File: Hadamard.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (442 lines) | stat: -rw-r--r-- 10,874 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
newPackage(
    "Hadamard",
    Version => "0.1",
    Date => "November 2020",
    Authors => {

	{Name => "Iman Bahmani Jafarloo",
	    Email => "ibahmani89@gmail.com",
	    HomePage => "http://calvino.polito.it/~imanbj"
	    }
	}, -- TODO
    Headline => "Hadamard products of projective subvarieties",
    AuxiliaryFiles => false,
    DebuggingMode => false,
    Reload => false,
    PackageExports => {"Points"},
    Keywords => {"Commutative Algebra"}
    )
export {
    -- types
    "Point",
    -- methods
    "point",
    "hadamardProduct",
    "hadamardPower",
    "idealOfProjectivePoints"
    }

--defining a new type of objects: points

Point = new Type of BasicList

point=method()
point(VisibleList):=(P)->(
    if all(P, i->i==0) then error("all entries are zero") else
    if any(P,i->i===null) then error("null entries are not allowed")
    else new Point from P)


Point * Point:=(p,q)->(
    if #p =!= #q then error("points should be in a same projective space") else
    pp:=apply(p,q,times);
    if all(pp, i->i==0) then error("product of points has no nonzero coordinate")
    else return pp
    )

Point == Point := (p,q)->(
    rank pointsToMatrix({p,q}) == 1
    )

---Hadamard product of two points---
hadProdPoints = method()	 
hadProdPoints(Point,Point):=(p,q)->(
     p * q
    )

hadProdPoints(List,List):=(p,q)->(
 point p * point q
    )

hadProdPoints(Array,Array):=(p,q)->(
   point p * point q
    )

-- Hadamrd product of two varieties
hadProdOfVariety = method()
hadProdOfVariety (Ideal, Ideal):= (I,J) -> (
    newy := symbol newy;
    newz := symbol newz;
    varI:= gens ring I;
    varJ:= gens ring J;
    CRI:=coefficientRing ring I;
    CRJ:=coefficientRing ring J;
    RYI:=CRI[newy_0.. newy_(# varI -1)];
    RZJ:=CRI[newz_0..newz_(# varJ -1)];
    IY:=sub(I,apply(varI,gens RYI,(a,b)->a=>b));
    JZ:=sub(J,apply(varJ,gens RZJ,(a,b)->a=>b));
    TensorRingIJ:=RYI/IY ** RZJ/JZ;
    use TensorRingIJ;
    Projvars:=apply(#(gens ring I),i->newy_i * newz_i);
    hadMap:=map(TensorRingIJ,ring I, Projvars);
    ker hadMap
    )


-------Hadmard product of two subsets of points on two varieties---------
hadProdListsOfPoints = method()
hadProdListsOfPoints(List,List) :=(X,Y)->(
     convert:= obj -> if not instance(obj, Point) then point(obj) else obj;
     newX:=apply(X,convert);
     newY:=apply(Y,convert);
     return delete(null, for I in toList(set(newX) ** set(newY)) list (
	 try(I_0 * I_1) then (I_0 * I_1) else null
	 ))
     )


pointsToMatrix=method()
pointsToMatrix(List):= (PTM) ->( matrix apply(PTM, toList))

---Hadamard powers of varieties------------

hadamardPower = method()
hadamardPower(Ideal,ZZ):=(I,r)->(
    if r<1 then error("the second argument should be positive integer >=1");
   NewI := I;
   for i from 1 to r-1 do NewI = hadProdOfVariety(NewI,I);
   return NewI)

---Hadamard powers of sets of points ------------

hadamardPower(List,ZZ):=(L,r)->(
    if r<1 then error("the second argument should be a positive integer >=1");
   NewL := L;
   for i from 1 to r-1 do NewL = hadProdListsOfPoints(NewL,L);
   return toList set NewL)


-----------------%%%--------------------------------%%%---------------

hadamardMult=method()
hadamardMult(List):=(L)->(
    if not uniform L then
     error("entries should be in the same class");
    if instance(first L,Ideal) then fold(hadProdOfVariety,L)
    else
    if instance(first L,List) or instance(first L,Point) then fold(hadProdPoints,L)
    else error("input should be a list of ideals or points")
    )

-------general product------

hadamardProduct=method()
hadamardProduct(Ideal,Ideal):=(I,J)->(hadProdOfVariety(I,J))
hadamardProduct(List,List):=(X,Y)->(hadProdListsOfPoints(X,Y))
hadamardProduct(List):=(L)->(hadamardMult(L));


------------------Hadamard product ends ------------------




-----------------------new results-------------
idealOfProjectivePoints=method()
idealOfProjectivePoints(List,Ring):=(L,R)->(
    if not uniform L then 
     error("entries should be in the same class");
    MP:=transpose pointsToMatrix L; 
    return ideal projectivePointsByIntersection(MP,R)
    )

--------Terracini lemma------






-----------------------------------------------
beginDocumentation()

doc ///
     Key
       Hadamard
     Headline
       a package to study Hadamard products of varieties.
     Description
       Text
	 This package provides a class for representing points in projective
	 space and methods for computing Hadamard products of varieties.
///

doc ///
    Key
    	Point
    Headline
    	a new type for points in projective space
    Description
    	Text
	   A point in projective space is represented as an object in the class @TO Point@. An element of this class is a @TO BasicList@.
///

doc ///
    Key
       (symbol *, Point, Point)
    Headline
    	entrywise product of two projective points
    Usage
    	p * q
    Inputs
    	p:Point
	q:Point
    Outputs
    	:Point
    Description
    	Example
	    p = point {1,2,3};
	    q = point {-1,2,5};
	    p * q
	Text
	    Note that this operation is not always well-defined in projective space, 
	    e.g., the Hadamard product of the points $[1:0]$ and $[0:1]$ is not well-defined
///

doc ///
    Key
    	(symbol ==, Point, Point)
    Headline
    	check equality of two projective points
    Usage
    	p == q
    Inputs
    	p:Point
	q:Point
    Outputs
    	:Boolean
    Description
    	Example
	    p = point {1,1};
	    q = point {2,2};
	    p == q
///

doc ///
    Key
    	point
        (point, VisibleList)
    Headline
        constructs a projective point from the list (or array) of coordinates.
    Usage
        point(L)
    Inputs
        L:List 
	   or @TO2{Array, "array"}@
	   or @TO2{VisibleList, "visible list"}@
    Outputs
        :Point
    Description
        Example
            point {1,2,3}
            point [1,4,6]
///

doc ///
    Key
    	hadamardProduct
    Headline
        computes the Hadamard product of varieties
///

doc ///
    Key
	(hadamardProduct, Ideal, Ideal)
    Headline
         Hadamard product of two homogeneous ideals
    Usage
        hadamardProduct(I,J)
    Inputs
        I:Ideal
	    (homogeneous)
	J:Ideal
	    (homogeneous)
    Outputs
         :Ideal
    Description
        Text
            Given two projective subvarieties $X$ and $Y$, their Hadamard product is defined as the
	    Zariski closure of the set of (well-defined) entrywise products of pairs of points in the cartesian 
	    product $X \times Y$. This can also be regarded as the image of the Segre product of $X \times Y$
	    via the linear projection on the $z_{ii}$ coordinates. The latter is the way the function is implemented.
	
	    Consider for example the entrywise product of two points.
	Example
	    S = QQ[x,y,z,t];
	    p = point {1,1,1,2};
	    q = point {1,-1,-1,-1};
	    idealOfProjectivePoints({p*q},S)
	Text
	    This can be computed also from their defining ideals as explained.
	Example
	    IP = ideal(x-y,x-z,2*x-t)
	    IQ = ideal(x+y,x+z,x+t)
            hadamardProduct(IP,IQ)
	Text
	    We can also consider Hadamard product of higher dimensional varieties. 
	    For example, the Hadamard product of two lines.
	Example    
            I = ideal(random(1,S),random(1,S));
            J = ideal(random(1,S),random(1,S));
	    hadamardProduct(I,J)
///

doc ///
    Key
       (hadamardProduct, List)
    Headline
        Hadamard product of a list of homogeneous ideals, or points
    Usage
    	hadamardProduct(L)
    Inputs
    	L:List
            of @TO2{Ideal, "(homogeneous) ideals"}@ or @TO2{Point, "(projective) points"}@
    Outputs
    	:Ideal
	:Point
    Description
    	Text
	    The Hadamard product of a list of ideals or points constructed by using iteratively the binary function
	    @TO (hadamardProduct, Ideal, Ideal)@, or  @TO (symbol *, Point, Point)@.
	Example
	    S = QQ[x,y,z,t];
	    I = ideal(random(1,S),random(1,S));
            J = ideal(random(1,S),random(1,S));
	    L = {I,J};
	    hadamardProduct(L)
	    P = point\{{1,2,3},{-1,1,1},{1,1/2,-1/3}}
	    hadamardProduct(P)
///

doc ///
    Key
    	(hadamardProduct, List, List)
    Headline
        Hadamard product of two sets of points    
    Usage
    	hadamardProduct(L,M)
    Inputs
    	L:List
	    of @TO Point@
	M:List
	    of @TO Point@
    Outputs
    	:List
	    of @TO Point@
    Description
    	Text
	    Given two sets of points $L$ and $M$ returns the list of (well-defined) entrywise
	    multiplication of pairs of points in the cartesian product $L\times M$.
	Example
	    L = {point{0,1}, point{1,2}};
	    M = {point{1,0}, point{2,2}};
	    hadamardProduct(L,M)
///

doc ///
    Key
      hadamardPower
    Headline
        computes the Hadamard powers of varieties
///


doc ///
    Key
     (hadamardPower,Ideal, ZZ)
    Headline
        computes the $r$-th Hadmard powers of varieties
    Usage
        hadamardPower(I,r)
    Inputs
        I:Ideal
	   of @TO2{Ideal, "(homogeneous) ideals"}@ 
        r:ZZ
	  a positive integer $>=1$
    Outputs
         :Ideal
    Description
        Text
         Give a homogeneous ideal $I$, the $r$-th Hadamard power of $I$ is $r$-times Hadamard product of I to itself; $( I x\cdots x I)_{r-times}$
        Example
            S=QQ[x,y,z,w]
            I=ideal(random(1,S),random(1,S),random(1,S))
            hadamardPower(I,3)
///

doc ///
    Key
     (hadamardPower,List,ZZ)
    Headline
        computes the $r$-th Hadmard powers of a set points
    Usage
        hadamardPower(L,r)
    Inputs
        L:List 
	  of @TO2{Point, "(projective) points"}@
	r:ZZ
	  a positive integer $>=1$
    Outputs
         :List
    Description
        Text
         Give a set of points $L$, the $r$-th Hadamard power of $L$ is $r$-times Hadamard product of L to itself; $( L x\cdots x L)_{r-times}$
        Example
            L={point{1,1,1/2},point{1,0,1},point{1,2,4}}
            hadamardPower(L,3)
///

doc ///
    Key
     idealOfProjectivePoints
     (idealOfProjectivePoints,List,Ring)
    Headline
        computes the ideal of set of points
    Usage
        idealOfProjectivePoints(L,S)
    Inputs
        L:List
	   of @TO2{Point, "(projective) points"}@
	S:Ring
    Outputs
        I:Ideal
    Description
        Text
          Given a set points $X$, it returns the defining ideal of $I(X)$
        Example
            S = QQ[x,y,z] 
            X = {point{1,1,0},point{0,1,1},point{1,2,-1}}
            I = idealOfProjectivePoints(X,S)
            I2 = hadamardPower(I,2)
            X2 = hadamardPower(X,2)
            I2 == idealOfProjectivePoints(X2,S)
///




     TEST ///
     assert(point{1,2,3,4} * point{1,2,3,4}==point{1,4,9,16})
 
     -- may have as many TEST sections as needed
     ///

end


restart
uninstallPackage "Hadamard"
installPackage "Hadamard"
loadPackage ("Hadamard",Reload=>true)
viewHelp "Hadamard"
check "Hadamard"