1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
newPackage(
"MCMApproximations",
Version => "1.1",
Date => "April 3, 2013, revised August 21, 2017",
Authors => {{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"}},
Headline => "MCM approximations and complete intersections",
Keywords => {"Commutative Algebra"},
DebuggingMode => false
)
export {
"approximation",
"coApproximation",
"approximationSequence",
"coApproximationSequence",
"Total", -- option for approximation
"CoDepth", -- option for approximation
-- "approx", --synonym for approximation
"auslanderInvariant",
"profondeur", -- should be depth, but that's taken
"syzygyModule",
"socleDegrees",
"setupRings",
"Characteristic", -- option for setupRings
"Randomize", -- option for setupRings
"setupModules"
}
-* test: The following code crashes M2 v 8.2
S = ZZ/101[a]
R = S/ideal(a^2)
res (coker vars R, LengthLimit => 0)
*-
depth Module := M-> profondeur M
socleDegrees = method()
socleDegrees Module := M ->(
R := ring M;
k := coefficientRing R;
if not isField k then error"coefficient ring not a field";
flatten degrees target basis Hom(coker vars R,M)
)
syzygyModule = method(Options=>{CoDepth => -1})
syzygyModule(ZZ,Module) := opts -> (k,M) -> (
if k === 0 then return M;
F := null;
if k>0 then (
F = res(M, LengthLimit => k+1);
return coker F.dd_(k+1));
if k<0 then (
n := numgens ring M;
if opts.CoDepth == 0 then
n = 1 else
if opts.CoDepth >0 then
n = opts.CoDepth;
F = res(M, LengthLimit => n);
M1 := image dual F.dd_(n);
G := res(M1, LengthLimit => -k+n);
return image dual G.dd_(-k+n));
)
profondeur = method()
profondeur(Ideal, Module) := (I,M) ->(
--requires R to be an affine ring (eg NOT ZZ[x])
R := ring M;
d := max(1,dim M); -- d=0 causes a crash
if not isCommutative R then error"profondeur undefined for noncommutative rings";
F := M**dual res (R^1/I, LengthLimit => d);
i := 0;
while HH_i F == 0 do i=i-1;
-i)
profondeur Module := M ->(
--profondeur of a module with respect to the max ideal, via finite proj dim
--gives error if the ultimate coefficient ring of R = ring M is not a field.
R := ring M;
if not isCommutative R then error"profondeur undefined for noncommutative rings";
(S,F) := flattenRing R;
if not isField coefficientRing S then error"input must be a module over an affine ring";
S0 := ring presentation S;
r := F*map(S,S0);
MM := pushForward(r,M);
numgens S0 - pdim MM)
profondeur Ring := R -> profondeur R^1
--MCM approximation
approximatione = method(Options =>{CoDepth => -1})
approximatione(ZZ,Module) := opts -> (n,M) ->(
--returns the map to M from the
--dual of the n-th syz of the n-th syzy of Mp = prune M
--if n' were 1 or 2 then, without introducing Mp
--the source M' of the map returned might not be homogeneous.
if n == 0 then n = 1;
Mp := prune M;
p := Mp.cache.pruningMap; -- the iso Mp -->M
if isFreeModule Mp then return p;
F := res(Mp, LengthLimit =>n);
if F.dd_n == 0 then return map(M,(ring M)^0,0); -- in this case the n-th syz is 0
G := res(coker transpose F.dd_n, LengthLimit =>n);
F' := chainComplex reverse apply(n, j-> transpose F.dd_(j+1));
phi := extend(G, F', id_(G_0));
M' := coker transpose G.dd_n;
map(M, M',(matrix p)*transpose phi_n)
)
approximatione Module := opts -> M ->(
--returns the map from the essential MCM approximation
n := max(3,1+dim ring M); -- if n were 1 or 2 we might get nonminimal presentations
if opts.CoDepth == 0 then n = 1;
if opts.CoDepth > 0 then n = opts.CoDepth;
approximatione(n, M)-- correctly gives 0 if M has finite pd (necessarily < 1+dim ring M)
)
coSyzygyChain = method()
coSyzygyChain(ZZ, Module) := (n,M) ->(
--assuming M is MCM, the script returns
--produces dual G of the resolution of the dual of the second syzygy of M for n+1 steps,
--adjusted so that M == image G.dd_0. Thus the map G.dd_(-1) is the universal map
--of M into a free module, etc.
F := res(M,LengthLimit => 1);
G := res(coker dual F.dd_1, LengthLimit => n+1);
H := (dual G) [-1];
H)
coApproximation = method(Options =>{Total => true, CoDepth=>-1})
coApproximation Module := opts -> M -> (
p := presentation M;
F0 := target p;
(phi,psi) := approximation(M, Total => opts.Total,CoDepth => opts.CoDepth);
M' := source (phi|psi);--the total MCM approximation.
if isFreeModule M' then return map(M,M,1);
q := matrix (phi | psi);
r := p//q;
r0 := id_F0//q;
k := syz q;
K := source k;
G := coSyzygyChain(1, M');
sour := F0 ++ K;
tar := G_(-1);
N := coker(G.dd_0*(r | k));
map(N,M, G.dd_0*r0)
)
coApproximationSequence = M -> (
S:=ring M;
alpha := coApproximation M;
N := coker alpha;
beta := inducedMap(N,target alpha);
chainComplex {map(S^0,N,0),beta,alpha,map(source alpha,S^0,0)})
approximation = method(Options =>{CoDepth=>-1, Total =>true})
approximation Module := opts -> M->(
--returns the list {phi, psi} where:
--phi is the map from the essential MCM approximation
--psi is the minimal map from a free module necessary to make
-- alpha = (phi | psi) an epimorphism
phi := approximatione(M,CoDepth=>opts.CoDepth);
if opts.Total != true then return phi;
psi := null;
N := coker phi;
N1 := prune N;
if N1 == 0 then (
psi = map(M,(ring M)^0, 0);
return (phi, psi));
MtoN := map(N,M, id_(cover M));
a := N1.cache.pruningMap;
psi1 := (matrix a)//matrix(MtoN);
--the following line added 170615
psi = map(M, source psi1, psi1);
(phi, psi)
)
approximationSequence = M->(
(alpha,beta) := approximation M;
S := ring M;
tot := (alpha|beta);
N := kernel tot;
gamma := inducedMap(source tot,N);
chainComplex {map(S^0,M,0), tot,gamma,map(N,S^0,0)}
)
auslanderInvariant = method(Options =>{CoDepth => -1})
auslanderInvariant Module := opts->M-> (
--number of free summands in the MCM approximation
if isFreeModule M then return numgens M;
phi := approximation(M, CoDepth => opts.CoDepth, Total=>false);
numgens prune coker phi)
setupRings = method(Options =>{Characteristic => 101, Randomize =>true})
setupRings(ZZ,ZZ) := opts -> (c,d)->(
x := local x;
p := opts.Characteristic;
S := ZZ/p[x_0..x_(c-1)];
ff := matrix{apply(c, i->S_i^d)};
if opts.Randomize===true then ff = ff*random(source ff, source ff);
{S}|apply(c, j->(S/ideal(ff_{0..j})))
)
setupRings(Matrix) := opts -> (ff)->(
S := ring ff;
c := numcols ff;
if opts.Randomize===true then ff = ff*random(source ff, source ff);
{S}|apply(c, j->(S/ideal(ff_{0..j})))
)
setupModules = method()
setupModules(List,Module) := (R,M)->(
--R_i is a ci of codim i in a ring S
--returns (MM,kk,p) where
--MM,kk are lists whose i-components are the module M and residue field k, but over R_i
--p_i_j is the projection from R_j to R_i (c >= i >= j >= 0)
--M is a a module over R_c.
c := length R-1;
kk :=apply(c+1, i-> coker vars R_i);
p := apply(c+1, i->apply(i+1, j->map(R_i,R_j)));
MM := apply(c+1, j->prune pushForward(p_c_j, M));
(MM,kk,p))
-----DOCUMENTATION---Documentation---documentation
beginDocumentation()
doc ///
Key
MCMApproximations
Headline
Maximal Cohen-Macaulay Approximations and Complete Intersections
Description
Text
Maximal Cohen-Macaulay approximations were introduced by Auslander and Buchweitz
[The homological theory of maximal Cohen-Macaulay (MCM) approximations,
Colloque en l'honneur de Pierre Samuel (Orsay, 1987)
Soc. Math. France (N.S.)} No. {\bf 38}, (1989), 5 - 37.]
In the context of a local Gorenstein ring R, the theory simplifies a little
and can be expressed as follows. Let M be an R-module.
1) There is a unique
maximal Cohen-Macaulay R-module M' and a short exact "approximation sequence"
0\to N' \to M' \to M \to 0
such that N has finite projective dimension;
the module M, together with the surjection,
is the MCM approximation of M.
2) Dually, there is a unique short exact "co-approximation sequence"
0\to M \to N'' \to M'' \to 0
such that N'' has finite projective dimension and M'' is a maximal Cohen-Macaulay module,
the MCM co-approximation.
These sequences are easy to compute. Let
d = 1+ depth R - depth M. Write M'_0 for the d-th cosyzygy of the
d-th syzygy module of M, and \alpha: M'\to M the induced map. The module M'
(or the map (M'\to M) is called the
essential MCM approximation of M. Since d >= 2, the module M' has no free summand.
Let B_0 be a minimal free module mapping
onto M/(image M'_0), and lift the surjection to a map
\beta: B_0 \to M. The map
(\alpha, \beta): M'_0 \oplus B_0 --> M
is the MCM approximation, and N is its kernel.
The routine
approximation M
returns the pair (\alpha, \beta).
Further, if M'' is the (d+1)st cosyzygy of the d-th syzygy of M
then there is a short exact sequence
0\to M' \to F \to M'' \to 0
with F free. Pushing this sequence forward along the map \alpha: M' \to M
gives the coapproximation sequence
0\to M \to N''\to M'' \to 0.
The routine coApproximation M returns the map M --> N''.
Here is an example of a simple approximation sequence,
exhibited by the betti tables of its 3 middle terms:
The Betti table of the module M is at the top, and one sees that it is NOT MCM (the resolution is not periodic
at the beginning) and not of finite projective dimension (the length of the given part of
of the -- actually infinite -- resolution is already longer than the dimension of the ring.
Next comes the betti table of the MCM module that approximates M (we see that its resolution is
periodic from the beginning).
Finally we see a module of finite projective dimension (in this case 1).
Example
S = ZZ/101[a,b,c]
R = S/ideal(a^3+b^3+c^3)
M = coker random(R^2, R^{4:-1});
Ea = approximationSequence M;
netList apply({1,2,3}, i-> betti res Ea_i)
Text
Here is a similar display for the co-approximation sequence. Here
the Betti table of M is at the bottom, the Betti table of the module of finite projective dimension
is in the middle, and that of the MCM module is at the top (
Example
Ec = coApproximationSequence M;
netList apply(5, i-> betti res prune Ec_i)
///
///
restart
loadPackage("MCMApproximations", Reload=>true)
///
doc ///
Key
socleDegrees
(socleDegrees, Module)
Headline
lists the degrees of the socle generators
Usage
L = socleDegrees M
Inputs
M:Module
Outputs
L:List
Description
Text
L is the list of socle degrees of M, with multiplicities. Thus
L = {} if the socle is 0.
Example
R = ZZ/101[x,y,z]
M0 = R^1/(ideal(x,y,z)*ideal (x,y));
M1 = coker random(R^{1,2}, R^{0,-1,-2}); -- dim 1
M2 = coker random(R^{1,2}, R^{0,-1,-2,-4}); -- dim 0
///
doc ///
Key
CoDepth
Headline
Option for syzygyModule(-k,M,CoDepth => m)
Description
Text
Allows the user to specify a number m (which must be at least CoDepth M),
for more efficient computation.
Caveat
Does not check that the CoDepth value is correct.
SeeAlso
syzygyModule
///
doc ///
Key
syzygyModule
(syzygyModule, ZZ, Module)
[syzygyModule, CoDepth]
Headline
Produces the k-th syzygy module (k \in ZZ)
Usage
N = syzygyModule(k,M)
Inputs
k:ZZ
which syzygy
M:Module
Outputs
N:Module
Description
Text
If k==0 then the N=M. If k>0 then the syzygy module is computed from the
resolution. If k<0 then the program returns the dual of the (n-k)-th syzygy
of the dual of the k-th syzygy, where n is one more than Codepth if that
option is specified, and else n is the number of variables of ring M.
Of course the resulting N is 0 if ring M is regular, and otherwise correct
only if ring M is Gorenstein. In the Gorenstein case, syzygyModule(-k, syzygyModule(k, M))
-is the non-free part of the source of the MCM approximation of M.
Example
R = setupRings(4,3);
M = coker vars R_2;
betti res M
betti syzygyModule(2,M)
betti (N2 = syzygyModule(-2,M))
betti res N2
betti syzygyModule(-2,M,CoDepth=>2)
Caveat
ring M must be Gorenstein, and the program does not check
SeeAlso
setupRings
///
doc ///
Key
profondeur
(profondeur,Ideal,Module)
(profondeur, Module)
(profondeur, Ring)
Headline
computes the profondeur with respect to an ideal
Usage
m = profondeur (I,M)
Inputs
I:Ideal
M:Module
R:Ring
Outputs
m:ZZ
Description
Text
When the ideal I is not specified, the maximal ideal is used, and the
computation is done using the Auslander-Buchsbaum formula.
///
doc ///
Key
coApproximation
(coApproximation, Module)
[coApproximation, CoDepth]
[coApproximation, Total]
Headline
Maximal Cohen-Macaulay co-approximation of M
Usage
a = coApproximation M
Inputs
M:Module
Outputs
a:Matrix
Description
Text
If R is a Gorenstein ring, and M is a finitely generated R-module, then, according
to the theory of Auslander and Buchweitz (a good exposition is in Ding's Thesis)
there are unique exact sequences
$$0\to K \to M' \to M\to 0$$
and
$$0\to M \to N\to M''\to 0$$
such that K and N are of finite projective dimension, M' and M'' are
maximal Cohen-Macaulay, and
M'' has no free summands.
The call
approximation M
returns the map $M'\to M$, while the call
coApproximation M
returns the map $M\to N$.
Since the script coApproximation begins by computing the approximation, it may
shorten the computation if the user knows the depth of M in advance, specified
with the option Depth => d.
Example
setRandomSeed 100
c = 3;d=3;
S = setupRings(c,d);
R = S_c; -- complete intersection, codim = c
R' = S_(c-1); --codim c-1
Mc = coker vars R;
(M,k,p) = setupModules(S,Mc); --M_(c-1) is Mc as an R_(c-1)-module
ca = coApproximation M_(c-1);
M'' = coker ca;
N = target ca
profondeur M'' == dim ring M'' -- an MCM module
M'' == source approximation(M'', Total=>false) -- no free summands
2 == length res(N, LengthLimit =>10) -- projective dimension <\infty
SeeAlso
setupRings
setupModules
profondeur
approximation
syzygyModule
///
doc ///
Key
Total
Headline
option for approximation
Usage
approximation(M, Total =>t)
Inputs
M:Module
t:Boolean
Description
Text
If t != true then return only the map from the non-free part of the MCM approximation
Otherwise, return the pair of maps that defines the MCM approximation.
Default is t ==true.
SeeAlso
approximation
auslanderInvariant
CoDepth
///
-*
doc ///
Key
approx
Headline
synonym for approximation
SeeAlso
approximation
///
*-
doc ///
Key
approximation
(approximation, Module)
[approximation, Total]
[approximation, CoDepth]
Headline
returns pair of components of the map from the MCM approximation
Usage
(phi,psi) = approximation M
Inputs
M:Module
Outputs
phi:Matrix
map from the nonfree component
psi:Matrix
map from the free component
Description
Text
If R is a local or standard graded
Gorenstein ring, and M is a finitely generated R-module, then, according
to the theory of Auslander and Buchweitz (a good exposition is in Ding's Thesis)
there are unique exact sequences
$$0\to K \to M' \to M\to 0$$
and
$$0\to M \to N\to M''\to 0$$
such that K and N are of finite projective dimension, M' and M'' are
maximal Cohen-Macaulay, and
M'' has no free summands. Thus, for example, the projective
dimension of K is one less than the CoDepth of M.)
The call
coApproximation M
returns the map $M\to N$, while the call
approximation M
returns the pair (phi,psi), which define the map $M'\to M$.
Here phi is the "essential MCM approximation" from the biggest summand M'0 of
M' that has no free summands, and psi is the map from the free summand M'1.
The module M'0 is computed as syzygyModule(-k, syzygyModule(k,M)) for any k >= CoDepth M,
and the map $M'0 \to M$ is induced by the comparison map of resolutions.
The rank t of the free summand M'1 is called the Auslander Invariant of M,
and is returned by the call auslanderInvariant M.
The CoDepth of M can be provided as an option to speed computation.
If Total => false, then just the map phi is returned.
Example
R = ZZ/101[a,b]/ideal(a^2)
k = coker vars R
approximation k
M = image vars R
approximation M
approximation(M, Total=>false)
approximation(M, CoDepth => 0)
SeeAlso
syzygyModule
auslanderInvariant
///
doc ///
Key
approximationSequence
Headline
Short exact sequence of the MCM approximation
Usage
E = approximationSequence M
Inputs
M:Module
Outputs
E:ChainComplex
Description
Text
The approximation sequence of a module M over a Gorenstein ring
is the versal short exact sequence
$$0\to P \to M' \to M \to 0$$
where M' is a maximal Cohen-Macaulay module and P is a module of finite projective
dimension, as defined by Auslander and Buchweitz.
Example
S = ZZ/101[a,b]/ideal(a^3+b^3)
R = S/ideal(a*b)
M = R^1/(ideal vars R)^2
approximationSequence M
SeeAlso
coApproximationSequence
///
doc ///
Key
coApproximationSequence
Headline
Short exact sequence of the MCM coapproximation
Usage
E = coApproximationSequence M
Inputs
M:Module
Outputs
E:ChainComplex
Description
Text
The coapproximation sequence of a module M over a Gorenstein ring
is the versal short exact sequence
$$0\to M \to P \to M' \to 0$$
where M' is a maximal Cohen-Macaulay module and P is a module of finite projective
dimension, as defined by Auslander and Buchweitz.
Example
S = ZZ/101[a,b]/ideal(a^3+b^3)
R = S/ideal(a*b)
M = R^1/(ideal vars R)^2
coApproximationSequence M
SeeAlso
approximationSequence
///
doc ///
Key
auslanderInvariant
(auslanderInvariant, Module)
[auslanderInvariant, CoDepth]
Headline
measures failure of surjectivity of the essential MCM approximation
Usage
a = auslanderInvariant M
Inputs
M:Module
Outputs
a:ZZ
Description
Text
If R is a Gorenstein local ring and M is an R-module, then
the essential MCM approximation is a map phi: M'-->M, where
M' is an MCM R-module, obtained as the k-th cosyzygy of the k-th syzygy of M,
where k >= the co-depth of M. The Auslander invariant is the number of
generators of coker phi. Thus if R is regular the Auslander invariant is
just the minimal number of generators of M, and if M is already an MCM module
with no free summands then the Auslander invariant is 0.
Ding showed that if R is a hypersurface ring, then
auslanderInvariant (R^1)/((ideal vars R)^i) is zero precisely for i<multiplicity R.
Experimentally, it looks as if for a complete intersection the power is the
a-invariant plus 1, but NOT for the codim 3 Pfaffian example.
Example
R = ZZ/101[a..d]/ideal"a3"
apply(5, i -> auslanderInvariant ((R^1)/(ideal(vars R))^(i+1)))
R = ZZ/101[a..d]/ideal"a3,b4"
apply(6, i -> auslanderInvariant ((R^1)/(ideal(vars R))^(i+1)))
S = ZZ/101[a,b,c]
N = matrix{{0,a,0,0,c},
{0,0,b,c,0},
{0,0,0,a,0},
{0,0,0,0,b},
{0,0,0,0,0}}
M = N-transpose N
J = pfaffians(4,M)
R = S/J
I = ideal vars R
scan(5, i->print auslanderInvariant ((R^1)/(I^i)))
SeeAlso
approximation
///
doc ///
Key
Characteristic
Headline
Option for setupRings(c,d,Characteristic=>q)
Description
Text
Allows the user to specify the characteristic of the rings to be defined.
SeeAlso
setupRings
Randomize
setupModules
///
doc ///
Key
Randomize
Headline
Option for setupRings(c,d,Characteristic=>q, Randomize=>false)
Description
Text
Defaults to true. When = true, replaces the regular sequence of
d-th powers with a regular sequence of random linear combinations.
SeeAlso
setupRings
Characteristic
setupModules
///
doc ///
Key
setupRings
(setupRings, ZZ, ZZ)
(setupRings, Matrix)
[setupRings, Characteristic]
[setupRings, Randomize]
Headline
Sets up a complete intersection for experiments
Usage
R = setupRings(c,d)
R = setupRings(ff)
Inputs
c:ZZ
desired codimension
d:ZZ
degree of homogeneous generators
ff:Matrix
a regular sequence
Outputs
R:List
List of rings R_0..R_c with R_i = S/(f_0..f_(i-1))
Description
Text
Makes a complete intersection f_0..f_{c-1} = x_0^d..x_{c-1}^d
or, when Random=>true (the default), random linear combinations of these,
in the polynomial ring ZZ/p[x_0..x_{c-1}], where p can be set by the optional
argument Characteristic=>p. By default, p = 101.
Example
netList setupRings(2,2)
netList setupRings(2,2,Characteristic=>5)
SeeAlso
setupModules
///
--R_i is a ci of codim i in a ring S
--returns (MM,kk,p) where
--MM,kk are lists whose i-components are the module M and residue field k, but over R_i
--p_i_j is the projection from R_j to R_i (c >= i >= j >= 0)
doc ///
Key
setupModules
(setupModules, List, Module)
Headline
Creates a list of modules and maps over complete intersection for experiments
Usage
(MM, kk, p) = setupModules(R,M)
Inputs
R:List
of complete intersections R_i = S/(f_0..f_(i-1))
M:Module
over the ring R_{c-1} where c = length R.
Outputs
MM:List
of c+1 modules M_i over R_i
kk:List
of residue class modules k_i of R_i
p:List
of maps, p_i_j: R_j to R_i the projection
Description
Text
This is useful for setting up an experiment. For example, we conjecture
that the regularity of Ext_{R_i}(M_i,k_i) is a non-decreasing function of i.
Here ring M = R_{c-1} and M_i = pushForward(p_{(c-1)}_i, M).
Example
needsPackage "CompleteIntersectionResolutions" -- for "evenExtModule"
R =setupRings(3,2);--codims 0..3, degrees = 2
MM0 = coker random(R_3^2, R_3^{3: -1});
(M,kkk,p) = setupModules(R,MM0);
apply(3, j->regularity evenExtModule M_(j+1))
SeeAlso
setupRings
///
-----TESTS
TEST///
setRandomSeed 0
T = setupRings(3,3)
R = T_3
M = coker random(R^2, R^{3: -2});
(MM,kk,p) = setupModules(T, M)
(a,b) = approximation MM_1 -- MM_1 is M as a module over the ring of codim 1
M' = source a
assert(length res pushForward(p_1_0,M') == 1) -- an MCM module
assert isFreeModule source b -- free module
///
TEST///
setRandomSeed 100;
R = setupRings(2,2);
M = syzygyModule_2 coker vars R_2;
N = syzygyModule_2 syzygyModule(-2,M);
assert(betti M == betti N)
N = prune syzygyModule(-2,syzygyModule(2,M),CoDepth =>0);
assert(betti M == betti N)
R = setupRings(2,2, Characteristic=>5, Randomize=>false);
M = syzygyModule_2 coker vars R_2;
N = syzygyModule_2 syzygyModule(-2,M);
assert(betti M == betti N)
N = prune syzygyModule(-2,syzygyModule(2,M),CoDepth =>0);
assert(betti M == betti N)
///
TEST///
setRandomSeed()
R = ZZ/101[a,b,c,d,e]/(ideal(a,b)*ideal(c,d))
assert(profondeur R == 2)
assert(profondeur(ideal(a,d,e), R^1) == 2)
assert(profondeur R^1 == 2)
///
TEST///setRandomSeed 100
c = 3;d=3;
S = setupRings(c,d)
R = S_c
Mc = coker vars R
(M,k,p) = setupModules(S,Mc)
M_(c-1)
ca = coApproximation M_(c-1)
M'' = coker ca
N = target ca
assert(profondeur M'' == dim ring M'') -- an MCM module
assert(betti res prune M'' == betti res source approximation(prune M'', Total=>false)) -- no free summands
assert(2 == length res(N, LengthLimit =>10)) -- projective dimension <\infty
///
///TEST
setRandomSeed 100
assert( (approximation M) === (map(image map((R)^1,(R)^{{-1},{-1}},{{a, b}}),cokernel map((R)^{{-1},{-1}},(R)^{{-2},{-2}},{{-a, b}, {0, a}}),{{-1, 0}, {0, 1}}),map(image map((R)^1,(R)^{{-1},{-1}},{{a, b}}),(R)^0,0)) );
assert( (approximation(M, Total=>false)) === map(image map((R)^1,(R)^{{-1},{-1}},{{a,b}}),cokernel map((R)^{{-1},{-1}},(R)^{{-2},{-2}},{{-a, b}, {0, a}}),{{-1, 0}, {0, 1}}) );
assert( (approximation(M, CoDepth => 0)) === (map(image map((R)^1,(R)^{{-1},{-1}},{{a,b}}),cokernel map((R)^{{-1},{-1}},(R)^{{-2},{-2}},{{a, -b}, {0, a}}),{{1, 0}, {0,1}}),map(image map((R)^1,(R)^{{-1},{-1}},{{a, b}}),(R)^0,0)) );
///
TEST///
setRandomSeed 100
c=3;d=2;
R = setupRings(c,d);
(M,k,p) = setupModules(R,coker vars R_c);
assert(numcols matrix p_c_c === 3 )
///
TEST///
kk = ZZ/101
R = kk[x,y,z]
assert(3==profondeur R)
assert (2 == profondeur(ideal(x,y), R^1))
assert(0 == profondeur coker vars R)
assert (0 == profondeur(ideal(x,y), coker vars R))
R = ZZ/101[a..f]
I = minors(2,genericSymmetricMatrix(R,a,3))
assert (profondeur(R/I) ==3)
assert(profondeur(R/I^2) == 0)
mm = ideal vars (R/I)
assert(profondeur(mm, (R/I)^1)== 3)
///
TEST///
S = ZZ/101[a,b,c]
R = S/ideal"a3,b3,c3"
use S
R' = S/ideal"a3,b3"
M = coker vars R
assert( (pushForward(map(R,R'),M)) === cokernel map((R')^1,(R')^{{-1},{-1},{-1}},{{c, b, a}}) );
use S
assert( (pushForward(map(R,S), M)) === cokernel map((S)^1,(S)^{{-1},{-1},{-1}},{{c, b, a}}) );
///
TEST///
setRandomSeed()
c = 3
R = setupRings(c,3)
M = syzygyModule(1,coker vars R_c)
(MM,kk,p) = setupModules(R,M);
auslanderInvariant syzygyModule_2 MM_1
assert (1 ==auslanderInvariant syzygyModule_2 MM_1)
(0 ==auslanderInvariant kk_2)
assert(p_1_0 === map(R_1,R_0))
///
TEST///
setRandomSeed()
S = ZZ/101[a,b,c]
R = S/ideal"a3,b3,c3"
use S
R' = S/ideal"a3,b3"
M = coker vars R
(phi,psi) = approximation(pushForward(map(R,R'),ker syz presentation M))
assert(presentation source phi == map(R'^{6:-4,-3},,matrix {{0, 0, -b^2, 0, 0, 0, -c, 0, a}, {0, a^2, 0, -c, 0, 0, 0, 0, -b}, {0, 0, a^2, 0, -c, 0, 0, -b, 0},
{0, 0, 0, a, 0, 0, b, 0, 0}, {0, 0, 0, 0, -a, b, 0, 0, 0}, {-b^2, 0, 0, 0, 0, c, 0, a, 0}, {0, 0, 0, 0, b^2, 0, a^2, 0, 0}}
))
assert( (prune source psi) === (R')^{{-4},{-4},{-4}} )
assert(isSurjective(phi|psi)===true)
assert( (prune ker (phi|psi)) === (R')^{{-5},{-5},{-5},{-6},{-6},{-6}} );
///
TEST///
needsPackage "CompleteIntersectionResolutions"
S = ZZ/101[a,b,c]
ff = matrix"a3, b3,c3"
len = 5
cod = numcols ff
I = ideal ff
R = S/I
q = map(R,S)
M0= coker random(R^2, R^{4:-1});
M = pushForward(q,syzygyModule(4,M0));
L = (layeredResolution(ff,M))_0;
assert(betti L == betti res M)
///
TEST///
S = ZZ/101[a,b,c]/ideal(a^3)
M = module(ideal(a,b,c));
Ea = approximationSequence M;
Ec = coApproximationSequence M;
assert(isFreeModule prune Ea_3 ===true)
assert(length res prune Ec_2 == 1)
///
end--
restart
loadPackage("MCMApproximations", Reload=>true)
uninstallPackage"MCMApproximations"
restart
installPackage"MCMApproximations"
check "MCMApproximations"
viewHelp MCMApproximations
uninstallPackage "CompleteIntersectionResolutions"
restart
installPackage "CompleteIntersectionResolutions"
check "CompleteIntersectionResolutions"
approximation(MR')
|