1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
|
-- -*- coding: utf-8 -*-
-----------------------------------------------------------------------
-- Copyright 2008--2022 Graham Denham, Gregory G. Smith, Avi Steiner
--
-- You may redistribute this program under the terms of the GNU General
-- Public License as published by the Free Software Foundation, either
-- version 2 or the License, or any later version.
-----------------------------------------------------------------------
newPackage(
"HyperplaneArrangements",
Version => "2.0",
Date => "4 May 2022",
Authors => {
{Name => "Graham Denham",
HomePage => "http://gdenham.math.uwo.ca/"},
{Name => "Gregory G. Smith",
Email => "ggsmith@mast.queensu.ca",
HomePage => "http://www.mast.queensu.ca/~ggsmith"},
{Name => "Avi Steiner",
Email => "avi.steiner@gmail.com",
HomePage => "https://sites.google.com/view/avi-steiner"}
},
Headline => "manipulating finite sets of hyperplanes",
Keywords => {"Algebraic Geometry", "Matroids"},
DebuggingMode => false,
PackageExports => {"Matroids"}
)
export {
"arrangementLibrary",
-- types
"Arrangement",
"CentralArrangement",
"Flat",
-- functions/methods
"arrangement",
"arrangementSum",
"deCone",
"der",
"EPY",
"eulerRestriction",
"flat",
"genericArrangement",
"graphic",
"HS",
"isCentral",
"isDecomposable",
"lct",
"logCanonicalThreshold",
"makeEssential",
"meet",
"multIdeal",
"multiplierIdeal",
"orlikSolomon",
"orlikTerao",
"randomArrangement",
"subArrangement",
"typeA",
"typeB",
"typeD",
"vee",
-- Option names
"HypAtInfinity",
"NaiveAlgorithm",
"Popescu",
"Validate"
}
protect assertEdgesArePosInts
protect circuitMonomials
protect irreds
protect makeEdges
protect multiplicities
protect multipliers
protect pvtDual
protect stableExponent
------------------------------------------------------------------------------
-- CODE
------------------------------------------------------------------------------
Arrangement = new Type of HashTable
Arrangement.synonym = "hyperplane arrangement"
Arrangement.GlobalAssignHook = globalAssignFunction
Arrangement.GlobalReleaseHook = globalReleaseFunction
Arrangement#{Standard,AfterPrint} = A -> (
<< endl;
<< concatenate(interpreterDepth:"o") << lineNumber << " : Hyperplane Arrangement "
<< endl;
)
ring Arrangement := Ring => A -> A.ring
hyperplanes Arrangement :=
toList Arrangement := List => A -> A.hyperplanes
matrix Arrangement := Matrix => opts -> A -> (
if #hyperplanes A == 0 then map((ring A)^1, (ring A)^0, 0)
else matrix {hyperplanes A})
CentralArrangement = new Type of Arrangement
CentralArrangement.synonym = "central hyperplane arrangement"
CentralArrangement.GlobalAssignHook = globalAssignFunction
CentralArrangement.GlobalReleaseHook = globalReleaseFunction
debug Core
-- we'll have a better way to do this later
net Arrangement := A -> if hasAttribute(A,ReverseDictionary) then toString getAttribute(A,ReverseDictionary) else net expression A
dictionaryPath = delete(Core#"private dictionary", dictionaryPath)
net Arrangement := A -> net expression A
expression Arrangement := A -> new RowExpression from { A.hyperplanes }
arrangement = method(TypicalValue => Arrangement, Options => {})
arrangement (List,Ring) := Arrangement => options -> (L,R) -> (
if #L > 0 and ring L#0 =!= R then (
f := map(R, ring L#0);
A := L / f)
else A = L;
central := true;
if #L > 0 then central = fold( (p,q) -> p and q, isHomogeneous\L); -- why not use `all`?
central = central and isHomogeneous R;
-- Check if all the forms are linear
if not all(A, f -> all(exponents f, expon -> all(expon, i -> i>=0) and sum expon <= 1)) then
error "expected linear forms";
data := {
symbol ring => R,
symbol hyperplanes => A,
symbol cache => new CacheTable
};
arr := if central then
new CentralArrangement from data
else new Arrangement from data;
arr
)
arrangement List := Arrangement => opts -> L -> (
if #L == 0 then error "Empty arrangement has no default ring"
else arrangement(L, ring L#0, opts))
--arrangement (Arrangement, Ring) := Arrangement => opts -> (A, R) -> arrangement(A.hyperplanes, R, opts)
arrangement (Matrix, Ring) := Arrangement => opts -> (M,R) -> (
if numgens R != numRows M then error (
"The number of variables of the ring must equal the number of rows of the matrix");
arrangement(flatten entries((vars R) * M), R, opts)
)
arrangement Matrix := Arrangement => opts -> M -> (
kk := ring M;
x := symbol x;
n := numrows M;
R := kk[x_1..x_n];
arrangement(M, R, opts)
)
-- arrangement from a polynomial: if it's unreduced, have multiplicities
arrangement RingElement := Arrangement => opts -> Q -> (
l := select(toList factor Q, p -> 0 < (degree p#0)_0); -- kill scalar
arrangement (flatten (l / (p->toList(p#1:p#0))), opts)
);
-- look up a canned arrangement
arrangement String := Arrangement => opts -> name -> (
if not arrangementLibrary#?name then
error "the given string does not correspond to any entry in the database";
kk := ring arrangementLibrary#name;
if kk === ZZ then kk = QQ;
arrangement(kk ** arrangementLibrary#name, opts)
)
arrangement (String, PolynomialRing) := Arrangement => opts -> (name, R) -> (
arrangement(arrangementLibrary#name, R, opts));
arrangement (String, Ring) := Arrangement => opts -> (name, kk) -> (
arrangement(kk ** arrangementLibrary#name, opts));
-- here is a database of "classic" arrangements
arrangementLibrary = hashTable {
"braid" => matrix {
{1, 0, 0, 1, 1, 0},
{0, 1, 0, -1, 0, 1},
{0, 0, 1, 0, -1, -1}},
"X2" => matrix {
{1, 0, 0, 0, 1, 1, 1},
{0, 1, 0, 1, 0, 1, 1},
{0, 0, 1, -1, -1, 0, -2}},
"X3" => matrix {
{1, 0, 0, 1, 1, 0},
{0, 1, 0, 1, 0, 1},
{0, 0, 1, 0, 1, 1}},
"Pappus" => matrix {
{1, 0, 0, 1, 0, 1, 2, 2, 2},
{0, 1, 0, -1, 1, -1, 1, 1, -5},
{0, 0, 1, 0, -1, -1, 1, -1, 1}},
"(9_3)_2" => matrix {
{1, 0, 0, 1, 0, 1, 1, 1, 4},
{0, 1, 0, 1, 1, 0, 2, 2, 6},
{0, 0, 1, 0, 1, 3, 1, 3, 6}},
"nonFano" => matrix {
{1, 0, 0, 0, 1, 1, 1},
{0, 1, 0, 1, 0, -1, 1},
{0, 0, 1, -1, -1, 0, -1}},
"MacLane" => matrix(ZZ/31627, {
{1, 0, 0, 1, 1, 0, 1, 1},
{0, 1, 0, -1, 0, 1, -6420, -6420},
{0, 0, 1, 0, -1, -6420, -1, 6419}}),
"Hessian" => matrix(ZZ/31627, {
{1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 1, 0, 1, 1, 1, 6419, 6419, 6419, -6420, -6420, -6420},
{0, 0, 1, 1, 6419, -6420, 1, 6419, -6420, 1, 6419, -6420}}),
"Ziegler1" => matrix {
{1, 0, 0, 1, 2, 2, 2, 3, 3},
{0, 1, 0, 1, 1, 3, 3, 0, 4},
{0, 0, 1, 1, 1, 1, 4, 5, 5}},
"Ziegler2" => matrix {
{1, 0, 0, 1, 2, 2, 2, 1, 1},
{0, 1, 0, 1, 1, 3, 3, 0, 2},
{0, 0, 1, 1, 1, 1, 4, 3, 3}},
"prism" => matrix {
{1, 0, 0, 0, 1, 1},
{0, 1, 0, 0, 1, 0},
{0, 0, 1, 0, 0, 1},
{0, 0, 0, 1, 1, 1}},
"notTame" => matrix {
{1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1},
{0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1},
{0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1},
{0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1}},
"bracelet" => matrix {
{1, 0, 0, 1, 0, 0, 1, 1, 0},
{0, 1, 0, 0, 1, 0, 1, 0, 1},
{0, 0, 1, 0, 0, 1, 0, 1, 1},
{0, 0, 0, 1, 1, 1, 1, 1, 1}},
"Desargues" => matrix {
{1, 0, 0, 1, 2, 2, -3, 1, 3, 2},
{0, 1, 0, 1, 0, 1, -2, 2, 2, 1},
{0, 0, 1, 1, -3, -3, 2, 1, 1, 0}}
}
-- nonessential arrangements always have one row for each variable
coefficients Arrangement := Matrix => opts -> A -> (
R := ring A;
KK := coefficientRing R;
n := numgens R;
varCoeffs := if hyperplanes A === {} then map(KK^n, KK^0, 0)
else if dim R === 0 then map(KK^0, KK^(# hyperplanes A), 0)
else sub((coefficients(matrix A, Monomials=>basis(1,R)))#1, KK);
if isCentral A then varCoeffs
else (
constCoeffs := sub((coefficients(matrix A, Monomials=>{1_R}))#1, KK);
varCoeffs || constCoeffs
)
)
rank CentralArrangement := A -> (
if hyperplanes A === {} then 0
else codim(ideal hyperplanes A, Generic => true)
)
-- arrangements may usually be taken to be central without loss of generality:
-- however, sometimes noncentral arrangements are convenient
isCentral = method(TypicalValue => Boolean);
isCentral Arrangement := Boolean => A -> instance(A, CentralArrangement)
-- arrangements may sensibly be defined over quotients of polynomial rings by
-- affine-linear ideals. However, sometimes this is a pain, so we provide
prune Arrangement := Arrangement => options -> A -> (
R := ring A;
if not instance(R, PolynomialRing) then (
S := prune R;
f := R.minimalPresentationMap;
arrangement(f \ hyperplanes A, S))
else A
)
-- local function
normal = h -> (1 / leadCoefficient h) * h -- representative of functional, mod scalars
-- reduce an arrangement with possibly repeated hyperplanes to a
-- simple arrangement. Cache the simple arrangement and multiplicities.
trim Arrangement := Arrangement => opts -> (cacheValue symbol trim)(A -> (
if hyperplanes A === {} then (
A.cache.trim = A;
A.cache.multiplicities = {};
return A);
count := new MutableHashTable;
for h in hyperplanes A do (
if h != 0 then (
if not count#?(normal h) then count#(normal h) = 0;
count#(normal h) = 1+count#(normal h)));
(L, m) := (keys count , values count);
if #L > 0 and all(m, i -> i === 1) then (
A.cache.trim = A;
A.cache.multiplicities = m;
return A
);
A' := arrangement(L, ring A);
A.cache.multiplicities = m;
A.cache.trim = A'
)
)
-- make a central arrangement essential if it isn't already
-- this is naturally defined over a subring of the ring of definition.
-- since this isn't implemented, though, we have to pick a basis.
-- this function is idempotent.
makeEssential = method();
makeEssential CentralArrangement := CentralArrangement => A -> (
R := ring A;
if not isPolynomialRing R then error "arrangement must be defined over a polynomial ring";
C := gens trim image transpose coefficients A;
r := rank C; -- the rank of the arrangement
newvars := flatten entries (vars (ring A))_{0..r-1};
R' := (coefficientRing R)(monoid [newvars]);
C' := sub(C, R');
if r == numgens R then A -- already essential
else arrangement flatten entries (C'*transpose vars R')
)
-- remove degenerate hyperplanes arising in restriction
compress Arrangement := Arrangement => A -> if (A.hyperplanes == {}) then A else (
L := select(A.hyperplanes, h -> first degree(h) == 1);
arrangement(L, ring A)
)
-- The method `matroid` will return an error if the coefficient ring of the
-- arrangement is ZZ.
matroid CentralArrangement := Matroid => options -> arr -> (
if arr.cache.?matroid then arr.cache.matroid
else (
arr.cache.matroid = matroid coefficients arr;
arr.cache.matroid
)
)
pvtDual := args -> (
-- args should be a list of one or two elements.
-- args#0 should be a CentralArrangement. If it exists, args#1 should be a Ring
arr := args#0;
if (hyperplanes arr == {}) then error "dual expects a nonempty arrangement";
newCoeffs := transpose gens ker coefficients arr;
if args#?1 then arrangement(newCoeffs, args#1)
else arrangement newCoeffs
)
dual (CentralArrangement, Ring) := CentralArrangement => new OptionTable >> options -> (arr, R) -> (
pvtDual {arr, R}
)
dual CentralArrangement := CentralArrangement => new OptionTable >> options -> arr -> (
pvtDual {arr}
)
Arrangement == Arrangement := Boolean => (A, B) -> (
ring A === ring B and hyperplanes A == hyperplanes B
)
-- 'deletion' method is defined in 'Matroids'
deletion(Arrangement, RingElement) := Arrangement => (A ,h) -> (
normh := normal h;
firstParallel := position(hyperplanes A, f -> normal f == normal h); -- first hyperplane parallel to h
if firstParallel === null then error ("The given hyperplane is not in the arrangement.");
arrangement(drop(hyperplanes A, {firstParallel, firstParallel}), ring A)
)
deletion(Arrangement, Set) := Arrangement => (A, S) -> (
l := hyperplanes A;
n := #l;
keep := set(0..n-1) - S;
arrangement(l_(toList keep))
)
deletion(Arrangement, List) := Arrangement => (A, L) -> (
deletion(A, set L)
)
deletion(Arrangement, ZZ) := Arrangement => (A, i) -> (
deletion(A, set{i})
)
-- a non-central arrangement may be defined over an inhomogeneous quotient of
-- a polynomial ring, so we need to prune it
cone(Arrangement, RingElement) := CentralArrangement => (A, h) -> (
prune arrangement ((apply(hyperplanes A, i-> homogenize(i, h)) ) | {h})
)
cone(Arrangement, Symbol) := CentralArrangement => (A, h) -> (
R := ring A;
S := (coefficientRing R)[h];
T := tensor(R, S, Degrees => toList((numgens(R)+numgens(S)):1));
f := map(T, S);
cone (sub(A, T), f S_0)
)
deCone = method()
deCone (CentralArrangement,RingElement) := Arrangement => (A,h) -> (
A' := deletion(A,h);
sub(A', (ring A')/ideal(h-1))
)
deCone (CentralArrangement,ZZ) := Arrangement => (A,i) -> (
h := (hyperplanes A)_i;
deCone(A,h));
partial := m -> (
E := ring m;
sum first entries compress diff(vars E,m)
)
monomialSubIdeal := I -> ( -- note: add options (See SP's code)
R := ring I;
K := I;
J := ideal(1_R);
while (not isMonomialIdeal K) do (
J = ideal leadTerm gens gb K;
K = intersect(I,J));
ideal mingens K
)
-------------------------------------------------------
-- Orlik--Solomon algebra
-------------------------------------------------------
-- If orlikSolomon is given a central arrangement, it returns an ideal I with
-- OS = E/I, where E is the ring of I and OS is the (central) Orlik-Solomon
-- algebra.
--
-- If the input is not central, we cone (homogenize) and then dehomogenize.
--
-- in the central case, the same ideal defines the cohomology ring of the
-- projective complement, but in a subalgebra of E.
--
-- Since we can't construct this in M2, the option Projective returns a larger
-- ideal I' so that E/I' is the cohomology ring of the projective complement,
-- written in coordinates that put a hyperplane H_j at infinity.
--
-- not clear this is the best...
--
-- we also expect this method to cache the circuits of A, as a list of
-- exterior monomials, since this calculation is expensive. bug fix in June
-- 2013: circuits are defined over the coefficient ring of the arrangement.
orlikSolomon = method(TypicalValue => Ideal,
Options => {Projective => false,
HypAtInfinity => 0,
Strategy => Matroids})
orlikSolomon (CentralArrangement, PolynomialRing) := Ideal => o -> (A,E) -> (
if #hyperplanes A == 0 then (
if o.Projective then error "Empty projective arrangement is not allowed."
else return ideal(0_E); -- empty affine arrangement is contractible.
);
n := #A.hyperplanes;
e := symbol e;
circuitMonoms := new MutableHashTable;
Ep := (coefficientRing ring A)[e_1..e_n, SkewCommutative=>true];
if o.Strategy === Matroids then (
circuitMonoms = (Ep, apply(circuits A, C -> product apply(C, i -> Ep_i)));
)
else if o.Strategy === Popescu then (
if A.cache.?circuitMonomials then circuitMonoms = A.cache.circuitMonomials
else (
C := substitute(syz coefficients A, Ep);
M := monomialSubIdeal( ideal( (vars Ep) * C));
A.cache.circuitMonomials = (Ep, flatten entries gens M);
circuitMonoms = A.cache.circuitMonomials;
);
);
f := map(E,circuitMonoms_0,vars E); -- note: map changes coefficient ring
I := ideal append( apply(circuitMonoms_1/f, r -> partial r),0_E);
if o.Projective then trim I+ideal(E_(o.HypAtInfinity)) else trim I
)
-- if the arrangement is not central, cone first, then project back
orlikSolomon (Arrangement, PolynomialRing) := Ideal => o -> (A, E) -> (
h := symbol h;
e := symbol e;
cA := cone(A, h);
k := coefficientRing E;
cE := E**k[e,SkewCommutative=>true];
proj := map(E, cE);
proj orlikSolomon (cA, cE, o)
)
orlikSolomon (Arrangement,Symbol) := Ideal => o -> (A, e) -> (
n := #A.hyperplanes;
E := coefficientRing(ring A)[e_1..e_n, SkewCommutative => true];
orlikSolomon(A, E, o)
)
-- one can just specify a coefficient ring
-- note that this no longer affects the arrangement: that was a bug in a
-- previous version
orlikSolomon (Arrangement, Ring) := Ideal => o -> (A, k) -> (
e := symbol e;
n := #A.hyperplanes;
E := k[e_1..e_n,SkewCommutative=>true];
orlikSolomon(A, E, o)
)
orlikSolomon Arrangement := Ideal => o -> A -> (
e := symbol e;
orlikSolomon(A,e,o)
)
-- can't forward options, since existing method doesn't have options.
poincare Arrangement := RingElement => A -> (
I := orlikSolomon A;
numerator reduceHilbert hilbertSeries ((ring I)/I)
)
-- faster to use the matroids package
poincare CentralArrangement := RingElement => A -> (
M := matroid A;
r := rank M;
T := tuttePolynomial M;
R := ring T;
t := symbol t;
S := frac(ZZ[t]); -- we can't take frac of degreesRing
p := S_0^r*sub(T,{R_0=>1+1/S_0,R_1=>0});
D := degreesRing ring A;
sub(sub(p,ZZ[t]), {t=>D_0}) -- first lift p from frac
)
-- Euler characteristic of (proj) complement
-- complement of empty arrangement is CP^{n-1}
euler CentralArrangement := ZZ => A -> (
if #hyperplanes A == 0 then dim ring A else (
f := poincare A;
R := ring f;
sub(f // (1+R_0), {R_0 => -1})
)
)
-- the uniform matroid is realized by points on the monomial curve; pick n
-- points (1..n) on the monomial curve of degree r; the user is responsible for
-- anything unexpected that happens in small characteristic
genericArrangement = method(TypicalValue => Arrangement)
genericArrangement (ZZ,ZZ,Ring) := Arrangement => (r,n,K) -> (
C := matrix table(r, n, (i,j) -> (j+1)^i);
arrangement (C**K)
)
genericArrangement (ZZ,ZZ) := Arrangement => (r,n) -> genericArrangement(r,n,QQ)
typeA = method()
typeA (ZZ, PolynomialRing) := Arrangement => (n, R) -> (
if n < 1 then error "expected a positive integer";
if numgens R < n+1 then
error ("expected the polynomial ring to have at least " | n+1 | " variables");
arrangement flatten for i to n-1 list (
for j from i+1 to n list R_i - R_j)
)
typeA (ZZ, Ring) := Arrangement => (n, kk) -> (
x := symbol x;
R := kk (monoid [x_1..x_(n+1)]);
typeA(n, R)
)
typeA ZZ := Arrangement => n -> typeA(n, QQ)
typeD = method()
typeD (ZZ, PolynomialRing) := Arrangement => (n, R) -> (
if n < 2 then error "expected an integer greater than 1";
if numgens R < n then
error ("expected the polynomial ring to have at least " | n | " variables");
arrangement flatten flatten for i to n-2 list (
for j from i+1 to n-1 list {R_i - R_j, R_i + R_j}
)
)
typeD (ZZ, Ring) := Arrangement => (n, kk) -> (
x := symbol x;
R := kk(monoid [x_1..x_n]);
typeD(n, R)
)
typeD ZZ := Arrangement => n -> typeD(n, QQ)
typeB = method()
typeB (ZZ, PolynomialRing) := Arrangement => (n, R) -> (
if n < 1 then error "expected a positive integer";
if numgens R < n then
error ("expected the polynomial ring to have at least " | n | " variables");
arrangement flatten flatten for i to n-1 list (
{R_i} | for j from i+1 to n-1 list {R_i - R_j, R_i + R_j}
)
)
typeB (ZZ, Ring) := Arrangement => (n, kk) -> (
x := symbol x;
R := kk (monoid [x_1..x_n]);
typeB(n, R)
)
typeB ZZ := Arrangement => n -> typeB(n, QQ)
-- construct a graphic arrangement, from a graph given by a list of edges.
-- Assume vertices are integers 1..n
makeEdges := (edges, verts) -> (
-- We don't want duplicate vertices!
if unique verts =!= verts then error "Vertices must be distinct!";
-- Make a hash table with the vertices as keys and their indices (counted
-- from 0) as values.
vertsHash := hashTable toList (reverse \ pairs verts);
-- Replace each edge {a,b} with {1 + index of a, 1 + index of b}
applyTable(edges, ed -> 1 + vertsHash#ed)
)
assertEdgesArePosInts := G -> (
if not all(flatten G, v -> instance(v, ZZ) and v > 0)
then error "Expected edges to be pairs of positive integers"
)
graphic = method()
graphic(List, PolynomialRing) := Arrangement => (G, R) -> (
assertEdgesArePosInts G;
arrangement (G/(e->(R_(e_1-1)-R_(e_0-1))))
)
graphic(List, Ring) := Arrangement => (G, k) -> (
assertEdgesArePosInts G;
n := max flatten G;
x := symbol x;
R := k[x_1..x_n];
graphic(G,R)
)
graphic List := Arrangement => G -> graphic(G, QQ)
graphic(List, List, PolynomialRing) := (edges, verts, R) -> graphic (makeEdges (edges, verts), R)
graphic(List, List, Ring) := (edges, verts, k) -> graphic (makeEdges (edges, verts), k)
graphic(List, List) := (edges, verts) -> graphic (makeEdges (edges, verts))
-------------------------------------------------------
-- Random arrangements
-------------------------------------------------------
-- return a random arrangement of n hyperplanes in a polynomial ring of
-- dimension l. For large enough N, this will tend to be the uniform matroid
-- Note that if N and n aren't large enough and Validate => true, the method
-- will never return.
randomArrangement = method(Options => {Validate => false})
randomArrangement(ZZ, PolynomialRing, ZZ) := Arrangement => options -> (n, R, N) -> (
k := coefficientRing R;
l := numgens R;
m := k**matrix randomMutableMatrix(l,n,0.,N);
A := arrangement (m,R);
tryagain := options.Validate;
while tryagain do (
m = QQ**matrix randomMutableMatrix(l,n,0.,N);
A = arrangement m;
U := uniformMatroid(l,n);
tryagain = not areIsomorphic(U,matroid A));
A
)
-- if the ring isn't specified, make one over QQ
randomArrangement (ZZ,ZZ,ZZ) := Arrangement => options -> (n,l,N) -> (
x := symbol x;
R := QQ[x_1..x_l];
randomArrangement(n,R,N,options)
)
-------------------------------------------------------
-- Flats
-------------------------------------------------------
Flat = new Type of HashTable
Flat.synonym = "flat in an hyperplane arrangement"
Flat#{Standard,AfterPrint} = F -> (
<< endl;
<< concatenate(interpreterDepth:"o") << lineNumber << " : Flat of " << F.arrangement
<< endl;
)
toList Flat := List => F -> F.flat
arrangement Flat := Arrangement => opts -> F -> F.arrangement
net Flat := F -> net F.flat
expression Flat := (F) -> new Holder from { F.flat }
flat = method(Options => {Validate => true})
flat(Arrangement, List) := Flat => options -> (A,F) -> (
if not all(F, i -> class i === ZZ and i >= 0 and i < #hyperplanes A) then (
error "Expected a list of indices.");
newF := new Flat from {
symbol flat => sort F,
symbol arrangement => A,
symbol cache => new CacheTable
};
if options.Validate then (
if newF != closure(A, F) then error "not a flat";
);
newF
)
euler Flat := ZZ => F -> euler subArrangement F
Flat == Flat := (X,Y) -> (
if arrangement X == arrangement Y then (
(toList X) == (toList Y))
else false
)
-- the 'closure' method is defined in 'Matroids'
closure(Arrangement, Ideal) := Flat => (A,I) -> (
flat(A, positions(A.hyperplanes, h -> h % gb I == 0), Validate => false)
)
closure(Arrangement, List) := Flat => (A, S) -> (
closure(A,ideal (A.hyperplanes_S | {0_(ring A)})) -- ugly hack for empty list
)
meet = method()
meet(Flat, Flat) := Flat => (F, G) -> (
A := arrangement F;
if (A =!= arrangement G) then error "need the same arrangement";
flat(A, select((toList F), i -> member(i, toList G)))
)
Flat ^ Flat := Flat => meet -- ooh, cool. But note L_1^L_2 isn't L_1^(L_2) !
vee = method()
vee(Flat, Flat) := Flat => (F, G) -> (
A := arrangement F;
if (A =!= arrangement G) then error "need the same arrangement";
closure(A, (toList F) | (toList G))
)
Flat | Flat := Flat => vee
subArrangement = method(TypicalValue => Arrangement)
subArrangement Flat := Arrangement => F -> (
A := arrangement F;
arrangement(A.hyperplanes_(toList F), ring A)
)
-- the next version is redundant, but I'm putting it here in case users want to
-- use the usual notation
subArrangement (Arrangement, Flat) := Arrangement => (A, F) -> (
if (A =!= arrangement F) then error "not a flat of the arrangement";
subArrangement F
)
Arrangement _ Flat := Arrangement => subArrangement
-- restriction will return a (i) multiarrangement with (ii) natural coordinate
-- ring; maybe not what everyone expects; empty flat needs special treatment
-- the 'restriction' methods is defined in 'Matroids'
restriction(Arrangement, List) := Arrangement => (A, L) -> (
R := ring A;
compress sub(A,R/(ideal (((toList A)_L)|{0_R})))
)
restriction Flat := Arrangement => F -> (
A := arrangement F;
R := ring A;
restriction(A, toList F)
)
-- compress arrangement(A,R/(ideal ((toList A)_(toList F) | {0_R}))))
restriction(Arrangement, Set) := Arrangement => (A, S) -> restriction(A,toList S)
restriction(Arrangement, Flat) := Arrangement => (A, F) -> (
if (A =!= arrangement F) then error "not a flat of the arrangement";
restriction F
)
restriction(Arrangement, ZZ) := Arrangement => (A,i) -> (
restriction(A, flat(A, {i}))
)
Arrangement ^ Flat := Arrangement => restriction
restriction(Arrangement, RingElement) := Arrangement => (A,h) -> (
compress sub(A, (ring A)/(ideal h))
)
restriction(Arrangement,Ideal) := Arrangement => (A,I) -> (
compress sub(A,(ring A)/I)
)
-------------------------------------------------------
-- restriction of a multiarrangement in the sense introduced by Abe,
-- Wakefield, Yoshinaga, JLMS 2008
-- compute the stable exponent: this is the one that stays the same
-- when we delete a non-coloop
-- assumption: A is rank 2 and not boolean.
stableExponent := (A,m) -> (
n := #A.hyperplanes;
i := 0; -- find a non-coloop
c := while i<n list (if 1 < m_i then break i; i = i+1;);
if i == n then return 1; -- all multiplicities were 1
m' := replace(c, m_c-1, m);
D := set flatten degrees prune image der(A,m);
D' := set flatten degrees prune image der(A,m');
(elements(D*D'))_0
)
eulerRestriction = method()
eulerRestriction (CentralArrangement, List, ZZ) := Sequence => (A, m, i) -> (
hyps := hyperplanes A;
n := #hyps;
A'' := trim restriction(A,i); -- underlying simple arrangement
R := ring A;
I := ideal ring A'';
mstar := apply(hyperplanes A'', h-> ( -- multiplicity for h is stable exp.
H := lift(h,R);
F := select(n, i -> (hyps_i+I+H == I+H));
stableExponent(A_(flat(A,F)), m_F)));
(A'',mstar)
)
-- TODO: der for nonessential arrangements may fail, because coefficients
-- arrangement {x,y,x-y} over QQ[x,y,z] only gives a 2x3 matrix
rank Flat := ZZ => F -> rank subArrangement F
-- the 'flats' methods is defined in 'Matroids'
flats(ZZ, Arrangement) := List => (j,A) -> (
I := orlikSolomon A;
OS := (ring I)/I;
L := flatten entries basis(j,OS);
unique(L/indices/(S->closure(A,S)))
)
flats(ZZ, CentralArrangement) := List => (j, A) -> (
matFlats := flats(matroid A, j);
apply(toList \ matFlats, flat_A)
)
flats Arrangement := List => A -> apply(1+rank A, j-> flats(j,A))
-- return list of indices of hyperplanes in minimal dependent sets
circuits CentralArrangement := List => A -> toList \ circuits matroid A
-- should overload "directSum" when tensor product of a sequence of rings
-- becomes available
arrangementSum = method()
arrangementSum (Arrangement, Arrangement) := Arrangement => (A, B) -> (
R := ring A;
S := ring B;
RS := tensor(R, S, Degrees => toList ((numgens(R) + numgens(S)) : 1));
f := map(RS, R);
g := map(RS, S);
arrangement((hyperplanes A) / f | (hyperplanes B) / g, RS)
)
Arrangement ++ Arrangement := Arrangement => arrangementSum
sub(Arrangement, RingMap) := Arrangement => (A, phi) -> arrangement (apply(hyperplanes A, f -> phi f), target phi)
sub(Arrangement, Ring) := Arrangement => (A, R) -> sub(A, map(R, ring A))
Arrangement ** RingMap := Arrangement => (A, phi) -> sub(A, phi)
Arrangement ** Ring := Arrangement => (A, k) -> sub(A, k ** (ring A))
-- Check if arrangement is decomposable in the sense of Papadima-Suciu. We need
-- to distinguish between the coefficients in A and the coefficients for I
isDecomposable = method(TypicalValue => Boolean)
isDecomposable (CentralArrangement, Ring) := Boolean => (A, k) -> (
I := orlikSolomon (A, k);
b := betti res(coker vars ((ring I)/I), LengthLimit => 3);
phi3 := 3*b_(3,{3},3) - 3*b_(1,{1},1)*b_(2,{2},2) + b_(1,{1},1)^3 - b_(1,{1},1);
multiplicities := apply(flats(2,A), i -> length toList i);
sum(multiplicities, m -> m*(2-3*m+m^2)) == phi3
)
isDecomposable (CentralArrangement) := Boolean => A -> (
isDecomposable(A, QQ) -- changed from the coefficient ring of A, April 2022
)
------------------------------------------------------------------------------
symExt = (m,R) -> (
if (not(isPolynomialRing(R))) then error "expected a polynomial ring or an exterior algebra";
if (numgens R != numgens ring m) then error "the given ring has a wrong number of variables";
ev := map(R,ring m,vars R);
mt := transpose jacobian m;
jn := gens kernel mt;
q := vars(ring m) ** id_(target m);
n := ev(q*jn)
)
-- EPY module, formerly called FA
EPY = method()
EPY(Ideal, PolynomialRing) := Module => (J, R) -> (
modT := (ring J)^1 / (J*(ring J^1));
F := res(prune modT, LengthLimit => 3);
g := transpose F.dd_2;
G := res(coker g, LengthLimit => 4);
FA := coker symExt(G.dd_4, R);
d := first flatten degrees cover FA;
FA ** (ring FA)^{d} -- GD: I want this to be generated in degree 0
)
EPY Ideal := Module => J -> (
S := ring J;
n := numgens S;
f := symbol f;
X := getSymbol "X";
R := coefficientRing(S)[X_1..X_n];
EPY(J, R)
)
EPY Arrangement := Module => A -> EPY orlikSolomon A
EPY (Arrangement, PolynomialRing) := Module => (A, R) -> EPY(orlikSolomon A, R)
------------------------------------------------------------------------------
-- the Orlik-Terao algebra
orlikTeraoV1 := (A, S) -> (
hyps := hyperplanes A;
n := #hyps;
R := ring A;
if n == 0 then return ideal(0_S);
if (numgens S != n) then error "the given ring has a wrong number of variables";
Q := product hyps;
quotients := hyps/(h->Q//h);
trim ker map(R,S, quotients));
-- construct the relation associated with a circuit
OTreln := (c, M, S) -> ( -- circuit, coeffs, ring of definition
v := gens ker M_c;
f := map(S, ring v);
P := product(c/(i->S_i)); -- monomial
(matrix {c / (i -> P//S_i)} * f v)_(0,0)
)
-- this older version builds the ideal "manually": definitely slower, so kept
-- only to add a test.
orlikTeraoV2 := (A, S) -> (
n := #toList A;
if n == 0 then return ideal(0_S);
if (numgens S != n) then error "the given ring has a wrong number of variables";
vlist := flatten entries vars S;
M := coefficients A;
trim ideal(circuits A/(c -> OTreln(c,M,S)))
)
orlikTerao = method(Options => {NaiveAlgorithm => false})
orlikTerao(CentralArrangement, PolynomialRing) := Ideal => o -> (A,S) -> (
if o.NaiveAlgorithm then orlikTeraoV2(A,S) else orlikTeraoV1(A,S)
)
orlikTerao(CentralArrangement, Symbol) := Ideal => o -> (A, y) -> (
n := #A.hyperplanes;
S := coefficientRing(ring A)[y_1..y_n];
orlikTerao(A, S, o)
)
orlikTerao CentralArrangement := Ideal => o -> A -> (
y := symbol y;
orlikTerao(A, y, o)
)
-- needs adjustment if ring of A is not polynomial.
der = method(Options => {Strategy => null});
der (CentralArrangement) := Matrix => o -> A -> (
Ap := prune A; -- ring of A needs to be polynomial
if o.Strategy === Popescu then der1(Ap) else (
if not Ap.cache.?trim then trim(Ap);
der2(Ap.cache.trim, Ap.cache.multiplicities)
)
)
-- it's a multiarrangement if multiplicities supplied
der (CentralArrangement, List) := Matrix => o -> (A,m) -> der2(prune A,m)
-- Note: no removal of degree 0 part.
der1 = A -> (
Q := product hyperplanes A; -- defining polynomial
J := jacobian ideal Q;
m := gens ker map(transpose J | -Q, Degree => -1);
l := rank A;
submatrix(m,0..(l-1))
)
-- simple arrangement with a vector of multiplicities; fixed 22 July 2021 to
-- ensure homogeneous results
der2 = (A, m) -> (
hyps := hyperplanes A;
R := ring A;
n := #hyps;
l := numgens R;
P := R ** transpose coefficients A;
D := diagonalMatrix apply(n, i-> hyps_i^(m_i));
-- proj := map(R^n,,map(R^n,R^l,0) | map(R^n,R^n,1));
-- proj * gens ker(map(target proj,, P|D)));
M := gens ker map(R^n,, P|D);
M^{l..(n+l-1)}
)
-- compute multiplier ideals of an arrangement, via theorems of Mustata and
-- Teitler
weight := (F, m) -> sum((toList F) / (i -> m_i))
multiplierIdeal = method()
multIdeal = method()
-- it's expensive to recompute the list of irreducible flats, as well as
-- intersections of ideals. So we cache a hash table whose keys are the lists
-- of exponents on each ideal, and whose values are the intersection.
multIdeal(QQ, CentralArrangement, List) :=
multiplierIdeal(QQ, CentralArrangement, List) := Ideal => (s,A,m) -> (
if (#hyperplanes A != #m) then error "expected one weight for each hyperplane";
R := ring A;
if not A.cache.?irreds then
A.cache.irreds = select(flatten drop(flats(A),1), F->(0 != euler F));
exps := A.cache.irreds/(F->max(0,floor(s*weight(F,m))-rank(F)+1));
if not A.cache.?multipliers then A.cache.multipliers = new MutableHashTable;
if not A.cache.multipliers#?exps then (
ideals := A.cache.irreds/(F-> trim ideal toList (A_F));
A.cache.multipliers#exps = intersect apply(#exps, i->(ideals_i)^(exps_i)))
else
A.cache.multipliers#exps
)
multIdeal(QQ, CentralArrangement) :=
multiplierIdeal(QQ, CentralArrangement) := Ideal => (s,A) -> (
if not A.cache.?trim then trim A;
multiplierIdeal(s,A.cache.trim, A.cache.multiplicities)
)
-- numeric argument might be an integer:
multIdeal(ZZ, CentralArrangement) :=
multiplierIdeal(ZZ, CentralArrangement) := Ideal => (s,A) -> multiplierIdeal(s*1/1, A)
multIdeal(ZZ, CentralArrangement, List) :=
multiplierIdeal(ZZ, CentralArrangement, List) := Ideal => (s,A,m) -> multiplierIdeal(s*1/1, A, m)
-- use the observation that the jumping numbers must be rationals with
-- denominators that divide the weight of one or more flats.
logCanonicalThreshold = method(TypicalValue => QQ)
lct = method(TypicalValue => QQ)
lct CentralArrangement :=
logCanonicalThreshold CentralArrangement := QQ => A -> (
I0 := multiplierIdeal(0,A); -- cache the irreducibles, make A a multiarrangement
irreds := A.cache.trim.cache.irreds;
N := lcm(irreds/(F->weight(F,A.cache.multiplicities)));
s := 1;
while I0 == multiplierIdeal(s/N,A) do s = s+1;
s/N);
HS = i -> reduceHilbert hilbertSeries i;
------------------------------------------------------------------------------
-- DOCUMENTATION
------------------------------------------------------------------------------
beginDocumentation()
undocumented {
HS,
(expression, Arrangement),
(expression, Flat),
(net, Flat),
(net, Arrangement),
HypAtInfinity,
NaiveAlgorithm,
Validate
}
doc ///
Key
HyperplaneArrangements
Headline
manipulating hyperplane arrangements
Description
Text
A hyperplane arrangement is a finite set of hyperplanes in an
affine or projective space. In this package, an arrangement is
expressed as a list of (linear) defining equations for the
hyperplanes. The tools provided allow the user to create new
arrangements from old, and to compute various algebraic invariants
of arrangements.
Text
Introductions to the theory of hyperplane arrangements can be
found in the following textbooks:
Text
@UL {
{HREF("https://math.unice.fr/~dimca/", "Alexandru Dimca"),
", ",
HREF("https://doi.org/10.1007/978-3-319-56221-6",
"Hyperplane arrangements"),
", Universitext,",
"Springer, Cham, 2017. ",
"ISBN: 978-3-319-56221-6" },
{HREF("https://en.wikipedia.org/wiki/Peter_Orlik", "Peter Orlik"),
" and ",
HREF("https://en.wikipedia.org/wiki/Hiroaki_Terao", "Hiroaki Terao"),
", ",
HREF("https://doi.org/10.1007/978-3-662-02772-1",
"Arrangements of hyperplanes"),
", Grundlehren der mathematischen Wissenschaften 300,",
"Springer-Verlag, Berlin, 1992. ",
"ISBN: 978-3-662-02772-1" },
{HREF("https://math.mit.edu/~rstan/", "Richard P. Stanley"),
", ",
HREF("https://doi.org/10.1090/pcms/013",
"An introduction to hyperplane arrangements"),
", in ", EM "Geometric Combinatorics", ", 389-496, ",
"IAS/Park City Mathematics Series 13, American Mathematical Society, Providence, RI, 2007. ",
"ISBN: 978-1-4704-3912-5" },
}@
///
doc ///
Key
Arrangement
Headline
the class of all hyperplane arrangements
Description
Text
A hyperplane is an affine-linear subspace of codimension one. An
arrangement is a finite set of hyperplanes.
///
doc ///
Key
CentralArrangement
Headline
the class of all central hyperplane arrangements
Description
Text
A {\em central} arrangement is a finite set of linear hyperplanes.
In other words, each hyperplane passes through the origin.
///
doc ///
Key
(arrangement, List, Ring)
(arrangement, List)
(arrangement, RingElement)
arrangement
Headline
make a hyperplane arrangement
Usage
arrangement(L, R)
arrangement L
Inputs
L : List
of affine-linear equations in the ring $R$ or
@ofClass RingElement@ that is a product of linear forms
R : Ring
a polynomial ring or linear quotient of a polynomial ring
Outputs
: Arrangement
determined by the input data
Description
Text
A hyperplane is an affine-linear subspace of codimension one. An
arrangement is a finite set of hyperplanes. When each hyperplane
contains the origin, the arrangement is
@TO2(CentralArrangement, "central")@.
Text
Probably the best-known hyperplane arrangement is the braid
arrangement consisting of all the diagonal hyperplanes. In
$4$-space, it is constructed as follows.
Example
S = QQ[w,x,y,z];
A3 = arrangement {w-x, w-y, w-z, x-y, x-z, y-z}
assert isCentral A3
Text
When a hyperplane arrangement is created from a product of linear
forms, the order of the factors is not preserved.
Example
A3' = arrangement ((w-x)*(w-y)*(w-z)*(x-y)*(x-z)*(y-z))
assert(A3 != A3')
arrangement (x^2*y^2*(x^2-y^2)*(x^2-z^2))
Text
The package can recognize that a polynomial splits into linear forms over
the base field.
Example
kk = toField(QQ[p]/(p^2+p+1)) -- toField is necessary so that M2 treats this as a field
R = kk[s,t]
arrangement (s^3-t^3)
Text
If we project onto a linear subspace, then we obtain an essential
arrangement, meaning that the rank of the arrangement is equal to
the dimension of its ambient vector space.
Example
R = S/ideal(w+x+y+z);
A3'' = arrangement({w-x,w-y,w-z,x-y,x-z,y-z}, R)
ring A3''
assert(rank A3'' === dim ring A3'')
Text
The trivial arrangement has no equations.
Example
trivial = arrangement({},S)
ring trivial
assert isCentral trivial
Caveat
If the entries in $L$ are not @TO2(RingElement, "ring elements")@ in
$R$, then the induced identity map is used to map them from the ring
of first element in $L$ into $R$.
SeeAlso
HyperplaneArrangements
(arrangement, Matrix)
(arrangement, String, PolynomialRing)
(isCentral, Arrangement)
///
doc ///
Key
(arrangement, Matrix, Ring)
(arrangement, Matrix)
Headline
make a hyperplane arrangement
Usage
arrangement(M, R)
arrangement M
Inputs
M : Matrix
a matrix whose columns represent linear forms defining hyperplanes
R : Ring
a polynomial ring or linear quotient of a polynomial ring
Outputs
: Arrangement
determined by the input data
Description
Text
A hyperplane is an affine-linear subspace of codimension one. An
arrangement is a finite set of hyperplanes. When each hyperplane
contains the origin, the arrangement is
@TO2(CentralArrangement, "central")@.
Text
Probably the best-known hyperplane arrangement is the braid
arrangement consisting of all the diagonal hyperplanes. In
$4$-space, it is constructed as follows.
Example
S = QQ[w,x,y,z];
A3 = arrangement(matrix{{1,1,1,0,0,0},{-1,0,0,1,1,0},{0,-1,0,-1,0,1},{0,0,-1,0,-1,-1}}, S)
assert isCentral A3
Text
If we project along onto a subspace, then we obtain an essential
arrangement, meaning that the rank of the arrangement is equal to
the dimension of its ambient vector space.
Example
R = S/ideal(w+x+y+z);
A3' = arrangement(matrix{{1,1,1,0,0,0},{-1,0,0,1,1,0},{0,-1,0,-1,0,1},{0,0,-1,0,-1,-1}}, R)
ring A3'
assert(rank A3' === dim ring A3')
Text
The trivial arrangement has no equations.
Example
trivial = arrangement(map(S^4,S^0,0),S)
ring trivial
assert isCentral trivial
SeeAlso
HyperplaneArrangements
(arrangement, List)
(arrangement, String, PolynomialRing)
(isCentral, Arrangement)
///
doc ///
Key
(arrangement, String, Ring)
(arrangement, String, PolynomialRing)
(arrangement, String)
symbol arrangementLibrary
Headline
access a database of classic hyperplane arrangements
Usage
arrangement(s, R)
arrangement s
Inputs
s : String
corresponding to the name of a hyperplane arrangement in the database
R : Ring
that determines the coefficient ring of the hyperplane arrangement
or @ofClass PolynomialRing@ that determines the
@TO2((ring, Arrangement), "ambient ring")@
Outputs
: Arrangement
from the database
Description
Text
A hyperplane is an affine-linear subspace of codimension one. An
arrangement is a finite set of hyperplanes. This method allows
convenient access to the hyperplane arrangements with the following
names
Example
sort keys arrangementLibrary
Text
We illustrate various ways to specify the ambient ring for some
classic hyperplane arrangements.
Example
A0 = arrangement "(9_3)_2"
ring A0
A1 = arrangement("bracelet", ZZ)
ring A1
A2 = arrangement("braid", ZZ/101)
ring A2
A3 = arrangement("Desargues", ZZ[vars(0..2)])
ring A3
A4 = arrangement("nonFano", QQ[a..c])
ring A4
A5 = arrangement("notTame", ZZ/32003[w,x,y,z])
ring A5
Text
Two of the entries in the database are defined over the finite
field with $31627$ elements where $6419$ is a cube root of unity.
Example
A6 = arrangement "MacLane"
ring A6
A7 = arrangement("Hessian", ZZ/31627[a,b,c])
ring A7
Text
Every entry in this database determines a central hyperplane arrangement.
Example
assert all(keys arrangementLibrary, s -> isCentral arrangement s)
Text
The following two examples have the property that the six triple
points lie on a conic in the one arrangement, but not in the
other. The difference is not reflected in the matroid. However,
Hal Schenck's and Ştefan O. Tohǎneanu's paper "The Orlik-Terao
algebra and 2-formality" {\em Mathematical Research Letters}
{\bf 16} (2009) 171-182
@HREF("https://arxiv.org/abs/0901.0253", "arXiv:0901.0253")@
observes a difference between their respective
@TO2(orlikTerao, "Orlik-Terao")@ algebras.
Example
Z1 = arrangement "Ziegler1"
Z2 = arrangement "Ziegler2"
assert(matroid Z1 == matroid Z2) -- same underlying matroid
I1 = orlikTerao Z1;
I2 = orlikTerao Z2;
assert(hilbertPolynomial I1 == hilbertPolynomial I2) -- same Hilbert polynomial
hilbertPolynomial ideal super basis(2,I1)
hilbertPolynomial ideal super basis(2,I2) -- but not (graded) isomorphic
SeeAlso
(arrangement, List)
typeA
typeB
typeD
(isCentral, Arrangement)
///
doc ///
Key
(arrangement, Flat)
Headline
get the hyperplane arrangement to which a flat belongs
Usage
arrangement F
Inputs
F : Flat
Outputs
: Arrangement
to which the flat belongs
Description
Text
A flat is a set of hyperplanes that are maximal with respect to
the property that they contain a given affine subspace. In this
package, flats are treated as lists of indices of hyperplanes in
the arrangement. Given a flat, this method returns the underlying
hyperplane arrangement.
Example
A3 = typeA 3
F = flat(A3,{3,4,5})
assert(arrangement F === A3)
SeeAlso
(flat, Arrangement, List)
(flats, Arrangement)
///
doc ///
Key
(symbol ==, Arrangement, Arrangement)
Headline
whether two hyperplane arrangements are equal
Usage
A == B
Inputs
A : Arrangement
B : Arrangement
Outputs
: Boolean
that is true if the underlying rings are equal and the lists of
hyperplanes are the same
Description
Text
Two hyperplane arrangements are equal their underlying rings are
identical and their defining linear forms are listed in the same
order.
Text
Although the following two arrangements have the same hyperplanes,
they are not equal because the linear forms are different.
Example
R = QQ[x, y];
A = arrangement{x, y, x+y}
assert(A == A)
B = arrangement{2*x, y, x+y}
A == B
assert not (A == B)
assert( A != B )
Text
The order in which the hyperplanes are listed is also important.
Example
A' = arrangement{y, x, x+y}
A == A'
assert( A != A' )
SeeAlso
(ring, Arrangement)
(hyperplanes, Arrangement)
///
doc ///
Key
(ring, Arrangement)
Headline
get the underlying ring of a hyperplane arrangement
Usage
ring A
Inputs
A : Arrangement
Outputs
: Ring
that contains the defining equations of the arrangement
Description
Text
A hyperplane arrangement is defined by a list of affine-linear
equations in a ring, either a polynomial ring or the quotient of
polynomial ring by linear equations. This methods returns this
ring.
Text
Probably the best-known hyperplane arrangement is the braid
arrangement consisting of all the diagonal hyperplanes. We
illustrate two constructions of this hyperplane arrangement in
$4$-space, using different polynomial rings.
Example
S = ZZ[w,x,y,z];
A = arrangement(matrix{{1,1,1,0,0,0},{-1,0,0,1,1,0},{0,-1,0,-1,0,1},{0,0,-1,0,-1,-1}}, S)
ring A
assert(ring A === S)
S' = ZZ/101[w,x,y,z];
A' = typeA(3, S')
ring A'
assert(ring A' === S')
assert(A' =!= A)
Text
Projecting onto an appropriate linear subspace, we obtain an
essential arrangement, meaning that the rank of the arrangement is
equal to the dimension of its ambient vector space. (See also
@TO makeEssential@.)
Example
R = S'/(w+x+y+z)
A'' = sub(A, R) -- this changes the coordinate ring of the arrangement
ring A''
assert(rank A'' == dim ring A'')
Text
The trivial arrangement has no equations, so it is necessary to specify
a coordinate ring.
Example
trivial = arrangement({}, S)
assert(ring trivial === S)
trivial' = arrangement({},R)
assert(ring trivial' === R)
SeeAlso
(arrangement, List)
///
doc ///
Key
(matrix, Arrangement)
Headline
make a matrix from the defining equations
Usage
matrix A
Inputs
A : Arrangement
Degree =>
this optional input is ignored by this function
Outputs
: Matrix
having one row, whose entries are the defining equations
Description
Text
A hyperplane arrangement is defined by a list of affine-linear
equations. This methods creates a matrix, over the
@TO2((ring, Arrangement), "underlying ring")@ of the hyperplane
arrangement, whose entries are the defining equations.
Text
A few reflection arrangements yield the following matrices.
Example
A = typeA 3
R = ring A
matrix A
matrix typeB 2
matrix typeD 4
Text
The trivial arrangement has no equations.
Example
trivial = arrangement({},R)
matrix trivial
assert(matrix trivial == 0)
SeeAlso
(arrangement, List)
(ring, Arrangement)
///
doc ///
Key
(coefficients, Arrangement)
Headline
make a matrix from the coefficients of the defining equations
Usage
coefficients A
Inputs
A : Arrangement
Monomials => List
which is ignored
Variables => List
which is ignored
Outputs
: Matrix
whose entries are the coefficients of the defining equations
Description
Text
A hyperplane arrangement is defined by a list of affine-linear
equations. This method creates a matrix whose rows correspond to
variables in the @TO2((ring, Arrangement), "underlying ring")@ and
whose columns correspond to the defining equations. The entries
in this matrix are the coefficients of the defining equations.
If the arrangement is affine (i.e. there are constant coefficients),
the last row of the output matrix is the constant coefficients.
Text
A few reflection arrangements yield the following matrices.
Example
coefficients typeA 3
coefficients typeB 2
coefficients typeD 4
Text
The coefficient ring need not be the rational numbers.
Example
R = ZZ/101[x,y,z];
A = arrangement("Pappus", R)
coefficients A
H = arrangement("Hessian")
coefficients H
Text
For non-central hyperplane arrangements, the last row of the coefficient matrix
records the constant terms.
Example
B = arrangement(x*y*(x+y+1))
coefficients B
C = arrangement(x*y*z*(x+y+1)*(y+z-1))
coefficients C
Text
The trivial arrangement has no equations, so its this method
returns the zero matrix.
Example
R = ZZ[x,y,z];
trivial = arrangement(map(R^(numgens R),R^0,0),R)
coefficients trivial
assert(coefficients trivial == 0)
SeeAlso
(arrangement, List)
(ring, Arrangement)
///
doc ///
Key
(rank, CentralArrangement)
Headline
compute the rank of a central hyperplane arrangement
Usage
rank A
Inputs
A : CentralArrangement
Outputs
: ZZ
the codimension of the intersection of the defining equations
Description
Text
The {\em center} of a hyperplane arrangement is the intersection
of its defining affine-linear equations. The {\em rank} of a
hyperplane arrangement is the codimension of its center.
Text
We illustrate this method with some basic examples.
Example
R = QQ[x,y,z];
B = arrangement("braid", R)
rank B
assert(rank B === rank matroid B)
rank typeA 4
M = arrangement("MacLane")
rank M
Text
The trivial arrangement has no equations.
Example
trivial = arrangement(map(R^(numgens R),R^0,0),R)
rank trivial
assert(rank trivial === 0)
SeeAlso
(arrangement, List)
(ring, Arrangement)
///
doc ///
Key
(rank, Flat)
Headline
compute the rank of a flat
Usage
rank F
Inputs
F : Flat
Outputs
: ZZ
the codimension of the intersection of the hyperplanes containing $F$
Description
Text
The {\em rank} of a flat $F$ is the codimension of the intersection of
the hyperplanes containing $F$ (i.e. whose indices are in $F$).
Example
A3 = typeA 3
F = flat(A3, {3,4,5})
assert(rank F == 2)
SeeAlso
(rank, CentralArrangement)
///
doc ///
Key
(makeEssential, CentralArrangement)
makeEssential
Headline
make an essential arrangement out of an arbitrary one
Usage
makeEssential A
Inputs
A : CentralArrangement
Outputs
: CentralArrangement
a combinatorially equivalent essential arrangement
Description
Text
A @TO2((CentralArrangement), "central arrangement")@ is {\em
essential} if the intersection of all of the hyperplanes equals
the origin. If ${\mathcal A}$ is a hyperplane arrangement in an
affine space $V$ and $L$ is the intersection of all of the
hyperplanes, then the image of the hyperplanes of ${\mathcal A}$
in $V/L$ gives an equivalent essential arrangement.
Since this essentialization is defined over a subring of the
@TO2((ring, Arrangement), "underlying ring")@ of ${\mathcal A}$, it
cannot be implemented directly. Instead, the method chooses a
splitting of the quotient $V\to V/L$ and returns an arrangement over
a polynomial ring on a subset of the original variables.
If ${\mathcal A}$ is already essential, then the method returns the same
arrangement.
Text
Deleting a hyperplane from an essential arrangement yields an
essential arrangement only if the hyperplane was not a coloop.
Example
R = QQ[x, y, z];
A = arrangement{x, y, x-y, z}
makeEssential A
assert(A == makeEssential A)
A' = deletion(A, z)
ring A'
makeEssential A'
ring makeEssential A'
Text
Type-$A$ reflection arrangements are not essential.
Example
A = typeA 3
ring A
A' = makeEssential A
ring A'
Text
Type-$B$ reflection arrangements are essential.
Example
B = typeB 3
assert(B == makeEssential B)
SeeAlso
(ring, Arrangement)
(trim, Arrangement)
(prune, Arrangement)
///
doc ///
Key
(trim, Arrangement)
"make simple"
"simplify"
Headline
make a simple hyperplane arrangement
Usage
trim A
Inputs
A : Arrangement
Outputs
: Arrangement
a simple arrangement
Description
Text
A hyperplane arrangement is {\em simple} if none of its linear
forms is identically $0$ and no hyperplane is cut out out by more
than one form. This method returns a simple arrangement by
reducing the multiplicities of the hyperplanes and eliminating the
zero equation (if necessary).
Example
R = QQ[x, y];
A = arrangement{x,x,0_R,y,y,y,x+y,x+y,x+y,x+y,x+y}
A' = trim A
assert(ring A' === R)
assert(trim A' == A')
assert(trim A' == A')
Text
Some natural operations produce non-simple hyperplane arrangements.
Example
A'' = restriction(A, y)
trim A''
A''' = dual arrangement{x, y, x-y}
trim A'''
SeeAlso
(compress, Arrangement)
(prune, Arrangement)
(restriction, Arrangement, RingElement)
(dual, CentralArrangement)
///
doc ///
Key
(compress, Arrangement)
"make loopless"
Headline
extract nonzero equations
Usage
compress A
Inputs
A : Arrangement
Outputs
: Arrangement
a loopless arrangement
Description
Text
An arrangement is loopless if none of its forms are identically 0. This method returns
the arrangement defined by the non-identically-zero forms of A.
Example
R = QQ[x,y,z]
A = dual arrangement {x,y,x-y,z} -- the last element of this arrangement is 0
compress A
SeeAlso
(trim, Arrangement)
///
doc ///
Key
(dual, CentralArrangement, Ring)
(dual, CentralArrangement)
Headline
the Gale dual of an arrangement
Usage
dual A or dual(A, R)
Inputs
A : CentralArrangement
R : Ring
Outputs
: CentralArrangement
the Gale dual of A, optionally over the polynomial ring R.
Description
Text
The dual of an arrangement of rank $r$ with $n$ hyperplanes is an
arrangement of rank $n-r$ with $n$ hyperplanes, given by a
linear realization of the dual matroid to that of ${\mathcal A}$.
It is computed from a presentation of the kernel of the
coefficient matrix of ${\mathcal A}$. If ${\mathcal A}$ is the
@TO2((graphic,List),"arrangement of a planar graph")@ then
the dual of ${\mathcal A}$ is the arrangement of the dual graph.
Example
A = arrangement "X2"
coefficients A
A' = dual A
coefficients dual A
assert (dual matroid A == matroid dual A)
SeeAlso
(HyperplaneArrangements)
(coefficients, Arrangement)
(dual, Matroid)
///
doc ///
Key
(genericArrangement, ZZ, ZZ, Ring)
(genericArrangement, ZZ, ZZ)
genericArrangement
Headline
realize the uniform matroid using points on the monomial curve
Usage
genericArrangement(r,n,K)
genericArrangement(r,n)
Inputs
r : ZZ
the rank of the arrangement
n : ZZ
the number of hyperplanes
K : Ring
a coefficient ring: $\QQ$ by default
Outputs
: Arrangement
the arrangement with linear forms normal to
$(1,j,j^2,\cdots,j^{r-1})$, for $1\leq j\leq n$.
Description
Text
By definition, a generic arrangement is a realization of a uniform
matroid $U_{r,n}$, which is characterized by the property that all
subsets of the ground set of size at most $r$ are independent.
Points on the monomial curve have this property.
Example
poincare genericArrangement(3,5,QQ)
SeeAlso
randomArrangement
///
doc ///
Key
(substitute, Arrangement, RingMap)
(substitute, Arrangement, Ring)
(sub, Arrangement, RingMap)
(sub, Arrangement, Ring)
(symbol **, Arrangement, RingMap)
Headline
change the ring of an arrangement
Usage
substitute(arr, f)
sub(arr, f)
arr ** f
Inputs
arr : Arrangement
f : RingMap
with source {\tt ring arr}, or @ofClass Ring@ for which {\tt map(f, ring arr)} makes sense
Outputs
: Arrangement
the arrangement defined by applying {\tt f} (if {\tt f} is @ofClass RingMap@) or
{\tt map(f, ring arr)} (if {\tt f} is @ofClass Ring@) to each defining linear form
Description
Example
R = QQ[x,y]
arr = arrangement{x,y,x-y}
f = map(QQ[a,b], R, {a, a+b})
sub(arr, f)
Text
Alternatively, you can use {\tt **}.
Example
arr ** f === sub(arr, f)
Text
Given @ofClass Ring@ {\tt S}, {\tt sub(arr, S)} is the same as {\tt sub(arr, map(S, ring arr))}.
Example
S = QQ[x,y,z]
arr' = sub(arr, S)
ring arr' === S
Text
Note that the underlying matroid of the arrangement may change as
a result of changing the ring. For example, the Fano matroid
is realizable only in characteristic 2:
Example
R = ZZ[x,y,z]
A = arrangement("nonFano",R)
f = map(ZZ/2[x,y,z],R);
B = A**f
flats(2,A)
flats(2,B)
SeeAlso
(map, Ring, Ring)
(symbol **, Arrangement, Ring)
///
doc ///
Key
(symbol **, Arrangement, Ring)
Headline
change the coefficient ring of an arrangement
Usage
A ** K
Inputs
A : Arrangement
K : Ring
Outputs
: Arrangement
the hyperplane arrangement defined by tensoring the
@TO2((ring, Arrangement), "underlying ring")@ with $K$.
Description
Text
This methods makes a new hyperplane arrangement by changing the
coefficient ring of the underlying ring.
Example
R = ZZ[x,y];
A = arrangement{x,y,x-y}
A' = A ** QQ
ring A'
assert(R =!= ring A')
SeeAlso
(sub, Arrangement, RingMap)
(sub, Arrangement, Ring)
(symbol **, Arrangement, RingMap)
///
doc ///
Key
(typeA, ZZ, Ring)
(typeA, ZZ, PolynomialRing)
(typeA, ZZ)
typeA
Headline
make the hyperplane arrangement defined by a type $A_n$ root system
Usage
typeA(n, k)
typeA(n, R)
typeA n
Inputs
n : ZZ
that is positive
k : Ring
that determines the coefficient ring of the hyperplane arrangement
or @ofClass PolynomialRing@ $R$ that determines the
@TO2((ring, Arrangement), "ambient ring")@
Outputs
: Arrangement
Description
Text
Given a coefficient ring $k$, the {\em Coxeter arrangement} of
type $A_n$ is the hyperplane arrangement in $k^{n+1}$ defined by
$x_i - x_j$ for all $1 \leq i < j \leq n+1$.
Example
A0 = typeA(3, ZZ)
ring A0
A1 = typeA(4, QQ)
ring A1
A3 = typeA(2, ZZ/2)
ring A3
Text
When the second input is a polynomial ring $R$, this ring determines the
ambient ring of the Coxeter arrangement. The polynomial ring must
have at least $n+1$ variables.
Example
A4 = typeA(3, ZZ[a,b,c,d])
ring A4
A5 = typeA(2, ZZ[t][x,y,z])
ring A5
Text
Omitting the ring (or second argument) is equivalent to setting $k := \mathbb{Q}$.
Example
A6 = typeA 2
ring A6
SeeAlso
(arrangement, List, Ring)
(typeB, ZZ, Ring)
(typeD, ZZ, Ring)
///
doc ///
Key
(typeB, ZZ, Ring)
(typeB, ZZ, PolynomialRing)
(typeB, ZZ)
typeB
Headline
make the hyperplane arrangement defined by a type $B_n$ root system
Usage
typeB(n, k)
typeB(n, R)
typeB n
Inputs
n : ZZ
that is positive
k : Ring
that determines the coefficient ring of the hyperplane arrangement
or @ofClass PolynomialRing@ $R$ that determines the
@TO2((ring, Arrangement), "ambient ring")@
Outputs
: Arrangement
Description
Text
Given a coefficient ring $k$, the {\em Coxeter arrangement} of
type $B_n$ is the hyperplane arrangement in $k^{n}$ defined by
$x_i$ for all $1 \leq i \leq n$ and $x_i \pm x_j$ for all
$1 \leq i < j \leq n$.
Example
A0 = typeB(3, ZZ)
ring A0
A1 = typeB(4, QQ)
ring A1
A3 = typeB(2, ZZ/2)
trim A3
ring A3
Text
When the second input is a polynomial ring $R$, this ring determines the
ambient ring of the Coxeter arrangement. The polynomial ring must
have at least $n$ variables.
Example
A4 = typeB(3, ZZ[a,b,c,d])
ring A4
A5 = typeB(2, ZZ[t][x,y,z])
ring A5
Text
Omitting the ring (or second argument) is equivalent to setting $k := \mathbb{Q}$.
Example
A6 = typeB 3
ring A6
A7 = typeB 1
ring A7
SeeAlso
(arrangement, List, Ring)
(typeA, ZZ, Ring)
(typeD, ZZ, Ring)
///
doc ///
Key
(typeD, ZZ, Ring)
(typeD, ZZ, PolynomialRing)
(typeD, ZZ)
typeD
Headline
make the hyperplane arrangement defined by a type $D_n$ root system
Usage
typeD(n, k)
typeD(n, R)
typeD n
Inputs
n : ZZ
that is greater than $1$
k : Ring
that determines the coefficient ring of the hyperplane arrangement
or @ofClass PolynomialRing@ $R$ that determines the
@TO2((ring, Arrangement), "ambient ring")@
Outputs
: Arrangement
Description
Text
Given a coefficient ring $k$, the {\em Coxeter arrangement} of
type $D_n$ is the hyperplane arrangement in $k^{n}$ defined by
$x_i \pm x_j$ for all $1 \leq i < j \leq n$.
Example
A0 = typeD(3, ZZ)
ring A0
A1 = typeD(4, QQ)
ring A1
A3 = typeD(2, ZZ/2)
trim A3
ring A3
Text
When the second input is a polynomial ring $R$, this ring determines the
ambient ring of the Coxeter arrangement. The polynomial ring must
have at least $n$ variables.
Example
A4 = typeD(3, ZZ[a,b,c,d])
ring A4
A5 = typeD(2, ZZ[t][x,y,z])
ring A5
Text
Omitting the ring (or second argument) is equivalent to setting $k := \mathbb{Q}$.
Example
A6 = typeD 3
ring A6
SeeAlso
(arrangement, List, Ring)
(typeA, ZZ, Ring)
(typeB, ZZ, Ring)
///
doc ///
Key
(randomArrangement,ZZ,PolynomialRing,ZZ)
(randomArrangement,ZZ,ZZ,ZZ)
randomArrangement
[randomArrangement, Validate]
Headline
generate an arrangement at random
Usage
randomArrangement(n,R,N)
Inputs
n : ZZ
number of hyperplanes
R : PolynomialRing
a polynomial ring over which to define the arrangement,
or a number of variables l instead
N : ZZ
absolute value of upper bound on coefficients
Validate => Boolean
if true, the method will attempt to return an arrangement whose
underlying matroid is uniform.
Outputs
: Arrangement
a random rational arrangement of $n$ hyperplanes defined over $R$.
Description
Text
As $N$ increases, the random arrangement is a generic arrangement
(i.e., a realization of the @TO2 {(uniformMatroid), "uniform matroid"}@
with probability tending to 1. The user can require that the
arrangement generated is actually generic by using the option
{\tt Validate => true}.
Example
randomArrangement(4,3,5)
Text
If an arrangement has the @TO2 {(poincare, Arrangement), "poincare polynomial"}@
of a generic arrangement, then it is itself generic.
Example
tally apply(12, i -> poincare randomArrangement(6,3,5))
A = randomArrangement(6,3,5,Validate=>true)
U = uniformMatroid(3,6);
assert areIsomorphic(U, matroid A)
Caveat
If the user specifies {\tt Validate => true} and $N$ is too small,
the method may not halt.
SeeAlso
genericArrangement
///
doc ///
Key
(poincare, Arrangement)
(poincare, CentralArrangement)
poincare
Headline
compute the Poincaré polynomial of an arrangement
Usage
poincare A
Inputs
A : Arrangement
Outputs
: RingElement
its Poincaré polynomial, an element of the degrees ring.
Description
Text
The Poincaré polynomial $\pi({\mathcal A},t)$ of a central arrangement of rank $r$ equals
$t^r\,T(1+t^{-1},0)$, where $T(x,y)$ is the Tutte polynomial.
Alternatively,
\[
\pi({\mathcal A},t)=\sum_F\mu(\widehat{0},F)(-t)^{r(F)},
\]
where the sum is over all flats $F$, the function $\mu$ denotes the Möbius
function of the intersection lattice, and $r(F)$ is the rank of the
flat $F$. The characteristic polynomial of an (essential)
arrangement is closely related and defined by
\[
\chi({\mathcal A},t)=t^r\pi({\mathcal A},-t^{-1}).
\]
Example
A = arrangement "MacLane";
poincare A
characteristicPolynomial matroid A
Text
If ${\mathcal A}$ is an arrangement defined over the complex
numbers, a classical theorem of Brieskorn-Orlik-Solomon asserts
that $\pi({\mathcal A},t)$ is also the Poincaré polynomial of
the complement of the union of hyperplanes.
In certain interesting cases, the Poincaré polynomial factors into
linear factors. This is the case if ${\mathcal A}$ is the
set of reflecting hyperplanes associated with a real or
complex reflection group, in which case the (co)exponents of the
reflection group appear as the linear coefficients of the factors.
Example
factor poincare typeA 3
Text
More generally (since reflection arrangements are free), if the
@TO2{der, "module of logarithmic derivations"}@ $D({\mathcal A})$
on $\mathcal A$ is free, Terao's Factorization Theorem states that
the Poincaré polynomial factors as a product
$\prod_{i=1}^r(1+m_i t)$, where the $m_i$'s are the degrees of the
generators of the graded free module $D({\mathcal A})$.
Example
A = arrangement "Hessian";
factor poincare A
prune image der A
Text
The Poincaré polynomial appears in various enumerative contexts
as well. If ${\mathcal A}$ is an arrangement defined over
the real numbers, then $\pi({\mathcal A},1)$ equals the number
of connected components in the complement of the union of
hyperplanes. Similarly, $d/dt[\pi({\mathcal A},t)]$ evaluated at
$t=1$ counts the number of bounded components in the complement
of the @TO2(deCone, "decone")@ of ${\mathcal A}$.
Text
If ${\mathcal A}$ is a non-central arrangement, the
Poincaré polynomial $\pi({\mathcal A},t)$ equals
$\pi(c{\mathcal A},t)/(1+t)$, where $c{\mathcal A}$ denotes the
@TO2{cone, "cone"}@ of ${\mathcal A}$.
SeeAlso
(der, CentralArrangement)
(orlikSolomon, Arrangement)
(characteristicPolynomial, Matroid)
///
doc ///
Key
(orlikSolomon, Arrangement, PolynomialRing)
(orlikSolomon, CentralArrangement, PolynomialRing)
(orlikSolomon, Arrangement, Ring)
(orlikSolomon, Arrangement, Symbol)
(orlikSolomon, Arrangement)
orlikSolomon
[orlikSolomon, HypAtInfinity]
[orlikSolomon, Projective]
[orlikSolomon, Strategy]
Popescu
Headline
compute the defining ideal for the Orlik-Solomon algebra
Usage
orlikSolomon(A,E)
orlikSolomon(A,k)
orlikSolomon(A,e)
orlikSolomon(A)
Inputs
A : Arrangement
E: PolynomialRing
a skew-commutative polynomial ring with one variable for each hyperplane
with indexed variables, optionally, given by the symbol $e$.
The user can also just specify a coefficient ring $k$.
Outputs
: Ideal
the defining ideal of the Orlik-Solomon algebra of A
Description
Text
The Orlik-Solomon algebra is the cohomology ring of the
complement of the hyperplanes, either in complex projective
or affine space. The optional Boolean argument Projective specifies
which.
A fundamental property is that its Hilbert series is determined
by combinatorics: namely, up to a change of variables, it is the
characteristic polynomial of the matroid of the arrangement.
Example
A = typeA(3)
I = orlikSolomon(A,e)
reduceHilbert hilbertSeries I
characteristicPolynomial matroid A
Text
The cohomology ring of the complement of an arrangement in
projective space is most naturally described as
the subalgebra of the Orlik-Solomon algebra
generated in degree $1$ by elements whose coefficients sum to $0$.
This is inconvenient for Macaulay2; on the other hand, one can
choose a chart for projective space that places a hyperplane of
the arrangement at infinity. This expresses the projective
Orlik-Solomon algebra as a quotient of a polynomial ring.
By selecting the Projective option, the user can specify which
hyperplane is placed at infinity. By default, the first one in
order is used.
Example
I' = orlikSolomon(A,Projective=>true,HypAtInfinity=>2)
reduceHilbert hilbertSeries I'
Text
The method caches the list of @TO2{circuits, "circuits"}@ of the
arrangement. By default, the method uses the @TO2(Matroids,
"Matroids")@ package to compute the Orlik-Solomon ideal. The
option "Strategy=>Popescu" uses code by Sorin Popescu instead.
Caveat
The coefficient rings of the Orlik-Solomon algebra and of the
arrangement, respectively, are unrelated.
SeeAlso
(poincare,Arrangement)
(EPY,Arrangement)
///
doc ///
Key
(orlikTerao, CentralArrangement, PolynomialRing)
(orlikTerao, CentralArrangement, Symbol)
(orlikTerao, CentralArrangement)
orlikTerao
[orlikTerao, NaiveAlgorithm]
Headline
compute the defining ideal for the Orlik-Terao algebra
Usage
orlikTerao(A,S)
orlikTerao(A,x)
orlikTerao(A)
Inputs
A: CentralArrangement
a hyperplane arrangement
S: PolynomialRing
a polynomial ring with one variable for each hyperplane with
indexed variables, optionally, given by the symbol $x$.
NaiveAlgorithm => Boolean
Outputs
: Ideal
the defining ideal of the Orlik-Terao algebra of A
Description
Text
The Orlik-Terao algebra of an arrangement is the subalgebra of
rational functions $k[1/f_1,1/f_2,\ldots,1/f_n]$, where
the $f_i$'s are the defining forms for the hyperplanes.
The method produces an ideal presenting the Orlik-Terao algebra
as a quotient of a polynomial ring in $n$ variables.
Example
R = QQ[x,y,z];
orlikTerao arrangement {x,y,z,x+y+z}
Text
The defining ideal above has one generator given by the single
relation coming from the identity $x+y+z-(x+y+z)=0$. In general,
the ideal is homogeneous with respect to the standard grading,
but its degrees of generation are not straightforward. The
projective variety cut out by this ideal is also called the
reciprocal plane.
Example
I = orlikTerao arrangement "braid"
betti res I
OT := comodule I;
apply(1+dim OT, i-> 0 == Ext^i(OT, ring OT))
Text
As the example above hints, the Orlik-Terao algebra is always
Cohen-Macaulay: see N. J. Proudfoot and D. E. Speyer,
{\em A broken circuit ring}, Beitrage zur Algebra und Geometrie, 2006,
@HREF("https://arxiv.org/abs/math/0410069", "arXiv:math/0410069")@.
Unlike the Orlik-Solomon
algebra, the isomorphism type of the Orlik-Terao algebra is not
a matroid invariant: see the example @TO2("arrangementLibrary",
"here.")@ However, Terao proved that the Hilbert series of
the Orlik-Terao algebra is a matroid invariant: it is given by
the @TO2("poincare","Poincaré polynomial")@:
\[
\sum_{i\geq 0}\dim (S/I)_it^i=\pi({\mathcal A},t/(1-t)).
\]
Example
p = poincare arrangement "braid"
F = frac QQ[T]; f = map(F,ring p);
sub(f p, {T=>T/(1-T)})
reduceHilbert hilbertSeries I
SeeAlso
(der,CentralArrangement)
///
doc ///
Key
Flat
Headline
intersection of hyperplanes
Description
Text
A flat is a set of hyperplanes, maximal with respect to the property
that they contain a given subspace. In this package, flats are treated
as lists of indices of hyperplanes in the arrangement.
SeeAlso
(flat, Arrangement, List)
(flats, ZZ, Arrangement)
(flats, Arrangement)
///
doc ///
Key
(symbol ==, Flat, Flat)
Headline
whether two flats are equal
Usage
F == G
Inputs
F : Flat
G : Flat
Outputs
: Boolean
whether or not F and G are equal
Description
Text
Two flats are equal if and only if they belong to the same
@TO2{(arrangement, Flat), "arrangement"}@ and have the same
hyperplanes.
SeeAlso
(symbol ==, Arrangement, Arrangement)
///
doc ///
Key
(toList, Flat)
Headline
the indices of a flat
Usage
toList F
Inputs
F : Flat
Outputs
: List
the indices of the hyperplanes of a $F$
Description
Text
As stated in @TO Flat@, flats are treated in this package as lists of indices
of hyperplanes in the arrangement. This method returns that list.
Example
A3 = typeA 3
F = flat(A3, {3,4,5})
assert(toList F === {3,4,5})
Text
Often one wants the corresponding linear forms. This can be accomplished
using subscripts:
Example
(hyperplanes A3)_(toList F)
SeeAlso
(toList, Arrangement)
///
doc ///
Key
(flat, Arrangement, List)
flat
[flat, Validate]
Headline
make a flat from a list of indices
Usage
flat(A,L)
Inputs
A : Arrangement
hyperplane arrangement
L : List
list of indices in flat
Validate => Boolean
whether or not to check if $L$ is indeed a flat of $A$ (default {\tt true})
Outputs
: Flat
corresponding flat
Description
Text
With the option {\tt Validate => true} (which is the case by default),
{\tt flat(A,L)} checks to see whether $L$ is indeed the list of
indices of a flat of $A$.
Example
A = typeA 2
flat(A, {0,1,2})
SeeAlso
(flats,ZZ,Arrangement)
(flats,Arrangement)
///
doc ///
Key
(flats, ZZ, Arrangement)
(flats, Arrangement)
(flats, ZZ, CentralArrangement)
flats
Headline
list the flats of an arrangement of a given rank
Usage
flats(n,A)
Inputs
n : ZZ
rank
A : Arrangement
hyperplane arrangement
Outputs
: List
a list of @TO2{Flat, "flats"}@ of rank $n$
Description
Text
If $A$ is a @TO(CentralArrangement)@, the flats are computed using the
@TO2((flats, Matroid), "flats")@ method from the @TO Matroids@ package. Otherwise,
$A$ is computed using the @TO2(orlikSolomon, "Orlik--Solomon algebra")@.
Example
A = typeA(3)
flats(2,A)
Text
If the rank is omitted, the @TO2{Flat, "flats"}@ of each rank are listed.
Example
flats A
SeeAlso
(circuits, CentralArrangement)
(flats, Matroid)
///
doc ///
Key
(circuits, CentralArrangement)
circuits
Headline
list the circuits of an arrangement
Usage
circuits(A)
Inputs
A : CentralArrangement
hyperplane arrangement
Outputs
: List
a list of circuits of $A$, each one expressed as a list of indices
Description
Text
A circuit is a minimal dependent set. More precisely, let $f_0,\ldots,f_{n-1}$
be the polynomials defining the hyperplanes of $A$. A circuit of $A$ is a subset
$C\subseteq \{0,\ldots,n-1\}$ minimal among those for which $\{f_i : i\in C\}$ is
linearly dependent.
If $M$ is the @TO2{(matroid,CentralArrangement),"matroid of $A$"}@, then a circuit
of $A$ is the same as a circuit of $M$. In fact, {\tt circuits(A)} is defined as
{\tt toList \ circuits matroid A}.
Example
A = typeA 3
circuits A
circuits matroid A
SeeAlso
(flats, Arrangement)
(circuits, Matroid)
///
doc ///
Key
(closure, Arrangement, List)
(closure, Arrangement, Ideal)
closure
Headline
closure operation in the intersection lattice
Usage
closure(A,L) or closure(A,I)
Inputs
A : Arrangement
hyperplane arrangement
L : List
a list of indices of hyperplanes, or a linear ideal $I$ in the
ring of ${\mathcal A}$
Outputs
: Flat
the flat of least codimension containing the hyperplanes $L$,
or the flat consisting of those hyperplanes of $\mathcal A$ whose
defining forms are also in $I$
Description
Text
The closure of a set of indices $L$ consists of (indices of) all
hyperplanes that contain the intersection of the given ones.
Equivalently, the closure of $L$ consists of all hyperplanes
whose defining linear forms are in the span of the linear forms
indexed by $L$.
Example
A = typeA 3
F = closure(A,{0,1})
A_F
I = ideal((hyperplanes A)_{0,3}) -- one can also specify a linear ideal
assert (F == closure(A,I))
Text
The closure of a linear ideal $I$ is the flat consisting of all the
hyperplanes in $\mathcal A$ whose defining forms are also in $I$.
SeeAlso
(meet, Flat, Flat)
(vee, Flat, Flat)
(closure, Matroid, Set)
///
doc ///
Key
(meet, Flat, Flat)
meet
(symbol ^, Flat, Flat)
Headline
compute the meet operation in the intersection lattice
Usage
meet(F, G)
F ^ G
Inputs
F : Flat
G : Flat
in the same arrangement as $F$
Outputs
: Flat
having the greatest codimension among those contained in both $F$
and $G$
Description
Text
In the geometric lattice of flats, the meet (also known as the
infimum or greatest lower bound) is the intersection of the flats.
Equivalently, identifying flats with subspaces, this operation is
the Minkowski sum of the subspaces.
Text
The meet operation is commutative, associative, and idempotent.
Example
A = typeA 6;
F = flat(A, {0, 1, 6, 15, 20})
G = flat(A, {0, 1, 2, 6, 7, 11})
H = flat(A, {0, 1, 2, 3, 6, 7, 8, 11, 12, 15})
F ^ G
G ^ H
F ^ H
assert(meet(F, G) === F ^ G)
assert(F ^ G === G ^ F)
assert((F ^ G) ^ H === F ^ (G ^ H))
assert(G ^ G === G)
Text
The rank function is also semimodular.
Example
assert(rank F + rank G >= rank(F ^ G) + rank(F | G))
assert(rank F + rank H >= rank(F ^ H) + rank(F | H))
assert(rank H + rank G >= rank(H ^ G) + rank(H | G))
SeeAlso
(rank, Flat)
(vee, Flat, Flat)
///
doc ///
Key
(vee, Flat, Flat)
vee
(symbol |, Flat, Flat)
Headline
compute the vee operation in the intersection lattice
Usage
vee(F, G)
F | G
Inputs
F : Flat
G : Flat
in the same arrangement as $F$
Outputs
: Flat
having the least codimension among those contained in both $F$
and $G$
Description
Text
In the geometric lattice of flats, the vee (also known as the
supremum or least upper bound) is the join operation.
Equivalently, identifying flats with subspaces, this operation is
the closure of the union.
Text
The vee operation is commutative, associative, and idempotent.
Example
A = typeA 6;
F = flat(A, {0, 1, 6, 15, 20})
G = flat(A, {0, 1, 2, 6, 7, 11})
H = flat(A, {0, 1, 2, 3, 6, 7, 8, 11, 12, 15})
F | G
G | H
F | H
assert(vee(F, G) === F | G)
assert(F | G === G | F)
assert((F | G) | H === F | (G | H))
assert(G | G === G)
Text
The rank function is also semimodular.
Example
assert(rank F + rank G >= rank(F ^ G) + rank(F | G))
assert(rank F + rank H >= rank(F ^ H) + rank(F | H))
assert(rank H + rank G >= rank(H ^ G) + rank(H | G))
SeeAlso
(rank, Flat)
(vee, Flat, Flat)
///
doc ///
Key
(euler, CentralArrangement)
(euler, Flat)
Headline
compute the Euler characteristic of the projective complement
Usage
euler A
Inputs
A : CentralArrangement
or a @TO(Flat)@
Outputs
: ZZ
equal to the Euler characteristic
Description
Text
For any topological space, the {\em Euler characteristic} is
the alternating sum of its Betti numbers (a.k.a. the ranks of its
homology groups). For a central hyperplane arrangement, the
associated topological space is the projectivization of its
complement.
Text
The Euler characteristic for the hyperplane arrangements defined by
root systems are described by simple formulas.
Example
A2 = typeA 2
euler A2
assert all(5, n -> euler typeA (n+1) === (-1)^(n) * n!)
B2 = typeB 2
euler B2
assert all(4, n -> euler typeB (n+1) === (-1)^(n) * 2^n * n!)
Text
Given a flat, this method computes the Euler characteristic of
the subarrangement indexed by the flat.
Example
A4 = typeA 4
F = flat(A4, {0,7})
euler F
assert(euler A4_F === euler F)
euler flat(A4, {2,3,9})
euler flat(A4, {0,1,2,4,5,7})
euler flat(A4, {2,4,6,8})
Text
The Euler characteristic of the empty arrangement is just the
Euler characteristic of the ambient projective space. For
instance, the Euler characteristic of the complex projective plane
is $3$.
Example
assert (euler arrangement({}, ring A2) === 3)
SeeAlso
typeA
typeB
subArrangement
flat
///
doc ///
Key
(deletion, Arrangement, RingElement)
(deletion, Arrangement, List)
(deletion, Arrangement, Set)
(deletion, Arrangement, ZZ)
deletion
Headline
deletion of a subset of an arrangement
Usage
deletion(A,x)
deletion(A,S)
deletion(A,i)
Inputs
A : Arrangement
x : RingElement
alternatively, the second argument can be the index of a hyperplane, or a set or list of indices of hyperplanes
Outputs
: Arrangement
obtained by deleting the linear form $x$, or the subset $S$, or the $i$th linear form
Description
Text
The deletion is obtained by removing hyperplanes from ${\mathcal A}$.
Example
A = arrangement "braid"
deletion(A,5)
Text
You can also remove a hyperplane by specifying its linear form.
Example
R = QQ[x,y]
A = arrangement {x,y,x-y}
deletion(A, x-y)
Text
If multiple linear forms define the same hyperplane $H$, deleting any one of those
forms does the same thing: it finds the first linear form in $\mathcal A$
defining $H$, then deletes that one.
Example
A = arrangement {x, x-y, y, x-y, y-x}
A1 = deletion(A, x-y)
A2 = deletion(A, y-x)
A3 = deletion(A, 2*(x-y))
assert(A1 == A2)
assert(A2 == A3)
SeeAlso
(deletion, Matroid, List)
///
doc ///
Key
(restriction, Arrangement, Ideal)
(restriction, Arrangement, RingElement)
(restriction, Arrangement, List)
(restriction, Arrangement, Set)
(restriction, Arrangement, ZZ)
(restriction, Arrangement, Flat)
(symbol ^, Arrangement, Flat)
(restriction, Flat)
restriction
Headline
construct the restriction a hyperplane arrangement to a subspace
Usage
restriction(A, I)
restriction(A, F)
A ^ F
restriction F
Inputs
A : Arrangement
I : Ideal
an ideal defining the subspace to which we restrict. One may
also specify a single ring element or a set of indices. In
the latter case, the subspace is the intersection of the
corresponding hyperplanes.
Outputs
: Arrangement
Description
Text
The restriction of an arrangement ${\mathcal A}$ to a subspace
$X$ is the (multi)arrangement with
hyperplanes $H_i\cap X$, where $H\in {\mathcal A}$ but
$H\not\supseteq X$. The subspace $X$ may be defined by a ring
element or an ideal.
If an index or list (or set) of hyperplanes $S$ is given, then
$X=\bigcap_{i\in S}H_i$. In this case, the restriction is a
realization of the matroid contraction $M/S$, where $M$ denotes
the matroid of ${\mathcal A}$.
In general, the restriction is denoted ${\mathcal A}^X$.
Its ambient space is $X$.
Example
A = typeA(3)
L = flats(2,A)
A' = restriction first L
x := (ring A)_0 -- the subspace need not be in the arrangement
restriction(A,x)
Text
Unfortunately, the term ``restriction'' is used in conflicting
senses in arrangements versus matroids literature. In the latter
terminology, ``restriction'' to $S$ is a synonym for the deletion
of the complement of $S$.
SeeAlso
deletion
subArrangement
eulerRestriction
///
doc ///
Key
(eulerRestriction, CentralArrangement, List, ZZ)
eulerRestriction
Headline
form the Euler restriction of a central multiarrangement
Usage
eulerRestriction(A, m, i)
Inputs
A : CentralArrangement
m : List
i : ZZ
Outputs
: Sequence
the Euler restriction of (A,m)
Description
Text
The Euler restriction of a multiarrangement (introduced by Abe, Terao,
and Wakefield in @HREF("https://doi.org/10.1112/jlms/jdm110",
"The Euler multiplicity and addition–deletion theorems for multiarrangements")@,
{\em J. Lond. Math. Soc.} (2) 77 (2008), no. 2, 335348.) generalizes
@TO2 {(restriction, Arrangement, Ideal), "restriction"}@ to multiarrangements
in such a way that addition-deletion theorems hold. The underlying
simple arrangement of the Euler restriction is simply the usual
restriction; however, the multiplicities are generally smaller
than the naive ones.
Text
If all of the multiplicities are $1$, the same is true of the
Euler restriction:
Example
R = QQ[x,y,z]
A = arrangement {x,y,z,x-y,x-z}
(A'',m'') = eulerRestriction(A,{1,1,1,1,1},1)
restriction(A,1)
trim oo -- same underlying simple arrangement, different multiplicities
Text
If $({\mathcal A},m)$ is a free multiarrangement and so is
$({\mathcal A},m')$, where $m'$ is obtained from $m$ by lowering a
single multiplicity by one, the Euler restriction is free as
well, and the modules of @TO2 {(der, CentralArrangement, List),
"logarithmic derivations"}@ form a short
exact sequence. See the paper of Abe, Terao and Wakefield for
details.
Example
m = {2,2,2,2,1}; m' = {2,2,2,1,1};
(A'',m'') = eulerRestriction(A,m,3)
prune image der(A,m)
prune image der(A,m')
prune image der(A'',m'')
Text
It may be the case that the Euler restriction is free, while the
naive restriction is not:
Example
A = arrangement "bracelet";
(B,m) = eulerRestriction(A,{1,1,1,1,1,1,1,1,1},0)
C = restriction(A,0)
assert(isFreeModule prune image der B) -- one is free
assert(not isFreeModule prune image der C) -- the other is not
SeeAlso
(restriction, Arrangement, ZZ)
///
doc ///
Key
(prune, Arrangement)
Headline
makes a new hyperplane arrangement in a polynomial ring
Usage
prune A
Inputs
A : Arrangement
Exclude =>
this optional input is ignored by this function
Outputs
: Arrangement
an isomorphic to the input but defined over a polynomial ring
Description
Text
A hyperplane arrangement may sensibly be defined over a quotient
of a @TO2(PolynomialRing, "polynomial ring")@ by a linear ideal.
However, sometimes this is inconvenient. This method creates an
isomorphic hyperplane arrangement in a polynomial ring.
Example
A = typeA 3
A'' = restriction(A,0) -- restrict A to its first hyperplane
ring A''
B = prune A''
ring B
SeeAlso
(trim, Arrangement)
(compress, Arrangement)
(restriction, Arrangement, ZZ)
///
doc ///
Key
(cone, Arrangement, RingElement)
(cone, Arrangement, Symbol)
Headline
creates an associated central hyperplane arrangement
Usage
cone(A, x)
cone(A, h)
Inputs
A : Arrangement
x : RingElement
that is a variable in the ring of $A$, or a @TO Symbol@ that will
become a variable in the ring of the new hyperplane arrangement
Outputs
: CentralArrangement
constructed by adding a linear hyperplane and homogenizing the
given hyperplane equations with respect to it
Description
Text
For any hyperplane arrangement $A$, the cone of $A$ is an
associated central hyperplane arrangement constructed by adding a
new hyperplane and homogenizing the hyperplane equations in $A$
with respect to it. By definition, the cone of $A$ contains one
more hyperplane that $A$.
Text
When the underlying ring of the input arrangement $A$ has a
variable not appearing in the its linear equations, one can
construct the cone over $A$ using that variable.
Example
S = QQ[w,x,y,z];
A = arrangement{x, y, x-y, x-1, y-1}
assert not isCentral A
cA = cone(A, z)
assert isCentral cA
assert(# hyperplanes cA === 1 + # hyperplanes A)
assert(ring cA === ring A)
deCone(cA, z)
cA' = cone(A, w)
assert isCentral cA'
assert(cA != cA')
assert(# hyperplanes cA' === 1 + # hyperplanes A)
Text
This method does not verify that the given @TO RingElement@ produces a
simple hyperplane arrangement. Hence, one gets unexpected output
when the chosen variable already appears in the linear equations for $A$.
Example
cone(A, x)
cA'' = trim cone(A, x)
assert isCentral cA''
assert(# hyperplanes cA'' =!= 1 + # hyperplanes A)
Text
When the second input is a @TO Symbol@, this method creates a
new ring from the underlying ring of $A$ by adjoining the symbol as a
variable and constructs the cone in this new ring.
Example
S = QQ[x,y];
A = arrangement{x, y, x-y, x-1, y-1}
assert not isCentral A
cA = cone(A, symbol z)
assert isCentral cA
assert(# hyperplanes cA === 1 + # hyperplanes A)
ring cA
assert(ring cA =!= ring A)
deCone(cA, 5)
assert not isCentral A
cA' = cone(A, symbol w)
assert isCentral cA'
assert(# hyperplanes cA' === 1 + # hyperplanes A)
ring cA'
SeeAlso
deCone
isCentral
(trim, Arrangement)
///
doc ///
Key
(deCone, CentralArrangement, RingElement)
(deCone, CentralArrangement, ZZ)
deCone
"dehomogenization"
Headline
produce an affine arrangement from a central one
Usage
deCone(A, x)
deCone(A, i)
Inputs
A : CentralArrangement
x : RingElement
a hyperplane of $A$ or the index of a hyperplane of $A$
Outputs
: Arrangement
the decone of $A$ over $x$
Description
Text
The decone of a @TO2(CentralArrangement, "central arrangement")@ $A$ at a
hyperplane $H=H_i$ or $H=\ker x$ is the affine arrangement obtained from $A$
by first deleting the hyperplane $H$ then intersecting the remaining
hyperplanes with the (affine) hyperplane $\{x=1\}$. In particular, if $R$ is
the @TO2((ring, Arrangement), "coordinate ring")@ of $A$, then
the coordinate ring of its decone over $x$ is $R/(x-1)$.
The decone of a @TO2(CentralArrangement, "central arrangement")@ at $H$
can also be constructed by first projectivizing $A$, then removing the image of
$H$, and identifying the complement of $H$ with affine space.
Example
A = arrangement "X3"
dA = deCone(A,2)
factor poincare A
poincare dA
Text
The coordinate ring of $dA$ is $\mathbb{Q}[x_1,x_2,x_3]/(x_3-1)$.
Example
ring dA
Text
Use @TO2((prune, Arrangement),"prune")@ to get something whose coordinate
ring is a polynomial ring.
Example
dA' = prune dA
ring dA'
SeeAlso
(cone, Arrangement, RingElement)
///
doc ///
Key
(subArrangement, Arrangement, Flat)
(subArrangement, Flat)
(symbol _, Arrangement, Flat)
subArrangement
Headline
create the hyperplane arrangement containing a flat
Usage
subArrangement(A, F)
subArrangement F
A _ F
Inputs
A : Arrangement
F : Flat
of the hyperplane arrangement $A$
Outputs
: Arrangement
consisting of those hyperplanes in $A$ that contain the linear
subspace indexed by the flat $F$
Description
Text
For any hyperplane arrangement $A$ and any flat $F$ in $A$, this
methods creates a new hyperplane arrangement formed by the
hyperplanes in $A$ that contain the linear subspace associated to
the flat $A$.
Text
We illustrate this method with the
@TO2(typeA, "Coxeter arrangement of type A")@.
Example
S = QQ[w, x, y, z];
A3 = typeA(3, S)
F1 = flat(A3, {3,4,5})
A3' = subArrangement(A3, F1)
assert(ring A3 === ring A3')
subArrangement flat(A3, {0, 5})
F2 = flat(A3, {0, 1, 3})
assert(typeA(2, S) == A3_F2)
assert(A3 === subArrangement flat(A3, {0,1,2,3,4,5}))
Text
An extension of the
@TO2((arrangement, String, Ring), "bracelet arrangement")@
has several subarrangements isomorphic to $A_3$.
Example
B = arrangement("bracelet", S);
B' = arrangement({w+x+y+z} | hyperplanes B)
subArrangement flat(B', {0,1,2,6,8,9})
subArrangement flat(B', {0,1,3,5,7,9})
subArrangement flat(B', {0,2,3,4,7,8})
SeeAlso
(restriction, Arrangement, Ideal)
(deletion, Arrangement, RingElement)
///
doc ///
Key
(graphic, List, List, PolynomialRing)
(graphic, List, List, Ring)
(graphic, List, List)
(graphic, List, PolynomialRing)
(graphic, List, Ring)
(graphic, List)
graphic
Headline
make a graphic arrangement
Usage
graphic(E, V, R)
graphic(E, R)
graphic(E, V)
graphic E
Inputs
E : List
the edges of a graph expressed as a list of pairs of vertices as
specified in $V$
V : List
the vertices of a graph expressed as a list of elements
R : PolynomialRing
an optional coordinate ring for the arrangement or @ofClass Ring@
to be interpreted as a coefficient ring
Outputs
: Arrangement
associated to the given graph
Description
Text
A graph $G$ is specified by a list $V$ of vertices and a list $E$
of pairs of vertices. When $V$ is not specified, it is assumed to
be the list $1, 2, \ldots, n$, where $n$ is the largest integer
appearing as a vertex of $E$. The {\em graphic arrangement} $A(G)$
of $G$ is the subarrangement of the
@TO2(typeA, "type $A_{n-1}$ arrangement")@ with hyperplanes
$x_i-x_j$ for each edge $\{i,j\}$ of the graph $G$.
Example
G = {{1,2},{2,3},{3,4},{4,1}}; -- a four-cycle
AG = graphic G
rank AG -- the number of vertices minus number of components
ring AG
Text
One can also specify the ambient ring.
Example
AG' = graphic(G,QQ[x,y,z,w]) -- four variables because there are 4 vertices
ring AG'
Text
Occasionally, one might want to give labels to the vertices. These labels can be anything!
Example
V = {"a", "b", "c", "d"};
E = {{"a","b"}, {"b", "c"}, {"c","d"}, {"d","a"}};
graphic(E, V)
Text
The vertices can also be the variables of a polynomial ring.
Example
R = QQ[a,b,c,d];
arr = graphic({{a,b},{b,c},{c,d},{d,a}}, gens R, R)
ring arr === R
Text
Loops and parallel edges are allowed.
Example
graphic({{1,2}, {1,2}})
graphic({{1,1}, {1,2}})
SeeAlso
(arrangement, List)
typeA
(rank, CentralArrangement)
///
doc ///
Key
(der, CentralArrangement, List)
(der, CentralArrangement)
der
[der, Strategy]
Headline
compute the module of logarithmic derivations
Usage
der(A, m)
der(A)
Inputs
A : CentralArrangement
a central arrangement of hyperplanes
m : List
an optional list of multiplicities, one for each hyperplane
Strategy => Symbol
that specifies the algorithm. If an arrangement has (squarefree)
defining polynomial $Q$, then the logarithmic derivations are
those derivations $D$ for which $D(Q)$ is in the ideal $(Q)$.
The {\tt Popescu} strategy assumes that the arrangement is simple
and implements this definition. By contrast, the default
strategy treats all arrangements as multiarrangements.
Outputs
: Matrix
whose image is the module of logarithmic derivations
corresponding to the (multi)arrangement ${\mathcal A}$; see below.
Description
Text
The module of logarithmic derivations of an arrangement defined
over a ring $S$ is, by definition, the submodule of $S$-derivations
$D$ with the property that $D(f_i)$ is contained in the ideal
generated by $f_i$, for each linear form $f_i$ in the arrangement.
In this package, we grade derivations so that a constant coefficient
derivation (i.e. a derivation $D$ which takes linear forms to constants)
has degree 0. In the literature, this is often called {\em polynomial
degree}.
Text
More generally, if the linear form $f_i$ is given a
positive integer multiplicity $m_i$, then the logarithmic derivations
are those $D$ with the property that $D(f_i)$ is in the ideal
$(f_i^{m_i})$ for each linear form $f_i$. See Günter M. Ziegler,
@HREF("https://doi.org/10.1090/conm/090/1000610",
"Multiarrangements of hyperplanes and their freeness")@,
in {\em Singularities (Iowa City, IA, 1986)}, 345-359, Contemp. Math.,
90, Amer. Math. Soc., Providence, RI, 1989.
Text
The $j$th column of the output matrix expresses the $j$th generator
of the derivation module in terms of its value on each linear
form, in order.
Example
R = QQ[x,y,z];
der arrangement {x,y,z,x-y,x-z,y-z}
Text
This method is implemented in such a way that any derivations of
degree 0 are ignored. Equivalently, the arrangement ${\mathcal A}$
is treated as if it were essential: that is, the intersection of
all the hyperplanes is the origin. So, the rank of the matrix produced by
{\tt der} equals the @TO2 {(rank, CentralArrangement), "rank"}@ of the arrangement.
For instance, although the @TO2{typeA, "$A_3$ arrangement"}@
is not essential, {\tt der} will produce a rank 3 matrix.
Example
prune image der typeA(3)
prune image der typeB(4)
Text
A hyperplane arrangement ${\mathcal A}$ is {\em free} if the
module of derivations is a free $S$-module. Not all arrangements
are free.
Example
R = QQ[x,y,z];
A = arrangement {x,y,z,x+y+z}
der A
betti res prune image der A
Text
The {\tt Popescu} strategy produces a different presentation of
the module of logarithm derivations. For instance, in the following example,
the first three rows of column 0 means that
$x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$
is a logarithmic derivation of $\mathcal A$, and the last row of column 0 means
that applying this derivation to $xyz(x+y+z)$ produces $4xyz(x+y+z)$.
Example
der(A, Strategy => Popescu)
Text
If a list of multiplicities is not provided, the occurrences of
each hyperplane are counted:
Example
R = QQ[x,y]
prune image der arrangement {x,y,x-y,y-x,y,2*x} -- rank 2 => free
prune image der(arrangement {x,y,x-y}, {2,2,2}) -- same
SeeAlso
(makeEssential, CentralArrangement)
///
doc ///
Key
(multiplierIdeal,QQ,CentralArrangement,List)
(multiplierIdeal,QQ,CentralArrangement)
(multiplierIdeal,ZZ,CentralArrangement,List)
(multiplierIdeal,ZZ,CentralArrangement)
multiplierIdeal
multIdeal
(multIdeal,QQ,CentralArrangement,List)
(multIdeal,QQ,CentralArrangement)
(multIdeal,ZZ,CentralArrangement,List)
(multIdeal,ZZ,CentralArrangement)
Headline
compute a multiplier ideal
Usage
multiplierIdeal(s,A,m)
multiplierIdeal(s,A)
multIdeal(s,A,m)
multIdeal(s,A)
Inputs
s : QQ
a rational number
A : CentralArrangement
a central hyperplane arrangement
m : List
an optional list of positive integer multiplicities
Outputs
: Ideal
the multiplier ideal of the arrangement at the value $s$
Description
Text
The multiplier ideals of an given ideal depend on a nonnegative
real parameter. This method computes the multiplier ideals of
the defining ideal of a hyperplane arrangement, optionally with
multiplicities $m$. This uses the explicit formula of M. Mustata
[TAMS 358 (2006), no 11, 5015--5023] simplified by Z. Teitler
[PAMS 136 (2008), no 5, 1902--1913].
Let's consider Example 6.3 of Berkesch and Leykin from
arXiv:1002.1475v2:
Example
R = QQ[x,y,z]
A = arrangement ((x^2 - y^2)*(x^2 - z^2)*(y^2 - z^2)*z)
multiplierIdeal(3/7,A)
Text
Since the multiplier ideal is a step function of its
real parameter, one tests to see at what values it changes:
Example
H = new MutableHashTable
scan(39,i -> (
s := i/21;
I := multiplierIdeal(s,A);
if not H#?I then H#I = {s} else H#I = H#I|{s}))
netList sort values H -- values of s giving same multiplier ideal
SeeAlso
logCanonicalThreshold
///
doc ///
Key
(logCanonicalThreshold, CentralArrangement)
logCanonicalThreshold
(lct, CentralArrangement)
lct
Headline
compute the log-canonical threshold of an arrangement
Usage
logCanonicalThreshold(A)
lct(A)
Inputs
A : CentralArrangement
a central hyperplane arrangement
Outputs
: QQ
the log-canonical threshold of $A$
Description
Text
The log-canonical threshold of $A$ defined by a polynomial $f$ is the
least number $c$ for which the @TO2(multiplierIdeal, "multiplier ideal")@ $J(f^c)$ is
nontrivial.
Let's consider Example 6.3 of Berkesch and Leykin from
arXiv:1002.1475v2:
Example
R = QQ[x,y,z]
A = arrangement ((x^2 - y^2)*(x^2 - z^2)*(y^2 - z^2)*z)
logCanonicalThreshold A
Text
Note that $A$ is allowed to be a multiarrangement.
SeeAlso
multiplierIdeal
///
doc ///
Key
(EPY, Arrangement, PolynomialRing)
(EPY, Ideal, PolynomialRing)
(EPY, Ideal)
(EPY, Arrangement)
EPY
Headline
compute the Eisenbud-Popescu-Yuzvinsky module of an arrangement
Usage
EPY(A) or EPY(A,S) or EPY(I) or EPY(I,S)
Inputs
A : Arrangement
an arrangement of n hyperplanes, or I, an ideal of the exterior algebra, the quotient by which has a
linear, injective resolution
S : PolynomialRing
an optional polynomial ring in $n$ variables
Outputs
: Module
the Eisenbud-Popescu-Yuzvinsky module (see below) of I, or
if an arrangement is given, of its Orlik-Solomon ideal.
Description
Text
Let $\mathrm{OS}$ denote the @TO2(orlikSolomon, "Orlik-Solomon algebra")@
of the arrangement ${\mathcal A}$, regarded as a quotient of an
exterior algebra $E$. The module $\mathrm{EPY}({\mathcal A})$ is, by
definition, the $S$-module which is BGG-dual to the linear,
injective resolution of $\mathrm{OS}$ as an $E$-module.
Text
Equivalently, $\mathrm{EPY}({\mathcal A})$ is the single nonzero cohomology
module in the Aomoto complex of ${\mathcal A}$. For details,
see D. Eisenbud, S. Popescu, S. Yuzvinsky, "Hyperplane
arrangement cohomology and monomials in the exterior algebra",
{\em Trans. AMS} 355 (2003) no 11, 4365-4383,
@HREF("https://arxiv.org/abs/math/9912212", "arXiv:math/9912212")@,
as well as Sheaf Algorithms Using the Exterior Algebra,
by Wolfram Decker and David Eisenbud, in
@HREF("https://macaulay2.com/Book/",
"Computations in algebraic geometry with Macaulay 2")@,
Algorithms and Computations in Mathematics, Springer-Verlag,
Berlin, 2001.
Example
R = QQ[x,y];
FA = EPY arrangement {x,y,x-y}
betti res FA
Text
A consequence of the theory is that
$\mathrm{EPY}({\mathcal A})$ has a linear, free resolution
over the polynomial ring: namely, the Aomoto complex of ${\mathcal A}$.
The Betti numbers in the resolution are, up to a suitable shift,
equal to the degrees of the graded pieces of $\mathrm{OS}({\mathcal A})$.
Example
A = arrangement "prism"
reduceHilbert hilbertSeries orlikSolomon A
betti res EPY A
///
doc ///
Key
(isDecomposable, CentralArrangement, Ring)
(isDecomposable, CentralArrangement)
isDecomposable
Headline
whether a hyperplane arrangement decomposable in the sense of Papadima-Suciu
Usage
isDecomposable(A, R)
isDecomposable A
Inputs
A : CentralArrangement
R : Ring
an optional coefficient ring used as the coefficient field for
the holonomy Lie algebra. If unspecified, R=QQ
Outputs
: Boolean
that is @TO true@ if the hyperplane arrangement decomposes in the
sense of Papadima and Suciu over the given coefficient field
Description
Text
Following Definition 2.3 in Stefan Papadima and Alexander
I. Suciu's paper "When does the associated graded Lie algebra of
an arrangement group decompose?", {\em Commentarii Mathematici
Helvetici} (2006) 859-875,
@HREF("https://arxiv.org/abs/math/0309324", "arXiv:math/0309324")@,
a hyperplane arrangement is {\em decomposable} if the derived
subalgebra of its holonomy Lie algebra is a direct sum of the
derived subalgebras of free Lie algebras, indexed by the rank-2
@TO2(Flat, "flats")@ of the arrangement.
Text
As described in the introduction of Papadima-Suciu, the X3
arrangement is decomposable. The hyperplane arrangement defined
by a type $A_3$ root system is not decomposable. The authors
show that a @TO2((graphic,List),"graphic arrangement")@
is decomposable over ${\mathbb Q}$ if and only if it is
decomposable over any other field. In general, it is not
known if there exist arrangements for which property of being
decomposable depends on the choice of field.
Example
X3 = arrangement "X3"
assert isDecomposable X3
assert isDecomposable(X3, ZZ/5)
assert not isDecomposable typeA 3
SeeAlso
Flat
orlikSolomon
///
doc ///
Key
(matroid, CentralArrangement)
Headline
get the matroid of a central arrangement
Usage
matroid arr
Inputs
arr : CentralArrangement
Outputs
: Matroid
the matroid of {\tt arr}
Description
Text
This computes the @ofClass Matroid@ of the given arrangement, which by definition is the matroid defined by
the @TO2 {(coefficients, Arrangement), "coefficient matrix"}@ of the arrangement.
Example
A = matrix{{1,1,0},{-1,0,1},{0,-1,-1}}
arr = arrangement A
matroid arr
SeeAlso
(matroid, Matrix)
///
doc ///
Key
(isCentral, Arrangement)
isCentral
Headline
test to see if a hyperplane arrangement is central
Usage
isCentral A
Inputs
A : Arrangement
Outputs
: Boolean
true if A is central
Description
Text
Some methods only apply to arrangements
@ofClass CentralArrangement@, so it is useful to be able to check.
Example
S = QQ[x,y];
isCentral arrangement {x,y,x-1}
SeeAlso
CentralArrangement
///
doc ///
Key
(arrangementSum, Arrangement, Arrangement)
(symbol ++, Arrangement, Arrangement)
arrangementSum
Headline
make the direct sum of two arrangements
Usage
arrangementSum(A,B)
A ++ B
Inputs
A : Arrangement
B : Arrangement
Outputs
: Arrangement
the sum ${\mathcal A} \oplus {\mathcal B}$
Description
Text
Given two hyperplane arrangements ${\mathcal A}$ in $V$ and
${\mathcal B}$ in $W$, the {\em sum} ${\mathcal A} \oplus
{\mathcal B}$ is the hyperplane arrangement in $V \oplus W$ with
hyperplanes $\{ H \oplus W \colon H \in {\mathcal A} \} \cup \{ V
\oplus H \colon H\in {\mathcal B} \}$. The ring of the direct sum
is {\tt (ring A) ** (ring B)} with all the generators assigned
degree 1.
Example
R = QQ[w,x];
S = QQ[y,z];
A = arrangement{w, x, w-x}
B = arrangement{y, z, y+z}
C = A ++ B
gens ring C
assert (degrees ring C === {{1}, {1}, {1}, {1}})
Caveat
Both hyperplane arrangements must be defined over the same coefficient
ring.
SeeAlso
(subArrangement, Flat)
(restriction, Flat)
isDecomposable
///
doc ///
Key
(hyperplanes, Arrangement)
(toList, Arrangement)
hyperplanes
Headline
the defining linear forms of an arrangement
Usage
hyperplanes A
toList A
Inputs
A : Arrangement
Outputs
: List
the list of linear forms defining $A$.
Description
Text
This returns the list of linear forms defining an arrangement. These forms
will be elements of the @TO2((ring, Arrangement), "coordinate ring")@ of $A$.
Example
A = typeA 3
hyperplanes A
SeeAlso
(matrix, Arrangement)
(coefficients, Arrangement)
///
--===========================================================================
-- TESTS
--===========================================================================
-*
LIST OF TESTS
indented = completed
** = need to begin
arrangement(List, Ring) -- not clear what to do here
arrangement(List, Matrix)
arrangement String
arrangement Flat
arrangement(Flat, Validate=>true)
circuits
closure
coefficients Arrangement -- modify for affine?
compress
cone
deCone
deletion
der
dual
EPY
euler -- in doc
eulerRestriction
flat
flats
genericArrangement
graphic
isCentral -- in docs
isDecomposable -- in typeA tests
logCanonicalThreshold
matrix
matroid
makeEssential -- in doc
meet and ^ -- in doc
multiplierIdeal -- in lct
net Flat
orlikTerao
orlikSolomon
poincare CentralArrangement
prune
randomArrangement -- in doc
rank Arrangement
rank Flat
restriction -- in doc
ring -- in doc
sub(Arrangement, RingMap) and **
subArrangement and _ -- in doc
toList Flat
trim
typeA
typeB
typeD
vee and | -- in doc
*-
--------------------------------------
-- Tests for `arrangement` and stuff
--------------------------------------
TEST ///
R = ZZ[x,y,z];
trivial = arrangement({},R);
nontrivial = arrangement({x},R);
assert(rank trivial == 0)
assert(ring trivial === R)
assert(0 == matrix trivial)
assert(0 == coefficients trivial)
assert(deletion(nontrivial,x) == trivial)
assert(trivial++trivial != trivial)
assert(trivial**QQ != trivial)
///
-----------------------------------------------------------
-- Testing `typeA` and making arrangements using matrices
-----------------------------------------------------------
TEST ///
R = ZZ[x_1..x_4];
hyps = {x_1-x_2,x_1-x_3,x_1-x_4,x_2-x_3,x_2-x_4,x_3-x_4}
A3 = arrangement(hyps, R) -- arrangement(List, Ring)
A3ring = typeA(3, ZZ) -- typeA(ZZ, Ring)
A3poly = typeA(3, R) -- typeA(ZZ, PolynomialRing)
A3mat = arrangement(matrix {{1, 1, 1, 0, 0, 0}, -- arrangement(List, Matrix)
{-1, 0, 0, 1, 1, 0},
{0, -1, 0, -1, 0, 1},
{0, 0, -1, 0, -1, -1}}, R)
assert(A3 === A3poly)
assert(A3 === A3mat)
assert(A3 === sub(A3ring, map(R, ring A3ring, R_*))) -- sub(Arrangement, RingMap)
assert(rank A3 == 3) -- rank Arrangement
assert(pdim EPY (A3**QQ) == 3) -- EPY Arrangement
assert(not isDecomposable A3) -- isDecomposable Arrangement
assert(matrix A3 === matrix {hyps}) -- matrix Arrangement
assert(matroid (A3**QQ) === matroid coefficients (A3**QQ)) -- matroid CentralArrangement
///
-----------------------------------------------------------
-- Tests making arrangements using strings.
-----------------------------------------------------------
TEST ///
X3 = arrangement "X3" -- arrangement String
assert(isDecomposable X3) -- isDecomposable Arrangement
assert(multiplierIdeal(2,X3) == multiplierIdeal(11/5,X3)) -- multiplierIdeal(ZZ, CentralArrangement)
time I1 = orlikTerao(X3); -- orlikTerao CentralArrangement
time I2 = orlikTerao(X3,ring I1,NaiveAlgorithm=>true); -- orlikTerao(CentralArrangement, PolynomialRing, NaiveAlgorithm=>true)
assert(I1==I2)
M = arrangement "MacLane" -- arrangement String
P = poincare M -- poincare CentralArrangement
t = (ring P)_0
assert(1+8*t+20*t^2+13*t^3 == P)
///
------------------------------------
-- Testing `typeB`
------------------------------------
TEST ///
R = ZZ[x_1..x_3]
B3 = arrangement({x_1,x_1-x_2,x_1+x_2,x_1-x_3,x_1+x_3,x_2,x_2-x_3,x_2+x_3,x_3})
B3alt = typeB(3,ZZ)
assert(B3 === sub(B3alt, map(R, ring B3alt, R_*)))
B3alt = typeB(3, R)
assert(B3 === B3alt)
S = R**QQ
B3alt = typeB 3
assert(sub(B3,S) === sub(B3alt, map(S, ring B3alt, S_*)))
assert(rank B3 === 3)
///
------------------------------------
-- Testing `typeD`
------------------------------------
TEST ///
R = ZZ[x_1..x_3]
D3 = arrangement({x_1-x_2,x_1+x_2,x_1-x_3,x_1+x_3,x_2-x_3,x_2+x_3})
D3alt = typeD(3,ZZ)
assert(D3 === sub(D3alt, map(R, ring D3alt, R_*)))
D3alt = typeD(3, R)
assert(D3 === D3alt)
S = R**QQ
D3alt = typeD 3
assert(sub(D3,S) === sub(D3alt, map(S, ring D3alt, S_*)))
assert(rank D3 === 3)
///
---------------------------------------------------
-- Testing `flat`, `flats`, and various things about `Flat`
---------------------------------------------------
TEST ///
A3 = typeA 3
F = flat(A3, {0,1,3})
assert(try(flat(A3, {0,1}); false) else true) -- `Validate=>true`
assert(A3 === arrangement F) -- `arrangement Flat`
assert(toList F === {0,1,3}) -- `toList Flat`
assert(net F === net {0,1,3}) -- `net Flat`
assert(rank F === 2) -- `rank Flat`
A2 = typeA 2
assert(flats A2 === {flats(0, A2), flats(1, A2), flats(2, A2)}) -- flats with and without rank
assert(flats (0,A2) === {flat(A2, {})}) -- flat(ZZ, Arrangement)
assert(flats (2,A2) === {flat(A2, {0,1,2})}) -- flat(ZZ, Arrangement)
empty = arrangement({}, QQ[]) -- essential empty arrangement
assert(flats empty === {flats(0, empty)})
assert(flats (0, empty) === {flat(empty, {})})
R = QQ[x,y]
affine = arrangement({x,x+1,y}, R)
assert(flats(2, affine) === {flat(affine, {0,2}), flat(affine, {1,2})})
-- Test `closure` and comparison of Flats (moved to documentation)
--F' = closure(A3, ideal (hyperplanes A3)_{0,1}) -- closure(Arrangement, Ideal)
--assert(F == F')
--F' = closure(A3, {0,1}) -- closure(Arrangement, List)
--assert(F == F')
///
---------------------------
-- circuits
---------------------------
TEST ///
A3 = typeA 3
assert(set \ circuits A3 === set \ {{0, 1, 3}, {4, 0, 2}, {1, 2, 3, 4}, {5, 1, 2}, {0, 2, 3, 5}, {0, 1, 4, 5}, {4, 5, 3}})
///
---------------------------
-- coefficients
---------------------------
TEST ///
mat = matrix{{1,2,3,4},{5,6,7,8},{9,10,11,12}}
A = arrangement mat
assert(coefficients A === mat)
R = QQ[x,y,z]
A = arrangement({}, R)
assert(coefficients A === map(QQ^3, QQ^0, 0)) -- empty arrangement
R = QQ[]
A = arrangement({0_R}, R)
assert(coefficients A === map(QQ^0, QQ^1, 0)) -- loop
///
---------------------------
-- compress and trim
---------------------------
TEST ///
R = QQ[]
A = arrangement {0_R}
assert(compress A === arrangement ({}, R))
R = QQ[x]
A = arrangement {-x, -x}
assert(trim A === arrangement{x})
assert(compress A === A)
A = arrangement {0_R,-x,x}
assert(trim A === arrangement{x})
assert(compress A === arrangement{-x,x})
///
---------------------------
-- cone and deCone
---------------------------
TEST ///
R = QQ[x,h]
A = arrangement {x,x-1}
cA = arrangement{x,x-h,h}
assert(cone (A, h) === cA) -- cone(Arrangement, RingElement)
A' = deCone(cA, h)
dcA = sub(A', map(R, ring A', {x,1}))
assert(A === dcA) -- deCone(CentralArrangement, RingElement)
A' = deCone(cA, 2)
dcA = sub(A', map(R, ring A', {x,1}))
assert(A === dcA) -- deCone(CentralArrangement, ZZ)
R = QQ[y]
A = arrangement {y, y-1}
A' = cone (A, getSymbol "h")
R' = ring A'
assert(A' === arrangement {R'_"y", R'_"y"-R'_"h", R'_"h"}) -- cone(Arrangement, Symbol)
R = QQ[]
A = arrangement({0_R}, R)
A' = cone(A, getSymbol "h")
R' = ring A'
assert (A' === arrangement{0_R', R'_0}) -- cone of a loop
///
---------------------------
-- deletion
---------------------------
TEST ///
R = QQ[x,y]
A = arrangement {x,x,y,x-y}
assert(deletion(A, x) == arrangement {x,y,x-y}) -- deletion for multiarrangement
assert(deletion(A,2) == arrangement {x,x,x-y}) -- deletion(Arrangement, ZZ)
assert(deletion(A,{0,2}) == arrangement{x,x-y}) -- deletion(Arrangement, List)
assert(deletion(A,{0,0}) == deletion(A, {0})) -- deletion(Arrangement, List) with doubles
assert(deletion(A,set{0,2}) == arrangement{x,x-y}) -- deletion(Arrangement, Set)
A = arrangement {x,-x,y,x-y}
assert(deletion(A,x) == deletion(A,-x))
assert(deletion(A,x) == arrangement {-x,y,x-y})
///
---------------------------
-- der
---------------------------
TEST ///
A = typeA(3)
assert((prune image der A) == (ring A)^{-1,-2,-3}) -- free module of derivations?
assert((prune image der(A, {2,2,2,2,2,2})) == (ring A)^{-4,-4,-4})
///
---------------------------
-- dual
---------------------------
TEST ///
R = QQ[x,y]
A = arrangement {x,y,x-y}
Rdual = QQ[z]
assert(dual (A, Rdual) === arrangement{-z, z, z}) -- dual(CentralArrangement, Ring)
Adual = dual A
Rdual = ring Adual
assert(Adual === arrangement{-Rdual_0, Rdual_0, Rdual_0}) -- dual CentralArrangement
A = arrangement ({}, QQ[])
assert(try(dual A; false) else true) -- empty arrangement gives an error
R = QQ[x]
R' = QQ[]
coloop = arrangement ({x}, R)
loop = arrangement ({0}, R')
assert(dual(loop, R) === coloop) -- dual of a loop
assert(dual(coloop, R') === loop) -- dual of a coloop
///
---------------------------
-- euler
---------------------------
-- In documentation
---------------------------
-- eulerRestriction
---------------------------
-- in documentation
---------------------------
-- genericArrangement
---------------------------
TEST ///
arr = genericArrangement(3,5)
arrK = genericArrangement(3,5,QQ)
changeVars = map(ring arr, ring arrK, gens ring arr)
assert(arr === sub(arrK, changeVars)) -- genericArrangement w/ and w/o K
assert(coefficients arr === matrix(QQ, {{1,1,1,1,1}, -- coefficients
{1,2,3,4,5},
{1,4,9,16,25}}))
assert(circuits arr === {{0,1,2,3},{0,1,2,4},{0,1,3,4}, -- circuits
{0,2,3,4},{1,2,3,4}})
///
-------------
-- graphic
-------------
TEST ///
A3 = typeA 3
arr = graphic ({{2,1},{3,1},{4,1},{3,2},{4,2},{4,3}}, ring A3)
assert(A3 === arr)
R = ring A3
arr' = graphic ({{R_1,R_0},{R_2,R_0},{R_3,R_0},{R_2,R_1},{R_3,R_1},{R_3,R_2}}, gens R, ring A3)
assert(A3 === arr')
///
------------------
-- lct
------------------
TEST ///
R = QQ[x,y,z]
A = deletion(typeB(3), {0,1})
assert(3/7 == lct A) -- Berkesch and Leykin
///
------------------
-- orlikSolomon
------------------
TEST ///
e = symbol e
osDefault = orlikSolomon(typeA 3, e)
E = ring osDefault
osMatroids = orlikSolomon(typeA 3, E, Strategy=>Matroids)
osPopescu = orlikSolomon(typeA 3, E, Strategy=>Popescu)
assert(osDefault === osMatroids)
assert(osMatroids === osPopescu)
///
end---------------------------------------------------------------------------
------------------------------------------------------------------------------
-- SCRATCH SPACE
------------------------------------------------------------------------------
--A3' = arrangement {x,y,z,x-y,x-z,y-z}
--A3' == A3
--product A3
--A3.hyperplanes
--NF = arrangement {x,y,z,x-y,x-z,y-z,x+y-z}
--///
end
path = append(path, homeDirectory | "exp/hyppack/")
installPackage("HyperplaneArrangements",RemakeAllDocumentation=>true,DebuggingMode => true)
loadPackage "HyperplaneArrangements"
-- uninstallPackage "SimplicialComplexes"
uninstallPackage "HyperplaneArrangements"
restart
installPackage "HyperplaneArrangements"
check HyperplaneArrangements
needsPackage "HyperplaneArrangements"
|