- takes a list A, and a sublist B of A, and converts
-- the membership sequence of 0's and 1's of elements of B in A to binary
-------------------------------------------------------------------------------
setToBinary := (A,B) -> sum(toList apply(0..#A-1, i->2^i*(if (set B)#?(A#i) then 1 else 0)))
-------------------------------------------------------
-- returns all subsets of B which contain A:
-------------------------------------------------------
subsetsBetween := (A,B) -> apply(subsets ((set B) - A), i->toList (i+set A))
--***********************************************************************************--
-- Functions used within Markov relation routines to remove redundant CI statements --
--***********************************************************************************--
--------------------------------------------------------------------------------------
-- Removing redundant statements:
-- called from local, global, and pairwise Markov methods.
--
-- A conditional independence statement is a list {A,B,C}
-- where A,B,C are (disjoint) subsets of labels for nodes in the graph.
-- It should be interpreted as: A independent of B given C.
-- A dependency list is a list of dependencies.
--
-- We have several simple routines to remove the most obvious redundant elements,
-- but a more serious attempt to remove dependencies could be made.
--------------------------------------------------------------------------------------
equivStmts = (S,T) -> S#2 === T#2 and set{S#0,S#1} === set{T#0,T#1}
-- If S and T represent exactly the same dependency, return true.
setit = (d) -> {set{d#0,d#1},d#2}
-- More serious removal of redundancies.
under = (d) -> (
d01 := toList d_0;
d0 := toList d01_0;
d1 := toList d01_1;
d2 := toList d_1;
e0 := subsets d0;
e1 := subsets d1;
z1 := flatten apply(e0, x -> apply(e1, y -> (
{set{d01_0 - set x, d01_1 - set y}, set x + set y + d_1})));-- see caveat for removeRedundants
z2 := flatten apply(e0, x -> apply(e1, y -> (
{set{d01_0 - set x, d01_1 - set y}, d_1})));-- see caveat for removeRedundants
z := join(z1,z2);
z = select(z, z0 -> not member(set{}, z0_0));
set z
)
sortdeps = Ds -> (
-- input: ds
-- first make list where each element is {-a*b, set{A,B}, set C}
-- sort the list
-- remove the first element
i := 0;
ds := apply(Ds, d -> (x := toList d#0; i=i+1; { - #x#0 * #x#1, i, d#0, d#1}));
ds = sort ds;
apply(ds, d -> {d#2, d#3})
)
normalizeStmt = (D) -> (
-- D has the form: {set{set{A},set{B}},set{C}}
-- output is {A,B,C}, where A,B,C are sorted in increasing order
-- and A#0 < B#0
D0 := sort apply(toList(D#0), x -> sort toList x);
D1 := toList(D#1);
{D0#0, D0#1, D1}
)
minimizeStmts = (Ds) -> (
-- each element of Ds should be a list {A,B,C}
answer := {};
-- step 1: first make the first two elements of each set a set
Ds = Ds/setit;
while #Ds > 0 do (
Ds = sortdeps Ds;
f := Ds_0;
funder := under f;
answer = append(answer, f);
Ds = set Ds - funder;
Ds = toList Ds;
);
apply(answer, normalizeStmt))
--------------------------------------------------------------------------------------
-- removeRedundants: the general function
-- Ds is a list of triples of sets {A,B,C}
-- test1: returns true if D1 can be removed
-- Return a sublist of Ds which removes any that test1 declares not necessary.
--
-- **CAVEAT**
-- This works just fine when used internally, e.g. from localMarkov.
-- However, if we export it and try to use it, there is a problem: we seem to be
-- attempting to add a List to a Set in the two marked lines of the function "under".
--------------------------------------------------------------------------------------
removeRedundants = (Ds) -> (
test1 := (D1,D2) -> (D1_2 === D2_2 and
((isSubset(D1_0, D2_0) and isSubset(D1_1, D2_1))
or (isSubset(D1_1, D2_0) and isSubset(D1_0, D2_1))));
Ds = apply(Ds, d -> {set{d#0,d#1}, d#2});
Ds = unique Ds; -- first remove non-unique elements, if any.
Ds = apply(Ds, d -> append(toList(d#0), d#1));
c := toList select(0..#Ds-1, i -> (
a := Ds_i;
D0 := drop(Ds,{i,i});
all(D0, b -> not test1(a,b))));
minimizeStmts(Ds_c))
--**************************--
-- METHODS --
--**************************--
--****************************************************************************************--
-- Methods for creating conditional independence statements from graphs and digraphs --
--****************************************************************************************--
----------------------------------------------------
-- pairMarkov
-- pairMarkov Graph does the following:
-- given a graph G, returns a list of triples {A,B,C}
-- where A,B,C are disjoint sets of the form:
-- for all non-edges {i,j}: {i,j, all other vertices}
-- pairMarkov Digraph does the following:
-- given a digraph G, returns a list of triples {A,B,C}
-- where A,B,C are disjoint sets, and for every vertex v
-- and non-descendent w of v,
-- {v, w, nondescendents(G,v) - w}
----------------------------------------------------
pairMarkov = method()
pairMarkov Graph := List => (G) -> (
removeRedundants flatten apply(vertices G, v -> ( -- removed sort
apply(toList nonneighbors(G,v), non-> (
{set {v}, set {non}, set vertices G - set {v} - set {non}}
)
)
)
)
)
pairMarkov Digraph := List => (G) -> (
if isCyclic G then error("digraph must be acyclic");
removeRedundants flatten apply(vertices G, v -> ( -- removed sort
ND := nondescendents(G,v);
W := ND - parents(G,v);
apply(toList W, w -> {set {v}, set{w}, ND - set{w}}))))
----------------------------------------------------
-- localMarkov Graph
-- localMarkov Digraph
-- Given a graph G, return a list of triples {A,B,C}
-- of the form {v, nonneighbors of v, all other vertices }
-- Given a digraph G, return a list of triples {A,B,C}
-- of the form {v, nondescendents - parents, parents}
----------------------------------------------------
localMarkov = method()
localMarkov Graph := List => (G) -> (
removeRedundants apply(vertices G, v -> ( -- removed sort
{set {v}, nonneighbors(G,v), set vertices G - set {v} - nonneighbors(G,v)}
)
)
)
localMarkov Digraph := List => (G) -> (
if isCyclic G then error("digraph must be acyclic");
result := {};
scan(vertices G, v -> ( -- removed sort
ND := nondescendents(G,v);
P := parents(G,v);
if #(ND - P) > 0 then
result = append(result,{set{v}, ND - P, P})));
removeRedundants result)
------------------------------------------------------------------------------
-- globalMarkov Graph
-- globalMarkov Digraph
-- Given a graph G, return a list of triples {A,B,C}
-- of the form {A,B,C} if C separates A and B in the graph.
-- Given a graph G, return a complete list of triples {A,B,C}
-- so that A and B are d-separated by C (in the graph G).
-- If G is large, this should maybe be rewritten so that
-- one huge list of subsets is not made all at once
------------------------------------------------------------------------------
globalMarkov = method()
globalMarkov Graph := List => (G) ->(
AX := subsets vertices G;
AX = drop(AX,1); -- drop the empty set
AX = drop(AX,-1); -- drop the entire set
-- product should apply * to entire list. note that * of sets is intersection.
statements := for A in AX list (
B:=product apply(A, v-> nonneighbors(G,v) ); --this is the list of all B's
if #B === 0 then continue; -- need both A and B to be nonempty
C := (vertices G) - set A - B ;
{set A, B, set C}
);
removeRedundants statements
)
globalMarkov Digraph := List => (G) -> (
if isCyclic G then error("digraph must be acyclic");
V := vertices G; -- removed sort
result := {};
AX := subsets V;
AX = drop(AX,1); -- drop the empty set
AX = drop(AX,-1); -- drop the entire set
scan(AX, A -> (
A = set A;
Acomplement := toList(set V - A);
CX := subsets Acomplement;
CX = drop(CX,-1); -- we don't want C to be the entire complement
scan(CX, C -> (
C = set C;
B := bayesBall(A,C,G);
if #B > 0 then (
B1 := {A,B,C};
if all(result, B2 -> not equivStmts(B1,B2))
then
result = append(result, {A,B,C});
)))));
removeRedundants result
)
--*************************************************************************
-- Methods for creating polynomial rings that carry information about --
-- random variables and/or underlying graph, digraph or mixed graph --
--*************************************************************************
------------------------------------------------------------------------------------------------
-- markovRing Sequence
-- Outputs a polynomial ring whose indeterminates are joint probabilities of discrete
-- random variables with a given number of states.
-- d should be a sequence of integers di >= 1
--
-- NOTE: there is a mutable hash table of all Markov rings created, so as to not re-create rings!
-- the hashtable is indexed by the sequence d, the coefficient ring kk, and the variable name p,
-- as this information identifies the Markov ring uniquely.
------------------------------------------------------------------------------------------------
toSymbol = (p) -> (
if instance(p,Symbol) then p
else
if instance(p,String) then getSymbol p
else
error ("expected a string or symbol, but got: ", toString p))
markovRingList := new MutableHashTable;
markovRing = method(Dispatch=>Thing, Options=>{Coefficients=>QQ,VariableName=> "p"})
markovRing Sequence := Ring => opts -> d -> (
if any(d, di -> not instance(di,ZZ) or di <= 0)
then error "markovRing expected positive integers";
kk := opts.Coefficients;
p := toSymbol opts.VariableName;
if not markovRingList#?(d,kk,p) then (
start := (#d):1;
vlist := start .. d;
R := kk(monoid [p_start .. p_d, MonomialSize=>16]);
R.markovRingData = d;
H := new HashTable from apply(#vlist, i -> vlist#i => R_i);
R.markovVariables = H;
markovRingList#(d,kk,p) = R;
);
markovRingList#(d,kk,p))
------------------------------------------------------------------------------------------------------------------------------------
-- gaussianRing ZZ
-- gaussianRing Graph
-- gaussianRing Digraph
-- gaussianRing MixedGraph
-- Outputs a polynomial ring whose indeterminates are joint probabilities of Gaussian
-- random variables corresponding to vertices of a graph (or variables 1..n).
-- NOTE: the mutable hash table of all gaussian rings created is indexed by:
-- (coefficient field, variable name, number of r.v.'s) --in case of ZZ input
-- (coefficient field, variable name, vertices of the directed graph) --in case of Digraph input
-- (coefficient field, variable name, whole undirected graph) --in case of Graph input
-- (coefficient field, variable name s, variable name l, variable name p, vertices of the mixed graph) -- in case of MixedGraph input.
------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-----AUXILIAR FUNCTIONS FOR GAUSSIANRING MIXED GRAPHS---------------------------
--------------------------------------------------------------------------------
-- neighbors of a vertex of a mixed graph considering the underlying graph
-- of its graph, digraph and bigraph
-- INPUT:
-- g=mixedGraph (collateVertices requires mixedGraph)
-- v=element in vertices g
-- OUTPUT:
-- V=set that contains all neighboring vertices of v in the underlying graph of g
neighborsMG := (g,v) -> (
i := position(vertices g, u -> u === v);
if i === null then error "v is not a vertex of g.";
G:= collateVertices g;
V:=set {};
for h in keys G#graph do V=V+neighbors(underlyingGraph G#graph#h,v);
V
)
-- neighbors of a vertex of a mixed graph considering the underlying graph
-- of its graph, digraph and bigraph
-- INPUT:
-- g=mixedGraph (neighborsMG requires mixedGraph)
-- OUTPUT:
-- C=list of
connectedComponentsMG := (g) -> (
V := vertices g;
while #V != 0 list (
C := {first V};
i := 0;
while i!= #C do (
N := toList neighborsMG(g, C_i);
C = unique(C | N);
V = V - set C;
i = i + 1;
if #V == 0 then break;
);
C
)
)
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
gaussianRingList := new MutableHashTable;
gaussianRing = method(Dispatch=>Thing, Options=>{Coefficients=>QQ, sVariableName=>"s", lVariableName=>"l",
pVariableName=>"p", kVariableName=>"k"})
gaussianRing ZZ := Ring => opts -> (n) -> (
-- s_{1,2} is the (1,2) entry in the covariance matrix.
-- this assumes r.v.'s are labeled by integers.
s := toSymbol opts.sVariableName;
kk := opts.Coefficients;
if (not gaussianRingList#?(kk,s,n)) then (
--(kk,s,n) uniquely identifies gaussianRing in case of ZZ input.
w := flatten toList apply(1..n, i -> toList apply(i..n, j -> (i,j)));
v := apply (w, ij -> s_ij);
R := kk(monoid [v, MonomialSize=>16]);
-- create gaussianRingData HashTable
D := new MutableHashTable;
D#nn = n;
R.gaussianRingData = new HashTable from D;
-- create gaussianVariables HashTable
H := new HashTable from apply(#w, i -> w#i => R_i);
R.gaussianVariables = H;
-- fill into internal gaussianRingList
gaussianRingList#((kk,s,n)) = R;);
gaussianRingList#((kk,s,n))
)
gaussianRing Graph := Ring => opts -> (g) -> (
bb := graph g;
vv := sort vertices g;
s := toSymbol opts.sVariableName;
k := toSymbol opts.kVariableName;
kk := opts.Coefficients;
if (not gaussianRingList#?(kk,s,k,bb)) then (
--(kk,s,k,bb) uniquely identifies gaussianRing in case of Graph input.
sL := delete(null, flatten apply(vv, x-> apply(vv, y->if pos(vv,x)>pos(vv,y) then null else s_(x,y))));
kL := join(apply(vv, i->k_(i,i)),delete(null, flatten apply(vv, x-> apply(toList bb#x, y->if pos(vv,x)>pos(vv,y) then null else k_(x,y)))));
m := #kL; --eliminate the k's
R := kk(monoid [kL,sL,MonomialOrder => Eliminate m, MonomialSize=>16]);
-- create gaussianVariables hash table: (symbol s)_(i,j) => ring var with the same name, same for l, p.
H := new MutableHashTable;
nextvar := 0;
for v in kL do (H#v = R_nextvar; nextvar = nextvar+1);
for v in sL do (H#v = R_nextvar; nextvar = nextvar+1);
R.gaussianVariables = new HashTable from H;
R#numberOfEliminationVariables = m;
-- create gaussianRingData hashTable
D := new MutableHashTable;
D#nn=#vv;
D#sVar=s;
D#kVar=k;
R.gaussianRingData=new HashTable from D;
-- create attributes of the ring containing class and graph
R.graphType=class g;
R.graph= g;
-- fill into internal gaussianRingList
gaussianRingList#((kk,s,k,bb)) = R;);
gaussianRingList#((kk,s,k,bb))
)
gaussianRing Digraph := Ring => opts -> (G) -> (
return gaussianRing (mixedGraph G, opts);
)
gaussianRing Bigraph := Ring => opts -> (G) -> (
return gaussianRing (mixedGraph G, opts);
)
gaussianRing MixedGraph := Ring => opts -> (g) -> (
-- convert mixedGraph to hash table
gg:= graph g;
-- sort vertices (only according to vertex number)
vv := sort vertices g;
--vv := join(sort U,sort W);
-- add all vertices to all graphs and convert them to hash tables
G := graph collateVertices g;
dd := graph G#Digraph;
bb := graph G#Bigraph;
uu := graph G#Graph;
-- compute partition V=U\cup W
if g#graph#Graph===graph{} then (U:={}; W:=vv) else (
-- compute partition V=U\cup W
(U,W)=partitionLMG g;
);
-- set ring variables
s := toSymbol opts.sVariableName;
l := toSymbol opts.lVariableName;
p := toSymbol opts.pVariableName;
k := toSymbol opts.kVariableName;
kk := opts.Coefficients;
if (not gaussianRingList#?(kk,s,k,l,p,vv)) then (
--(kk,s,k,l,p,vv) uniquely identifies gaussianRing in case of MixedGraph input.
sL := delete(null, flatten apply(vv, x-> apply(vv, y->if pos(vv,x)>pos(vv,y) then null else s_(x,y))));
kL := join(apply(U, i->k_(i,i)),delete(null, flatten apply(U, x-> apply(toList uu#x, y->if pos(vv,x)>pos(vv,y) then null else k_(x,y)))));
lL := delete(null, flatten apply(vv, x-> apply(toList dd#x, y->l_(x,y))));
pL := join(apply(W, i->p_(i,i)),delete(null, flatten apply(W, x-> apply(toList bb#x, y->if pos(vv,x)>pos(vv,y) then null else p_(x,y)))));
m := #kL+#lL+#pL;
R := kk(monoid [kL,lL,pL,sL,MonomialOrder => Eliminate m, MonomialSize=>16]);
-- create gaussianVariables hash table: (symbol s)_(i,j) => ring var with the same name, same for l, p.
H := new MutableHashTable;
nextvar := 0;
for v in kL do (H#v = R_nextvar; nextvar = nextvar+1);
for v in lL do (H#v = R_nextvar; nextvar = nextvar+1);
for v in pL do (H#v = R_nextvar; nextvar = nextvar+1);
for v in sL do (H#v = R_nextvar; nextvar = nextvar+1);
R.gaussianVariables = new HashTable from H;
R#numberOfEliminationVariables = m;
-- create gaussianRingData hashTable
D := new MutableHashTable;
D#nn=#vv;
D#sVar=s;
D#kVar=k;
D#compU=U;
D#compW=W;
D#lVar=l;
D#pVar=p;
R.gaussianRingData=new HashTable from D;
-- create attributes of the ring containing class and graph
R.graphType=class g;
R.graph= g;
-- fill into internal gaussianRingList
gaussianRingList#((kk,s,k,l,p,vv)) = R;);
gaussianRingList#((kk,s,k,l,p,vv))
)
--************************************************************************
-- Methods for creating matrices relevant for the graphical models --
-- (covariance matrix, matrices whose minors vanish on the model) --
--************************************************************************
------------------------------------------------------------------
-- undirectedEdgesMatrix Ring
------------------------------------------------------------------
undirectedEdgesMatrix = method()
undirectedEdgesMatrix Ring := Matrix => R -> (
if not (R.graphType === MixedGraph or R.graphType === Graph)
then error "Expected ring created with gaussianRing of a Graph or MixedGraph.";
-- retrieve graph (of the right type)
g:=R.graph;
-- For graphs, turn g into a hashtable and sort vertices.
if (instance(g,Graph))
then (uu:=graph g; vv:= sort vertices g)
-- For mixedGraphs, turn undirected edges into a hashtable
-- (considering all the vertices of the mixedGraph)
-- and sort vertices in component U of the partition.
else (G:= graph collateVertices g; uu=graph G#Graph; vv= sort R.gaussianRingData#compU);
n := #vv; --appropriate number of vertices to take into account
k := R.gaussianRingData#kVar; -- k variables
H := R.gaussianVariables; -- variables in the gaussianRing
-- Build matrix
PM := mutableMatrix(R,n,n);
scan(vv,i->PM_(pos(vv,i),pos(vv,i))=H#(k_(i,i)));
scan(vv,i->scan(toList uu#i, j->PM_(pos(vv,i),pos(vv,j))=if pos(vv,i)<pos(vv,j) then H#(k_(i,j)) else H#(k_(j,i))));
matrix PM
)
------------------------------------------------------------------
-- directedEdgesMatrix Ring
------------------------------------------------------------------
directedEdgesMatrix = method()
directedEdgesMatrix Ring := Matrix => R -> (
if not (R.graphType === MixedGraph) then error "expected a ring created with gaussianRing of a MixedGraph";
g := R.graph;
G := graph collateVertices g;
dd := graph G#Digraph;
vv := sort vertices g;
n := R.gaussianRingData#nn;
l := R.gaussianRingData#lVar; -- l variables
H := R.gaussianVariables;
LM := mutableMatrix(R,n,n);
scan(vv,i->scan(toList dd#i, j->LM_(pos(vv,i),pos(vv,j))=H#(l_(i,j))));
matrix LM)
------------------------------------------------------------------
-- bidirectedEdgesMatrix Ring
------------------------------------------------------------------
bidirectedEdgesMatrix = method()
bidirectedEdgesMatrix Ring := Matrix => R -> (
if not (R.graphType === MixedGraph) then error "expected a ring created with gaussianRing of a MixedGraph.
Bigraphs alone are not accepted. If you need to work with one, please reformulate it as a Graph. ";
g := R.graph;
G := graph collateVertices g;
bb := graph G#Bigraph;
-- take only component W of mixedGraph
vv := sort R.gaussianRingData#compW;
n := #vv;
p := R.gaussianRingData#pVar; -- p variables
H := R.gaussianVariables;
PM := mutableMatrix(R,n,n);
scan(vv,i->PM_(pos(vv,i),pos(vv,i))=H#(p_(i,i)));
scan(vv,i->scan(toList bb#i, j->PM_(pos(vv,i),pos(vv,j))=if pos(vv,i)<pos(vv,j) then H#(p_(i,j)) else H#(p_(j,i))));
matrix PM)
------------------------------------------------------------------
-- markovMatrices(Ring,List,List)
-- markovMatrices(Ring,List)
------------------------------------------------------------------
markovMatrices = method()
markovMatrices(Ring,List,List) := (R,Stmts,VarNames) -> (
-- R should be a markovRing and Stmts a list of independence statements.
if not R.?markovRingData then error "expected a ring created with markovRing";
d := R.markovRingData;
if not isSubset ( set unique flatten flatten Stmts, set VarNames) then error "variables names in statements do not match list of random variable names";
flatten apply(Stmts, stmt -> (
Avals := possibleValues(d, apply( stmt#0, i -> pos( VarNames,i)) );
Bvals := possibleValues(d, apply( stmt#1, i -> pos( VarNames,i)) );
Cvals := possibleValues(d, apply( stmt#2, i -> pos( VarNames,i)) );
apply(Cvals, c -> (
matrix apply(Avals,
a -> apply(Bvals, b -> (
e := toSequence(toList a + toList b + toList c);
prob(R,e))))))))
)
markovMatrices(Ring,List) := (R,Stmts) -> (
-- R should be a markovRin and Stmts a list of independence statements.
if not R.?markovRingData then error "expected a ring created with markovRing";
d := R.markovRingData;
if not isSubset ( set unique flatten flatten Stmts, set( 1..#d) ) then error "variables names in statements do not match list of random variable names";
VarNames := toList (1..#d);
flatten apply(Stmts, stmt -> (
Avals := possibleValues(d, apply( stmt#0, i -> pos( VarNames,i)) );
Bvals := possibleValues(d, apply( stmt#1, i -> pos( VarNames,i)) );
Cvals := possibleValues(d, apply( stmt#2, i -> pos( VarNames,i)) );
apply(Cvals, c -> (
matrix apply(Avals,
a -> apply(Bvals, b -> (
e := toSequence(toList a + toList b + toList c);
prob(R,e))))))))
)
------------------------------------------------------------------
-- covarianceMatrix(Ring)
------------------------------------------------------------------
covarianceMatrix = method()
covarianceMatrix(Ring) := Matrix => (R) -> (
if not R.?gaussianRingData then error "expected a ring created with gaussianRing";
if R.?graphType then (
g := R.graph;
vv := sort vertices g;
n := R.gaussianRingData#nn;
s := R.gaussianRingData#sVar;
H := R.gaussianVariables;
SM := mutableMatrix(R,n,n);
scan(vv,i->scan(vv, j-> SM_(pos(vv,i),pos(vv,j))=if pos(vv,i)<pos(vv,j) then H#(s_(i,j)) else H#(s_(j,i))));
matrix SM
)
else (
n =R.gaussianRingData#nn;
genericSymmetricMatrix(R,n)
)
)
------------------------------------------------------------------
-- gaussianMatrices(Ring,List)
------------------------------------------------------------------
gaussianMatrices = method()
gaussianMatrices(Ring,List) := List => (R,Stmts) -> (
if not R.?gaussianRingData then error "expected a ring created with gaussianRing";
if R.?graph then (g := R.graph; vv := sort vertices g)
else (n:=R.gaussianRingData#nn; vv=toList(1..n));
if not isSubset ( set unique flatten flatten Stmts, set vv) then error "variables names in statements do not match list of random variable names";
SM := covarianceMatrix(R);
apply(Stmts, s ->
submatrix(SM, apply(s#0,x->pos(vv,x)) | apply(s#2,x->pos(vv,x)) ,
apply(s#1,x->pos(vv,x)) | apply(s#2,x->pos(vv,x)) ))
)
--******************************************************************--
-- Methods for creating ideals that vanish for a graphical model --
--******************************************************************--
------------------------------------------------------------------
-- conditionalIndependenceIdeal (Ring,List)
-- conditionalIndependenceIdeal (Ring,List,List)
------------------------------------------------------------------
conditionalIndependenceIdeal=method()
conditionalIndependenceIdeal (Ring,List) := Ideal => (R,Stmts) ->(
if not (R.?gaussianRingData or R.?markovRingData) then error "expected a ring created with gaussianRing or markovRing";
if #Stmts === 0 then (ideal(0_R))
else (
if R.?gaussianRingData then (
-- Choose appropriate vertices vv for gaussianRings coming from graphs, digraphs or mixedGraphs
if R.?graph then (
if not isSubset ( set unique flatten flatten Stmts, set vertices(R.graph)) then error "variables names in statements do not match variable names in the Gaussian ring";
g := R.graph;
vv := sort vertices g
)
-- Choose appropriate vertices vv for gaussianRings coming from an integer
else (
vv = toList (1..R.gaussianRingData#nn);
if not isSubset ( set unique flatten flatten Stmts, set vv) then error "variables names in statements do not match variable names in the Gaussian ring";
);
-- compute covarianceMatrix and suitable minors given by vv
SM := covarianceMatrix(R);
sum apply(Stmts, s -> minors(#s#2+1,
submatrix(SM, apply(s#0,x->pos(vv,x)) | apply(s#2,x->pos(vv,x)) ,
apply(s#1,x->pos(vv,x)) | apply(s#2,x->pos(vv,x)) ) ))
)
else (
if not isSubset ( set unique flatten flatten Stmts, set toList (1..#R.markovRingData)) then error "variables names in statements do not match variable names in the markov ring.";
M := markovMatrices(R,Stmts);
sum apply(M, m -> minors(2,m))
)
)
)
conditionalIndependenceIdeal (Ring,List,List) := Ideal => (R,Stmts,VarNames) ->(
if not R.?markovRingData then error "expected a ring created with markovRing";
if not isSubset ( set unique flatten flatten Stmts, set VarNames) then error "variables names in statements do not match list of random variable names";
if #Stmts === 0 then ideal(0_R)
else (
M := markovMatrices(R,Stmts,VarNames);
sum apply(M, m -> minors(2,m))
)
)
------------------------------------------------------------------
-- gaussianParametrization (Ring)
------------------------------------------------------------------
gaussianParametrization = method(Options=>{SimpleTreks=>false})
gaussianParametrization Ring := Matrix => opts -> R -> (
if not R.graphType === MixedGraph then error "Must be a gaussianRing created with a mixed graph, a digraph or a bigraph";
g := R.graph;
-- Not yet implemented for mixedGraphs with undirected edges
if not undirectedEdgesMatrix R == 0 then error "Function not implemented for mixed graphs with undirected edges";
S := covarianceMatrix R;
W := bidirectedEdgesMatrix R;
L := directedEdgesMatrix R;
Li := inverse(1-matrix(L));
M := transpose(Li)*matrix(W)*Li;
if opts.SimpleTreks then (
n := R.gaussianRingData#nn;
P := matrix {apply(n,i->W_(i,i)-M_(i,i)+1)};
Q := apply(n,i->W_(i,i)=>P_(0,i));
scan(n,i->P=sub(P,Q));
sub(M,apply(n,i->W_(i,i)=>P_(0,i))))
else
M)
------------------------------------------------------------------
-- gaussianVanishingIdeal Ring
-- Note: this method currently works on really small examples,
-- because it computes the vanishing ideal as an elimination ideal.
-- More clever ways to compute it would be of interest.
-- Currently this method is only implemented for mixedGraphs
-- without undirected edges
------------------------------------------------------------------
gaussianVanishingIdeal=method(TypicalValue => Ideal, Options=>{OldVersion => false})
gaussianVanishingIdeal Ring := opts -> R -> (
if not R.?graph then error "expected a ring created with gaussianRing of a Graph, Digraph, Bigraph or MixedGraph";
if R.graphType === Graph then (
K:= undirectedEdgesMatrix R;
adjK := sub(det(K)*inverse(sub(K,frac R)), R);
Itemp:=saturate(ideal (det(K)*covarianceMatrix(R) - adjK), det(K));
ideal selectInSubring(1, gens gb Itemp))
--check if gaussianRing comes only from Digraph and user asked for optional method of previous versions
else if (opts.OldVersion and R.graphType === MixedGraph and R.graph#graph#Graph===graph{} and R.graph#graph#Bigraph===bigraph{}) then (
G := R.graph#graph#Digraph; --retrieve digraph from mixedGraph
vv := sort vertices G;
n := #vv;
v := (topSort G)#map;
v = hashTable apply(keys v, i->v#i=>i);
v = apply(n,i->v#(i+1));
P := toList apply(v, i -> toList parents(G,i));
s := R.gaussianRingData#sVar; --retrieve name of variable used for sVar as symbol
L := select(keys R.gaussianVariables, v -> first baseName v==s); --select sVar from variables in R as indexed variables
nx :=#L; -- number of sVar
ny := max(P/(p->#p));
x := local x;
y := local y;
S := (coefficientRing R)[x_0 .. x_(nx-1),y_0 .. y_(ny-1)];
newvars := apply(ny, i -> y_i);
H := hashTable apply(nx,i->L#i=>x_i); --convert sVar to x_i
sp := (i,j) -> if pos(vv,i) > pos(vv,j) then H#(s_(j,i)) else H#(s_(i,j));
I := trim ideal(0_S);
for i from 1 to n-1 do (
J := ideal apply(i, j -> sp(v#j,v#i) - sum apply(#P#i, k ->y_k * sp(v#j,P#i#k)));
I = eliminate(newvars, I + J););
F := map(R,S,apply(nx,i->x_i=>R.gaussianVariables#(L_i))|apply(newvars,i->i=>0));
F(I))
else if R.graphType === MixedGraph then (
G = R.graph;
if (#edges(G#graph#Graph) > 0) then error "This function is currently only implemented for mixed graphs without undirected part";
if (isCyclic G#graph#Digraph == true) then error "Directed part of mixed graph must be acyclic";
S = covarianceMatrix R;
W := bidirectedEdgesMatrix R;
L = directedEdgesMatrix R;
Li := inverse(1-matrix(L));
M := transpose(Li)*matrix(W)*Li;
tempideal := ideal(S-M);
m:= (R#numberOfEliminationVariables)-1;
elimvarlist := flatten entries (vars(R))_{0..m};
I = trim ideal(0_R);
I = eliminate(elimvarlist,tempideal)
)
)
------------------------------------------------------------------
-- discreteVanishingIdeal (Ring,Digraph)
------------------------------------------------------------------
discreteVanishingIdeal=method()
discreteVanishingIdeal (Ring, Digraph) := Ideal => (R, G) -> (
if not (R.?markovRingData) then error "expected a ring created with markovRing";
if not instance(G,Digraph) then error "expected a Digraph";
d := R.markovRingData;
n := #d;
if not (#vertices(G) == n) then error "Number of vertices of graph does not match size of ring";
H := topSort G;
shuffle := apply(sort vertices G, v -> H#map#v);
dshuff := toSequence d_(shuffle - toList (n:1));
R1 := local R1;
R1 = markovRing dshuff;
p := j -> R1.markovVariables#j;
I := trim ideal(0_R1);
SortedG := H#newDigraph;
a := local a;
S := local S;
apply(2..n, i -> (
familyi := append(toList parents(SortedG,i),i);
tempd := toSequence dshuff_(familyi - toList (#familyi: 1));
F := inverseMarginMap(i,R1);
I = F(I);
S = markovRing( tempd, VariableName => getSymbol "a");
a = j1 -> S.markovVariables#j1;
T := R1**S;
newI := sub(I, T);
di := toSequence flatten toList append( dshuff_(toList(0..(i-1))), toList ((n-i):1));
indexset := (n:1)..di;
newI = newI + ideal apply(indexset, j -> (
ajindex := toSequence j_(familyi - toList (#familyi: 1));
sub(p j,T) - (sum apply(apply(dshuff_(i-1), k -> replace(i-1, k+1, j)),
l-> sub(p l,T)))*sub(a ajindex,T)) );
indexset = (#tempd:1)..tempd;
newI = newI + ideal apply(indexset, j -> 1 - sum(apply(apply(dshuff_(i-1), k-> replace(#tempd-1,k+1,j)),
l -> sub(a l, T))));
J := eliminate(flatten entries sub(vars S, T), newI);
I = sub(J,R1)
)
);
inverseshuff := toList apply(1..n, i -> pos(shuffle,i));
q := j -> R.markovVariables#j;
F1 := map(R,R1, toList apply((n:1)..dshuff, j -> q (toSequence j_inverseshuff)));
F1(I)
)
------------------------------------------------------------------
-- trekSeparation MixedGraph
-- NOTE: currently, trekSeparation only works with directed and
-- bidirected edges.
------------------------------------------------------------------
trekSeparation = method()
trekSeparation MixedGraph := List => (g) -> (
-- Not yet implemented for mixedGraphs with undirected edges
if not g#graph#Graph === graph{} then error "Function not implemented for mixed graphs with undirected edges";
G := graph collateVertices g;
dd := graph G#Digraph;
bb := graph G#Bigraph;
vv := sort vertices g;
-- Construct canonical double DAG cdG associated to mixed graph G:
cdGgraph := hashTable join(
apply(vv, i -> (1, i) => set join(
apply(toList parents(G#Digraph,i),j->(1,j)),
{(2,i)},
apply(toList bb#i,j->(2,j)))),
apply(vv,i-> (2,i) => set apply(toList dd#i,j->(2,j))));
aVertices := apply(vv, i->(1,i));
bVertices := apply(vv, i->(2,i));
allVertices := aVertices|bVertices;
statements := {};
cdC := new MutableHashTable from apply(allVertices,i->{i,cdGgraph#i});
for CA in (subsets aVertices) do (
for CB in (subsets bVertices) do (
CAbin := setToBinary(aVertices,CA);
CBbin := setToBinary(bVertices,CB);
if CAbin <= CBbin then (
C := CA|CB;
scan(allVertices,i->cdC#i=cdGgraph#i);
scan(C, i->scan(allVertices, j->(
cdC#i=cdC#i-{j};
cdC#j=cdC#j-{i};)));
Alist := delete({},subsetsBetween(CA,aVertices));
while #Alist > 0 do (
minA := first Alist;
pC := reachable(digraph cdC,set minA);
A := toList ((pC*(set aVertices)) + set CA);
Alist = Alist - (set subsetsBetween(minA,A));
B := toList ((set bVertices) - pC);
-- remove redundant statements:
if #CA+#CB < min{#A,#B} then (
if not ((CAbin==CBbin) and (setToBinary(aVertices,A) > setToBinary(bVertices,B))) then (
nS := {apply(A,i->i#1),apply(B,i->i#1),apply(CA,i->i#1),apply(CB,i->i#1)};
appendnS := true;
statements = select(statements, cS->
if cS#0===nS#0 and cS#1===nS#1 then (
if isSubset(cS#2,nS#2) and isSubset(cS#3,nS#3) then
(appendnS = false; true)
else if isSubset(nS#2,cS#2) and isSubset(nS#3,cS#3) then
false
else
true)
else if cS#2===nS#2 and cS#3===nS#3 then (
if isSubset(cS#0,nS#0) and isSubset(cS#1,nS#1) then
false
else if isSubset(nS#0,cS#0) and isSubset(nS#1,cS#1) then
(appendnS = false; true)
else
true)
else true);
if appendnS then statements = append(statements, nS);););););););
statements)
------------------------------------------------------------------
-- trekIdeal (Ring,MixedGraph)
-- trekIdeal (Ring,Graph)
-- trekIdeal (Ring,Digraph)
-- NOTE: We don't work with MixedGraphs in full generality
-- (undirected, directed, bidirected). See gaussianRing.
------------------------------------------------------------------
trekIdeal = method()
trekIdeal (Ring,MixedGraph) := Ideal => (R,g) -> (
if not R.?gaussianRingData then error "expected a ring created with gaussianRing";
if R.?graphType then (
if not sort (vertices (R.graph)) === sort (vertices (g))
then error "vertex labels of graph do not match labels in ring";
if (R.graph#graph#Digraph===digraph{} and R.graph#graph#Bigraph===bigraph{})
then return trekIdeal(R,R.graph#graph#Graph))
else if not ( 1..R.gaussianRingData#nn === sort vertices(g)) then
error "variables names do not match variable names in the Gaussian ring";
Stmts:= trekSeparation g;
vv := sort vertices g;
SM := covarianceMatrix R ;
if Stmts == {} then (
ideal(0_R))
else
sum apply(Stmts,s->minors(#s#2+#s#3+1, submatrix(SM,apply(s#0,x->pos(vv,x)),apply(s#1,x->pos(vv,x)))))
)
trekIdeal (Ring,Graph) := Ideal => (R,g) -> (
conditionalIndependenceIdeal(R,globalMarkov(g)) -- equivalent to trek ideal for undirected graphs
)
trekIdeal (Ring,Digraph) := Ideal => (R,g) ->(
trekIdeal (R, mixedGraph(g))
)
--********************************************************************************************************************************--
-- Methods for manipulating polynomial maps frequently used in graphical models
--********************************************************************************************************************************--
------------------------------------------------------------------
-- marginMap(ZZ,Ring)
-- Return the ring map F : R --> R such that
-- F p_(u1,u2,..., +, ,un) = p_(u1,u2,..., 1, ,un)
-- and
-- F p_(u1,u2,..., j, ,un) = p_(u1,u2,..., j, ,un), for j >= 2.
-- NOTE: -- R should be a Markov ring
-----------------------------------------------------------------
marginMap = method()
marginMap(ZZ,Ring) := RingMap => (v,R) -> (
if (not R.?markovRingData) then error "expected a ring created with markovRing";
v = v-1;
d := R.markovRingData;
p := i -> R.markovVariables#i;
F := toList apply(((#d):1) .. d, i -> (
if i#v > 1 then p i
else (
i0 := drop(i,1);
p i - sum(apply(toList(2..d#v), j -> (
newi := join(take(i,v), {j}, take(i,v-#d+1));
p newi))))));
map(R,R,F))
------------------------------------------------------------------
-- inverseMarginMap(ZZ,Ring)
-- Note: R should be a Markov ring
------------------------------------------------------------------
inverseMarginMap = method()
inverseMarginMap(ZZ,Ring) := RingMap => (v,R) -> (
if (not R.?markovRingData) then error "expected a ring created with markovRing";
v = v-1;
d := R.markovRingData;
p := i -> R.markovVariables#i;
F := toList apply(((#d):1) .. d, i -> (
if i#v > 1 then p i
else (
i0 := drop(i,1);
p i + sum(apply(toList(2..d#v), j -> (
newi := join(take(i,v), {j}, take(i,v-#d+1));
p newi))))));
map(R,R,F))
------------------------------------------------------------------
-- hiddenMap(ZZ,Ring)
-- Creates a ring map for the model where one of the (formerly
-- observed) random variables is now a hidden variable.
------------------------------------------------------------------
hiddenMap = method()
hiddenMap(ZZ,Ring) := RingMap => (v,A) -> (
v = v-1;
p := i -> A.markovVariables#i;
if not A.?markovRingData then error "expected a ring created with markovRing";
d := A.markovRingData;
e := drop(d, {v,v});
-- issue #1362 in github
S := markovRing (e, Coefficients=>coefficientRing(A));
-- S := markovRing (e);
dv := d#v;
F := toList apply(((#e):1) .. e, i -> (
sum(apply(toList(1..dv), j -> (
newi := join(take(i,v), {j}, take(i,v-#d+1));
p newi)))));
map(A,S,F))
------------------------------------------------------------------
-- identifyParameters (Ring,MixedGraph)
------------------------------------------------------------------
identifyParameters = method()
identifyParameters Ring := HashTable => R -> (
if not R.graphType === MixedGraph then error "must be a gaussianRing created with a mixed graph, a digraph or a bigraph";
g := R.graph;
-- Not yet implemented for mixedGraphs with undirected edges
if not g#graph#Graph === graph{} then error "Function not implemented for mixed graphs with undirected edges";
J := ideal unique flatten entries (covarianceMatrix(R)-gaussianParametrization(R));
G := graph g;
m := #edges(G#Digraph)+#edges(G#Bigraph)+#vertices(g);
plvars := toList apply(0..m-1,i->(flatten entries vars R)#i);
new HashTable from apply(plvars,t->{t,eliminate(delete(t,plvars),J)}))
--******************************************--
-- DOCUMENTATION --
--******************************************--
beginDocumentation()
doc ///
Key
GraphicalModels
Headline
a package for discrete and Gaussian statistical graphical models
Description
Text
{\bf Graphical Models} is a package for algebraic statistics. It constructs ideals of discrete and
Gaussian graphical models. This package supersedes Markov.m2.
This package constructs ideals of discrete Bayesian networks (directed acyclic graphs)
as described in several places, including the paper: Luis David Garcia, Michael Stillman and Bernd Sturmfels,
{\em The algebraic geometry of Bayesian networks}, J. Symbolic Comput., 39(3-4):331--355, 2005.
It also constructs ideals of Gaussian Bayesian networks and Gaussian graphical models
(graphs containing both directed and bidirected edges), as described in the papers:
Seth Sullivant, {\em Algebraic geometry of Gaussian Bayesian networks}, Adv. in Appl. Math. 40 (2008), no. 4, 482--513; and
Seth Sullivant, Kelli Talaska and Jan Draisma, "Trek separation for Gaussian graphical models",
Annals of Statistics 38 no.3 (2010) 1665--1685.
The package also contains procedures to solve the identifiability problem for
Gaussian graphical models as described in the paper:
Luis D. Garcia-Puente, Sarah Spielvogel and Seth Sullivant, {\em Identifying causal effects with computer algebra},
Proceedings of the $26^{th}$ Conference of Uncertainty in Artificial Intelligence.
Furthermore, this package allows to construct the Gaussian rings of
loopless mixed graphs (LMG) and the corresponding matrices of indeterminates
as introduced in Kayvan Sadeghi and Steffen Lauritzen, {\em Markov properties for mixed graphs},
Bernoulli 20.2 (2014): 676-696.
Here is a typical use of this package. We create the ideal in 16 variables whose zero set
represents the probability distributions on four binary random variables satisfying the
conditional independence statements coming from the "diamond" graph $4 \to 3, 4 \to 2, 3 \to 1, 2 \to 1$.
Example
G = digraph {{1,{}},{2,{1}},{3,{1}},{4,{2,3}}}
R = markovRing (2,2,2,2) -- this ring corresponds to four binary random variables
S = globalMarkov G
I = conditionalIndependenceIdeal (R,S);
netList I_*
Text
Sometimes an ideal can be simplified by changing variables. For example, conditional independence ideals are often
transformed to binomial ideals by using @TO marginMap@.
This is the case here.
Example
F = marginMap (1,R)
J = F I;
netList J_*
Text
This ideal has 5 primary components. The first component is the one that has statistical significance.
It is the defining ideal of the variety parameterized by the
the factorization of the probability distributions
according to the graph $G$. The remaining components lie on the boundary of the simplex.
Example
netList primaryDecomposition J
Text
The ideal in the next example corresponds to a Gaussian graphical model on a graph with directed and bidirected edges.
The method @TO trekIdeal@ computes the ideal based on the trek separation statements of the mixed graph.
Example
G = mixedGraph (digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
J = trekIdeal (R,G);
J / print;
Text
The following ideal corresponds to a set of conditional statements of 5 Gaussian random variables.
Example
R=gaussianRing 5
S={{{1},{2},{3,4}}, {{2,3},{1},{5}}}
I=conditionalIndependenceIdeal (R,S);
I / print;
Text
The following people have generously contributed their time and effort to this project:
Alexander Diaz,
Shaowei Lin<@HREF"http://math.berkeley.edu/~shaowei/"@>,
David Murrugarra<@HREF"http://people.math.gatech.edu/~davidmur/Home.html"@>.
Caveat
GraphicalModels requires Graphs.m2 and StatGraphs.m2. These packages allow the user to
create graphs whose vertices are labeled arbitrarily.
However, several functions in GraphicalModels sort the vertices of the graph.
Hence, graphs used as input to methods
in GraphicalModels must have sortable vertex labels, e.g.,
all numbers or all letters.
The methods in GraphicalModels differ in the classes of acceptable graphs for input:
- functions used in package GraphicalModelsMLE (@TO gaussianRing@,
@TO covarianceMatrix@, @TO bidirectedEdgesMatrix@, @TO directedEdgesMatrix@,
@TO directedEdgesMatrix@, @TO undirectedEdgesMatrix@) and
@TO conditionalIndependenceIdeal@ accept @TO Graph@,
@TO Digraph@, @TO Bigraph@ and @TO MixedGraph@.
- conditional independence statement generators (@TO pairMarkov@,
@TO localMarkov@ and @TO globalMarkov@) accept only @TO Graph@ or
@TO Digraph@;
- the remaining functions that accepts graphs, only accept @TO Graph@,
@TO Digraph@ or @TO MixedGraph@ without undirected edges.
///;
--------------------------------
-- Documentation pairMarkov ----
--------------------------------
doc ///
Key
pairMarkov
(pairMarkov,Graph)
(pairMarkov,Digraph)
Headline
pairwise Markov statements for a graph or a directed graph
Usage
pairMarkov G
Inputs
G:
@ofClass {Graph,Digraph}@
Outputs
:List
whose entries are triples $\{A,B,C\}$ representing pairwise Markov conditional independence statements of the form
``$A$ is independent of $B$ given $C$'' that hold for $G$.
Description
Text
Given an undirected graph $G$, pairwise Markov statements are statements of the form
\{$v$, $w$, all other vertices\}\
for each pair of non-adjacent vertices $v$ and $w$ of $G$.
For example, for the undirected 5-cycle graph $G$, that is, the graph on $5$ vertices with edges
$a---b---c---d---e---a$,
we get the following pairwise Markov statements:
Example
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
pairMarkov G
Text
Given a directed acyclic graph $G$, pairwise Markov statements are statements of the form \{$v$, $w$, nondescendents($G,v$)-$w$\}\
for each vertex $v$ of $G$ and each non-descendent vertex $w$ of $v$. In other words, for every vertex $v$ of $G$ and each nondescendent $w$ of $v$,
this method returns the statement: $v$ is independent of $w$ given all other nondescendents.
For example, given the digraph $D$ on $7$ vertices with edges $1 \to 2, 1 \to 3, 2 \to 4, 2 \to 5, 3 \to 5, 3 \to 6, 4 \to 7, 5 \to 7$, and $6\to 7$,
we get the following pairwise Markov statements:
Example
D = digraph {{1,{2,3}}, {2,{4,5}}, {3,{5,6}}, {4,{7}}, {5,{7}},{6,{7}},{7,{}}}
netList pack (3, pairMarkov D)
Text
This method displays only non-redundant statements. In general, given a set $S$ of conditional independent
statements and a statement $s$, then we say that $s$ is a a redundant statement if $s$ can be obtained from the
statements in $S$ using the semigraphoid axioms of conditional independence: symmetry, decomposition, weak
union, and contraction as described in Section 1.1 of Judea Pearl, {\em Causality: models, reasoning, and inference},
Cambridge University Press. We do not use the intersection axiom since it is only valid for strictly positive
probability distributions.
SeeAlso
localMarkov
globalMarkov
///
--------------------------------
-- Documentation localMarkov ---
--------------------------------
doc ///
Key
localMarkov
(localMarkov,Graph)
(localMarkov,Digraph)
Headline
local Markov statements for a graph or a directed graph
Usage
localMarkov G
Inputs
G:
@ofClass {Graph,Digraph}@
Outputs
:List
whose entries are triples $\{A,B,C\}$ representing local Markov conditional independence statements of the form
``$A$ is independent of B given C'' that hold for G.
Description
Text
Given an undirected graph $G$, a local Markov statement is of the form
\{$v$, non-neighbours($v$), neighbours($v$)\} .
That is,
every vertex $v$ of $G$ is independent of its non-neighbours given its neighbours.
For example, for the undirected 5-cycle graph $G$, that is, the graph on 5 vertices with
$a---b---c---d---e---a$,
we get the following local Markov statements:
Example
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
localMarkov G
Text
Given a directed acyclic graph $G$, local Markov statements are of the form
\{$v$, nondescendents($v$) - parents($v$), parents($v$)\} .
In other words,
every vertex $v$ of $G$ is independent of its nondescendents (excluding parents) given its parents.
For example, given the digraph $D$ on $7$ vertices with edges $1 \to 2, 1 \to 3, 2 \to 4, 2 \to 5, 3 \to 5, 3 \to 6, 4 \to 7, 5 \to 7$, and $6\to 7$,
we get the following local Markov statements:
Example
D = digraph {{1,{2,3}}, {2,{4,5}}, {3,{5,6}}, {4,{7}}, {5,{7}},{6,{7}},{7,{}}}
netList pack (3, localMarkov D)
Text
This method displays only non-redundant statements. In general, given a set $S$ of conditional independent
statements and a statement $s$, then we say that $s$ is a a redundant statement if $s$ can be obtained from the
statements in $S$ using the semigraphoid axioms of conditional independence: symmetry, decomposition, weak
union, and contraction as described in Section 1.1 of Judea Pearl, {\em Causality: models, reasoning, and inference},
Cambridge University Press. We do not use the intersection axiom since it is only valid for strictly positive
probability distributions.
SeeAlso
pairMarkov
globalMarkov
///
--------------------------------
-- Documentation globalMarkov --
--------------------------------
doc ///
Key
globalMarkov
(globalMarkov,Digraph)
(globalMarkov,Graph)
Headline
global Markov statements for a graph or a directed graph
Usage
globalMarkov G
Inputs
G:
@ofClass {Graph,Digraph}@
Outputs
:List
whose entries are triples {A,B,C} representing global Markov conditional independence statements of the form
``A is independent of B given C'' that hold for G.
Description
Text
Given an undirected graph $G$, a global Markov statement is of the form
$\{A, B, C\}$, where the subset $C$ separates the subset $A$ from the subset $B$ in the graph $G$.
For example, for the undirected 5-cycle graph $G$, that is, the graph on 5 vertices with
$a---b---c---d---e---a$,
we get the following global Markov statements:
Example
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
globalMarkov G
Text
Given a directed acyclic graph $G$, global Markov states that
$A$ is independent of $B$ given $C$ for every triple of sets of vertices $A$, $B$, and $C$,
such that $A$ and $B$ are $d$-separated by $C$ (in the graph $G$).\break
The global independent statements of a directed graph are computed using the Bayes-Ball algorithm,
as described in the paper Ross D. Shachter, {\em Bayes-Ball: The Rational Pastime (for Determining Irrelevance and
Requisite Information in Belief Networks and Influence Diagrams)} In Proceedings of the Fourteenth Conference in
Uncertainty in Artificial Intelligence, p. 480--487, 1998.
For example, given the digraph $D$ on $7$ vertices with edges $1 \to 2, 1 \to 3, 2 \to 4, 2 \to 5, 3 \to 5, 3 \to 6, 4 \to 7, 5 \to 7$, and $6\to 7$,
we get the following global Markov statements:
Example
D = digraph {{1,{2,3}}, {2,{4,5}}, {3,{5,6}}, {4,{7}}, {5,{7}},{6,{7}},{7,{}}}
netList pack (3, globalMarkov D)
Text
This method displays only non-redundant statements. In general, given a set $S$ of conditional independent
statements and a statement $s$, then we say that $s$ is a a redundant statement if $s$ can be obtained from the
statements in $S$ using the semigraphoid axioms of conditional independence: symmetry, decomposition, weak
union, and contraction as described in Section 1.1 of Judea Pearl, {\em Causality: models, reasoning, and inference},
Cambridge University Press. We do not use the intersection axiom since it is only valid for strictly positive
probability distributions.
Caveat
-- If G is large, this should maybe be rewritten so that
-- one huge list of subsets is not made all at once
SeeAlso
localMarkov
pairMarkov
///
--------------------------------
-- Documentation marginMap --
--------------------------------
doc ///
Key
marginMap
(marginMap,ZZ,Ring)
Headline
linear map on joint distributions for discrete random variables replacing marginals for indeterminates
Usage
marginMap(i,R)
Inputs
i:ZZ
the index of the variable on which to perform the `marginalization trick'
R:Ring
a markovRing
Outputs
:RingMap
Description
Text
The ring $R$ must be a ring of probability distributions on $n$ random variables created using @TO markovRing@. The integer $i$
must be in the range from 1 to $n$.
Let $p_{u_1,u_2,\dots, +,\dots,u_n}$ denote the linear form $p_{u_1,u_2,\dots, 1,\dots,u_n} + \dots + p_{u_1,u_2,\dots, d_i,\dots,u_n}$, where $d_i$ is the number of
states of random variable $X_i$.
The method {\tt marginMap} returns a ring map $F : R \to R$ such that after applying $F$, the indeterminate
$p_{u_1,u_2,\dots,1,\dots,u_n}$ refers to $ p_{u_1,u_2,\dots, +,\dots,u_n}$, where the '1' and the '$+$' are
in the $i$th spot.
Further $F$ is the identity on all other indeterminates, that is,
$ F(p_{u_1,u_2,\dots, j,\dots,u_n}) = p_{u_1,u_2,\dots, j,\dots,u_n} $, for all $j\geq 2$.
Example
F = marginMap(1,markovRing(3,2));
compactMatrixForm =false;
transpose F.matrix
Text
This linear transformation simplifies ideals and/or polynomials involving
$ p_{u_1,u_2,..., +,...,u_n} $. Sometimes, the resulting ideals are toric
ideals as the example below shows. For more details
see the paper "Algebraic Geometry of Bayesian Networks" by Garcia, Stillman, and
Sturmfels.
Example
G = digraph {{1,{}},{2,{1}},{3,{1}},{4,{2,3}}}
R = markovRing (2,2,2,2)
S = globalMarkov G
I = conditionalIndependenceIdeal (R,S);
I / print;
F = marginMap(1,R);
transpose F.matrix
J = F I;
J / print;
SeeAlso
hiddenMap
inverseMarginMap
///
--------------------------------
-- Documentation inverseMarginMap --
--------------------------------
doc ///
Key
inverseMarginMap
(inverseMarginMap,ZZ,Ring)
Headline
inverse of the marginMap
Usage
inverseMarginMap(i,R)
Inputs
i:ZZ
the index of the variable for which to undo the "margin trick"
R:Ring
a markovRing
Outputs
:RingMap
Description
Text
This method computes the inverse of the @TO marginMap@.
Example
R = markovRing (3,2)
F = marginMap(1,R)
G = inverseMarginMap(1,R)
gens R
F*G -- we see that the composition is the identity map:
SeeAlso
hiddenMap
marginMap
///
--------------------------------
-- Documentation hiddenMap --
--------------------------------
doc ///
Key
hiddenMap
(hiddenMap,ZZ,Ring)
Headline
linear map between the ring of a model with one hidden variable and the ring of the corresponding fully observed model
Usage
hiddenMap(i,R)
Inputs
i:ZZ
the index corresponding to the hidden random variable
R:Ring
a markovRing
Outputs
:RingMap
Description
Text
The ring $R$ is a ring of probability distributions on $n$ random variables created using {\tt markovRing}.
This method creates a ring map $F: S \to R$ from the ring $S$ of probability distributions on $n-1$
random variables, leaving out the $i$th random variable from $R$. This corresponds to the situation where
the $i$th random variable is hidden and $S$ is the ring of {\bf observed} probability distributions.
Example
F = hiddenMap(1,markovRing(2,3,2));
compactMatrixForm =false;
transpose F.matrix
Text
This method is frequently used when computing the vanishing ideal of a graphical model
with hidden variables by computing the kernel of $F$.
For more details see the paper ``Algebraic Geometry of Bayesian Networks''
by Garcia, Stillman, and Sturmfels.
Example
G = digraph {{1,{}},{2,{}},{3,{}},{4,{1,2,3}}}
R = markovRing (2,2,3,2)
I = discreteVanishingIdeal (R,G);
I / print;
S = markovRing(2,2,3)
F = hiddenMap(4,R);
transpose F.matrix
J = preimage (F, I);
J / print;
SeeAlso
marginMap
///
------------------------------------
-- Documentation Coefficients --
------------------------------------
doc ///
Key
Coefficients
Headline
optional input to choose the base field
Description
Text
Put {\tt Coefficients => r} for a choice of ring(field) r as an argument in
the function @TO markovRing@ or @TO gaussianRing@
SeeAlso
markovRing
gaussianRing
///
doc ///
Key
[markovRing, Coefficients]
[gaussianRing, Coefficients]
Headline
optional input to choose the base field in markovRing or gaussianRing
Usage
gaussianRing(n,Coefficients=>Ring)
gaussianRing(G,Coefficients=>Ring)
markovRing(d,Coefficients=>Ring)
Inputs
d:Sequence
with positive integer entries $(d_1,\dots ,d_r)$
n:ZZ
number of random variables
G:Graph
@ofClass Graph@, or @ofClass Digraph@,
or @ofClass MixedGraph@ with directed and bidirected edges
Outputs
:Ring
Description
Text
In both {\tt markovRing} and {\tt gaussianRing}, the default coefficient ring is QQ.
Putting {\tt Coefficients => r} for a choice of ring(field) r as an argument in
the function @TO markovRing@ or @TO gaussianRing@ creates a ring with the
desired coefficient ring.
Example
R2 = markovRing ((2,2),Coefficients=>CC);
coefficientRing R2
SeeAlso
markovRing
gaussianRing
///
--------------------------------
-- Documentation markovRing --
--------------------------------
doc ///
Key
markovRing
(markovRing, Sequence)
Headline
ring of joint probability distributions on several discrete random variables
Usage
markovRing(d)
Inputs
d:Sequence
with positive integer entries $(d_1,\dots ,d_r)$
Outputs
:Ring
a polynomial ring with $d_1*d_2*\dots *d_r$ variables $p_{i_1,\dots ,i_r}$,
with each $i_j$ satisfying $1\leq i_j \leq d_j$.
Consequences
Item
Information about this sequence of integers is placed into the ring, and is used
by other functions in this package. Also, at most one ring for each such sequence
is created since the ring is cached.
Description
Text
The sequence $d$ represents the number of states of each discrete random variable.
This example creates a ring of joint probability distributions on 4 random
variables with 2, 3, 4, and 5 states. This ring has a total of 120 indeterminates.
Example
d=(2,3,4,5);
R = markovRing d;
numgens R
R_0, R_1, R_119 --here are some of the variables in the ring
Text
If no coefficient choice is specified, the polynomial ring is created over the rationals.
Example
coefficientRing R
Text
The optional argument @TO Coefficients@ allows to change the base field.
Example
R2 = markovRing (d,Coefficients=>CC);
coefficientRing R2
Text
The indeterminates are labeled with the letter ''p'' suggesting probability distributions. However,
it is useful to be able to create a new ring where the indeterminates are labeled different (for example,
they may represent marginal probabilities). This can be accomplished
with the @TO VariableName@ option.
Example
d=(1,2);
markovRing (d,VariableName => q);
gens oo
Text
The routines @TO hiddenMap@,
@TO inverseMarginMap@, @TO marginMap@, @TO markovMatrices@ require the ring to be created by this function.
The routines @TO conditionalIndependenceIdeal@, @TO discreteVanishingIdeal@ require the ring to be created by this function or
the method @TO gaussianRing@.
Caveat
As opposed to @TO gaussianRing@, this method does not store information about a graph or the names of the random variables.
In case these random variables are not numbered $1, 2, \dots, n$, then the methods @TO conditionalIndependenceIdeal@ and
@TO markovMatrices@ require an additional input in the form of a list of the random variable names. This list must be in the same
order as the implicit order used in the sequence $d$. The user is encouraged to read the caveat on the method
@TO conditionalIndependenceIdeal@ regarding probability distributions on discrete random variables that have
been labeled arbitrarily.
SeeAlso
conditionalIndependenceIdeal
discreteVanishingIdeal
gaussianRing
hiddenMap
inverseMarginMap
marginMap
markovMatrices
///
------------------------------------
-- Documentation VariableName --
------------------------------------
doc ///
Key
VariableName
Headline
optional input to choose indeterminate name in markovRing
Description
Text
The option {\tt VariableName => q} changes the symbol used for intedeterminates in a polynomial ring created with @TO markovRing@.
SeeAlso
markovRing
///
doc ///
Key
[markovRing, VariableName]
Headline
symbol used for indeterminates in a ring of discrete joint probability distributions
Usage
markovRing (d,VariableName => q)
Inputs
q:
@ofClass Symbol@ or @ofClass String@
Description
Text
The indeterminates in the polynomial ring made by {\tt markovRing} are labeled with the letter ''p'' suggesting
probability distributions. However, it is useful to be able to create a new ring where the indeterminates are
labeled different (for example, they may represent marginal probabilities).
Example
d=(1,2);
markovRing (d,VariableName => q);
gens oo
///
------------------------------------
-- Documentation markovMatrices --
------------------------------------
doc ///
Key
markovMatrices
(markovMatrices,Ring,List)
(markovMatrices,Ring,List,List)
Headline
matrices whose minors form the ideal of a list of independence statements
Usage
markovMatrices(R,S)
markovMatrices(R,S,VarNames)
Inputs
R:Ring
R must be a markovRing
S:List
list of conditional independence statements among discrete random variables.
VarNames:List
list of names of the random variables in the statements of $S$. If this is omitted
it is assumed that these are integers in the range from 1 to $n$ where $n$ is the number of
random variables in the declaration of markovRing.
Outputs
:List
list whose elements are instances of Matrix.
Description
Text
List of matrices whose 2x2 minors form the conditional independence ideal of the independence statements on the list $S$.
This method is used in @TO conditionalIndependenceIdeal@, it is exported to be able to read independence constraints
as minors of matrices instead of their polynomial expansions.
Example
S = {{{1},{3},{4}}}
R = markovRing (4:2)
compactMatrixForm =false;
netList markovMatrices (R,S)
Text
Here is an example where the independence statements are extracted from a graph.
Example
G = graph{{a,b},{b,c},{c,d},{a,d}}
S = localMarkov G
R = markovRing (4:2)
markovMatrices (R,S,vertices G)
Caveat
In case the random variables are not numbered $1, 2, \dots, n$, then this method requires an additional input
in the form of a list of the random variable names. This list must be in the same
order as the implicit order used in the sequence $d$. The user is encouraged to read the caveat on the method
@TO conditionalIndependenceIdeal@ regarding probability distributions on discrete random variables that have
been labeled arbitrarily.
SeeAlso
conditionalIndependenceIdeal
markovRing
///
------------------------------------
-- Documentation gaussianRing --
------------------------------------
doc ///
Key
gaussianRing
Headline
ring of Gaussian correlations on n random variables or a graphical model
Usage
gaussianRing n
gaussianRing G
Inputs
n:ZZ
the number of random variables
G:Graph
or @ofClass Digraph@, or @ofClass Bigraph@, or @ofClass MixedGraph@
Outputs
:Ring
a polynomial ring with indeterminates associated to the graphical model
Description
Text
This function creates a ring whose indeterminates are the covariances of an
n dimensional Gaussian random vector. Using a graph, digraph, or mixed graph $G$
as input gives a {\tt gaussianRing} with extra indeterminates related to the parametrization
of the graphical model associated to that graph.
Check the details of the {\tt gaussianRing} for each type of input:
* @TO (gaussianRing,ZZ)@
* @TO (gaussianRing,Graph)@
* @TO (gaussianRing,Digraph)@
* @TO (gaussianRing,Bigraph)@
* @TO (gaussianRing,MixedGraph)@
The indeterminates of the ring - $s_{(i,j)},k_{(i,j)},l_{(i,j)},p_{(i,j)}$ - can be placed into an appropriate matrix format using the
functions @TO covarianceMatrix@,
@TO undirectedEdgesMatrix@, @TO directedEdgesMatrix@, and
@TO bidirectedEdgesMatrix@ respectively.
The variable names that appear can be changed using the options sVariableName, lVariableName,
pVariableName, and kVariableName
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing (G,pVariableName => psi)
gens R
Text
The routines @TO conditionalIndependenceIdeal@, @TO trekIdeal@, @TO covarianceMatrix@,
@TO undirectedEdgesMatrix@, @TO directedEdgesMatrix@, @TO bidirectedEdgesMatrix@,
@TO gaussianVanishingIdeal@ and @TO gaussianParametrization@ require that the
ring be created by this function.
SeeAlso
bidirectedEdgesMatrix
conditionalIndependenceIdeal
covarianceMatrix
directedEdgesMatrix
gaussianVanishingIdeal
trekIdeal
undirectedEdgesMatrix
///
doc ///
Key
(gaussianRing,ZZ)
Headline
ring of Gaussian correlations on n random variables
Usage
gaussianRing n
Inputs
n:ZZ
the number of random variables
Outputs
:Ring
a ring with indeterminates $s_{(i,j)}$ for $1 \leq i \leq j \leq n$
Description
Text
This function creates a polynomial ring with indeterminates $s_{(i,j)}$ for $1 \leq i \leq j \leq n$.
The $s_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the entries in the
covariance matrix of the jointly normal random variables.
Example
R = gaussianRing 5;
gens R
compactMatrixForm =false;
covarianceMatrix R
SeeAlso
gaussianRing
///
doc ///
Key
(gaussianRing, Graph)
Headline
ring of Gaussian correlations of a graphical model coming from an undirected graph
Usage
gaussianRing G
Inputs
G:Graph
Outputs
:Ring
a polynomial ring with indeterminates $s_{(i,j)}$ and $k_{(i,j)}$
Description
Text
This function creates a polynomial ring with indeterminates $s_{(i,j)}$ for $1 \leq i \leq j \leq n$,
where $n$ is the number of vertices in $G$, and $k_{(i,j)}$.
The $s_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the entries in the
covariance matrix of the jointly normal random variables.
The $k_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the nonzero entries in the concentration
matrix in the graphical model associated to the undirected graph.
Example
G = graph({{a,b},{b,c},{c,d},{a,d}})
R = gaussianRing G
gens R
covarianceMatrix R
undirectedEdgesMatrix R
SeeAlso
gaussianRing
///
doc ///
Key
(gaussianRing, Bigraph)
Headline
ring of Gaussian correlations of a graphical model coming from a bigraph
Usage
gaussianRing G
Inputs
G:Bigraph
Outputs
:Ring
a ring with indeterminates $s_{(i,j)}, p_{(i,j)}$
Description
Text
A {\tt gaussianRing} of a bidirected graph is built
as a {\tt gaussianRing} of a mixed graph with only bidirected edges, see @TO (gaussianRing,MixedGraph)@.
Example
G = bigraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}};
R = gaussianRing G;
gens R
covarianceMatrix R
directedEdgesMatrix R
bidirectedEdgesMatrix R
SeeAlso
gaussianRing
///
doc ///
Key
(gaussianRing, Digraph)
Headline
ring of Gaussian correlations of a graphical model coming from a digraph
Usage
gaussianRing G
Inputs
G:Digraph
Outputs
:Ring
a polynomial ring with indeterminates $s_{(i,j)},l_{(i,j)}, p_{(i,j)}$ .
Description
Text
This function creates a polynomial ring in the indeterminates $s_{(i,j)}$ associated to the
covariance matrix of the model plus two new lists of indeterminates:
- The $l_{(i,j)}$ indeterminates consist of regression coefficients associated to the directed
edges in the graph.
- The $p_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the nonzero entries in the covariance matrix of the error terms
in the graphical model associated to a mixed graph with bidirected edges.
Note that since version 2.0 of the package,
{\tt gaussianRing} of a directed graph is built as a {\tt gaussianRing} of a mixed graph with only directed edges, see @TO (gaussianRing,MixedGraph)@.
Example
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}};
R = gaussianRing G;
gens R
covarianceMatrix R
directedEdgesMatrix R
bidirectedEdgesMatrix R
///
doc ///
Key
(gaussianRing, MixedGraph)
Headline
ring of Gaussian correlations of a graphical model coming from a mixed graph
Usage
gaussianRing G
Inputs
G:MixedGraph
Outputs
:Ring
a polynomial ring with indeterminates $s_{(i,j)},k_{(i,j)},l_{(i,j)},p_{(i,j)}$
Description
Text
This function accepts a mixed graph as input. The outputted ring contains the indeterminates $s_{(i,j)}$ associated to the
covariance matrix of the model plus two or three new lists of indeterminates depending on the type of edges of the graph:
- The $k_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the nonzero entries in the concentration
matrix in the graphical model associated to the undirected graph.
- The $l_{(i,j)}$ indeterminates consist of regression coefficients associated to the directed
edges in the graph.
- The $p_{(i,j)}$ indeterminates in the {\tt gaussianRing} are the nonzero entries in the covariance matrix of the error terms
in the graphical model associated to a mixed graph with bidirected edges.
Mixed graphs in this package can be of two different types depending on their edges:
{\bf Directed and bidirected edges}: two new lists of indeterminates. For each directed edge $i \to j$
in the mixed graph there is an indeterminate, denoted by default $l_{(i,j)}$, corresponding to the associated direct causal effect parameter in the model.
For each bidirected edge $i$<->$j$ there is an indeterminate, denoted by default $p_{(i,j)}$, corresponding to the associated noise parameter. Finally,
for each node $i$, there is an indeterminate $p_{(i,i)}$.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
gens R
covarianceMatrix R
directedEdgesMatrix R
bidirectedEdgesMatrix R
Text
{\bf Undirected, directed and bidirected edges}: three new lists of indeterminates. Besides the two already described above,
undirected edges are dealt with in the same way as in {\tt gaussianRing} applied to @ofClass Graph@,
with the corresponding indeterminates being $k_{(i,j)}$ by default.
Only loopless mixed graphs are accepted and they must have a vertex ordering compatible with @TO partitionLMG@.
For more details about loopless mixed graphs, see the paper:
Kayvan Sadeghi and Steffen Lauritzen, {\em Markov properties for mixed graphs}, Bernoulli, 20 (2014), no 2, 676-696.
Be aware that several functions in this package that accept mixed graphs are still not implemented for mixed graphs with undirected edges: @TO gaussianParametrization@,
@TO gaussianVanishingIdeal@, @TO trekIdeal@, @TO trekSeparation@, @TO identifyParameters@.
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}});
R = gaussianRing G
gens R
covarianceMatrix R
undirectedEdgesMatrix R
directedEdgesMatrix R
bidirectedEdgesMatrix R
SeeAlso
gaussianRing
///
---------------------------------------
-- Documentation gaussianMatrices --
---------------------------------------
doc///
Key
gaussianMatrices
(gaussianMatrices,Ring,List)
Headline
matrices whose minors generate the Gaussian conditional independence ideal
Usage
gaussianMatrices(R,S)
Inputs
R:Ring
must be a gaussianRing
S:List
of conditional independence statements
Outputs
:Matrix
whose minors generate the Gaussian conditional independence ideal
Description
Text
This method displays a list of matrices whose minors generate the Gaussian
conditional independence ideal. It is called as a subroutine in @TO conditionalIndependenceIdeal@
but it is useful to list these matrices explicitly.
Example
R = gaussianRing 4;
Stmts = {{{1,2},{3},{4}}, {{1},{3},{}}}
compactMatrixForm =false;
gaussianMatrices(R,Stmts)
SeeAlso
gaussianRing
conditionalIndependenceIdeal
///
---------------------------------------
-- Documentation covarianceMatrix --
---------------------------------------
doc///
Key
covarianceMatrix
(covarianceMatrix,Ring)
Headline
covariance matrix of a Gaussian graphical model
Usage
covarianceMatrix R
Inputs
R:Ring
which should be a gaussianRing
Outputs
:Matrix
the $n \times{} n$ covariance matrix of the Gaussian graphical model.
Description
Text
This method returns the $n \times{} n$ covariance matrix of the Gaussian graphical model
where $n$ is the number of random
variables in the model. If the gaussianRing was created
using a graph, $n$ will be the number of vertices of the graph.
If this function is called without a graph $G$, it is assumed that $R$ is the {\tt gaussianRing} of a directed acyclic graph.
Example
compactMatrixForm =false;
covarianceMatrix gaussianRing 4
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
S = covarianceMatrix R
Text
This function also works for {\tt gaussianRings} created with a {\tt graph} or {\tt mixedGraph}.
Example
G = graph({{a,b},{b,c},{c,d},{a,d}})
R = gaussianRing G
S = covarianceMatrix R
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
S = covarianceMatrix R
SeeAlso
gaussianRing
gaussianParametrization
bidirectedEdgesMatrix
directedEdgesMatrix
///
--------------------------------------------
-- Documentation bidirectedEdgesMatrix --
--------------------------------------------
doc///
Key
bidirectedEdgesMatrix
(bidirectedEdgesMatrix,Ring)
Headline
matrix corresponding to the bidirected edges of a bigraph or a mixed graph
Usage
bidirectedEdgesMatrix R
Inputs
R:Ring
which should be a gaussianRing created with @ofClass Bigraph@ or @ofClass MixedGraph@
Outputs
:Matrix
the $n \times{} n$ covariance matrix of the noise variables in the Gaussian graphical model of a mixed graph.
Description
Text
This method returns the $n \times{} n$ covariance matrix of the noise variables in the Gaussian graphical model.
The diagonal in this matrix consists of the indeterminates $p_{(i,i)}$. Each off-diagonal entry is zero unless
there is a bidirected edge between i and j in which case the corresponding entry in the matrix is the indeterminate
$p_{(i,j)}$. The documentation of @TO gaussianRing@
further describes the indeterminates $p_{(i,j)}$.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
compactMatrixForm =false;
bidirectedEdgesMatrix R
Text
For mixed graphs that also have undirected edges,
the size of the matrix coincides with the number of elements in @TO compW@,
which depends on the vertex partition built in @TO partitionLMG@.
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}});
R = gaussianRing G
bidirectedEdgesMatrix R
Text
Bidirected graphs can also be considered:
Example
G = bigraph {{a,d},{b},{c}}
R = gaussianRing G
bidirectedEdgesMatrix R
SeeAlso
gaussianRing
gaussianParametrization
covarianceMatrix
directedEdgesMatrix
///
------------------------------------------
-- Documentation directedEdgesMatrix --
------------------------------------------
doc///
Key
directedEdgesMatrix
(directedEdgesMatrix,Ring)
Headline
matrix corresponding to the directed edges of a digraph or a mixed graph
Usage
directedEdgesMatrix R
Inputs
R:Ring
which should be a gaussianRing created with @ofClass Digraph@ or @ofClass MixedGraph@
Outputs
:Matrix
the $n \times{} n$ matrix of direct causal effect indeterminates.
Description
Text
This method returns the $n \times{} n$ matrix of direct causal effect indeterminates.
This matrix has the parameter $l_{(i,j)}$ in the $(i,j)$ position
if there is a directed edge $i \to j$, and 0 otherwise.
Note that this matrix is not symmetric.
The documentation of @TO gaussianRing@
further describes the indeterminates $l_{(i,j)}$.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
compactMatrixForm =false;
directedEdgesMatrix R
Example
D = digraph{{a,b},{c,d}}
directedEdgesMatrix gaussianRing D
SeeAlso
gaussianRing
gaussianParametrization
covarianceMatrix
bidirectedEdgesMatrix
///
----------------------------------------------
-- Documentation gaussianParametrization --
----------------------------------------------
doc///
Key
gaussianParametrization
(gaussianParametrization,Ring)
Headline
parametrization of the covariance matrix in terms of treks
Usage
M = gaussianParametrization(R)
Inputs
R:Ring
which should be a gaussianRing of a mixed graph without undirected edges
Outputs
M:Matrix
the parametrization of the covariance matrix in terms of treks
Description
Text
Given a mixed graph $G$ with directed and bidirected edges, let $L$ be the matrix corresponding to
the directed edges (see @TO directedEdgesMatrix@) and let $W$ be the matrix corresponding to
the bidirected edges (see @TO bidirectedEdgesMatrix@). Then, the covariance matrix $S$
(see @TO covarianceMatrix@) of the random variables in the Gaussian graphical model corresponding
to the mixed graph $G$ can be parametrized by the matrix equation $S = (I-L)^{-T}W(I-L)^{-1}$, where
$I$ is the identity matrix.
The entry $s_{(i,j)}$ of the covariance matrix can also be written as the sum of all monomials corresponding
to treks between vertices $i$ and $j$. See @TO trekSeparation@ for the definition of a trek. The monomial corresponding
to a trek is the product of all parameters associated to the directed and bidirected edges on the trek.
The following example shows how to compute the ideal of the model using the parametrization,
which could also be computed using @TO gaussianVanishingIdeal@
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
compactMatrixForm =false;
S = covarianceMatrix(R)
L = directedEdgesMatrix(R)
W = bidirectedEdgesMatrix(R)
M = gaussianParametrization(R)
J = delete(0_R, flatten entries (L|W))
eliminate(J, ideal(S-M))
gaussianVanishingIdeal(R)
Text
This next example shows how to use the option @TO SimpleTreks@ to compute a parametrization using simple treks
instead of all treks. The resulting covariance matrix has diagonal entries equal to 1. This is
giving a parametrization of all correlation matrices of matrices that belong to the model. This
formulation is also known as Wright's method of path analysis.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
M = gaussianParametrization(R,SimpleTreks=>true)
SeeAlso
covarianceMatrix
directedEdgesMatrix
bidirectedEdgesMatrix
trekSeparation
///
----------------------------------
-- Documentation SimpleTreks --
----------------------------------
doc ///
Key
SimpleTreks
Headline
optional input for gaussianParametrization
Description
Text
This is an option to tell @TO gaussianParametrization@ to use simple treks. false
is the default option.
SeeAlso
gaussianParametrization
///
doc///
Key
[gaussianParametrization, SimpleTreks]
Headline
optional input for gaussianParametrization
Usage
M = gaussianParametrization(R,SimpleTreks => true)
Inputs
R:Ring
which should be a gaussianRing
Outputs
M:Matrix
the parametrization of the covariance matrix in terms of treks
Description
Text
Put {\tt SimpleTreks => true} as an argument in the function @TO gaussianParametrization@ to compute
a parametrization of the covariance matrix $S=(s_{(i,j)})$ where $s_{(i,j)}$ is the sum of monomials corresponding
to simple treks between vertices $i$ and $j$. Here, a simple trek is a trek $(P_L,P_R)$ where the paths $P_L$ and $P_R$
do not have any common vertices except perhaps at their source. See @TO trekSeparation@ for the definition of a trek.
If the option {\tt SimpleTreks => false} is used, then the sum is over
all treks, and not just simple treks.
SeeAlso
gaussianParametrization
///
-----------------------------------------
-- Documentation identifyParameters --
-----------------------------------------
doc///
Key
identifyParameters
(identifyParameters,Ring)
Headline
solve the identifiability problem for Gaussian graphical models
Usage
H = identifyParameters(R)
Inputs
R:Ring
which should be a gaussianRing created with a mixed graph without undirected edges
Outputs
H:HashTable
where H#p is the ideal of equations involving only the parameter $p$ and the covariances $s_{(i,j)}$
Description
Text
Expresses each parameter in the gaussianParametrization in terms of covariances,
if it is possible to do so, or displays that no identification formula is possible. The identifiability
problem for mixed graph models is described in Garcia, Spielvogel, Sullivant, "Identifying causal effects with computer algebra",
UAI, Proceedings of the 26th Conferences, AUAI Press, 2010.
If H#p contains a linear equation $a*p+b$ where a is always nonzero, then $p$ is identifiable.
If H#p contains a linear equation $a*p+b$ where a may be zero, then $p$ is generically identifiable.
If H#p contains a polynomial in $p$ of degree $d$, then $p$ is algebraically $d$-identifiable.
If H#p does not contain any polynomial in $p$, then $p$ is not generically identifiable.
Example
G = mixedGraph(digraph {{a,{b}},{b,{c}}},bigraph {{a,c}, {b,c}})
R = gaussianRing G
H = identifyParameters R
Text
Reading the output (first line in the HashTable), we see that parameter $l_{(a,b)}$ is identifiable by the
formula $l_{(a,b)} = s_{(a,b)}/s_{(a,a)}$. On the other hand, $l_{(b,c)}$ is
not identifiable.
SeeAlso
gaussianRing
///
--------------------------------
-- Documentation trekIdeal --
--------------------------------
doc///
Key
trekIdeal
(trekIdeal,Ring,MixedGraph)
(trekIdeal,Ring,Digraph)
(trekIdeal,Ring,Graph)
Headline
trek separation ideal of a mixed graph
Usage
I = trekIdeal(R,G)
Inputs
R:Ring
which should be a gaussianRing
G:Graph
@ofClass Graph@, or @ofClass Digraph@ with no cycles,
or @ofClass MixedGraph@ with directed and bidirected edges
Outputs
I:Ideal
the ideal of determinantal trek separation statements implied by the graph $G$.
Description
Text
For mixed graphs, the ideal corresponding to all trek separation statements {A,B,CA,CB} (where A,B,CA,CB
are disjoint lists of vertices of G) is generated by the r+1 x r+1 minors of the submatrix of the covariance matrix M = (s_{(i,j)}), whose
rows are in A, and whose columns are in B, and where r = #CA+#CB.
This function is not yet implemented for mixed graphs with undirected edges.
These ideals are described in more detail by Sullivant, Talaska and Draisma in "Trek Separation for Gaussian Graphical Models"
Annals of Statistics 38 no.3 (2010) 1665--1685
and give all determinantal constraints on the covariance matrix of a Gaussian graphical model.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
T = trekIdeal(R,G)
ideal gens gb T
Text
For undirected graphs $G$, the {\tt trekIdeal(R,G)} is the same as
{\tt conditionalIndependenceIdeal(R,globalMarkov(G))}. For directed graphs $G$, {\tt trekIdeal(R,G)}
is generally larger than {\tt conditionalIndependenceIdeal(R,globalMarkov(G))}.
Example
G = graph{{a,b},{b,c},{c,d},{a,d}}
R = gaussianRing G
T = trekIdeal(R,G);
CI = conditionalIndependenceIdeal(R,globalMarkov(G));
T == CI
H = digraph{{1,{4}},{2,{4}},{3,{4,5}},{4,{5}}}
R = gaussianRing H
T = trekIdeal(R,H);
CI = conditionalIndependenceIdeal(R,globalMarkov(H));
T == CI
Caveat
{\tt trekSeparation} is currently only implemented with {\tt mixedGraphs} that have directed and
bidirected edges.
SeeAlso
trekSeparation
///
-------------------------------------
-- Documentation trekSeparation --
-------------------------------------
doc///
Key
trekSeparation
(trekSeparation,MixedGraph)
Headline
trek separation statements of a mixed graph
Usage
trekSeparation(G)
Inputs
G:MixedGraph
mixed graph with directed and bidirected edges
Outputs
:List
of lists \{A,B,CA,CB\}, where (CA,CB) trek-separates A from B
Description
Text
A trek between vertices $i$ and $j$ in a mixed graph $G$ with directed and bidirected edges is a triple
$(P_L,P_R)$ where $P_L$ is a directed path of directed edges with sink $i$ and source $k$, $P_R$ is a directed path
of directed edges with sink $j$ and source $l$, and either $k=l$ or there is a bidirected edge between $k$ and $l$.
Let $A,B,CA,CB$ be subsets of vertices of $G$.
We say that $(CA,CB)$ trek-separates $A$ from $B$ in $G$ if for every trek
$(P_L,P_R)$ from a vertex in $A$ to a vertex in $B$, either $P_L$ contains a vertex in $CA$ or $P_R$ contains a vertex in $CB$.
The function @TO trekSeparation@ returns a list of trek separation statements $\{A,B,CA,CB\}$\,where
$#CA + #CB < min(#A, #B)$. Each statement is maximal in the ordering where $\{A1,B1,CA,CB\}\,<\,\{A2,B2,CA,CB\}$\,if $A1$ is a
subset of $A2$ and $B1$ is a subset of $B2$. Each statement is also unique up to symmetry, since $\{B,A,CB,CA\}$\,is a
trek separation statement if and only if $\{A,B,CA,CB\}$.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
S = trekSeparation G
Caveat
{\tt trekSeparation} $G$ is only implemented for mixedGraphs with directed and bidirected edges.
SeeAlso
trekIdeal
///
----------------------------------------------------------------------------------
-- Documentation sVariableName, kVariableName, lVariableName, pVariableName --
----------------------------------------------------------------------------------
doc ///
Key
sVariableName
Headline
optional input to choose the variable names for the covariance matrix
Description
Text
Put {\tt sVariableName => Symbol} for a choice of a symbol s as an argument in the function @TO gaussianRing@
SeeAlso
gaussianRing
///
doc ///
Key
[gaussianRing, sVariableName]
Headline
symbol used for indeterminates in a ring of Gaussian joint probability distributions
Usage
gaussianRing(G,sVariableName=>t)
Inputs
t:
a @TO Symbol@ or a @TO String@
Description
Text
The option {\tt gaussianRing(G,sVariableName=>t)} changes the symbol used for intedeterminates in the covariance matrix
in a polynomial ring created with @TO gaussianRing@.
Example
R = gaussianRing 4
gens R
Rnew=gaussianRing(4,sVariableName => "t")
gens Rnew
///
doc ///
Key
lVariableName
Headline
optional input to choose the variable names for the regression matrix
Description
Text
Put {\tt lVariableName => Symbol} for a choice of a symbol l as an argument in
the function @TO gaussianRing@
SeeAlso
gaussianRing
///
doc ///
Key
[gaussianRing, lVariableName]
Headline
symbol used for indeterminates in a ring of Gaussian joint probability distributions
Usage
gaussianRing(G,lVariableName=>w)
Inputs
w:
a @TO Symbol@ or a @TO String@
Description
Text
The option {\tt gaussianRing(G,lVariableName=>w)} changes the symbol used for intedeterminates in the regression matrix
in a polynomial ring created with @TO gaussianRing@.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
gens gaussianRing(G,lVariableName=>"lambda")
///
doc ///
Key
pVariableName
Headline
optional input to choose the variable names for the covariance matrix of the error terms
Description
Text
Put {\tt pVariableName => Symbol} for a choice of a symbol p as an argument in
the function @TO gaussianRing@
SeeAlso
gaussianRing
///
doc ///
Key
[gaussianRing, pVariableName]
Headline
symbol used for indeterminates in a ring of Gaussian joint probability distributions
Usage
gaussianRing(G,pVariableName=>q)
Inputs
q:
a @TO Symbol@ or a @TO String@
Description
Text
The option {\tt gaussianRing(G,pVariableName=>q)} changes the symbol used for intedeterminates in the covariance matrix of the error terms
in a polynomial ring created with @TO gaussianRing@.
Example
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
gens R
R = gaussianRing (G,pVariableName => psi)
gens R
///
doc ///
Key
kVariableName
Headline
optional input to choose the variable names for concentration matrix in gaussianRing
Description
Text
The option {\tt kVariableName => Symbol} changes the symbol used for intedeterminates in a polynomial ring created with @TO gaussianRing@.
These indeterminates, k's by default, are entries in the concentration matrix.
SeeAlso
gaussianRing
///
doc ///
Key
[gaussianRing, kVariableName]
Headline
symbol used for indeterminates in a ring of Gaussian joint probability distributions
Usage
gaussianRing(G,kVariableName=>m)
Inputs
m:
a @TO Symbol@ or a @TO String@
Description
Text
The option {\tt gaussianRing(G,kVariableName=>m)} changes the symbol used for intedeterminates in the concentration
matrix in a polynomial ring created with @TO gaussianRing@.
Example
R = gaussianRing graph({{a,b},{b,c},{c,d},{a,d}})
compactMatrixForm =false;
undirectedEdgesMatrix R
gens R
Rnew = gaussianRing( graph({{a,b},{b,c},{c,d},{a,d}}), kVariableName => kappa)
gens Rnew
///
----------------------------------------------------------------------------------
-- Documentation of hash table gaussianRingData and its keys --
----------------------------------------------------------------------------------
doc ///
Key
gaussianRingData
Headline
hash table with main parameters of a gaussian ring
Description
Text
The contents of gaussianRingData depend on the type of gaussian ring.
First, we show an example of a gaussian ring with 5 variables
Example
R = gaussianRing 5
gaussianRingData
Text
In case of the gaussian ring of a graph, there are two options. First one, is when the graph is
of class @TO Graph@ .
Example
R=gaussianRing graph {{1,2},{2,3}}
R.gaussianRingData
Text
If the graph is of any other class -i.e., @TO Bigraph@, @TO Digraph@,
@TO MixedGraph@ - then it is internally converted to a @TO MixedGraph@ and
the gaussianRingData has the same structure.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
SeeAlso
gaussianRing
kVar
pVar
lVar
sVar
compU
compW
nn
///
doc ///
Key
nn
Headline
key in hash table gaussianRingData: total number of variables
Description
Text
This key is present in every gaussianRingData hash table
Example
R = gaussianRing 5
R.gaussianRingData
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing U
R4 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
R4.gaussianRingData
SeeAlso
gaussianRingData
kVar
pVar
lVar
sVar
compU
compW
///
doc ///
Key
kVar
Headline
key in hash table gaussianRingData: labels of k variables
Description
Text
This key is present in every gaussianRingData that comes from a graph.
It is equal to the value of the optional input @TO [gaussianRing, kVariableName]@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing U
R4 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
R4.gaussianRingData
SeeAlso
kVariableName
gaussianRingData
pVar
lVar
sVar
compU
compW
nn
///
doc ///
Key
sVar
Headline
key in hash table gaussianRingData: labels of s variables
Description
Text
This key is present in every gaussianRingData that comes from a graph.
It is equal to the value of the optional input @TO [gaussianRing, sVariableName]@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing U
R4 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
R4.gaussianRingData
SeeAlso
sVariableName
gaussianRingData
pVar
lVar
kVar
compU
compW
nn
///
doc ///
Key
pVar
Headline
key in hash table gaussianRingData: labels of p variables
Description
Text
This key is present in every gaussianRingData that comes from a graph.
It is equal to the value of the optional input @TO [gaussianRing, pVariableName]@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing U
R4 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
R4.gaussianRingData
SeeAlso
pVariableName
gaussianRingData
kVar
lVar
sVar
compU
compW
nn
///
doc ///
Key
lVar
Headline
key in hash table gaussianRingData: labels of l variables
Description
Text
This key is present in every gaussianRingData that comes from a graph.
It is equal to the value of the optional input @TO [gaussianRing, lVariableName]@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R3 = gaussianRing U
R4 = gaussianRing mixedGraph(U,B,D)
R1.gaussianRingData
R2.gaussianRingData
R3.gaussianRingData
R4.gaussianRingData
SeeAlso
lVariableName
gaussianRingData
kVar
pVar
sVar
compU
compW
nn
///
doc ///
Key
compU
Headline
key in hash table gaussianRingData: component of undirected edges in vertex set of a mixed graph
Description
Text
This key is present in every gaussianRingData that comes from a graph of class @TO MixedGraph@.
It is equal to the set of vertices that are incident to undirected edges. For more details,
check component U in @TO partitionLMG@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R = gaussianRing mixedGraph(U,B,D)
R.gaussianRingData
Text
Since the gaussian rings of graphs of classes @TO Digraph@ and @TO Bigraph@ are
created by first changing the class to @TO MixedGraph@, the key compU is also
present in the gaussianRingData hashtables of these two classes of graphs and
the corresponding value is computed according to the rules described in
@TO partitionLMG@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R1.gaussianRingData
R2.gaussianRingData
SeeAlso
partitionLMG
gaussianRingData
kVar
pVar
sVar
lVar
compW
nn
///
doc ///
Key
compW
Headline
key in hash table gaussianRingData: component of bidirected edges in vertex set of a mixed graph
Description
Text
This key is present in every gaussianRingData that comes from a graph of class @TO MixedGraph@.
It is equal to the set of vertices that are incident to bidirected edges. For more details,
check component W in @TO partitionLMG@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R = gaussianRing mixedGraph(U,B,D)
R.gaussianRingData
Text
Since the gaussian rings of graphs of classes @TO Digraph@ and @TO Bigraph@ are
created by first changing the class to @TO MixedGraph@, the key compW is also
present in the gaussianRingData hashtables of these two classes of graphs and
the corresponding value is computed according to the rules described in
@TO partitionLMG@.
Example
U = graph {{1,2},{2,3}}
B = bigraph{{4,5}}
D = digraph {{1,4}}
R1 = gaussianRing B
R2 = gaussianRing D
R1.gaussianRingData
R2.gaussianRingData
SeeAlso
partitionLMG
gaussianRingData
kVar
pVar
sVar
lVar
compU
nn
///
--------------------------------------------
-- Documentation graphType
--------------------------------------------
doc ///
Key
graphType
Headline
class of graph used to generate a gaussian ring
Description
Text
For a {\tt gaussianRing} R generated with @ofClass Digraph@ and @ofClass Bigraph@
the class we retrieve when typing R.graph is MixedGraph. This is consistent with the treatment
of such objects. Therefore, this variable is essentially used to differentiate graphs
from @ofClass Graph@ and @ofClass MixedGraph@.
SeeAlso
gaussianRing
gaussianRingData
///
--------------------------------------------
-- Documentation conditionalIndependenceIdeal
--------------------------------------------
doc///
Key
conditionalIndependenceIdeal
(conditionalIndependenceIdeal, Ring, List)
(conditionalIndependenceIdeal, Ring, List, List)
Headline
ideal of a list of conditional independent statements
Usage
conditionalIndependenceIdeal(R,Stmts)
conditionalIndependenceIdeal(R,Stmts,VarNames)
Inputs
R:Ring
it must be a @TO gaussianRing@ or a @TO markovRing@
Stmts:List
list of conditional independence statements
VarNames:List
list of names of random variables in conditional independence statements in Stmts. This argument
allows to choose a subset of random variables and is only available for markov rings. By default,
this is a list of integers 1 to $n$ where $n$ is the number of variables in the
declaration of {\tt markovRing} or {\tt gaussianRing}. If R is a gaussian ring, then only the
default input is accepted.
Outputs
:Ideal
ideal of conditional independence relations
Description
Text
{\tt conditionalIndependenceIdeal} computes the ideal of a list of conditional independence statements. This method works
for both discrete and Gaussian graphical models. In the case of discrete random variables, it computes the 2x2 minors
of the matrices produced by @TO markovMatrices@. For Gaussian graphical models, it computes the minors
of the matrices produced by @TO gaussianMatrices@.
A single conditional independence statement is a list consisting of three disjoint
lists of indices for random variables, e.g. $\{ \{1,2\},\{4\}, \{3\} \}$
which represents the conditional independence statement ``$(X_1, X_2)$
is conditionally independent of $X_4$ given $X_3$''.
In the input to {\tt conditionalIndependenceIdeal} a list of conditional
independence statements is used.
A common way that we arrive at collections of conditional independence statements
is through the Markov statements implied by a graph.
Below are two examples of independence ideals on discrete random variables,
using @TO globalMarkov@ statements and @TO localMarkov@ statements.
Example
G = graph {{1,2},{2,3},{3,4},{4,1}}
D = digraph {{1,{}},{2,{1}},{3,{1}},{4,{2,3}}}
R = markovRing (2,2,2,2)
conditionalIndependenceIdeal (R, globalMarkov(G)) / print;
conditionalIndependenceIdeal (R, localMarkov(D)) / print;
Text
The following example is an independence ideal of a Gaussian graphical model.
Example
G = graph {{a,b},{b,c},{c,d},{d,a}}
R=gaussianRing G
conditionalIndependenceIdeal (R,globalMarkov(G)) / print;
Text
For Gaussian models,
{\tt conditionalIndependenceIdeal} can compute the ideal of a list of independence statements on a graph even
if the ring was not constructed with that specific graph.
However, the vertex labels in the graph should be integers.
Example
G = graph({{1,2},{2,3},{3,4},{4,1}})
R=gaussianRing 4
conditionalIndependenceIdeal (R, globalMarkov G) / print;
Text
This method also accepts as input arbitrary lists of independent statements that may not
arise from a graphical model.
Example
R=gaussianRing 5
S={{{1},{2},{3,4}}, {{2,3},{1},{5}}}
conditionalIndependenceIdeal (R,S) / print;
Text
For general discrete independence models (not necessarily arising from a graph), {\tt conditionalIndependenceIdeal} requires one of the
following two options: \break
(1) the random variables are labelled by integers (as in the first example above) or \break
(2) in case the random variables have arbitrary names, an extra input parameter must be used in order to specify
the names of the random variables.
Example
R = markovRing (2,2,2,2)
VarNames = {c,d,e,f}
Stmts = { {{c,d},{e},{}}, {{d,e},{c},{f}}}
conditionalIndependenceIdeal(R,Stmts,VarNames) / print;
Text
The following example illustrates the caveat below.
Example
D = digraph {{b,{a}},{a,{c}},{c,{}}}
R = markovRing (2,3,2)
VarNames = {b,a,c}
S = globalMarkov D
conditionalIndependenceIdeal(R, S, VarNames) / print;
vertices D
conditionalIndependenceIdeal(R, S, vertices D) / print;
Caveat
We note that the list of random variable names must be in the same order as the implicit order used in the sequence $d$.
In the previous example, we have the graph $b \to a \to c$, where $a$ has three states and $b$ and $c$ are both binary.
Note that the ring $R$ was created with the sequence $d = (2,3,2)$, having in mind the topological order of the graph as opposed
to the vertex labels. Note how the first instance of this method returns the correct output, however, the second instance returns
an incorrect ideal since vertices D is not in the same order as the sequence $d$.
SeeAlso
discreteVanishingIdeal
gaussianRing
gaussianVanishingIdeal
markovRing
trekIdeal
///
--------------------------------------------
-- Documentation undirectedEdgesMatrix------
--------------------------------------------
doc///
Key
undirectedEdgesMatrix
(undirectedEdgesMatrix,Ring)
Headline
matrix corresponding to the edges of an undirected graph
Usage
undirectedEdgesMatrix(R)
Inputs
R:Ring
which should be created with @TO gaussianRing@ created with @ofClass Graph@ or
@ofClass MixedGraph@
Outputs
:Matrix
the n x n symmetric concentration matrix of an undirected gaussian
graphical model.
Description
Text
This symmetric matrix has entries $k_{(i,i)}$ along the diagonal
and entry $k_{(i,j)}$ in the $(i,j)$ position if there is an edge between i and j, and a zero otherwise.
The documentation of @TO gaussianRing@
further describes the indeterminates $k_{(i,j)}$.
Example
G = graph({{a,b},{b,c},{c,d},{a,d}})
R = gaussianRing G
compactMatrixForm =false;
K = undirectedEdgesMatrix(R)
Text
For mixed graphs with other types of edges,
the size of the matrix coincides with the number of elements in @TO compU@,
which depends on the vertex partition built in @TO partitionLMG@.
Example
G = mixedGraph(digraph {{1,3},{2,4}},bigraph {{3,4}},graph {{1,2}});
R = gaussianRing G;
K = undirectedEdgesMatrix(R)
SeeAlso
gaussianRing
gaussianParametrization
covarianceMatrix
directedEdgesMatrix
///
-----------------------------------------
-- Documentation gaussianVanishingIdeal--
-----------------------------------------
doc ///
Key
gaussianVanishingIdeal
(gaussianVanishingIdeal,Ring)
Headline
vanishing ideal of a Gaussian graphical model
Usage
gaussianVanishingIdeal(R)
Inputs
R:Ring
created with @TO gaussianRing@ using a graphs of classes @TO Graph@, @TO Digraph@ or @TO MixedGraph@ without undirected edges as input.
Outputs
:Ideal
ideal in R
Description
Text
{\tt gaussianVanishingIdeal} computes the ideal in $R$ of homogeneous polynomial relations
on the variance-covariance parameters of a graphical model on $G$ as explained in
Chapter 3.3 of ``Lectures on Algebraic Statistics'' by Drton, Sturmfels, and Sullivant.
Example
G = graph({{a,b},{b,c},{c,d},{a,d}})
R = gaussianRing G
J = gaussianVanishingIdeal(R);
ideal mingens J / print;
Text
This method works for graphs, digraphs and mixed graphs without undirected edges.
Example
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
gaussianVanishingIdeal(R)
H = mixedGraph(digraph {{a,{c}},{b,{c}}, {c,{d}}},bigraph {{c,d}})
S = gaussianRing H
gaussianVanishingIdeal(S)
Caveat
This method currently works on really small examples because it computes
the vanishing ideal as an elimination ideal.
SeeAlso
gaussianRing
trekIdeal
OldVersion
///
-----------------------------------------
-- Documentation OldVersion--
-----------------------------------------
doc ///
Key
OldVersion
Headline
optional argument in gaussianVanishingIdeal to use old method for gaussianRings coming from directed graphs
Description
Text
Alternative computation of the vanishing ideal of a Gaussian directed graphical
model using (2) from Seth Sullivant, Kelli Talaska, and Jan Draisma,
{\em Trek separation for Gaussian graphical models}, The Annals of Statistics
38.3 (2010): 1665-1685.
SeeAlso
gaussianVanishingIdeal
///
doc ///
Key
[gaussianVanishingIdeal, OldVersion]
Headline
optional argument in gaussianVanishingIdeal to use old method for gaussianRings coming from directed graphs
Usage
gaussianVanishingIdeal(R,G,OldVersion=>false)
Inputs
b:Boolean
false by default
Description
Text
By default, @TO gaussianVanishingIdeal@ uses the code of the current version. However, if the graph
only has directed edges, the user can choose to use the code from the previous version which is based on
(2) from Seth Sullivant, Kelli Talaska, and Jan Draisma,
{\em Trek separation for Gaussian graphical models}, The Annals of Statistics
38.3 (2010): 1665-1685.
SeeAlso
gaussianVanishingIdeal
///
-----------------------------------------
-- Documentation discreteVanishingIdeal--
-----------------------------------------
doc///
Key
discreteVanishingIdeal
(discreteVanishingIdeal,Ring,Digraph)
Headline
vanishing ideal of a discrete graphical model
Usage
discreteVanishingIdeal(R,G)
Inputs
R:Ring
created with @TO markovRing@
G:Digraph
Outputs
:Ideal
an ideal in $R$
Description
Text
This method computes the ideal in $R$ of homogeneous polynomial
relations on the joint probabilities of random variables represented by the vertices of $G$.
Here is a small example that compute the vanishing ideal on the joint probabilities of two independent binary random
variables. In this case, this ideal equals the ideal obtained using @TO conditionalIndependenceIdeal@.
Example
G = digraph {{1,{}}, {2,{}}}
R = markovRing (2,2)
discreteVanishingIdeal (R,G)
conditionalIndependenceIdeal(R, localMarkov G)
Text
Here is an example for a graph on four vertices. The random variables a,b,c and d have 2,3,4, and 2 states, respectively.
Example
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = markovRing (2,3,4,2)
I = discreteVanishingIdeal (R,G);
Text
The vanishing ideal is generated by 84 quadrics, which we don't display.
Example
betti I
SeeAlso
markovRing
conditionalIndependenceIdeal
///
--******************************************--
-- TESTS --
--******************************************--
--------------------------
---- TEST pairMarkov ----
--------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
S = pairMarkov G
Ssorted = apply(S, s-> replace(2,sort(s_2),s) )
L = {{{a}, {d}, sort {e, b, c}}, {{c}, {e}, sort {d, a, b}}, {{b}, {d},sort {e,a, c}}, {{b}, {e},sort {d, a, c}}, {{a}, {c},sort {d, e, b}}}
assert(sort Ssorted === sort L)
///
TEST ///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
S = pairMarkov G
S = sort apply(S,s -> {sort s#0, sort s#1, sort s#2})
L = sort {{{c}, {d}, {a, b}}, {{a}, {d}, {b, c}}}
assert(S === L)
///
--------------------------
---- TEST localMarkov ---
--------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
S = localMarkov G
L = {{{a}, {c, d},sort {e, b}}, {{a, b}, {d},sort {e, c}}, {{a, e}, {c},sort {d, b}}, {{b, c}, {e}, sort{d, a}}, {{b}, {d, e}, sort{a, c}}}
Ssorted = apply(S, s-> replace(2,sort(s_2),s) )
assert(sort Ssorted === sort L)
///
TEST ///
G = digraph { {1,{2,3,4}}, {5,{2,3,4}} }
S = localMarkov G
S = sort apply(S,s -> {sort s#0, sort s#1, sort s#2})
L = sort {{{2}, {3, 4}, {1, 5}}, {{2, 3}, {4}, {1, 5}}, {{2, 4}, {3}, {1, 5}}, {{1}, {5}, {}}}
assert(S === L)
///
--------------------------
--- TEST globalMarkov ---
--------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{d,e},{e,a}})
S = globalMarkov G
S = sort apply(S,s -> {sort s#0, sort s#1, sort s#2})
L= sort {{{a}, {c, d}, {b, e}}, {{a, b}, {d}, {c, e}}, {{a, e}, {c}, {b, d}}, {{b}, {d, e}, {a,c}}, {{b, c}, {e}, {a, d}}}
assert(S === L)
///
TEST ///
G = digraph { {2, {1}}, {3,{2}}, {4,{1,3}} }
S = globalMarkov G
S = sort apply(S,s -> {sort s#0, sort s#1, sort s#2})
L = sort {{{1}, {3}, {2, 4}}, {{2}, {4}, {3}}}
assert(S === L)
///
--------------------------
--- TEST markovRing ---
--------------------------
TEST ///
d = (2,2,2)
R = markovRing (d, Coefficients=>CC, VariableName=>q)
V = {q_(1,1,1), q_(1,1,2), q_(1,2,1), q_(1,2,2), q_(2,1,1), q_(2,1,2), q_(2,2,1), q_(2,2,2)}
assert(sort gens R === sort V)
///
-----------------------------------------------
--- TEST gaussianRing--------------------------
-----------------------------------------------
TEST ///
R = gaussianRing 4
B = gens R
L = {s_(1,1), s_(1,2), s_(1,3), s_(1,4), s_(2,2), s_(2,3), s_(2,4), s_(3,3), s_(3,4), s_(4,4)}
assert(sort B === sort L)
///
TEST ///
G = graph({{a,b},{b,c},{c,d},{a,d}})
R = gaussianRing G
correctOutput = {{k_(a,a), k_(b,b), k_(c,c), k_(d,d), k_(a,d), k_(a,b),k_(b,c), k_(c,d), s_(a,a), s_(a,b), s_(a,c), s_(a,d), s_(b,b),s_(b,c), s_(b,d), s_(c,c), s_(c,d), s_(d,d)}}
assert(ideal gens R == ideal flatten correctOutput )
///
TEST ///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
assert(sort gens R === sort {l_(a,c),l_(a,b),l_(b,c),l_(b,d),p_(a,a),p_(b,b),p_(c,c),p_(d,d),s_(a,a),s_(a,b),
s_(a,c),s_(a,d),s_(b,b),s_(b,c),s_(b,d),s_(c,c),s_(c,d),s_(d,d)})
///
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
assert(sort gens R === sort {l_(b,c), l_(b,d), l_(c,d), p_(a,a), p_(b,b), p_(c,c), p_(d,d), p_(a,d), s_(a,a), s_(a,b), s_(a,c), s_(a,d), s_(b,b), s_(b,c), s_(b,d), s_(c,c), s_(c,d), s_(d,d)})
///
-----------------------------------------------
--- TEST undirectedEdgesMatrix-----------------
-----------------------------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{a,d}})
R=gaussianRing G
M=undirectedEdgesMatrix(R)
correctOutput = {{k_(a,a), k_(a,b), 0, k_(a,d)}, {k_(a,b), k_(b,b), k_(b,c),0}, {0, k_(b,c), k_(c,c), k_(c,d)}, {k_(a,d), 0, k_(c,d),k_(d,d)}}
assert(0 == M - matrix correctOutput )
///
--------------------------------
--- TEST directedEdgesMatrix ---
--------------------------------
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
L = directedEdgesMatrix R
assert(0 == L-matrix {{0, 0, 0, 0}, {0, 0, l_(b,c), l_(b,d)}, {0, 0, 0, l_(c,d)}, {0, 0, 0, 0}})
///
----------------------------------
--- TEST bidirectedEdgesMatrix ---
----------------------------------
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
W = bidirectedEdgesMatrix R
assert(0 == W-matrix {{p_(a,a), 0, 0, p_(a,d)}, {0, p_(b,b), 0, 0}, {0, 0, p_(c,c), 0}, {p_(a,d), 0, 0, p_(d,d)}})
///
------------------------------
--- TEST markovMatrices ---
------------------------------
TEST ///
G = digraph { {1, {2,3}}, {2, {4}}, {3, {4}} }
S = localMarkov G
R = markovRing (2,2,2,2)
L = markovMatrices (R,S)
M = L#1
m = matrix {{p_(2,1,1,1)+p_(2,1,1,2), p_(2,1,2,1)+p_(2,1,2,2)},{p_(2,2,1,1)+p_(2,2,1,2), p_(2,2,2,1)+p_(2,2,2,2)}}
assert(M === m)
///
TEST ///
R=markovRing (4:2)
L = markovMatrices ( R , {{{a},{c},{d}}},{a,b,c,d})
M = L#1
m = matrix {{ p_(1,1,1,2)+p_(1,2,1,2), p_(1,1,2,2)+p_(1,2,2,2)}, {p_(2,1,1,2)+p_(2,2,1,2), p_(2,1,2,2)+p_(2,2,2,2)}}
assert(M === m)
///
-----------------------------------------------
--- TEST covarianceMatrix(R,G)-----------------
-----------------------------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{a,d}})
R=gaussianRing G
cov=covarianceMatrix R
correctOutput = {{s_(a,a), s_(a,b), s_(a,c), s_(a,d)}, {s_(a,b), s_(b,b),s_(b,c), s_(b,d)}, {s_(a,c), s_(b,c), s_(c,c), s_(c,d)},{s_(a,d), s_(b,d), s_(c,d), s_(d,d)}}
assert(0 == cov - matrix correctOutput )
///
TEST ///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
S = covarianceMatrix R
assert(0==S-matrix {{s_(a,a), s_(a,b), s_(a,c), s_(a,d)}, {s_(a,b), s_(b,b), s_(b,c), s_(b,d)}, {s_(a,c), s_(b,c), s_(c,c), s_(c,d)}, {s_(a,d), s_(b,d), s_(c,d), s_(d,d)}})
///
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
S = covarianceMatrix R
assert(0 == S-matrix {{s_(a,a), s_(a,b), s_(a,c), s_(a,d)}, {s_(a,b), s_(b,b), s_(b,c), s_(b,d)}, {s_(a,c), s_(b,c), s_(c,c), s_(c,d)}, {s_(a,d), s_(b,d), s_(c,d), s_(d,d)}})
///
------------------------------
--- TEST gaussianMatrices ---
------------------------------
TEST ///
G = digraph { {1,{2}}, {2,{3}}, {3,{4,5}},{4,{5}} } ;
R = gaussianRing G
S = localMarkov G
L = gaussianMatrices(R,S)
M1 = matrix {{s_(1,4), s_(1,3)}, {s_(2,4), s_(2,3)}, {s_(3,4), s_(3,3)}}
M2 = matrix {{s_(1,5), s_(1,4), s_(1,3)},{s_(2,5), s_(2,4), s_(2,3)},{s_(4,5), s_(4,4), s_(3,4)}, {s_(3,5), s_(3,4), s_(3,3)}}
M3 = matrix {{s_(1,3), s_(1,2)},{s_(2,3), s_(2,2)}}
assert({M1,M2,M3} === L)
///
TEST ///
G = digraph { {1,{2}}, {2,{3}}, {3,{4,5}},{4,{5}} } ;
R = gaussianRing G
L = gaussianMatrices(R,{{{1},{3},{4,2,5}}})
M = matrix{{s_(1,3), s_(1,4), s_(1,2), s_(1,5)},{s_(3,4), s_(4,4), s_(2,4), s_(4,5)},{ s_(2,3), s_(2,4) ,s_(2,2), s_(2,5)}, { s_(3,5), s_(4,5), s_(2,5) ,s_(5,5) }}
assert({M} === L)
///
--------------------------------------
-- TEST conditionalIndependenceIdeal
--------------------------------------
TEST///
R=gaussianRing 5
S={{{1},{2},{3,4}}, {{2,3},{1},{5}}}
I=conditionalIndependenceIdeal (R,S)
assert(numcols mingens I == 4)
assert(isSubset(ideal( -s_(1,4)*s_(2,4)*s_(3,3)+s_(1,4)*s_(2,3)*s_(3,4)+s_(1,3)*s_(2,4)*s_(3,4)-s_(1,2)*s_(3,4)^2-s_(1,3)*s_(2,3)*s_(4,4)+s_(1,2)*s_(3,3)*s_(4,4) ), I))
///
--------------------------------
-- TEST discreteVanishingIdeal
--------------------------------
TEST///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = markovRing (2,3,4,2)
I = discreteVanishingIdeal (R,G);
assert ( numcols mingens I == 84)
///
------------------------------------
--- TEST gaussianParametrization ---
------------------------------------
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
M = gaussianParametrization(R)
assert(0 == M-matrix {{p_(a,a), 0, 0, p_(a,d)}, {0, p_(b,b), l_(b,c)*p_(b,b), l_(b,c)*l_(c,d)*p_(b,b)+l_(b,d)*p_(b,b)}, {0, l_(b,c)*p_(b,b), l_(b,c)^2*p_(b,b)+p_(c,c), l_(b,c)^2*l_(c,d)*p_(b,b)+l_(b,c)*l_(b,d)*p_(b,b)+l_(c,d)*p_(c,c)},{p_(a,d), l_(b,c)*l_(c,d)*p_(b,b)+l_(b,d)*p_(b,b),l_(b,c)^2*l_(c,d)*p_(b,b)+l_(b,c)*l_(b,d)*p_(b,b)+l_(c,d)*p_(c,c),l_(b,c)^2*l_(c,d)^2*p_(b,b)+2*l_(b,c)*l_(b,d)*l_(c,d)*p_(b,b)+l_(b,d)^2*p_(b,b)+l_(c,d)^2*p_(c,c)+p_(d,d)}})
///
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
M = gaussianParametrization(R,SimpleTreks=>true)
assert(0 == M-matrix {{1, 0, 0, p_(a,d)}, {0, 1, l_(b,c), l_(b,c)*l_(c,d)+l_(b,d)}, {0, l_(b,c), 1, l_(b,c)*l_(b,d)+l_(c,d)}, {p_(a,d), l_(b,c)*l_(c,d)+l_(b,d), l_(b,c)*l_(b,d)+l_(c,d), 1}})
///
-----------------------------------------------
--- TEST gaussianVanishingIdeal-----------------
-----------------------------------------------
TEST ///
G = graph({{a,b},{b,c},{c,d},{a,d}})
R=gaussianRing G
I = gaussianVanishingIdeal R
correctOutput = {s_(a,d)*s_(b,c)*s_(b,d)-s_(a,c)*s_(b,d)^2-s_(a,d)*s_(b,b)*s_(c,d)+s_(a,b)*s_(b,d)*s_(c,d)+s_(a,c)*s_(b,b)*s_(d,d)-s_(a,b)*s_(b,c)*s_(d,d),s_(a,c)*s_(a,d)*s_(b,c)-s_(a,c)^2*s_(b,d)-s_(a,b)*s_(a,d)*s_(c,c)+s_(a,a)*s_(b,d)*s_(c,c)+s_(a,b)*s_(a,c)*s_(c,d)-s_(a,a)*s_(b,c)*s_(c,d), s_(a,b)*s_(a,d)*s_(b,d)*s_(c,c)-s_(a,a)*s_(b,d)^2*s_(c,c)-s_(a,c)*s_(a,d)*s_(b,b)*s_(c,d)+s_(a,a)*s_(b,c)*s_(b,d)*s_(c,d)+s_(a,c)^2*s_(b,b)*s_(d,d)-s_(a,b)*s_(a,c)*s_(b,c)*s_(d,d), s_(a,b)*s_(a,c)*s_(b,d)^2*s_(c,c)-s_(a,a)*s_(b,c)*s_(b,d)^2*s_(c,c)-s_(a,c)^2*s_(b,b)*s_(b,d)*s_(c,d)+s_(a,a)*s_(b,c)^2*s_(b,d)*s_(c,d)-s_(a,b)^2*s_(b,d)*s_(c,c)*s_(c,d)+s_(a,a)*s_(b,b)*s_(b,d)*s_(c,c)*s_(c,d)+s_(a,b)*s_(a,c)*s_(b,b)*s_(c,d)^2-s_(a,a)*s_(b,b)*s_(b,c)*s_(c,d)^2+s_(a,c)^2*s_(b,b)*s_(b,c)*s_(d,d)-s_(a,b)*s_(a,c)*s_(b,c)^2*s_(d,d)-s_(a,b)*s_(a,c)*s_(b,b)*s_(c,c)*s_(d,d)+s_(a,b)^2*s_(b,c)*s_(c,c)*s_(d,d)}
assert( I == ideal correctOutput)
///
TEST ///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
I = gaussianVanishingIdeal(R)
correctOutput = { -s_(a,d)*s_(b,b)+s_(a,b)*s_(b,d), s_(b,c)*s_(b,d)-s_(b,b)*s_(c,d), s_(a,d)*s_(b,c)-s_(a,b)*s_(c,d) }
assert( I == ideal correctOutput)
///
--------------------------
-- TEST trekSeparation --
--------------------------
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
T = trekSeparation G
T = apply(T,s -> {sort s#0, sort s#1, sort s#2, sort s#3})
L = {{{a}, {b, c}, {}, {}}, {{b, c}, {a, b}, {}, {b}}, {{a, b}, {b, c}, {}, {b}}, {{b, c}, {a, c}, {}, {c}}, {{b, c}, {a, d}, {}, {d}}}
assert(sort T=== sort L)
///
-----------------------
--- TEST trekIdeal ---
-----------------------
TEST ///
G = digraph {{a,{b,c}}, {b,{c,d}}, {c,{}}, {d,{}}}
R = gaussianRing G
I = trekIdeal(R,G)
assert(I==ideal(s_(b,c)*s_(b,d)-s_(b,b)*s_(c,d),s_(a,d)*s_(b,c)-s_(a,b)*s_(c,d),s_(a,d)*s_(b,b)-s_(a,b)*s_(b,d)))
///
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
T = trekSeparation G
I = trekIdeal(R,G)
assert(I == ideal(s_(a,c),s_(a,b),s_(a,c)*s_(b,b)-s_(a,b)*s_(b,c),-s_(a,c)*s_(b,b)+s_(a,b)*s_(b,c),s_(a,c)*s_(b,c)-s_(a,b)*s_(c,c),s_(a,c)*s_(b,d)-s_(a,b)*s_(c,d)))
///
--------------------------
--- TEST marginMap ---
--------------------------
TEST ///
R = markovRing (3,2)
F = marginMap(1,R)
m = matrix {{p_(1,1)-p_(2,1)-p_(3,1), p_(1,2)-p_(2,2)-p_(3,2), p_(2,1), p_(2,2), p_(3,1), p_(3,2)}}
assert(F.matrix === m)
///
--------------------------
--- TEST inverseMarginMap ---
--------------------------
TEST ///
R = markovRing (3,2)
F = marginMap(1,R)
m = matrix {{p_(1,1)-p_(2,1)-p_(3,1), p_(1,2)-p_(2,2)-p_(3,2), p_(2,1), p_(2,2), p_(3,1), p_(3,2)}}
G = inverseMarginMap(1,R)
assert( (F*G) .matrix == vars R)
///
--------------------------
--- TEST hiddenMap ---
--------------------------
TEST ///
R = markovRing (2,3,2)
F = hiddenMap(1,R)
m = matrix {{p_(1,1,1)+p_(2,1,1), p_(1,1,2)+p_(2,1,2), p_(1,2,1)+p_(2,2,1), p_(1,2,2)+p_(2,2,2), p_(1,3,1)+p_(2,3,1), p_(1,3,2)+p_(2,3,2)}}
assert(F.matrix === m)
///
------------------------------
-- TEST identifyParameters ---
------------------------------
TEST ///
G = mixedGraph(digraph {{b,{c,d}},{c,{d}}},bigraph {{a,d}})
R = gaussianRing G
H = identifyParameters(R)
assert(H === new HashTable from {p_(a,d) => ideal(s_(a,c),s_(a,b),p_(a,d)-s_(a,d)),p_(d,d) => ideal(s_(a,c),s_(a,b),p_(d,d)*s_(b,c)^2-p_(d,d)*s_(b,b)*s_(c,c)-s_(b,d)^2*s_(c,c)+2*s_(b,c)*s_(b,d)*s_(c,d)-s_(b,b)*s_(c,d)^2-s_(b,c)^2*s_(d,d)+s_(b,b)*s_(c,c)*s_(d,d)), l_(c,d) =>ideal(s_(a,c),s_(a,b),l_(c,d)*s_(b,c)^2-l_(c,d)*s_(b,b)*s_(c,c)-s_(b,c)*s_(b,d)+s_(b,b)*s_(c,d)), l_(b,d) =>ideal(s_(a,c),s_(a,b),l_(b,d)*s_(b,c)^2-l_(b,d)*s_(b,b)*s_(c,c)+s_(b,d)*s_(c,c)-s_(b,c)*s_(c,d)), l_(b,c) =>ideal(s_(a,c),s_(a,b),l_(b,c)*s_(b,b)-s_(b,c)), p_(a,a) =>ideal(s_(a,c),s_(a,b),p_(a,a)-s_(a,a)), p_(b,b) =>ideal(s_(a,c),s_(a,b),p_(b,b)-s_(b,b)), p_(c,c) =>ideal(s_(a,c),s_(a,b),p_(c,c)*s_(b,b)+s_(b,c)^2-s_(b,b)*s_(c,c))})
///
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
--------------------------------------
--------------------------------------
end
--------------------------------------
--------------------------------------
--blank documentation node:
doc///
Key
gaussianMatrix
(gaussianMatrix,Digraph,Matrix,List)
Headline
Usage
Inputs
Outputs
Description
Text
Example
Text
Example
SeeAlso
///
uninstallPackage "GraphicalModels"
restart
--installPackage("Graphs", UserMode=>true)
installPackage ("GraphicalModels", RemakeAllDocumentation => true, UserMode=>true)
viewHelp GraphicalModels
installPackage("GraphicalModels",UserMode=>true,DebuggingMode => true)
installPackage ("GraphicalModels", RemakeAllDocumentation => true, UserMode=>true)
installPackage("GraphicalModels", RemakeAllDocumentation => true, UserMode=>true, DebuggingMode => true, FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels.m2")
installPackage("GraphicalModels", RemakeAllDocumentation => true, UserMode=>true, DebuggingMode => true, FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels-Mike.m2")
installPackage("GraphicalModels", RemakeAllDocumentation => true, UserMode=>true, DebuggingMode => true, FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels-old.m2")
----------------------
-- Parameterization -- ????????????????????????????????????????????????????????????????????????
----------------------
---- We need this for both directed and undirected graphs:
---- parameterizations and for toric varieties the corresponding matrix.
---- In the case of toric varieties the matrix is easy. Here is the code,
---- commented out to be used later when we are ready.
----
---- toAMatrix = method()
---- toAMatrix List := Matrix => (M) -> (
---- if any(M,isMonomial)
---- then error "this parameterization does not correspond to a toric ideal."
---- else (
---- Mexp := apply(M, exponents);
---- transpose matrix apply(Mexp, flatten)))
----
---- isMonomial = method()
---- isMonomial RingElement := Boolean => (m) -> (
---- termList := terms m;
---- if #termList == 1 then true else false)
---- isMonomial works well as long as m is actually a polynomial or monomial and not
---- an element of ZZ, QQ, RR, etc.
end;
restart
installPackage "GraphicalModels"
check "GraphicalModels"
restart
printWidth=75;
needsPackage "GraphicalModels";
G = digraph{{a,d},{b,d},{c,{d,e}},{d,e}};
R = gaussianRing G;
gens R
I = conditionalIndependenceIdeal(R,globalMarkov(G));
J = gaussianVanishingIdeal(R);
flatten degrees J
isSubset(I,J), I == J, J == trekIdeal(R,G)
d = (2,3,2); R = markovRing d;
gens R
S = {{{1},{2},{3}}, {{1},{3},{}}}; compactMatrixForm=false; markovMatrices(R,S)
I = conditionalIndependenceIdeal(R,S); flatten degrees I
G = graph{{1,2},{2,3},{3,4},{4,5},{1,5}}; netList pack (3,localMarkov G)
G = digraph {{1,{2}}, {2,{3}},{3,{4}},{4,{}}}; R = markovRing (2,2,2,2);
I = discreteVanishingIdeal (R,G); betti mingens I
J = conditionalIndependenceIdeal (R, localMarkov G); I == J
K = conditionalIndependenceIdeal (R, globalMarkov G); I == K
G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}},bigraph {{1,2},{2,4}});
R = gaussianRing G; I = gaussianVanishingIdeal R;
flatten degrees I
J = trekIdeal (R,G)
H = identifyParameters R;
H#(p_(2,4))_0
///
restart
installPackage ("GraphicalModels",FileName=>"/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels.m2", RemakeAllDocumentation => true)
restart
loadPackage("GraphicalModels", FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels.m2")
f = () -> (
R := gaussianRing G;
gaussianVanishingIdeal R)
G = graph({{a,b},{b,c},{c,d},{a,d}})
f()
restart
loadPackage("GraphicalModels", FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels.m2")
f = () -> (
R := gaussianRing G;
gaussianVanishingIdeal R)
G = digraph {{1,{2}}, {2,{3}},{3,{4}},{4,{}}};
f()
restart
loadPackage("GraphicalModels", FileName => "/Users/lgp/Software/Macaulay2/Workshop-2014-Berkeley/GraphicalModels/GraphicalModels.m2")
f = () -> (
R := gaussianRing G;
gaussianVanishingIdeal R)
G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}},bigraph {{1,2},{2,4}});
f()
///
|