1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
|
-- Matching Fields package for Macaulay2 by Oliver Clarke
newPackage(
"MatchingFields",
Version => "1.2",
Date => "November 23, 2023",
Authors => {
{Name => "Oliver Clarke", Email => "oliver.clarke@ed.ac.uk", HomePage => "https://www.oliverclarkemath.com/"}
},
Headline => "Toric degenerations of flag varieties via matching fields",
Keywords => {"Flag Varieties"},
DebuggingMode => false,
PackageExports => {"Polyhedra", "SubalgebraBases", "Matroids", "FourTiTwo", "Graphs"}
)
-- ###########
-- # Exports #
-- ###########
export {
"GrMatchingField",
"grMatchingField",
"FlMatchingField",
"flMatchingField",
"getTuples",
"getWeightMatrix",
"getWeightPluecker",
"getGrMatchingFields",
"matchingFieldPolytope",
"ExtraZeroRows",
"diagonalMatchingField",
"matchingFieldRingMap",
"matchingFieldIdeal",
"plueckerIdeal",
"plueckerMap",
"plueckerAlgebra",
"matchingFieldFromPermutation",
"RowNum",
"UsePrimePowers",
"ScalingCoefficient",
"PowerValue",
"isToricDegeneration",
"NOBody",
"matroidSubdivision",
"weightMatrixCone",
"isCoherent",
"linearSpanTropCone",
"VerifyToricDegeneration",
"algebraicMatroid",
"algebraicMatroidBases",
"algebraicMatroidCircuits",
"TopeField",
"topeField",
"isLinkage",
"amalgamation"
}
-- #############
-- # Main Code #
-- #############
-- Matching Field Types
GrMatchingField = new Type of HashTable;
-- Grassmannian Matching Fields MF have:
-- MF.n
-- MF.k
-- MF.tuples = List of k-subets of {1 .. n}
-- MF.cache
FlMatchingField = new Type of HashTable;
-- Flag Matching Fields MF have:
-- MF.kList
-- MF.grMatchingFieldList
-- MF.cache
-- The cache table contains some of the following (or eventually computed):
-- weightMatrix
-- weightPluecker
-- mfPolytopePoints
-- mfPolytope
-- matchingFieldIdeal
-- matchingFieldRingMap
-- ringP
-- ringX
-- X
-- mfSubring
-- mfNOBody
-- mfPlueckerIdeal
protect symbol tuples
protect symbol n
protect symbol k
protect symbol kList
protect symbol grMatchingFieldList
protect symbol weightMatrix
protect symbol weightPluecker
protect symbol mfPolytope
protect symbol mfPolytopePoints
protect symbol ringP -- Polynomial ring in variables P_I, I in subsets(n, k)
protect symbol ringX -- Polynomial ring in variables x_(i,j), 1 <= i <= k, 1 <= j <= n
protect symbol X -- matrix of ringX variables
protect symbol mfRingMap
protect symbol plueckerRingMap
protect symbol mfIdeal
protect symbol projMFIdeal
protect symbol mfPlueckerIdeal
protect symbol mfSubring
protect symbol mfNOBody
protect symbol computedMatroidSubdivision
protect symbol computedWeightMatrixCone
protect symbol computedLinearSpanTropCone
protect symbol computedAlgebraicMatroid
---------------------------------------------
-- Matching Field constructor
grMatchingField = method(
TypicalValue => GrMatchingField
)
-- MF from weight matrix
grMatchingField(Matrix) := M -> (
-- uses min convention
-- returns matching f ield for weight matrix along with the weight for the Plucker variables
-- NB we assume the MF is well defined from the weight matrix
-- i.e. the minimum was uniquely attained for each plucker form
Mk := numRows M;
Mn := numColumns M;
local subsetOrder;
local subsetWeight;
local weight;
L := {};
W := {};
for I in subsets(Mn, Mk) do (
subsetWeight = infinity;
for ordering in permutations(I) do (
weight = sum for i from 0 to Mk-1 list M_(i, ordering_i);
if weight < subsetWeight then (
subsetOrder = apply(ordering, i -> i + 1);
subsetWeight = weight;
);
);
L = append(L, subsetOrder);
W = append(W, subsetWeight);
);
MF := new GrMatchingField from {
n => Mn,
k => Mk,
tuples => L,
cache => new CacheTable from {
weightMatrix => M,
weightPluecker => W
}
}
)
-- Matching Field from list of tuples
grMatchingField(ZZ, ZZ, List) := (Lk , Ln, L) -> (
-- check user input:
sortedTuples := sort (sort \ L);
usualSubsets := subsets(1 .. Ln, Lk);
if not (sortedTuples == sort usualSubsets) then (
error("Unexpected tuples.");
);
-- put the subsets in the correct order:
lookupPosition := new HashTable from for i from 0 to #usualSubsets - 1 list (usualSubsets_i => i);
tupleList := sort(L, x -> lookupPosition#(sort(x)));
new GrMatchingField from {
n => Ln,
k => Lk,
tuples => tupleList,
cache => new CacheTable from {}
}
)
-- Constructor for partial Flag Matching Fields
flMatchingField = method(
TypicalValue => FlMatchingField
)
flMatchingField(List, Matrix) := (inputKList, inputWeightMatrix) -> (
if numRows inputWeightMatrix < max inputKList then (
error("expected a matrix with at least " | toString max inputKList | " rows");
);
grMatchingFields := for Mk in inputKList list grMatchingField(inputWeightMatrix^(toList(0 .. Mk - 1)));
new FlMatchingField from {
n => numColumns inputWeightMatrix,
kList => inputKList,
grMatchingFieldList => grMatchingFields,
cache => new CacheTable from {
weightMatrix => inputWeightMatrix,
weightPluecker => flatten for grMF in grMatchingFields list grMF.cache.weightPluecker
}
}
)
flMatchingField(Matrix) := inputWeightMatrix -> (
flMatchingField(toList(1 .. numRows inputWeightMatrix), inputWeightMatrix)
)
-- Flag matching field from list of tuples
-- tuple list should be a list of lists
flMatchingField(List, ZZ, List) := (LkList, Ln, L) -> (
grMatchingFields := for kIndex from 0 to #LkList - 1 list (
grMatchingField(LkList_kIndex, Ln, L_kIndex)
);
new FlMatchingField from {
n => Ln,
kList => LkList,
grMatchingFieldList => grMatchingFields,
cache => new CacheTable from {}
}
)
net(GrMatchingField) := MF -> (
"Grassmannian Matching Field for Gr(" | toString MF.k | ", " | toString MF.n | ")"
)
net(FlMatchingField) := MF -> (
s := toString MF.kList;
"Flag Matching Field for Fl(" | s_(1, #s - 2) | "; " | toString MF.n | ")"
)
-----------------------
-- Setup weight vectors
-- unexported
-- Called by weight-getters
setupWeights = method()
setupWeights(GrMatchingField) := MF -> (
if not MF.cache.?weightMatrix then (
MF.cache.weightMatrix = computeWeightMatrix MF;
);
if not MF.cache.?weightPluecker then (
MF.cache.weightPluecker = for tuple in MF.tuples list sum(for i from 0 to MF.k - 1 list MF.cache.weightMatrix_(i, tuple_i - 1));
);
)
setupWeights(FlMatchingField) := MF -> (
if not MF.cache.?weightMatrix then (
MF.cache.weightMatrix = computeWeightMatrix MF;
);
if not MF.cache.?weightPluecker then (
MF.cache.weightPluecker = flatten for grMF in MF.grMatchingFieldList list (
for tuple in grMF.tuples list sum(
for i from 0 to grMF.k - 1 list MF.cache.weightMatrix_(i, tuple_i - 1)
)
);
);
)
-- basic getters:
getTuples = method()
getTuples(GrMatchingField) := MF -> (
MF.tuples
)
getTuples(FlMatchingField) := MF -> (
for grMF in MF.grMatchingFieldList list grMF.tuples
)
getGrMatchingFields = method()
getGrMatchingFields(FlMatchingField) := MF -> (
MF.grMatchingFieldList
)
getWeightMatrix = method()
getWeightMatrix(GrMatchingField) := MF -> (
if not MF.cache.?weightMatrix then (
setupWeights MF;
);
MF.cache.weightMatrix
)
getWeightMatrix(FlMatchingField) := MF -> (
if not MF.cache.?weightMatrix then (
setupWeights MF;
);
MF.cache.weightMatrix
)
getWeightPluecker = method()
getWeightPluecker(GrMatchingField) := MF -> (
if not MF.cache.?weightPluecker then (
setupWeights MF;
);
MF.cache.weightPluecker
)
getWeightPluecker(FlMatchingField) := MF -> (
if not MF.cache.?weightPluecker then (
setupWeights MF;
);
MF.cache.weightPluecker
)
-- Comparison operators: (note that tuples are always listed in revlex order)
GrMatchingField == GrMatchingField := (MF1, MF2) -> (
MF1.n == MF2.n and
MF1.k == MF2.k and
getTuples MF1 == getTuples MF2
)
FlMatchingField == FlMatchingField := (MF1, MF2) -> (
MF1.n == MF2.n and
MF1.kList == MF2.kList and
getTuples MF1 == getTuples MF2
)
---------------------------------------
-- Matching Field Polytope Points
-- The vertices of the matching field polytope
--
-- Note that the package Polyhedra will compute its own vertices
-- for the matching field polytope. So the order of
-- the columns is not guaranteed when calling 'vertices' on a Polyhedron
-- so we use our own function since we know that all supplied points are vertices
--
-- This function is for internal use only (unexported)
-- It is only required for Grassmannian matching fields
-- We make use of this matrix in 'matchingFieldIdeal'
matchingFieldPolytopePoints = method(
Options => {
ExtraZeroRows => 0
}
)
matchingFieldPolytopePoints(GrMatchingField) := opts -> MF -> (
if opts.ExtraZeroRows == 0 and MF.cache.?mfPolytopePoints then (
MF.cache.mfPolytopePoints
) else (
-- construct a matching field polytope P_L from
-- L a matching field for Gr(k, n) Grassmannian
points := {};
for I in MF.tuples do (
-- construct the point corresponding to I
point := ();
for i in I do (
point = point | (i - 1 : 0) | (1 : (1)) | (MF.n - i : 0);
);
point = point | (MF.n * opts.ExtraZeroRows : 0);
point = toList point;
points = append(points, point);
);
points = transpose matrix points;
if opts.ExtraZeroRows == 0 then MF.cache.mfPolytopePoints = points;
points
)
)
---------------------------
-- Matching Field polytope
-- The polytope with one vertex for each tuple of the matching field
-- given by the convex hull of the exponent vectors of the monomial map
--
-- Options:
-- ExtraZeroRows: adds this many rows of 0's to each vertex (thought of as a k by n matrix)
-- of the polytope (used for constructing flag polytopes)
--
matchingFieldPolytope = method(
Options => {
ExtraZeroRows => 0
}
)
matchingFieldPolytope(GrMatchingField) := opts -> MF -> (
if opts.ExtraZeroRows == 0 and MF.cache.?mfPolytope then (
MF.cache.mfPolytope
) else (
P := convexHull matchingFieldPolytopePoints(MF, opts);
if opts.ExtraZeroRows == 0 then MF.cache.mfPolytope = P;
P
)
)
matchingFieldPolytope(FlMatchingField) := opts -> MF -> (
if opts.ExtraZeroRows == 0 and MF.cache.?mfPolytope then (
MF.cache.mfPolytope
) else (
P := sum for grMF in MF.grMatchingFieldList list matchingFieldPolytope(grMF,
ExtraZeroRows => (max MF.kList - grMF.k + opts.ExtraZeroRows)
);
if opts.ExtraZeroRows == 0 then MF.cache.mfPolytope = P;
P
)
)
--------------------------
-- Diagonal matching field
-- Corresponds to the Gelfand-Tsetlin Cone of the Flag Variety / Grassmannian
diagonalMatchingField = method()
diagonalMatchingField(ZZ, ZZ) := (Lk, Ln) -> (
M := matrix for i from 0 to Lk - 1 list for j from 0 to Ln - 1 list i*(Ln - j);
grMatchingField(M)
)
-- partial flag variety
diagonalMatchingField(List, ZZ) := (LkList, Ln) -> (
M := matrix for i from 0 to max LkList - 1 list for j from 0 to Ln - 1 list i*(Ln - j);
flMatchingField(LkList, M)
)
-- full-flag variety
-- by convention this is a (n-1) by (n) matrix
diagonalMatchingField(ZZ) := Ln -> (
M := matrix for i from 0 to Ln - 2 list for j from 0 to Ln - 1 list i*(Ln - j);
flMatchingField(M)
)
------------------------
-- setting up the polynomials rings for the matching field
-- unexported method
-- The weight vector v / matrix m stored in the matching field uses min convention
-- so use weight vector {max v .. max v} - v for the M2 weight vector
-- and the same for each row of m
--
-- MonomialOrder => "default" or "none"
setupMatchingFieldRings = method(
Options => {
MonomialOrder => "default"
}
)
setupMatchingFieldRings(GrMatchingField) := opts -> MF -> (
local monomialOrder;
if not MF.cache.?ringP then (
p := symbol p;
variables := for s in subsets(toList(1 .. MF.n), MF.k) list p_(if #s == 1 then s_0 else toSequence s);
if opts.MonomialOrder == "default" then (
monomialOrder = (
maxVal := max (getWeightPluecker MF);
{Weights => for val in (getWeightPluecker MF) list maxVal - val}
);
) else if opts.MonomialOrder == "none" then (
monomialOrder = GRevLex;
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
MF.cache.ringP = QQ[variables, MonomialOrder => monomialOrder];
);
if not MF.cache.?ringX then (
x := symbol x;
if opts.MonomialOrder == "default" then (
monomialOrder = (
weights := for wRow in entries getWeightMatrix MF list (
bigVal := toList(MF.n : (max wRow));
bigVal - wRow
);
{Weights => flatten weights}
);
) else if opts.MonomialOrder == "none" then (
monomialOrder = GRevLex;
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
MF.cache.ringX = QQ[x_(1,1) .. x_(MF.k, MF.n), MonomialOrder => monomialOrder];
);
if not MF.cache.?X then (
MF.cache.X = transpose genericMatrix(MF.cache.ringX, MF.n, MF.k);
);
)
setupMatchingFieldRings(FlMatchingField) := opts -> MF -> (
local monomialOrder;
if not MF.cache.?ringP then (
p := symbol p;
variables := flatten for Lk in MF.kList list for s in subsets(toList(1 .. MF.n), Lk) list p_(if #s == 1 then s_0 else toSequence s);
if opts.MonomialOrder == "default" then (
monomialOrder = (
bigVals := flatten (
currentIndex := 0;
for grMF in MF.grMatchingFieldList list (
numberEntries := binomial(grMF.n, grMF.k);
currentIndex = currentIndex + numberEntries;
toList(numberEntries : max ((getWeightPluecker MF)_{currentIndex - numberEntries .. currentIndex - 1}))
)
);
{Weights => (bigVals - (getWeightPluecker MF))}
);
) else if opts.MonomialOrder == "none" then (
monomialOrder = GRevLex;
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
MF.cache.ringP = QQ[variables, MonomialOrder => monomialOrder];
);
if not MF.cache.?ringX then (
x := symbol x;
if opts.MonomialOrder == "default" then (
monomialOrder = (
weights := for wRow in entries getWeightMatrix MF list (
bigVal := toList(MF.n : (max wRow));
bigVal - wRow
);
{Weights => flatten weights}
);
) else if opts.MonomialOrder == "non" then (
monomialOrder = GRevLex;
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
MF.cache.ringX = QQ[x_(1,1) .. x_(max MF.kList, MF.n), MonomialOrder => monomialOrder];
);
if not MF.cache.?X then (
MF.cache.X = transpose genericMatrix(MF.cache.ringX, MF.n, max MF.kList);
);
)
-- gets the sign of a tuple
-- which is (-1) to power the number of descets modulo 2
-- 1 means even tuple, -1 means odd tuple
tupleSign = method()
tupleSign(List) := I -> (
if #I <= 1 then 1 else (
(-1)^((sum for s in subsets(I, 2) list if s_0 > s_1 then 1 else 0) % 2)
)
)
-- matching field ring map: P_I -> x_(1,I_1) * x_(2, I_2) ... x_(k, I_k), for each tuple I
matchingFieldRingMap = method(
Options => {
MonomialOrder => "default" -- monomial order for the ambient rings (default or none)
}
)
matchingFieldRingMap(GrMatchingField) := opts -> MF -> (
setupMatchingFieldRings(opts, MF);
if not MF.cache.?mfRingMap then (
R := MF.cache.ringP;
S := MF.cache.ringX;
MF.cache.mfRingMap = map(S, R,
for tuple in MF.tuples list tupleSign(tuple) * (product for i from 0 to MF.k - 1 list (MF.cache.X)_(i, tuple_i - 1))
);
);
MF.cache.mfRingMap
)
matchingFieldRingMap(FlMatchingField) := opts -> MF -> (
setupMatchingFieldRings(opts, MF);
if not MF.cache.?mfRingMap then (
R := MF.cache.ringP;
S := MF.cache.ringX;
MF.cache.mfRingMap = map(S, R,
flatten for grMF in MF.grMatchingFieldList list (
for tuple in grMF.tuples list tupleSign(tuple) * (product for i from 0 to grMF.k - 1 list (MF.cache.X)_(i, tuple_i - 1))
)
);
);
MF.cache.mfRingMap
)
-- matching field ideal
-- compute using M2 or FourTiTwo methods
matchingFieldIdeal = method(
Options => {
Strategy => "4ti2", -- "FourTiTwo" or "M2"
MonomialOrder => "default" -- monomial order for ambient rings (default or none)
}
)
matchingFieldIdeal(GrMatchingField) := opts -> MF -> (
-- setting up MF rings is done by grMatchingFieldRingMap if necessary
if not MF.cache.?mfIdeal then (
if opts.Strategy == "M2" then (
MF.cache.mfIdeal = kernel matchingFieldRingMap(MF, MonomialOrder => opts.MonomialOrder);
)
else if opts.Strategy == "4ti2" then (
local gensMatrix;
setupMatchingFieldRings(MF, MonomialOrder => opts.MonomialOrder);
V := matchingFieldPolytopePoints MF;
if opts.MonomialOrder == "default" then (
gensMatrix = gens toricGroebner(V, MF.cache.ringP, Weights => getWeightPluecker MF);
) else if opts.MonomialOrder == "none" then (
gensMatrix = gens toricGroebner(V, MF.cache.ringP);
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
-- adjust the signs of the variables
signChange := map(MF.cache.ringP, MF.cache.ringP, matrix {
for i from 0 to #MF.tuples - 1 list (tupleSign (MF.tuples)_i)*(MF.cache.ringP)_i
});
gensMatrix = signChange gensMatrix;
MF.cache.mfIdeal = ideal gensMatrix;
-- sometimes the Weights might not work (depends on 4ti2 version) see docs
forceGB gens MF.cache.mfIdeal;
)
else (
error("unknown Strategy: " | toString opts.Strategy | " for matchingFieldIdeal");
);
);
MF.cache.mfIdeal
)
matchingFieldIdeal(FlMatchingField) := opts -> MF -> (
-- setting up MF rings is done by grMatchingFieldRingMap if necessary
if not MF.cache.?mfIdeal then (
if opts.Strategy == "M2" then (
MF.cache.mfIdeal = kernel matchingFieldRingMap(MF, MonomialOrder => opts.MonomialOrder);
)
else if opts.Strategy == "4ti2" then (
local gensMatrix;
setupMatchingFieldRings(MF, MonomialOrder => opts.MonomialOrder);
VList := for grMF in MF.grMatchingFieldList list (
matchingFieldPolytopePoints(grMF, ExtraZeroRows => (max MF.kList - grMF.k))
);
V := fold(VList, (V1, V2) -> V1 | V2);
if opts.MonomialOrder == "default" then (
gensMatrix = gens toricGroebner(V, MF.cache.ringP, Weights => getWeightPluecker MF);
) else if opts.MonomialOrder == "none" then (
gensMatrix = gens toricGroebner(V, MF.cache.ringP);
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
-- adjust the signs of the variables
signChange := map(MF.cache.ringP, MF.cache.ringP, matrix {
variableIndex := -1;
flatten for grMF in MF.grMatchingFieldList list (
for i from 0 to #grMF.tuples - 1 list (
variableIndex = variableIndex + 1;
(tupleSign (grMF.tuples)_i)*(MF.cache.ringP)_variableIndex
)
)
});
gensMatrix = signChange gensMatrix;
MF.cache.mfIdeal = ideal gensMatrix;
-- sometimes the Weights might not work (depends on 4ti2 version) see docs
forceGB gens MF.cache.mfIdeal;
)
else (
error("unknown Strategy" | toString opts.Strategy | " for matchingFieldIdeal");
);
);
MF.cache.mfIdeal
)
---------------------------------------------------
-- projective matching field ideal (unexported)
-- this is the ideal obtained by composing the
-- matching field rings map and the segre embedding
--
-- Note: the signs are not correct
-- 4ti2 Strategy only
-- assumes that the weight matrices of the grMatchingFields
-- are sub weight matrices of the flMatchingField
projectiveMatchingFieldIdeal = method(
Options => {
Strategy => "4ti2", -- "FourTiTwo"
MonomialOrder => "default" -- monomial order for ambient rings (default or none)
}
)
projectiveMatchingFieldIdeal(GrMatchingField) := opts -> MF -> (
matchingFieldIdeal(opts, MF)
)
projectiveMatchingFieldIdeal(FlMatchingField) := opts -> MF -> (
if not MF.cache.?projMFIdeal then (
local monomialOrder;
if opts.MonomialOrder == "none" then (
monomialOrder = GRevLex;
) else if opts.MonomialOrder == "default" then (
plueckerWeights := for grMF in MF.grMatchingFieldList list (
plueckerWeight := getWeightPluecker grMF;
maxWeight := max plueckerWeight;
for weight in plueckerWeight list maxWeight - weight
);
monomialOrder = (Weights => fold(plueckerWeights, (W1, W2) -> flatten for w1 in W1 list for w2 in W2 list w1+w2));
) else (
error("Unknown option: MonomialOrder => " | toString opts.MonomialOrder);
);
p := symbol p;
subsetList := for k in MF.kList list subsets(1 .. MF.n, k);
variableIndices := fold(subsetList, (S1, S2) -> flatten for s1 in S1 list for s2 in S2 list s1 | s2);
R := QQ[for variableIndex in variableIndices list p_(toSequence variableIndex), MonomialOrder => monomialOrder];
if opts.Strategy == "4ti2" then (
VList := for grMF in MF.grMatchingFieldList list (
pointsMatrix := matchingFieldPolytopePoints(grMF, ExtraZeroRows => (max MF.kList - grMF.k));
for columnIndex from 0 to numColumns pointsMatrix -1 list pointsMatrix_{columnIndex}
);
VCols := fold(VList, (V1, V2) -> flatten for v1 in V1 list for v2 in V2 list v1+v2);
V := fold(VCols, (col1, col2) -> col1 | col2);
gensMatrix := gens toricGroebner(V, R);
MF.cache.projMFIdeal = ideal gensMatrix;
forceGB gens MF.cache.projMFIdeal;
) else (
error("Unknown option: Strategy => " | toString opts.Strategy);
);
);
MF.cache.projMFIdeal
)
-- Grassmannian ideal using the constructed pluecker variable ring
-- Sets the weight of the polynomial ring to be the MF pluecker weight
--
-- the matching field must be coherent for this shortcut to work
Grassmannian(GrMatchingField) := opts -> MF -> (
plueckerIdeal MF
)
plueckerIdeal = method(
Options => {
MonomialOrder => "default" -- default or none; see setupMatchingFieldRings(.., MonomialOrder => [option])
}
)
plueckerIdeal(GrMatchingField) := opts -> MF -> (
if not MF.cache.?mfPlueckerIdeal then (
setupMatchingFieldRings(MF, MonomialOrder => opts.MonomialOrder);
R := MF.cache.ringP;
MF.cache.mfPlueckerIdeal = Grassmannian(MF.k - 1, MF.n - 1, R);
);
MF.cache.mfPlueckerIdeal
)
plueckerIdeal(FlMatchingField) := opts -> MF -> (
if not MF.cache.?mfPlueckerIdeal then (
setupMatchingFieldRings(opts, MF);
local i;
local variableFromSubset;
local generatorList;
i = 0;
variableFromSubset = new HashTable from flatten (
varsMatrix := vars MF.cache.ringP;
for grMF in MF.grMatchingFieldList list (
for s in subsets(toList(1 .. grMF.n), grMF.k) list (
i = i + 1;
s => varsMatrix_(0, i-1)
)
)
);
--------------------------------
-- Grassmannian relations
--
generatorList = flatten for grMF in MF.grMatchingFieldList list (
if grMF.k >= 2 and grMF.n - grMF.k >= 2 then (
flatten for I in subsets(1 .. grMF.n, grMF.k - 1) list (
for J in subsets(1 .. grMF.n, grMF.k + 1) list (
newGenerator := sum for jPosition from 0 to #J - 1 list (
j := J_jPosition;
if not member(j, I) then (
IIndex := sort(I | {j});
JIndex := delete(j, J);
swapsToSortI := # for i in I list if i > j then i else continue;
pI := variableFromSubset#IIndex;
pJ := variableFromSubset#JIndex;
(-1)^(jPosition + swapsToSortI)*pI*pJ
) else continue
);
if not zero(newGenerator) then (
newGenerator
) else continue
)
)
) else continue
);
---------------------
-- Incident Relations
--
generatorList = generatorList | flatten for grMFs in subsets(MF.grMatchingFieldList, 2) list (
grMF0 := grMFs_0;
grMF1 := grMFs_1;
flatten for I in subsets(1 .. grMF0.n, grMF0.k - 1) list (
for J in subsets(1 .. grMF1.n, grMF1.k + 1) list (
sum for jPosition from 0 to #J - 1 list (
j := J_jPosition;
if not member(j, I) then (
IIndex := sort(I | {j});
JIndex := delete(j, J);
swapsToSortI := # for i in I list if i > j then i else continue;
pI := variableFromSubset#IIndex;
pJ := variableFromSubset#JIndex;
(-1)^(jPosition + swapsToSortI)*pI*pJ
) else continue
)
)
)
);
MF.cache.mfPlueckerIdeal = ideal(generatorList);
);
MF.cache.mfPlueckerIdeal
)
----------------
-- Pluecker map is the determinantal map associated to Grassmannian / Flag variety
-- its kernel coincides with the pluecker ideal defined above
plueckerMap = method(
Options => {
MonomialOrder => "default" -- default or none; see setupMatchingFieldRings(.., MonomialOrder => [option])
}
)
plueckerMap(GrMatchingField) := opts -> MF -> (
setupMatchingFieldRings(opts, MF);
if not MF.cache.?plueckerRingMap then (
R := MF.cache.ringP;
S := MF.cache.ringX;
matX := MF.cache.X;
MF.cache.plueckerRingMap = map(S, R, for s in subsets(MF.n, MF.k) list det(matX_s));
);
MF.cache.plueckerRingMap
)
plueckerMap(FlMatchingField) := opts -> MF -> (
setupMatchingFieldRings(opts, MF);
if not MF.cache.?plueckerRingMap then (
R := MF.cache.ringP;
S := MF.cache.ringX;
matX := MF.cache.X;
MF.cache.plueckerRingMap = map(S, R, flatten for grMF in MF.grMatchingFieldList list (
for s in subsets(grMF.n, grMF.k) list det(matX_s^(toList(0 .. grMF.k - 1))))
);
);
MF.cache.plueckerRingMap
)
----------------------------------
-- matching field from permutation
-- Fix a permutation S, a 'generic' weight matrix M
-- that induces the diagonal matching field
-- Permute the 2nd row of M using S
-- See the paper: Clarke-Mohammadi-Zaffalon 2022
--
matchingFieldFromPermutation = method(
Options => {
RowNum => 2, -- which row to permute
UsePrimePowers => false, -- Take N (in the definition of the weight matrix) to be a prime number
ScalingCoefficient => 1, -- scale the permuted row by this coefficient, if > 2 then matrix may be non-generic unless prime power is true
PowerValue => 0 -- Value of N in weight matrix, if supplied 0 then choose N to be n or nextPrime n depending on above options
})
matchingFieldFromPermutation(ZZ, ZZ, List) := opts -> (Lk, Ln, S) -> (
if # S != Ln or # set S < Ln then (
error("expected a permutation of " | toString Ln | " distinct values");
);
if opts.ScalingCoefficient == 1 then (
matchingFieldFromPermutationNoScaling(Lk, Ln, S, opts)
) else (
local N;
local M;
local W;
if opts.PowerValue > 0 then (
N = opts.PowerValue;
) else if opts.UsePrimePowers then (
N = nextPrime Ln;
) else (
N = Ln
);
if Lk == 1 then (
M = matrix {toList {Ln : 0}};
) else (
M = matrix {toList{Ln : 0}} || matrix for i from 1 to Lk - 1 list for j from 1 to Ln list (
if i + 1 == opts.RowNum then (
(S_(j - 1))*opts.ScalingCoefficient*N^(i - 1)
) else (
(Ln - j)*N^(i - 1)
)
);
);
grMatchingField M
)
);
-- The Flag matching field from permuting the second row
matchingFieldFromPermutation(List, ZZ, List) := opts -> (LkList, Ln, S) -> (
if # S != Ln or # set S < Ln then (
error("expected a permutation of " | toString Ln | " distinct values");
);
sortedLkList := sort LkList;
grMatchingFields := for Lk in sortedLkList list matchingFieldFromPermutation(Lk, Ln, S, opts);
lastGrMatchingField := grMatchingFields_(#sortedLkList - 1);
new FlMatchingField from {
n => Ln,
kList => sortedLkList,
grMatchingFieldList => grMatchingFields,
cache => new CacheTable from {
weightMatrix => lastGrMatchingField.cache.weightMatrix,
weightPluecker => flatten for grMF in grMatchingFields list grMF.cache.weightPluecker
}
}
);
-- matching field from permutation
-- assume that there is no scaling coefficient so the tuples of the matching field can be written down quickly
-- unexported method (used by matchingFieldFromPermutation)
matchingFieldFromPermutationNoScaling = method(
Options => {
RowNum => 2, -- which row to permute
UsePrimePowers => false, -- Take N (in the definition of the weight matrix) to be a prime number
ScalingCoefficient => 1, -- scale the permuted row by this coefficient, if > 2 then matrix may be non-generic unless prime power is true
PowerValue => 0 -- Value of N in weight matrix, if supplied 0 then choose N to be n or nextPrime n depending on above options
})
matchingFieldFromPermutationNoScaling(ZZ, ZZ, List) := opts -> (Lk, Ln, S) -> (
local IOrdered;
local minIndex;
local N;
local M;
local W;
L := {};
for I in subsets(Ln, Lk) do (
if opts.RowNum <= Lk then (
-- find i in 0 .. rowNum-1 such that S_(I_i) is minimum
minIndex = 0;
for i from 1 to opts.RowNum - 1 do (
if S_(I_i) < S_(I_minIndex) then (
minIndex = i;
);
);
-- The elements I_0 .. I_(minIndex-1) are ordered in increasing order
IOrdered = for i from 0 to minIndex-1 list I_i + 1;
-- The next elements are I_(minIndex+1) .. I_(rowNum-1)
IOrdered = IOrdered | for i from minIndex+1 to opts.RowNum-1 list I_i + 1;
-- Then we get I_minIndex
IOrdered = append(IOrdered, I_minIndex + 1);
-- Then the rest of I in order
IOrdered = IOrdered | for i from opts.RowNum to Lk - 1 list I_i + 1;
L = append(L, IOrdered);
) else (
L = append(L, apply(I, i -> i+1));
);
);
if opts.PowerValue > 0 then (
N = opts.PowerValue;
) else if opts.UsePrimePowers then (
N = nextPrime Ln;
) else (
N = Ln
);
if Lk == 1 then (
M = matrix {toList {Ln : 0}};
) else (
M = matrix {toList{Ln : 0}} || matrix for i from 1 to Lk - 1 list for j from 1 to Ln list (
if i + 1 == opts.RowNum then (
(S_(j - 1))*N^(i - 1)
) else (
(Ln - j)*N^(i - 1)
)
);
);
W = for I in L list (
sum for i from 0 to Lk - 1 list M_(i, I_i - 1)
);
new GrMatchingField from {
n => Ln,
k => Lk,
tuples => L,
cache => new CacheTable from {
weightMatrix => M,
weightPluecker => W
}
}
);
-------------------------------------------
-- isToricDegeneration for a Matching Field
-- checks if the matching field ideal is equal to the initial ideal of the Grassmannian
-- we already have that leadTerm(pluecker ideal) is a subset of matching field ideal
-- so it suffices to reduce the generators of the matching field ideal modulo the
-- leadTerm of the pluecker ideal
--
-- The algorithm of inhomogeneous ideals is sketched below:
-- 1) get matching field (toric) ideal and record largest degree generator d
-- 2) get partial GB of plueckerIdeal up to DegreeLimit d
-- If partial GB is actually a complete GB then go to (8)
-- 3) take the lead terms of the partial GB and forceGB
-- 4) reduce matching field ideal generators modulo the forced GB
-- 5) remove any generators that are reduced to zero
-- 6) if matching field generator list is zero then we have a toric degeneration so return true
-- 7) if not then d = d+1 and go back to step 2
-- 8) reduce the matching field ideal gens modulo the full GB and check if the result is zero
--
-- In the homgeneous case, it suffices to compute a GB up to degree limit d (step 1)
-- so we can forgo the while loop
isToricDegeneration = method ()
isToricDegeneration(GrMatchingField) := MF -> (
matchingFieldIdealGens := gens matchingFieldIdeal MF;
maxDegree := max flatten flatten degrees matchingFieldIdealGens;
plueckerGB := gb(plueckerIdeal MF, Algorithm => Homogeneous, DegreeLimit => maxDegree);
inPluecker := forceGB leadTerm(1, gens plueckerGB);
zero(matchingFieldIdealGens % inPluecker)
)
isToricDegeneration(FlMatchingField) := MF -> (
matchingFieldIdealGens := gens matchingFieldIdeal MF;
maxDegree := max flatten flatten degrees matchingFieldIdealGens;
plueckerGB := gb(plueckerIdeal MF, Algorithm => Homogeneous, DegreeLimit => maxDegree);
inPluecker := forceGB leadTerm(1, gens plueckerGB);
zero(matchingFieldIdealGens % inPluecker)
)
-------------------------------
-- plueckerAlgebra of a matching field
-- in older versions this method overloaded the method subring from the package SubalgebraBases
-- the pluecker algebra inside inside a ring with term order
-- given by the weightMatrix
--
-- MonomialOrder is the monomial order of the ambient rings; see setupMatchingFieldRings(.., MonomialOrder => [option])
plueckerAlgebra = method(
Options => {
MonomialOrder => "default" -- default or none
}
)
plueckerAlgebra(GrMatchingField) := opts -> MF -> (
if not MF.cache.?mfSubring then (
setupMatchingFieldRings(MF, MonomialOrder => opts.MonomialOrder);
matX := MF.cache.X;
MF.cache.mfSubring = subring for s in subsets(MF.n, MF.k) list det(matX_s);
);
MF.cache.mfSubring
)
plueckerAlgebra(FlMatchingField) := opts -> MF -> (
if not MF.cache.?mfSubring then (
setupMatchingFieldRings(MF, MonomialOrder => opts.MonomialOrder);
matX := MF.cache.X;
MF.cache.mfSubring = subring flatten for grMF in MF.grMatchingFieldList list (
for s in subsets(grMF.n, grMF.k) list det(matX_s^(toList(0 .. grMF.k - 1)))
);
);
MF.cache.mfSubring
)
---------------------------------------------
-- Newton-Okounkov body for a matching field
--
NOBody = method()
-- Note: it is okay to always set
-- sagbi( .. AutoSubduce => false .. )
--
-- Grassmannian matching fields
-- the NO body has vertices that are directly read from the initial algebra (using Sagbi basis)
-- So, the lead terms can be simply scaled and the NO body is the convex hull of exponent vectors
NOBody(GrMatchingField) := MF -> (
if not MF.cache.?mfNOBody then (
-- compute the initial algbera of the Pluecker algebra wrt the weight term order
initialAlgberaGens := first entries leadTerm subalgebraBasis(plueckerAlgebra MF, AutoSubduce => false);
generatorExponents := apply(initialAlgberaGens, f -> (exponents(f))_0);
NOBodyVertices := apply(generatorExponents, v -> ((MF.k) / sum(v))*v); -- normalize the vertices
MF.cache.mfNOBody = convexHull transpose matrix NOBodyVertices;
);
MF.cache.mfNOBody
)
-- Flag matching fields
-- each Pluecker form has a specific grading
-- the sagbi generators are lifted by their grading
-- and we compute the NO body by taking the slice of the cone
-- that corresponds to the grading (1 .. 1)
NOBody(FlMatchingField) := MF -> (
if not MF.cache.?mfNOBody then (
kmax := max MF.kList;
initialAlgebraGens := first entries leadTerm subalgebraBasis(plueckerAlgebra MF, AutoSubduce => false);
generatorExponents := matrix apply(initialAlgebraGens, f -> (exponents(f))_0);
gradingMap := matrix for gradingRow from 0 to #MF.kList -1 list(
flatten for kIndex from 0 to kmax-1 list (
if MF.kList_gradingRow - 1 == kIndex then (
toList(MF.n : 1)
) else if MF.kList_gradingRow == kIndex then (
toList(MF.n : -1)
) else (
toList(MF.n : 0)
)
)
);
coneRays := (gradingMap * transpose generatorExponents) || (transpose generatorExponents);
polyCone := coneFromVData coneRays;
-- take the part of the cone with grading (1 .. 1)
slice := polyhedronFromHData (
matrix {toList(#MF.kList + kmax * MF.n : 0)},
matrix {{0}},
id_(ZZ^(#MF.kList)) | matrix for row in MF.kList list for col from 1 to (MF.n * kmax) list 0,
transpose matrix {toList(#MF.kList : 1)}
);
NOBodyAsIntersection := intersection(polyCone, slice);
-- simplify by removing the grading part
NOBodyVertices := (vertices NOBodyAsIntersection)^{#MF.kList .. #MF.kList + MF.n * kmax - 1};
MF.cache.mfNOBody = convexHull NOBodyVertices;
);
MF.cache.mfNOBody
)
-----------------------
-- Regular Subdivision of a set of points
-- code is copied and modified from "Polyhedra" Package
-- not exported
-- Why is code copied:
-- >> See previous comment about the permutation of vertex names in Polyhedra package
-- the same bug is present in the regular subdivision method
-- >> Sent a message to the authors of Polyhedra package explaining the problem but no response yet
--
pointRegularSubdivision = method()
pointRegularSubdivision(Matrix, Matrix) := (points, weight) -> (
-- Checking for input errors
if numColumns weight != numColumns points or numRows weight != 1 then error("The weight must be a one row matrix with number of points many entries");
P := convexHull(points || weight, matrix (toList(numRows points : {0}) | {{1}} ));
F := select(faces (1,P), f -> #(f#1) == 0);
V := vertices P;
apply (F, f -> V_(f#0)^(toList(0 .. (numRows points - 1))))
)
---------------------------------
-- matroidal subdivision from matching field
-- Take the Pluecker weight w of a matching field
-- Note that w lies in the Dressian
-- Compute the regular subdivision of the hypersimplex wrt w
matroidSubdivision = method()
matroidSubdivision(ZZ, ZZ, List) := (k, n, L) -> (
assert(#L == binomial(n, k));
SS := subsets(toList(1 .. n), k);
hyperSimplex := sub(transpose matrix for s in SS list for i from 1 to n list if member(i, s) then 1 else 0, QQ); -- sub to avoid entries in ZZ
subdivisionPieces := pointRegularSubdivision(hyperSimplex, matrix {L});
vertexLookup := new HashTable from for i from 0 to binomial(n, k) - 1 list hyperSimplex_{i} => SS_i;
for piece in subdivisionPieces list for c from 0 to numColumns piece - 1 list vertexLookup#(piece_{c})
)
matroidSubdivision(GrMatchingField) := MF -> (
if not MF.cache.?computedMatroidSubdivision then (
MF.cache.computedMatroidSubdivision = matroidSubdivision(MF.k, MF.n, getWeightPluecker MF);
);
MF.cache.computedMatroidSubdivision
)
----------------------
-- weightMatrixCone
-- the cone whose interior points are weight matrices that induce the given matching field
weightMatrixCone = method(
Options => {
ExtraZeroRows => 0 -- adds this many rows of 0 to each inequality, used for FlMatchingField cone
}
)
weightMatrixCone(GrMatchingField) := opts -> MF -> (
if opts.ExtraZeroRows == 0 and MF.cache.?computedWeightMatrixCone then (
MF.cache.computedWeightMatrixCone
) else (
-- form the matrix of inequalities A: such that the cone is Ax >= 0
local inequalities;
if MF.k > 1 then (
inequalities = matrix (
subsetList := subsets(1 .. MF.n, MF.k);
flatten for i from 0 to binomial(MF.n, MF.k) - 1 list (
columnIndices := subsetList_i;
minimalTuple := MF.tuples_i;
for p in delete(minimalTuple, permutations columnIndices) list (
-- the row vector the encodes: minimalTuple <= p
-- E.g. if the minimal tuple is {1,2,3} then
-- one of the inequalities is given by {1,2,3} <= {1,3,2}
-- which cancels down further since 1 is in the same place
for coord in (0,1) .. (MF.k - 1 + opts.ExtraZeroRows, MF.n) list (
sum {if coord_0 < MF.k and p_(coord_0) == coord_1 then 1 else 0,
if coord_0 < MF.k and minimalTuple_(coord_0) == coord_1 then -1 else 0}
)
)
)
);
) else (
inequalities = matrix {toList((MF.k + opts.ExtraZeroRows) * MF.n : 0)};
);
C := coneFromHData(inequalities);
if opts.ExtraZeroRows == 0 then MF.cache.computedWeightMatrixCone = C;
C
)
)
weightMatrixCone(FlMatchingField) := opts -> MF -> (
if opts.ExtraZeroRows == 0 and MF.cache.?computedWeightMatrixCone then (
MF.cache.computedWeightMatrixCone
) else (
kMax := max MF.kList;
weightMatrixConeList := for grMF in MF.grMatchingFieldList list (
weightMatrixCone(grMF, ExtraZeroRows => (kMax - grMF.k + opts.ExtraZeroRows))
);
inequalityMatrix := facets (weightMatrixConeList_0);
hyperplanesMatrix := hyperplanes (weightMatrixConeList_0);
for i from 1 to #weightMatrixConeList - 1 do (
inequalityMatrix = inequalityMatrix || facets (weightMatrixConeList_i);
hyperplanesMatrix = hyperplanesMatrix || hyperplanes (weightMatrixConeList_i);
);
C := coneFromHData(inequalityMatrix, hyperplanesMatrix);
if opts.ExtraZeroRows == 0 then MF.cache. computedWeightMatrixCone = C;
C
)
)
----------------------------------------------------------
-- isCoherent
-- check if a matching field is induced by a weight matrix
--
isCoherent = method()
isCoherent(GrMatchingField) := MF -> (
if MF.cache.?weightMatrix then true else (
C := weightMatrixCone MF;
(dim C) == (MF.k * MF.n) -- coherent iff C is full-dimensional
)
)
isCoherent(FlMatchingField) := MF -> (
if MF.cache.?weightMatrix then true else (
C := weightMatrixCone MF;
(dim C) == ((max MF.kList)* MF.n) -- coherent iff C is full-dimensional
)
)
------------------------
-- computeWeightMatrix
-- finds a weight matrix that induces the matching field
-- unexported (see getWeightMatrix)
computeWeightMatrix = method()
computeWeightMatrix(GrMatchingField) := MF -> (
if not isCoherent MF then (
error("expected a coherent matching field");
);
C := weightMatrixCone MF;
CRays := rays C;
-- construct an interior point of the cone
weight := first entries transpose sum for c from 0 to numColumns CRays - 1 list CRays_{c};
matrix for i from 0 to MF.k - 1 list weight_{i*MF.n .. (i+1)*MF.n - 1}
)
computeWeightMatrix(FlMatchingField) := MF -> (
if not isCoherent MF then (
error("expected a coherent matching field");
);
C := weightMatrixCone MF;
CRays := rays C;
-- construct an interior point of the cone
weight := first entries transpose sum for c from 0 to numColumns CRays - 1 list CRays_{c};
matrix for i from 0 to (max MF.kList) - 1 list weight_{i*MF.n .. (i+1)*MF.n - 1}
)
--------------------------------------------
-- compute linear span of the tropical cone
--
-- assume the initial ideal is toric
-- take the generators x^u - x^v of the initial ideal
-- form a matrix M with rows {.. 1_u .. -1_v ..}
-- kernel M is the linear span of the tropical cone
removeZeroRows = method()
removeZeroRows(Matrix) := inputMatrix -> (
nonZeroRowIndices := for i from 0 to numRows inputMatrix - 1 list if not zero inputMatrix^{i} then i else continue;
inputMatrix^nonZeroRowIndices
)
linearSpanTropCone = method(
Options => {
VerifyToricDegeneration => true
}
)
linearSpanTropCone(GrMatchingField) := opts -> MF -> (
if not MF.cache.?computedLinearSpanTropCone then (
if opts.VerifyToricDegeneration and not isToricDegeneration MF then (
error("expected GrMatchingField that gives a toric degeneration.");
);
matchingFieldIdealExponents := exponents \ first entries gens matchingFieldIdeal MF; -- a list of pairs (since generators are binomials)
constraintMatrix := matrix apply(matchingFieldIdealExponents, exponentPair -> exponentPair_0 - exponentPair_1);
constraintMatrix = removeZeroRows reducedRowEchelonForm sub(constraintMatrix, QQ);
MF.cache.computedLinearSpanTropCone = ker constraintMatrix;
);
MF.cache.computedLinearSpanTropCone
)
---------------------------
-- compute the algebraic matroid of the Matching field inside Grassmannian
-- this gives bases for the algebraic matroid of the grassmannian implied by the matching field
algebraicMatroid = method()
algebraicMatroid(GrMatchingField) := MF -> (
if not MF.cache.?computedAlgebraicMatroid then (
MF.cache.computedAlgebraicMatroid = matroid transpose gens linearSpanTropCone MF;
);
MF.cache.computedAlgebraicMatroid
)
-- write down the bases of the algebraic matroid as subsets
algebraicMatroidBases = method()
algebraicMatroidBases(GrMatchingField) := MF -> (
SS := subsets(toList(1 .. MF.n), MF.k);
for B in bases algebraicMatroid MF list (i -> SS_i) \ B
)
-- write down the bases of the algebraic matroid as subsets
algebraicMatroidCircuits = method()
algebraicMatroidCircuits(GrMatchingField) := MF -> (
SS := subsets(toList(1 .. MF.n), MF.k);
for B in circuits algebraicMatroid MF list (i -> SS_i) \ B
)
-- tope fields
-- a tope field (for Gr(k,n)) is pair:
-- (i) GrMatchingField
-- (ii) type T = {t_1 .. t_s}
--
-- The notes in the code follow notation of Smith-Loho
-- A matching field is a tope field of type {1 .. 1}
-- the type is the 'right degree vector'
-- for each tuple (i_1,1 .. i_1,t_1 .. i_s,t_s) of the GrMatchingField,
-- we get one bipartite graph of the tope field where 1 in R is
-- adjacent to i_1,1 .. i_1,t_1, etc.
TopeField = new Type of HashTable
topeField = method()
topeField(GrMatchingField) := MF -> (
new TopeField from {
"type" => toList(MF.k : 1),
"matchingField" => MF
}
)
topeField(GrMatchingField, List) := (MF, type) -> (
assert(sum type == MF.k);
new TopeField from {
"type" => type,
"matchingField" => MF
}
)
net TopeField := TF -> (
("Tope field: n = " | toString TF#"matchingField".n | " and type = " | toString TF#"type")
)
getTuples(TopeField) := TF -> (
getTuples TF#"matchingField"
)
-- isLinkage
-- tests if a tope field is Linkage by checking that for each k+1 subset \tau,
-- the union of graphs M_\sigma where \sigma \subset \tau is a forest
--
isLinkage = method()
isLinkage(TopeField) := TF -> (
result := true;
MF := TF#"matchingField";
subsetList := subsets(1 .. MF.n, MF.k);
subsetIndex := new HashTable from for j from 0 to binomial(MF.n, MF.k)-1 list subsetList_j => j;
tuples := getTuples MF;
for s in subsets(1 .. MF.n, MF.k + 1) do (
-- take the union of all edges over the k-subsets of s
-- list the vertices in L adjacent to each j in R in the union
-- L edges: 1 .. n
-- R edges: n+1 .. n+t where t = #TF#"type"
edges := flatten flatten for s' in subsets(s, MF.k) list (
tuple := tuples_(subsetIndex#s');
tuplePosition := -1;
for typeIndex from 0 to #TF#"type"-1 list (
t := TF#"type"_typeIndex;
for j from 1 to t list (
tuplePosition = tuplePosition +1;
{tuple_tuplePosition, MF.n + typeIndex + 1}
)
)
);
G := graph edges;
if not isForest G then (
result = false;
break
);
);
result
)
isLinkage(GrMatchingField) := MF -> (
isLinkage topeField MF
)
-- tope field amalgamation
amalgamation = method()
amalgamation(ZZ, TopeField) := (i, TF) -> (
assert(isLinkage TF);
assert(1 <= i and i <= TF#"matchingField".n);
MF := TF#"matchingField";
subsetList := subsets(1 .. MF.n, MF.k);
subsetIndex := new HashTable from for j from 0 to binomial(MF.n, MF.k)-1 list subsetList_j => j;
tuples := getTuples MF;
-- construct the new tuples of the matching field:
newTuples := for s in subsets(1 .. MF.n, MF.k + 1) list (
-- take the union of all edges over the k-subsets of s
-- list the vertices in L adjacent to each j in R in the union
edges := new MutableHashTable from for j from 0 to #TF#"type"-1 list (
j => set {}
);
for s' in subsets(s, MF.k) do (
tuple := tuples_(subsetIndex#s');
tuplePosition := -1;
for typeIndex from 0 to #TF#"type"-1 do (
t := TF#"type"_typeIndex;
edges#typeIndex = edges#typeIndex + set for j from 1 to t list (
tuplePosition = tuplePosition +1;
tuple_tuplePosition
);
);
);
matchedL := edges#(i-1);
matchedR := set {i-1};
-- remove the edges of the union graph to get the amalgamation
while #matchedL < MF.k+1 do (
for j from 0 to #TF#"type"-1 do (
if not member(j, matchedR) then (
edges#j = edges#j - matchedL;
if #edges#j == TF#"type"_j then (
matchedR = matchedR + set {j};
matchedL = matchedL + edges#j;
);
);
);
);
fold((a,b) -> a | b, for j from 0 to #TF#"type"-1 list sort toList edges#j)
);
newMF := grMatchingField(MF.k+1, MF.n, newTuples);
newType := for j from 1 to #TF#"type" list if i == j then TF#"type"_(j-1)+1 else TF#"type"_(j-1);
topeField(newMF, newType)
)
amalgamation(ZZ, GrMatchingField) := (i, MF) -> (
TF := topeField MF;
amalgamation(i, TF)
)
-- #################
-- # Documentation #
-- #################
beginDocumentation()
doc ///
Key
MatchingFields
Headline
A package for working with matching fields for Grassmannians and partial flag varieties
Description
Text
A matching field $\Lambda$ for the Grassmannian Gr($k$, $n$), is a simple combinatorial object.
It may be thought of as a choice of initial term for each maximal minor of a generic $k \times n$ matrix
of variables. For example, take $k = 2$ and $n = 4$. Let $X = (x_{i,j})$ be a generic $2 \times 4$ matrix of variables.
Suppose that a matching field $\Lambda$ has tuples $\{12, 31, 14, 32, 24, 34\}$. This means that $\Lambda$
distinguishes the term $x_{1,1} x_{2,2}$ from the maximal minors on columns $1$ and $2$ of $X$: $x_{1,1} x_{2,2} - x_{1,2} x_{2,1}$.
Similarly for the terms $x_{1,3} x_{2,1}$, $x_{1,1} x_{2,4}$, and so on.
If the terms of all maximal minors distinguished by a matching field are their initial terms with respect to a fixed weight matrix,
then we say that the matching field is coherent. Each such weight matrix induces a weight vector on the Pluecker coordinates of the
Grassmannian. If the initial ideal of the Pluecker ideal of the Grassmannian with respect to this weight vector is a toric ideal,
i.e. a prime binomial ideal, then we say that the matching field gives rise to a toric degeneration of the Grassmannian.
By a result of Sturmfels (1996), a matching field gives rise to a toric degeneration if and only if the maximal minors of $X$ form
a subalgebra basis (or SAGBI basis) with respect to the order induced by the weight matrix.
This concept naturally generalises to partial flag varieties under the Pluecker embedding.
The MatchingFields package gives basic functions, to construct many of the well-studied examples of matching fields.
Given a matching field $L$, it is straight forward to check whether $L$ is coherent, what is a weight matrix that induces it,
and whether is gives rise to a toric degeneration. The package also produces polytopes associated to matching fields and Newton-Okounkov bodies.
Example
L = grMatchingField(2, 4, {{1,2}, {3,1}, {1,4}, {3,2}, {2,4}, {3,4}})
isCoherent L
getWeightMatrix L
isToricDegeneration L
SeeAlso
Subnodes
:Main objects
GrMatchingField
FlMatchingField
:Constructing matching fields
grMatchingField
flMatchingField
diagonalMatchingField
matchingFieldFromPermutation
:Basic properties and functions
getTuples
getGrMatchingFields
isCoherent
getWeightMatrix
getWeightPluecker
isToricDegeneration
(net, FlMatchingField)
(symbol ==, GrMatchingField, GrMatchingField)
(symbol ==, FlMatchingField, FlMatchingField)
:Rings, ideals and maps
plueckerIdeal
matchingFieldIdeal
plueckerMap
matchingFieldRingMap
plueckerAlgebra
:Convex bodies and polyhedra
matchingFieldPolytope
NOBody
weightMatrixCone
:Dressians and matroids
algebraicMatroid
algebraicMatroidCircuits
algebraicMatroidBases
matroidSubdivision
linearSpanTropCone
:Topes and tope fields
TopeField
topeField
(net, TopeField)
(getTuples, TopeField)
isLinkage
amalgamation
///
doc ///
Key
plueckerIdeal
(plueckerIdeal, FlMatchingField)
(plueckerIdeal, GrMatchingField)
(Grassmannian, GrMatchingField)
[plueckerIdeal, MonomialOrder]
Headline
The Pluecker ideal of a matching field
Usage
I = plueckerIdeal Lgr
I = plueckerIdeal Lfl
I = Grassmannian Lgr
Inputs
Lgr: GrMatchingField
Lfl: FlMatchingField
MonomialOrder => String
either "default" or "none" (supply "none" only if $L$ is not coherent)
Outputs
I: Ideal
The Pluecker ideal associated to the corresponding Grassmannian or partial flag variety
with the correct term order given by a weight that induced the matching field
Description
Text
The Pluecker ideal is the defining ideal of a partial flag variety embedded in a product of Grassmannians, where
each Grassmannian is embedded, by the Pluecker embedding, into a suitable projective space.
In the case of the Grassmannian Gr($k$, $n$), it is concretely given by kernel of the ring map
$K[P_I : I \subseteq [n],\ |I| = k] \rightarrow K[x_{i,j} : i \in [k], \ j \in [n]]$ where $P_I$ is mapped
to the $k \times k$ maximal minor of the matrix $(x_{i,j})$ whose columns are indexed by the set $I$.
It is well-known that this ideal has a Groebner basis consisting of homogeneous quadrics.
The function @TO "plueckerIdeal"@ takes a matching field, either for the Grassmannian or a partial flag variety
and outputs the Pluecker ideal for that Grassmannian or partial flag variety. The ambient polynomial ring that
contains this ideal is constructed to have the term order induced by the matching field.
Example
L = grMatchingField(2, 4, {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}})
I = plueckerIdeal L
(monoid ring I).Options.MonomialOrder
getWeightPluecker L
Text
In the above example, the weights for the ambient ring are not the same as the Pluecker weights of the matching field.
This is because of the minimum-maximum convention problem. For compatibility with packages such as @TO "Tropical"@, we use
the minimum convention in @TO "MatchingFields"@ so the smallest weight with respect to the weight matrix that
induces the matching field is the initial term of a Pluecker form.
However, the monomial ordering given by @TO "Weights"@ uses the
maximum convention, so the ambient ring has weights that are based on the negative of the induced Pluecker Weight.
Note that the given matching field must be coherent. If the matching field is not defined in terms of a weight
matrix, then the function will attempt to compute a weight matrix for the matching field. If the matching field is
not coherent then the function will produce an error.
Example
L = grMatchingField(2, 4, {{1,2}, {1,3}, {4,1}, {2,3}, {2,4}, {3,4}})
isCoherent L
-- I = plueckerIdeal L -- "error: expected a coherent matching field"
Text
To construct the pluecker ideal for a non-coherent matching field, set the option MonomialOrder to "none".
The resulting ideal is constructed in a polynomial ring with the @TO "GRevLex"@ order.
Example
I = plueckerIdeal(L, MonomialOrder => "none")
SeeAlso
matchingFieldIdeal
Subnodes
///
doc ///
Key
matroidSubdivision
(matroidSubdivision, GrMatchingField)
(matroidSubdivision, ZZ, ZZ, List)
Headline
The matroid subdivision induced by the Pluecker weight of a coherent matching field
Usage
listOfBases = matroidSubdivision L
listOfBases = matroidSubdivision(k, n, plueckerWeight)
Inputs
L: GrMatchingField
k: ZZ
n: ZZ
plueckerWeight: List
the weight of the pluecker coordinates in revLex order using minimum convention
Outputs
listOfBases: List
Each element is a list of the vertices of a maximal cell of the matroid subdivision of the hypersimplex induced by
the Pluecker weight of the matching field.
Description
Text
The hypersimplex $\Delta(k, n) \subseteq \RR^{n}$ is the convex hull of the characteristic vectors of all $k$-subsets
of $\{1, \dots, n\}$, and we label each vertex with with its corresponding subset. A regular subdivision of the vertices of $\Delta(k, n)$
is said to be matroidal if, for each maximal cell of the subdivision, the subsets labelling its vertices form the set of bases of a matroid.
The well-known result is: a point lies in the Dressian Dr($k$, $n$), the tropical prevariety of all $3$-term Pluecker relation in Gr($k$, $n$), if and only if
it induces a matroidal subdivision of the hypersimplex.
Example
L = grMatchingField(2, 4, {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}})
netList matroidSubdivision L -- an octahedron sliced into 2 pieces
Text
Whenever the function @TO "matroidSubdivision"@ is supplied with a Grassmannian matching field, the cached weight that induces the matching field
is used for the computation of the matroid subdivision. Note that, if the function is supplied directly with the \textit{plueckerWeight}, then
the coordinates are ordered so that the corresponding sets are listed in reverse lexicographic order.
SeeAlso
Subnodes
///
doc ///
Key
algebraicMatroid
(algebraicMatroid, GrMatchingField)
Headline
The algebraic matroid of the tropical cone that induces the matroid
Usage
M = algebraicMatroid L
Inputs
L: GrMatchingField
Outputs
M: "matroid"
The algebraic matroid of the cone in Trop Gr$(k,n)$ that induces the matching field.
Description
Text
Let $V \subseteq \CC^n$ be an affine variety.
The algebraic matroid of $V$ is a matroid whose independent sets $S \subseteq [n]$
are the subsets such that the projection from $V$ to the coordinates indexed by $S$
is a dominant morphism. Similarly, if $C \subseteq \RR^n$ is a polyhedral cone, then the algebraic matroid
of $C$ is the matroid whose independent sets $S \subseteq [n]$ are the subsets such that image of the
projection of $C$ onto the coordinates indexed by $S$ is full-dimensional.
In the case of the affine cone of Grassmannian under the Pluecker embedding,
there are a few different ways to compute its algebraic matroid. One way is to use its tropicalization.
The algebraic matroid of the Grassmannian is equal to the matroid whose bases are the union of all bases of the
algebraic matroid for all maximal cones of Trop Gr($k$, $n$).
For each coherent matching field, we compute its cone in the tropicalization of the Grassmannian.
We compute the algebraic matroid of this cone. To view the bases of this matroid in terms of the $k$-subsets of $[n]$,
use the function @TO "algebraicMatroidBases"@. Similarly, to view its circuits use @TO "algebraicMatroidCircuits"@
Example
L = grMatchingField(2, 4, {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}})
M = algebraicMatroid L
netList algebraicMatroidBases L
SeeAlso
algebraicMatroidBases
algebraicMatroidCircuits
Subnodes
///
doc ///
Key
getGrMatchingFields
(getGrMatchingFields, FlMatchingField)
Headline
The Grassmannian matching fields of a Flag matching field
Usage
matchingFieldList = getGrMatchingFields L
Inputs
L: FlMatchingField
Outputs
matchingFieldList: List
The Grassmannian matching fields contained in L.
Description
Text
This function returns a list of the @TO "GrMatchingField"@s that are contained
within the given @TO "FlMatchingField"@.
Example
D = diagonalMatchingField({1,2,3}, 6);
getWeightMatrix D
netList getGrMatchingFields D
D2 = (getGrMatchingFields D)_1;
getWeightMatrix D2
Text
The above example constructs the diagonal matching field for the partial
flag variety Fl(123; 6), which contains the data for
three distinct Grassmannian matching fields. Each @TO "GrMatchingField"@
is a diagonal matching field, which are induced by a submatrix of the original
weight matrix that induces the flag matching field.
SeeAlso
Subnodes
///
doc ///
Key
flMatchingField
(flMatchingField, List, Matrix)
(flMatchingField, List, ZZ, List)
(flMatchingField, Matrix)
Headline
Construct a matching field for a partial flag variety
Usage
L = flMatchingField(kList, weightMatrix)
L = flMatchingField(kList, n, tuples)
L = flMatchingField(weightMatrix)
Inputs
kList: List
positive integers; the sizes of the tuples of the flag matching field
n: ZZ
positive integer; the tuples have entries in 1 .. n
weightMatrix: Matrix
induces the flag matching field
Outputs
L: FlMatchingField
Description
Text
This function is the basic constructor for
matching fields for partial flag varieties, which we simply call
flag matching fields. The function outputs an instance of type @TO "FlMatchingField"@,
which represents the flag matching field and stores all data related and
computed about it.
There are three basic ways to define a flag matching field. The first way is to
supply a weight matrix that induces the flag matching field. This produces a flag matching field
for the full flag variety.
Example
M = matrix {{0,0,0,0}, {4,2,3,1}, {10, 40, 30, 20}}
L1 = flMatchingField M
netList getTuples L1
isToricDegeneration L1
Text
In the above example, we construct the flag matching field for the full
flag variety induced by the given weight matrix. The tuples for the
flag matching field are listed by their size. Similarly to Grassmannian
matching fields: @TO "GrMatchingField"@, the function @TO "isToricDegeneration"@
checks the equality of the @TO "matchingFieldIdeal"@ and the initial ideal
of the @TO "plueckerIdeal"@ with respect to the weight of the matching field.
The second way to define a flag matching field
is to supply a weight matrix and specify the size of the sets
or, in other words, specify the dimensions of the vector spaces in the flags.
Example
L2 = flMatchingField({1,2}, M)
netList getTuples L2
Text
The third way to define a flag matching field is by listing out its tuples.
Example
T = getTuples L1
L3 = flMatchingField({1,3}, 4, {T_0, T_2})
getTuples L3
isCoherent L3
getWeightMatrix L3
Text
As shown in the example above, the first argument "kList"
specifies the size of the sets.
The third argument is a list whose i-th entry is a list of tuples
of size "kList_i". In this example, the size of the sets are 1 and 3,
which correspond to "T_0" and "T_2".
When a flag matching field is constructed in this way, it is not
guaranteed to be coherent, i.e., it may not be induced by a weight matrix.
Similarly to Grassmannian matching fields, the function @TO "isCoherent"@
checks whether the matching field is coherent and the function @TO "getWeightMatrix"@
returns a weight matrix that induces the matching field, if it exists.
If the matching field is not coherent, then these methods produce an error.
A note of caution. Two different weight matrices may induce the same matching field
so the function @TO "getWeightMatrix"@ may return a weight matrix that is
different to what may be expected. However, if a matching field is defined
by a weight matrix, then that weight matrix will be returned.
SeeAlso
FlMatchingField
GrMatchingField
grMatchingField
isToricDegeneration
plueckerIdeal
matchingFieldIdeal
isCoherent
getWeightMatrix
Subnodes
///
doc ///
Key
matchingFieldIdeal
(matchingFieldIdeal, FlMatchingField)
(matchingFieldIdeal, GrMatchingField)
[matchingFieldIdeal, Strategy]
[matchingFieldIdeal, MonomialOrder]
Headline
The toric ideal of a matching field
Usage
I = matchingFieldIdeal L
Inputs
L: {GrMatchingField, FlMatchingField}
Strategy => String
either "M2" or "4ti2" the strategy for computing the generators
MonomialOrder => String
either "default" or "none" (supply "none" only if $L$ is not coherent)
Outputs
I: Ideal
toric ideal of the matching field
Description
Text
A matching field $\Lambda$ for the Grassmannian Gr$(k,n)$ associates to each subset $J = \{j_1 < \dots < j_k\}$
an ordering of that subset $\Lambda(J) = (j_{\sigma(1)}, \dots, j_{\sigma(k)})$ for some permutation $\sigma \in S_k$.
The monomial map associated to a matching field $\Lambda$ is defined as the map that sends each Pluecker
coordinate $p_J$ to the monomial sgn$(\sigma)x_{1, \Lambda(J)_1} x_{2, \Lambda(J)_2} \cdots x_{k, \Lambda(J)_k}$
where sgn$(\sigma) \in \{+1, -1\}$ is the sign of the permutation. The matching field
ideal is the kernel of this monomial map.
Example
L = diagonalMatchingField(2, 4)
m = matchingFieldRingMap L
I = matchingFieldIdeal L
ker m === I
Text
The analogous setup holds for flag matching fields. A flag matching field can be thought of as a union of Grassmannian matching fields.
The inclusion of the Grassmannian matching field naturally extends to an inclusion of the corresponding ideals.
The flag matching field ideals are also generated by 'incident relations' that involve Pluecker coordinates from distinct pairs of
Grassmannians within the flag variety.
Example
L = diagonalMatchingField({1,2}, 4)
I = matchingFieldIdeal L
Text
The functions @TO "matchingFieldIdeal"@ and @TO "plueckerIdeal"@ both construct ideals that belong to the same
polynomial ring. Similarly, the ring maps constructed by the function @TO "plueckerMap"@ and @TO "matchingFieldRingMap"@
have the same target ring.
Example
I' = plueckerIdeal L
ring I === ring I'
source plueckerMap L
source plueckerMap L === source matchingFieldRingMap L
target plueckerMap L
target plueckerMap L === target matchingFieldRingMap L
Text
If the matching field is not coherent, then the matching field ideal can be constructed by setting the option MonomialOrder to "none".
Doing this sets the monomial order of the target polynomial ring above to @TO "GRevLex"@.
Example
L = grMatchingField(2, 5, {{2,1}, {3,2}, {4,3}, {1,4}, {2,4}, {1,3}, {1,5}, {5,2}, {3,5}, {4,5}})
isCoherent L
I = matchingFieldIdeal(L, MonomialOrder => "none")
(options ring I).MonomialOrder
Text
The option @TO "Strategy"@ determines how the matching field ideal is computed. The default uses the package @TO "FourTiTwo"@. This strategy works
by passing in the matrix of the toric ideal to @TO "toricGroebner"@ with the correct weight vector. In the case of Grassmannian matching fields,
the columns of the matrix of the toric ideal are exactly the vertices of the matching field polytope. For a flag matching field $\Lambda$,
the matrix of the toric ideal is the top-justified juxtaposition of such matrices for the Grassmannian matching fields contained in $\Lambda$.
On the other hand, the strategy "M2" simply uses the in-built function to compute the kernel of the map @TO "matchingFieldRingMap"@.
Caveat
For some versions of the package @TO "FourTiTwo"@, the strategy "4ti2" may not correctly take into account the weights. See the caveat in the
documentation of the function @TO "toricGroebner"@. If there are any problems, it may be more reliable to use the option "M2".
SeeAlso
Subnodes
///
doc ///
Key
matchingFieldPolytope
(matchingFieldPolytope, FlMatchingField)
(matchingFieldPolytope, GrMatchingField)
[matchingFieldPolytope, ExtraZeroRows]
Headline
The polytope of a matching field
Usage
P = matchingFieldPolytope L
Inputs
L: {GrMatchingField, FlMatchingField}
ExtraZeroRows => ZZ
produces a matching field polytope embedded in a larger space
typically used for producing polytopes of flag matching field
Outputs
P: Polyhedron
polytope of the matching field
Description
Text
Each matching field defines a projective toric variety whose defining
ideal is given by the kernel of the monomial map. See @TO "matchingFieldRingMap"@.
The coordinate ring of this toric variety is the Ehrhart ring of
the matching field polytope. Note that for flag matching fields, the
toric variety is embedded into a high-dimensional
projective space via the Segre embedding whose domain is a product of
Grassmannians.
Given a matching field $\Lambda$ for the Grassmannian Gr$(k,n)$, the matching field
polytope $P(\Lambda)$ is simply the convex hull of the exponent
vectors of the image of Pluecker variables under the monomial map of
$\Lambda$. The polytope naturally lives in the space
$\RR^{k \times n}$.
Example
L2 = diagonalMatchingField(2, 4)
P2 = matchingFieldPolytope L2
fVector P2
vertices P2
Text
The columns of the above matrix are the vertices of the matching field
polytope $P(\Lambda)$. Each column should be thought of as a $2 \times 4$
matrix whose entries are listed row by row.
A matching field $\Lambda$ for a partial flag variety Fl$(k_1, \dots, k_s; n)$ is a union of matching
fields $\Lambda = \bigcup \Lambda_i$ for some Grassmannians. The matching field polytope for a
partial flag variety is the
Minkowski sum $P(\Lambda) = \sum P(\Lambda_i)$ of Grassmannian matching field polytopes in $\Lambda$.
For this sum to make sense, each Grassmannian matching field polytope
must be put into the same space, which is taken to be $\RR^{k_{\max} \times n}$
where $k_{\max} = \max\{k_i\}$ is the largest $k$ such that there is a Grassmannian matching field
for Gr$(k,n)$ contained in $\Lambda$. If $v \in \RR^{k_i \times n}$ is a vertex for a
Grassmannian matching field polytope, then we embed $v$ into $\RR^{k_{\max} \times n}$
by joining a suitably sized matrix of zeros to $v$ from below.
Embedding a Grassmannian matching field polytope into a higher dimensional space as
described is done by specifying the optional value @TO "ExtraZeroRows"@.
Example
L1 = diagonalMatchingField(1, 4)
P1 = matchingFieldPolytope(L1, ExtraZeroRows => 1)
vertices P1
P12 = minkowskiSum(P1, P2)
vertices P12
Text
The above example constructs the diagonal matching field polytope for
the partial flag variety Fl$(1, 2; 4)$ as a Minkowski sum.
The quick way to do this is as follows.
Example
L = diagonalMatchingField({1,2}, 4)
Q = matchingFieldPolytope L
Q == P12
SeeAlso
ExtraZeroRows
Subnodes
ExtraZeroRows
///
doc ///
Key
plueckerMap
(plueckerMap, FlMatchingField)
(plueckerMap, GrMatchingField)
[plueckerMap, MonomialOrder]
Headline
The ring map of the Pluecker embedding
Usage
m = plueckerMap L
Inputs
L: {GrMatchingField, FlMatchingField}
MonomialOrder => String
either "default" or "none" (supply "none" only if $L$ is not coherent)
Outputs
m: RingMap
the ring map of the Pluecker embedding
Description
Text
The ring map for the Pluecker embedding of the Grassmannian
sends each Pluecker variable $P_J$,
where $J$ is a $k$-subset of $[n]$, to its corresponding maximal minor in a
generic $k \times n$ matrix of variables $X = (x_{i,j})$.
The domain and codomain of this ring map are naturally equipped with term
orders derived from a weight matrix, which induces the matching field.
So, for this function, we require that the matching fields be coherent.
If a weight matrix is not supplied, then one is automatically computed.
If the matching field is not coherent, then an error is thrown.
Example
L = grMatchingField(2, 4, {{1, 2}, {1, 3}, {3, 2}, {1, 4}, {4, 2}, {3, 4}})
isCoherent L
getWeightMatrix L
plueckerMap L
describe target plueckerMap L
Text
For the above polynomial ring, the monomial order is given by a weight ordering.
Note that the weights are based on $-1 \times W$ where $W$ is the weight matrix
that induces $L$, displayed using the function @TO "getWeightMatrix"@.
The purpose of $-1$ is to transition between the minimum convention
of matching fields and the maximum convention of initial terms in @TO "Macaulay2"@.
The ring map for the Pluecker embedding of a partial flag variety is
completely analogous.
Example
L = diagonalMatchingField({1,2}, 4)
getWeightMatrix L
m = plueckerMap L
describe source m
Text
The monomial order on the ring of Pluecker variables,
shown above, is also based on $-1 \times W$. More concretely,
the weight vector of a Pluecker variable $P_J$ is the weight of
the initial term of the image of the Pluecker variable $m(P_J) = \det(X_J)$ under the map.
The monomial map associated to the matching field, see @TO "matchingFieldRingMap"@
is the map that sends each
Pluecker variable $P_J \mapsto \rm{in}(\det(X_J))$ to the lead term of the
maximal minor $\det(X_J)$.
SeeAlso
Subnodes
///
doc ///
Key
weightMatrixCone
(weightMatrixCone, FlMatchingField)
(weightMatrixCone, GrMatchingField)
[weightMatrixCone, ExtraZeroRows]
Headline
The cone of weight matrices that induce the matching field
Usage
C = weightMatrixCone L
Inputs
L: {GrMatchingField, FlMatchingField}
ExtraZeroRows => ZZ
produces a cone embedded in a higher dimensional space
typically used for constructing weight matrix cones for flag matching fields
Outputs
C: Cone
the cone of weight matrices that induce the matching field
Description
Text
Given a coherent matching field $\Lambda$, either for the Grassmannian or partial flag variety,
the set of weight matrices that induce $\Lambda$ naturally form a polyhedral cone.
The function @TO "weightMatrixCone"@ constructs this cone by writing down a collection of inequalities.
To illustrate this assume that $(1,2)$ is a tuple of $\Lambda$. A weight matrix $M = (m_{i,j})$
induces a matching field with the tuple $(1,2)$ if and only if $m_{1,1} + m_{2,2} < m_{1,2} + m_{2,1}$.
Continuing in this way for all other tuples of $\Lambda$ produces the cone of weight matrices.
Note, the inequalities, like the one above, are strict. So, in general, only the interior points of
the cone give rise to generic weight matrices that induce the matching field.
Example
L = diagonalMatchingField(2, 4)
C = weightMatrixCone L
rays C
linealitySpace C
dim C
Text
In the above example, we can see that adding a vector from the lineality space
can be interpreted as adding a constant to each element in a specific row or column
of the weight matrix.
For matching fields that are not originally defined by a weight matrix, the cone of weight matrices
allows us to test if the matching field is coherent. The matching field is coherent if and only if
the cone is full dimensional. This is the strategy implemented by the function @TO "isCoherent"@.
Example
L = grMatchingField(2, 3, {{1, 2}, {2, 3}, {3, 1}})
isCoherent L
dim weightMatrixCone L
Text
In the example above, the cone naturally lives in $\RR^6$ so it is not full dimensional.
Therefore, the matching field is not coherent.
SeeAlso
Subnodes
///
doc ///
Key
algebraicMatroidBases
(algebraicMatroidBases, GrMatchingField)
Headline
The bases of the algebraic matroid
Usage
B = algebraicMatroidBases L
Inputs
L: GrMatchingField
Outputs
B: List
the bases of the algebraic matroid of the matching field as $k$-subsets
Description
Text
Displays the bases of the algebraic matroid associated to the Grassmannian Gr$(k,n)$ matching field
in terms of the $k$-subsets of $[n]$. For more details about the matroid, see the function @TO "algebraicMatroid"@.
Example
L = diagonalMatchingField(2, 4)
netList algebraicMatroidBases L
SeeAlso
algebraicMatroid
algebraicMatroidCircuits
Subnodes
///
doc ///
Key
algebraicMatroidCircuits
(algebraicMatroidCircuits, GrMatchingField)
Headline
The bases of the algebraic matroid
Usage
C = algebraicMatroidCircuits L
Inputs
L: GrMatchingField
Outputs
C: List
the circuits of the algebraic matroid of the matching field as $k$-subsets
Description
Text
Displays the circuits of the algebraic matroid associated to the Grassmannian Gr$(k,n)$ matching field
in terms of the $k$-subsets of $[n]$. For more details about the matroid, see the function @TO "algebraicMatroid"@.
Example
L = diagonalMatchingField(2, 5)
netList algebraicMatroidCircuits L
SeeAlso
algebraicMatroid
algebraicMatroidCircuits
Subnodes
///
doc ///
Key
isToricDegeneration
(isToricDegeneration, GrMatchingField)
(isToricDegeneration, FlMatchingField)
Headline
Does the matching field give rise to a toric degeneration
Usage
result = isToricDegeneration L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
result: Boolean
does the matching field give rise to a toric degeneration
Description
Text
A matching field is said to give rise to a toric degeneration (of the corresponding variety: Grassmannian
or partial flag variety) if the matching field ideal is equal to the initial ideal of the Pluecker ideal
with respect the weight order that induces the matching field. For further details on each of these ideals
see the functions @TO "matchingFieldIdeal"@ and @TO "plueckerIdeal"@.
Example
L = diagonalMatchingField(2, 4)
I = plueckerIdeal L
J = matchingFieldIdeal L
J == ideal leadTerm(1, I)
isToricDegeneration L
Text
In the above example, the last two tests are the same.
If the matching field provided is not defined in terms of a
weight matrix then one is automatically computed for it.
If the matching field is not coherent then this will produce an error.
SeeAlso
matchingFieldIdeal
plueckerIdeal
Subnodes
///
doc ///
Key
getTuples
(getTuples, FlMatchingField)
(getTuples, GrMatchingField)
Headline
The tuples of a matching field
Usage
tuples = getTuples L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
tuples: List
A list of subsets of $1, \dots, n$; the tuples of the matching field
Description
Text
A matching field $\Lambda$ for the Grassmannian Gr$(k, n)$ is a collection tuples $\Lambda(J)$ for each
$k$-subset $J \subseteq [n]$. The entries of the tuple form a permutation of $J$, so in some literature
$\Lambda(J)$ is taken to be the element of the symmetric group $\sigma \in S_k$ such that
$\Lambda(J) = (j_{\sigma(1)}, j_{\sigma(2), \dots, j_{\sigma(k)}})$ where $J = \{j_1 < j_2 < \dots < j_k\}$.
Example
L = diagonalMatchingField(2, 4)
getTuples L
Text
The tuples are stored such that their underlying sets are in RevLex order, which is the order
produced by the method @TO "subsets"@.
For flag matching fields, the tuples are stored as a list of list of tuples for each Grassmannian
matching field contained within.
Example
L = diagonalMatchingField({1,2}, 4)
netList getTuples L
SeeAlso
grMatchingField
flMatchingField
diagonalMatchingField
Subnodes
///
doc ///
Key
isCoherent
(isCoherent, FlMatchingField)
(isCoherent, GrMatchingField)
Headline
Is the matching field coherent
Usage
result = isCoherent L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
result: Boolean
is the matching field coherent, i.e., induced by a weight matrix
Description
Text
We say that a matching field $\Lambda$ is coherent if it is induced by a weight matrix.
Note that we use the minimum convention for weight matrices however for polynomial rings, the
@TO "Weights"@ option for @TO "MonomialOrder"@ uses the maximum convention.
Example
L1 = grMatchingField(2, 4, {{1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {4,3}})
isCoherent L1
getWeightMatrix L1
L2 = grMatchingField(2, 3, {{1,2}, {2,3}, {3,1}})
isCoherent L2
Text
In the examples above, the matching fields are defined in terms of their tuples. To check whether the
matching fields are coherent, the weight matrix cone is constructed, see the function @TO "weightMatrixCone"@.
The matching field is coherent if and only if the weight matrix cone is full dimensional.
If the matching field happens to be coherent, then an interior point is used for any further
computations that require a weight matrix.
SeeAlso
weightMatrixCone
Subnodes
///
doc ///
Key
RowNum
Headline
the row of the diagonal weight matrix to permute
Usage
Lgr = matchingFieldFromPermutation(k, n, S, RowNum => r)
Lfl = matchingFieldFromPermutation(kList, n, S, RowNum => r)
Inputs
k: ZZ
kList: List
n: ZZ
S: List
a permutation of $1, \dots, n$
r: ZZ
an integer at most $k$ or at most $\max(kList)$
Outputs
Lgr: GrMatchingField
Lfl: FlMatchingField
Description
Text
The option @TO "RowNum"@ chooses the row of the diagonal matching field weight matrix to permute.
By default the value is $2$.
Example
getWeightMatrix matchingFieldFromPermutation(3, 6, {4,5,6,1,2,3}, RowNum => 1)
getWeightMatrix matchingFieldFromPermutation(3, 6, {4,5,6,1,2,3}, RowNum => 2)
getWeightMatrix matchingFieldFromPermutation(3, 6, {4,5,6,1,2,3}, RowNum => 3)
SeeAlso
matchingFieldFromPermutation
diagonalMatchingField
Subnodes
///
doc ///
Key
ExtraZeroRows
Headline
enlarging a matrix with zero rows
Description
Text
The option @TO "ExtraZeroRows"@ is used by the functions @TO "matchingFieldPolytope"@ and
@TO "weightMatrixCone"@. In each case, the option controls the ambient space of the polyhedron.
By default the value is zero. It is typically used internally for computing Minkowski sums of
polyhedra that would ordinarily belong to different ambient spaces.
Example
L = diagonalMatchingField(2, 4)
P = matchingFieldPolytope(L, ExtraZeroRows => 1)
vertices P
C = weightMatrixCone(L, ExtraZeroRows => 1)
rays C
Text
In the above examples, the polyhedral object typically live in the space $\RR^{2 \times 4}$. However,
by adding an additional row, the objects live in $\RR^{3 \times 4} \cong \RR^{12}$.
Reading the down the entries of columns corresponds to reading row-by-row the entries of the corresponding
matrix.
SeeAlso
matchingFieldPolytope
weightMatrixCone
Subnodes
///
doc ///
Key
GrMatchingField
Headline
the class of Grassmannian matching fields
Description
Text
Common ways to define Grassmannian matching fields:
@UL {
{TO {"grMatchingField"}, "-- defined in terms of tuples or a weight matrix"},
{TO {"diagonalMatchingField"}, "-- the diagonal matching field"},
{TO {"matchingFieldFromPermutation"}, "-- family of matching fields indexed by permutations"}
}@
Two Grassmannian matching fields are said to be equal if and only if their tuples are the same.
{\bf Technical details.}
A Grassmannian matching field is derived from the class @TO "HashTable"@. All
Grassmannian matching fields have the following fields:
@ UL {
{"k of type ZZ"},
{"n of type ZZ"},
{"tuples of type List, accessible with", TO {"getTuples"}},
{"cache"}
}@
Everything else, including: weight matrices; polynomial rings, maps and ideals; polyhedra
such as the weight matrix cone and matching field polytope, are all stored inside the cache.
Note that the package does not export the keys, such as k or n.
If you wish to directly address the contents of the
GrMatchingField, then use "debug MatchingFields".
SeeAlso
FlMatchingField
grMatchingField
Subnodes
///
doc ///
Key
FlMatchingField
Headline
the class of matching fields for partial flag varieties
Description
Text
Common ways to define flag matching fields:
@ UL {
{TO {"flMatchingField"}, "-- defined in terms of tuples or a weight matrix"},
{TO {"diagonalMatchingField"}, "-- the diagonal matching field"},
{TO {"matchingFieldFromPermutation"}, "-- family of matching fields indexed by permutations"}
}@
{\bf Technical details.}
A flag matching field is derived from the class @TO "HashTable"@. All
flag matching fields have the following fields:
@ UL {
{"kList of type ZZ"},
{"n of type ZZ"},
{"grMatchingFieldList of type List, the list of Grassmannian matching fields contained within,
accessible with the function", TO "getGrMatchingFields"},
{"cache"}
}@
Everything else, including: weight matrices; polynomial rings, maps and ideals; polyhedra
such as the weight matrix cone and matching field polytope, are all stored inside the cache.
Note that the package does not export the keys, such as kList or n.
If you wish to directly address the contents of the
FlMatchingField, then use "debug MatchingFields".
SeeAlso
GrMatchingField
flMatchingField
Subnodes
///
doc ///
Key
matchingFieldFromPermutation
(matchingFieldFromPermutation, List, ZZ, List)
(matchingFieldFromPermutation, ZZ, ZZ, List)
[matchingFieldFromPermutation, UsePrimePowers]
[matchingFieldFromPermutation, PowerValue]
[matchingFieldFromPermutation, RowNum]
[matchingFieldFromPermutation, ScalingCoefficient]
Headline
matching field parametrised by permutations
Usage
Lgr = matchingFieldFromPermutation(k, n, S)
Lfl = matchingFieldFromPermutation(kList, n, S)
Inputs
k: ZZ
positive integer; the size of the tuples of the Grassmannian matching field
kList: List
positive integers; the sizes of the tuples of the flag matching field
n: ZZ
positive integer; the tuples have entries in 1 .. n
RowNum => ZZ
which row of the digonal weight matrix to permute
UsePrimePowers => Boolean
use multiples of prime power used for the entries of the diagonal weight matrix
PowerValue => ZZ
use multiples of powers this value in the diagonal weight matrix
ScalingCoefficient => ZZ
the value by which to scale the permuted row of the diagonal weight matrix
Outputs
Lgr: GrMatchingField
Lfl: FlMatchingField
Description
Text
Let $M_0 \in \RR^{k \times n}$ be a matrix that induced the diagonal matching field.
Usually, we take this matrix to be $(m_{i,j})$ with $m_{i,j} = (n-j)n^(i-2)$ if $i > 1$ and $m_{i,j} = 0$ if $i = 1$.
Note that this matrix is different to the weight matrix of the matching field produced by the function @TO "diagonalMatchingField"@,
however the matching fields are the same.
Given a permutation $\sigma \in S_n$, the matching field associated to $\sigma$ has weight matrix
$M_\sigma$, which is the same as $M_0$ except in the second row, which is given by $\sigma(1), \sigma(2), \dots, \sigma(n)$.
If $\sigma = (n, n-1, \dots, 1) \in S_n$ is the permutation written in single-line notation, then the matching field induced by $M_\sigma$ is
the diagonal matching field.
Example
L0 = diagonalMatchingField(3, 6)
getWeightMatrix L0
L1 = matchingFieldFromPermutation(3, 6, {6,5,4,3,2,1})
getWeightMatrix L1
L0 == L1
L2 = matchingFieldFromPermutation(3, 6, {1,3,2,6,4,5})
getWeightMatrix L2
L3 = matchingFieldFromPermutation({1,2,3}, 6, {1,4,2,3,6,5})
getWeightMatrix L3
Text
The optional argument @TO "RowNum"@ is used to change which row of $M_0$ is permuted.
Example
L4 = matchingFieldFromPermutation(3, 6, {1,4,2,3,6,5}, RowNum => 3)
getWeightMatrix L4
Text
The optional argument @TO "UsePrimePowers"@ is used to modify the original diagonal weight matrix $M_0$. If
the option is set to true then we use the matrix with entries $m_{i,j} = (n-j) p^(i-2)$ if $i>1$ and $m_{i,j} = 0$
if $i = 1$, where $p \ge n$ is the smallest prime number greater than or equal to $n$.
Example
L5 = matchingFieldFromPermutation(3, 6, {1,3,2,4,6,5}, UsePrimePowers => true)
getWeightMatrix L5
Text
The optional argument @TO "PowerValue"@ is used to give a specific value to $p$ in the diagonal weight matrix
as described above. If the value is not positive, then the argument is ignored. This option should be used carefully.
If the power value is set incorrectly (typically by setting a value that is too low) then the weight matrix may not be {\it generic},
i.e., it does not define a matching field. However, in such a case, the function produces a matching field without error,
as shown in the example $L7$ below. Working with such matching fields may lead to unexpected behaviours.
Example
L6 = matchingFieldFromPermutation(3, 6, {1,3,2,4,6,5}, PowerValue => 10)
getWeightMatrix L6
L7 = matchingFieldFromPermutation(3, 6, {5,4,3,2,1,0}, PowerValue => 1)
getWeightMatrix L7
Text
Any positive integer supplied to the argument @TO "PowerValue"@ takes precedence over @TO "UsePrimePowers"@.
The optional argument @TO "ScalingCoefficient"@ is used to scale the entries of the row that is permuted by the permutation.
If @TO "UsePrimePowers"@ is set to true, and $p \ge n$ is the smallest prime number less than $n$, then the scaling coefficient
can be set to any $c \in \{1, 2, \dots, p-1\}$ and the resulting weight matrix is guaranteed to be generic.
Example
L8 = matchingFieldFromPermutation(3, 6, {6,1,5,2,3,4}, UsePrimePowers => true, ScalingCoefficient => 3)
getWeightMatrix L8
isToricDegeneration L8
Text
The above is an example of a {\it hexagonal matching field}, which does not give rise to a toric degeneration of
the Grassmannian Gr$(3, 6)$.
SeeAlso
RowNum
UsePrimePowers
PowerValue
ScalingCoefficient
Subnodes
RowNum
UsePrimePowers
ScalingCoefficient
///
doc ///
Key
NOBody
(NOBody, GrMatchingField)
(NOBody, FlMatchingField)
Headline
Newton-Okounkov body of the matching field
Usage
D = NOBody L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
D: Polyhedron
Newton-Okounkov body of the matching field
Description
Text
The Pluecker algebra is generated by Pluecker forms given by top-justified
minors of a generic matrix. The Pluecker algebra can be constructed with
the function @TO "plueckerAlgebra"@, of the image of the Pluecker ring map that can be
accessed with the function @TO "plueckerMap"@. Note that the ambient ring
containing the Pluecker algebra has a weight-based term order that comes from
the matching field. We compute a subalgebra basis (SAGBI basis) using the
package @TO "SubalgebraBases"@ for the Pluecker algebra.
The Newton-Okounkov body of the matching field is constructed from this subalgebra basis.
In the case of Grassmannian matching fields, the NO body is simply the convex
hull of the exponent vectors of the initial terms of the subalgebra basis.
If the matching field gives rise to a toric degeneration (see the function @TO "isToricDegeneration"@)
then the NO body coincides with the matching field polytope
(see @TO "matchingFieldPolytope"@) because the maximal minors form a subalgebra basis for the Pluecker algebra.
Example
L = diagonalMatchingField(2, 4)
P = matchingFieldPolytope L
vertices P
noBody = NOBody L
vertices noBody
P == noBody
Text
In the case of flag matching fields, the NO body is computed in a similar way.
First a subalgebra basis is computed for the Pluecker algebra.
However, to construct the NO body from the subalgebra basis, we need to take into account
the grading on the Pluecker forms. From the geometric perspective, we are simply using the
Segre embedding to view the flag variety as a subvariety of a suitably large projective space.
Example
L = diagonalMatchingField({1,2}, 4)
noBody = NOBody L
vertices noBody
noBody == matchingFieldPolytope L
Text
Note that the matching field polytope is equal to the NO body if and only if the matching field
gives rise to a toric degeneration. So, for a {\it hexagonal matching field} for Gr$(3,6)$, the
NO body has an additional vertex. We construct a hexagonal matching field using the function
@TO "matchingFieldFromPermutation"@ as follows.
Example
L = matchingFieldFromPermutation(3, 6, {6,1,5,2,3,4}, UsePrimePowers => true, ScalingCoefficient => 3)
isToricDegeneration L
vertices NOBody L
SeeAlso
matchingFieldFromPermutation
isToricDegeneration
SubalgebraBases
plueckerAlgebra
plueckerMap
Subnodes
///
doc ///
Key
UsePrimePowers
PowerValue
Headline
use a diagonal weight matrix with multiples of certain powers
Usage
Lgr = matchingFieldFromPermutation(k, n, S, UsePrimePowers => b, PowerValue => v)
Lfl = matchingFieldFromPermutation(kList, n, S, UsePrimePowers => b, PowerValue => v)
Inputs
k: ZZ
kList: List
n: ZZ
S: List
a permutation of $1, \dots, n$
r: Boolean
set whether prime powers are to be used
v: ZZ
set the value of the powers to be used
Outputs
Lgr: GrMatchingField
Lfl: FlMatchingField
Description
Text
The options @TO "UsePrimePowers"@ and @TO "PowerValue"@ are optional arguments for the function
@TO "matchingFieldFromPermutation"@, which constructs a matching field by permuting a row (usually the second row)
of a weight matrix that gives rise to the diagonal matching field.
If the option @TO "UsePrimePowers"@ is set to true, then the underlying {\it diagonal} weight matrix is given by
$M_0 = (m_{i,j})$ with $m_{i,j} = (n-j) p^(i-2)$ if $i > 1$ and $m_{i,j} = 0$ if $i = 1$, where
$p \ge n$ is the smallest prime number greater than or equal to $n$.
Example
getWeightMatrix matchingFieldFromPermutation(3, 6, {1,2,3,4,5,6}, UsePrimePowers => false)
getWeightMatrix matchingFieldFromPermutation(3, 6, {1,2,3,4,5,6}, UsePrimePowers => true)
Text
To set the value of $p$ in the above matrix to a specific value, use the option @TO "PowerValue"@.
Example
getWeightMatrix matchingFieldFromPermutation(3, 6, {1,2,3,4,5,6}, PowerValue => 10)
Text
The option @TO "PowerValue"@ overrides the option @TO "UsePrimePowers"@.
{\bf Warning.} Certain values for the option @TO "PowerValue"@ will produce weight matrices that are
not {\it generic}, i.e., the initial term of the corresponding Pluecker forms are not all monomials,
hence the weight matrix does not define a matching field. The function @TO "matchingFieldFromPermutation"@ will
produce a matching field, which may lead to unexpected behaviours.
{\bf Precise details.} The value of $p$ is determined as follows.
The option @TO "PowerValue"@ is used if it is a positive value. If @TO "PowerValue"@ is not positive
then the function checks to see if the option @TO "UsePrimePowers"@ is set to true. If it is, then
the value of $p$ is set to be the small prime number greater than or equal to $n$. Otherwise, if
@TO "UsePrimePowers"@ is set to false, then $p$ is set to be $n$.
SeeAlso
matchingFieldFromPermutation
RowNum
Subnodes
///
doc ///
Key
ScalingCoefficient
Headline
scale the permuted row of the weight matrix
Usage
Lgr = matchingFieldFromPermutation(k, n, S, ScalingCoefficient => c)
Lfl = matchingFieldFromPermutation(kList, n, S, ScalingCoefficient => c)
Inputs
k: ZZ
kList: List
n: ZZ
S: List
a permutation of $1, \dots, n$
c: ZZ
scale the value of permuted row by $c$
Outputs
Lgr: GrMatchingField
Lfl: FlMatchingField
Description
Text
The function @TO "matchingFieldFromPermutation"@ constructs a weight matrix
by permuting the row of a weight matrix that induces the diagonal matching field.
The option @TO "ScalingCoefficient"@ sets the scaling coefficient of the row
being permuted, which by default is $1$.
Note that by setting the option @TO "UsePrimePowers"@ to true, it guarantees that the
weight matrix is {\it generic}, i.e., the matching field is well defined, as long as the scaling coefficient is less
than the prime power used.
Example
getWeightMatrix matchingFieldFromPermutation(3, 6, {1, 3, 2, 4, 6, 5}, UsePrimePowers => true, ScalingCoefficient => 1)
getWeightMatrix matchingFieldFromPermutation(3, 6, {1, 3, 2, 4, 6, 5}, UsePrimePowers => true, ScalingCoefficient => 2)
getWeightMatrix matchingFieldFromPermutation(3, 6, {1, 3, 2, 4, 6, 5}, UsePrimePowers => true, ScalingCoefficient => 3)
SeeAlso
matchingFieldFromPermutation
RowNum
UsePrimePowers
Subnodes
///
doc ///
Key
diagonalMatchingField
(diagonalMatchingField, ZZ, ZZ)
(diagonalMatchingField, List, ZZ)
(diagonalMatchingField, ZZ)
Headline
the diagonal matching field
Usage
Lgr = diagonalMatchingField(k, n)
Lfl = diagonalMatchingField(kList, n)
Lfl = diagonalMatchingField(n)
Inputs
k: ZZ
kList: List
n: ZZ
Outputs
Lgr: GrMatchingField
diagonal Grassmannian matching field
Lfl: FlMatchingField
diagonal flag matching field
Description
Text
The diagonal matching field is defined to be the matching field
whose tuples are all in ascending order. It is a coherent matching field
so it is induced by a weight matrix.
The weight matrix used to construct the diagonal matching field us given by
$M = (m_{i,j})$ with $m_{i,j} = (i-1)(n-j+1)$.
Example
L = diagonalMatchingField(3, 6)
getWeightMatrix L
Text
The function @TO "diagonalMatchingField"@ can be used in three different ways.
If it is supplied two integers $(k,n)$ then it produces the diagonal matching field
for the Grassmannian, as shown in the above example.
If it is supplied a single integer $n$, then it produces the diagonal matching field
for the full flag variety. The matching fields of the full flag variety have tuples of
size $1, 2, \dots, n-1$.
The function can be made to produce diagonal matching fields for partial flag varieties
by supplying it a list $kList$ and integer $n$. The sizes of the tuples are the entries
of $kList$.
Example
L = diagonalMatchingField 4;
netList getTuples L
L = diagonalMatchingField({1, 2}, 5);
netList getTuples L
Text
Diagonal matching fields always give rise to toric degenerations
of Grassmannians and flag varieties. In the literature,
this toric degeneration is also known as Gelfand-Tsetlin
degeneration. The matching field polytopes for the diagonal matching field,
which can be constructed with the function @TO "matchingFieldPolytope"@,
are unimodularly equivalent to Gelfand-Tsetlin polytopes.
SeeAlso
GrMatchingField
FlMatchingField
isToricDegeneration
matchingFieldPolytope
Subnodes
///
doc ///
Key
matchingFieldRingMap
(matchingFieldRingMap, FlMatchingField)
(matchingFieldRingMap, GrMatchingField)
[matchingFieldRingMap, MonomialOrder]
Headline
monomial map of the matching field
Usage
m = matchingFieldRingMap L
Inputs
L: {GrMatchingField, FlMatchingField}
MonomialOrder => String
either "default" or "none" (supply "none" only when $L$ is not coherent)
Outputs
m: RingMap
monomial ring map whose kernel is the matching field ideal
Description
Text
Each tuple $J = (j_1, j_2, \dots, j_k)$ of a matching field defines a monomial given by
$m(J) = c x_{1, j_1} x_{2, j_2} \dots x_{k, j_k}$ where the coefficient $c \in \{+1, -1\}$ is
the sign of the permutation that permutes $J$ into ascending order. Equivalently,
$c = (-1)^d$ where $d = |\{(a, b) \in [k]^2 : a < b, j_a > j_b \}|$ is the number of descents of
$J$. The monomial $m(J)$ is the lead term of the corresponding Pluecker form with respect to the
weight order given by the matching field.
Example
L = matchingFieldFromPermutation(2, 4, {2, 3, 4, 1})
getTuples L
matchingFieldRingMap L
plueckerForms = matrix plueckerMap L
leadTerm plueckerForms
leadTerm plueckerForms == matrix matchingFieldRingMap L
Text
Note that the polynomial rings have weight-based term orders that depend on a weight matrix that
induces the matching field. So if the matching field supplied is not coherent then function gives an
error. To check that a matching field is coherent use the function @TO "isCoherent"@.
SeeAlso
getTuples
plueckerMap
isCoherent
Subnodes
///
doc ///
Key
getWeightPluecker
(getWeightPluecker, FlMatchingField)
(getWeightPluecker, GrMatchingField)
Headline
weight of the Pluecker variables induced by the weight matrix
Usage
W = getWeightPluecker L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
W: List
weights of the Pluecker variables induced by the matching field
Description
Text
Suppose that a coherent matching field is induced by a $k \times n$ weight matrix $M$.
The Pluecker forms are minors of a generic matrix of variables. For example, for the Grassmannian
the Pluecker forms are the maximal minors. The weight matrix $M$ is {\it generic}, which is equivalent
to the property: the initial form of each Pluecker form with respect to $M$ is a monomial.
The weight of the initial term of each Pluecker form is the induced weight on the ring in the Pluecker
variables, which is given by the function @TO "getWeightPluecker"@. By convention, the Pluecker variables
are listed such that their subsets are in RevLex order, which is the order given by the function @TO "subsets"@.
An equivalent formulation is: the Pluecker weight vector is the tuple of tropical determinants of $M$, also
known as the image of $M$ under the {\it tropical Stiefel map} (or its natural generalisation to partial
flag varieties).
Example
L = diagonalMatchingField(2, 4)
getWeightMatrix L
getWeightPluecker L
Text
Note that the polynomial rings associated to a matching field have weight vectors based on the weight matrix
given by @TO "getWeightMatrix"@ and weight vector given by @TO "getWeightPluecker"@. The package @TO "MatchingFields"@
uses a minimum convention but the initial terms of polynomials uses the maximum convention so the weight vectors may look
a little different.
Example
m = matchingFieldRingMap L
describe source m
describe target m
SeeAlso
getWeightMatrix
matchingFieldRingMap
Subnodes
///
doc ///
Key
getWeightMatrix
(getWeightMatrix, FlMatchingField)
(getWeightMatrix, GrMatchingField)
Headline
weight matrix that induces the matching field
Usage
M = getWeightMatrix L
Inputs
L: {GrMatchingField, FlMatchingField}
Outputs
M: Matrix
weight matrix that induces the matching field
Description
Text
If the supplied matching field is coherent, then this function returns a weight matrix that
induces the matching field. If the matching field was originally defined by a weight matrix then
that weight matrix is returned. Otherwise, a weight matrix is computed.
The weight matrix is computed by computing the weight matrix cone, which can be returned with the
function @TO "weightMatrixCone"@. If the supplied matching field is not coherent, then the function
gives an error.
Example
L = diagonalMatchingField(2, 4)
getWeightMatrix L
L = grMatchingField(2, 4, {{1,2}, {1,3}, {3,2}, {1,4}, {4,2}, {3,4}})
isCoherent L
getWeightMatrix L
Text
The weight on the ring containing the Pluecker forms, i.e., minors of a generic matrix, is based on
the weight matrix returned by @TO "getWeightMatrix"@. Note that the package @TO "MatchingFields"@ uses
the minimum convention but polynomial ring weight vectors use the maximum convention so some
conversion is required.
Example
plueckerMap L
R = target plueckerMap L
describe R
SeeAlso
getWeightPluecker
plueckerMap
weightMatrixCone
Subnodes
///
doc ///
Key
linearSpanTropCone
(linearSpanTropCone, GrMatchingField)
[linearSpanTropCone, VerifyToricDegeneration]
VerifyToricDegeneration
Headline
linear span of the tropical cone associated to the matching field
Usage
linSpace = linearSpanTropCone L
Inputs
L: GrMatchingField
VerifyToricDegeneration => Boolean
controls if @TO "isToricDegeneration"@ is run
Outputs
linSpace: Module
a free QQ-module, the linear span of the cone in the tropicalisation
corresponding to the matching field
Description
Text
Suppose that $I$ is an ideal and $in_w(I)$ is a binomial initial ideal of $I$ with
resepct to a weight $w$.
Let $C_w$ be the cone in the Groebner fan of $I$ that contains $w$ in its relative interior.
The linear span of $C_w$ can be constructed from a generating set of $in_w(I)$. Each generator
$x^u - x^v$ gives a hyperplane defined by kernel of $(0 .. 0, 1_u, 0 .. 0, -1_v, 0 .. 0)$.
The intersection of these hyperplanes gives the linear span of the Groebner cone.
The function @TO "linearSpanTropCone"@ checks if the supplied matching field gives rise to
a toric degeneration, which happens if and only if the initial ideal of
the Pluecker ideal is toric, i.e., the ideal is generated by binomials and is prime.
If it is already known that the matching field gives rise to a toric degeneration then
set the option @TO "VerifyToricDegeneration"@ to false to avoid repeating this check.
The linear span is a realisation of the algebraic matroid associated to the matching field.
See the function @TO "algebraicMatroid"@.
Example
L = diagonalMatchingField(2, 4)
linearSpanTropCone L
algebraicMatroid L == matroid transpose gens linearSpanTropCone L
SeeAlso
algebraicMatroid
isToricDegeneration
Subnodes
///
doc ///
Key
grMatchingField
(grMatchingField, Matrix)
(grMatchingField, ZZ, ZZ, List)
Headline
Construct a matching field for the Grassmannian variety
Usage
L = grMatchingField(weightMatrix)
L = grMatchingField(k, n, tuples)
Inputs
k: ZZ
positive integer; the size of the tuples of the matching field
n: ZZ
positive integer; the tuples have entries in 1 .. n
weightMatrix: Matrix
induces the matching field
Outputs
L: GrMatchingField
Description
Text
This function is the basic constructor for Grassmannian
matching fields. The function outputs an instance of type @TO "GrMatchingField"@,
which represents the matching field and stores all data related and
computed about it.
There are two basic ways to define a Grassmannian matching field. The first way is to
supply a weight matrix that induces the matching field. This produces a coherent matching field
and is well-defined if the matrix is {\it generic}.
Example
M = matrix {{0,0,0,0,0,0}, {1,6,2,5,3,4}, {60,50,10,20,40,30}}
L1 = grMatchingField M
getTuples L1
isToricDegeneration L1
Text
In the above example, we construct the Grassmannian matching field
induced by the given weight matrix. The tuples for the
matching field are listed in RevLex order. The function @TO "isToricDegeneration"@
checks the equality of the @TO "matchingFieldIdeal"@ and the initial ideal
of the @TO "plueckerIdeal"@ with respect to the weight inducing the matching field.
The second way to define a Grassmannian matching field
is to list out its tuples.
Example
T = {{1,4}, {2,4}, {3,4}, {3,1}, {3,2}, {1,2}}
L2 = grMatchingField(2, 4, T)
getTuples L2
isCoherent L2
getWeightMatrix L2
Text
As shown in the example above, the first argument "k"
specifies the size of the tuples.
The third argument is a list of the tuples.
Note that the tuples can be supplied in any order.
If the list of tuples is not correct, i.e. if some are missing or duplicated then
the function raises an error.
When a Grassmannian matching field is constructed in this way, it is not
guaranteed to be coherent, i.e., it may not be induced by a weight matrix.
The function @TO "isCoherent"@
checks whether the matching field is coherent and the function @TO "getWeightMatrix"@
returns a weight matrix that induces the matching field, if it exists.
If the matching field is not coherent, then these methods produce an error.
A note of caution. Two different weight matrices may induce the same matching field
so the function @TO "getWeightMatrix"@ may return a weight matrix that is
different to what may be expected. However, if a matching field is defined
by a weight matrix, then that weight matrix will be returned.
SeeAlso
GrMatchingField
FlMatchingField
flMatchingField
isToricDegeneration
plueckerIdeal
matchingFieldIdeal
isCoherent
getWeightMatrix
Subnodes
///
doc ///
Key
(symbol ==, FlMatchingField, FlMatchingField)
Headline
equality of flag matching fields
Usage
result = L1 == L2
Inputs
L1: FlMatchingField
L2: FlMatchingField
Outputs
result: Boolean
are the flag matching fields equal
Description
Text
Two matching fields are said to be equal if their tuples are equal.
In the case of flag matching fields, the $kList$s must be equal.
Example
L1 = diagonalMatchingField({1,2}, 4)
getWeightMatrix L1
getTuples L1
L2 = flMatchingField({1,2}, matrix {{0,0,0,0}, {8,4,2,1}})
getWeightMatrix L2
getTuples L2
L1 == L2
L3 = flMatchingField({1,2}, 4, {{{1}, {4}, {3}, {2}}, {{3,4},{2,4},{1,4},{2,3},{1,3},{1,2}}})
L3 == L1
SeeAlso
GrMatchingField
FlMatchingField
getTuples
getWeightMatrix
Subnodes
///
doc ///
Key
(symbol ==, GrMatchingField, GrMatchingField)
Headline
equality of Grassmannian matching fields
Usage
result = L1 == L2
Inputs
L1: GrMatchingField
L2: GrMatchingField
Outputs
result: Boolean
are the matching fields equal
Description
Text
Two matching fields are said to be equal if their tuples are equal.
Example
L1 = diagonalMatchingField(2, 4)
getWeightMatrix L1
getTuples L1
L2 = grMatchingField matrix {{0,0,0,0}, {8,4,2,1}}
getWeightMatrix L2
getTuples L2
L1 == L2
L3 = grMatchingField(2, 4, {{3,4},{2,4},{1,4},{2,3},{1,3},{1,2}})
L3 == L1
SeeAlso
GrMatchingField
FlMatchingField
getTuples
getWeightMatrix
Subnodes
///
doc ///
Key
(net, GrMatchingField)
(net, FlMatchingField)
Headline
display a matching field
Usage
net L
Inputs
L: {GrMatchingField, FlMatchingField}
Description
Text
The @TO "net"@ of a matching field displays $k$ or $kList$ and $n$ for that matching field.
See @TO "GrMatchingField"@ and @TO "FlMatchingField"@.
SeeAlso
GrMatchingField
FlMatchingField
Subnodes
///
doc ///
Key
plueckerAlgebra
(plueckerAlgebra, GrMatchingField)
(plueckerAlgebra, FlMatchingField)
[plueckerAlgebra, MonomialOrder]
Headline
Pluecker algebra of a (partial) flag variety
Usage
S = plueckerAlgebra L
Inputs
L: {GrMatchingField, FlMatchingField}
MonomialOrder => String
either "default" or "none" (supply "none" only if $L$ is not coherent)
Outputs
S: Subring
generated by minors of a generic matrix of variables
Description
Text
The Pluecker algebra for the Grassmannian is generated by the maximal minors of a
generic $k \times n$ matrix of variables. Similarly, for a partial flag variety, the
Pluecker algebra is generated by a collection of top-justified minors of a generic matrix
of variables.
A matching field specifies a weight order on the ambient ring containing the Pluecker algebra.
Example
L = diagonalMatchingField(2, 4)
S = plueckerAlgebra L
transpose gens S
SeeAlso
GrMatchingField
FlMatchingField
plueckerMap
Subring
Subnodes
///
doc ///
Key
TopeField
Headline
A tope field structure on a matching field
Description
Text
Tope fields were introduced in the study of tropical oriented matroids
and have been used generalise and study matching fields. In this package we follow the conventions
of tope fields given by Smith and Loho, i.e., the type of a tope field contains positive entries.
The combinatorial data of a tope field is given by a matching field for $Gr(k,n)$ together with a type: $(t_1, \dots, t_s)$
where $t_1 + \dots + t_s = k$ and each $t_i$ is a positive integer. The bipartite graphs of the tope field are encoded in the
tuples of the matching field as follows. Let $(i_{1,1}, i_{1,2}, \dots i_{1,t_1}, i_{2,1}, \dots, i_{s, t_s})$ be a tuple of the
matching field, the bipartite graph on vertices $L := [n]$ and $R := [s]$ has edges $\{i_{j, t}, j\}$ where $j \in [s]$ and $t \in [t_j]$.
For example, if $(1,3,2)$ is a tuple of a matching field for $Gr(3,4)$ of a tope field of type $(2,1)$, then corresponding bipartite graph on
vertices $L = [4]$ and $R = [2]$ has edges: $E = \{11, 31, 22 \}$.
The TopeField type in this package is a HashTable that stores the matching field and type. A tope field can be defined from a matching field
using the constructor @TO "topeField"@. New tope fields can be constructed from old using the function @TO "amalgamation"@. Note that
amalgamation is only defined for linkage tope field, see @TO "isLinkage"@.
SeeAlso
GrMatchingField
grMatchingField
topeField
amalgamation
isLinkage
Subnodes
///
doc ///
Key
topeField
(topeField, GrMatchingField)
(topeField, GrMatchingField, List)
Headline
Constructor of a tope field
Usage
TF = topeField MF
TF = topeField(MF, T)
Inputs
MF: GrMatchingField
matching field containing the tuples of the tope field
T: List
the type of the tope field
Outputs
TF: TopeField
Description
Text
The standard constructor of a tope field. If the constructor is supplied with a matching field and no type, then
the type is automatically set to $1,1, \dots, 1$.
Example
MF = diagonalMatchingField(3,6);
TF = topeField MF
TF' = topeField(MF, {2,1})
SeeAlso
GrMatchingField
grMatchingField
TopeField
amalgamation
Subnodes
///
doc ///
Key
isLinkage
(isLinkage, GrMatchingField)
(isLinkage, TopeField)
Headline
Test if a tope field is linkage
Usage
result = isLinkage MF
result = isLinkage TF
Inputs
MF: GrMatchingField
TF: TopeField
Outputs
result: Boolean
Description
Text
Consider a tope field given by a collection of bipartite graphs.
The tope field is said to be linkage if for each $k+1$-subset $S$ of $[n]$, the union of the edges of the bipartite graphs
$G$ where the non-isolated left-vertices of $G$ are contained in $S$, is a forest.
Note that all coherent matching fields are linkage.
Example
L = diagonalMatchingField(2,4);
isLinkage L
SeeAlso
GrMatchingField
grMatchingField
TopeField
amalgamation
Subnodes
///
doc ///
Key
amalgamation
(amalgamation, ZZ, GrMatchingField)
(amalgamation, ZZ, TopeField)
Headline
The $i$th amalgamation of a tope field
Usage
result = amalgamation(i, MF)
result = amalgamation(i, TF)
Inputs
i: ZZ
the $i$th amalgamation
MF: GrMatchingField
TF: TopeField
Outputs
result: TopeField
Description
Text
Computes the $i$th amalgamation of a tope field. Note that the tope field must be linkage for amalgamation to be
well-defined.
Example
L = matchingFieldFromPermutation(3,6,{4,5,6,1,2,3});
getTuples L
T = topeField L
T1 = amalgamation(1, T)
getTuples T1
SeeAlso
GrMatchingField
grMatchingField
TopeField
topeField
isLinkage
Subnodes
///
doc ///
Key
(net, TopeField)
Headline
display a tope field
Usage
net TF
Inputs
TF: TopeField
Description
Text
The @TO "net"@ of a tope field displays $n$ and the type of the tope field.
See @TO "TopeField"@.
SeeAlso
TopeField
Subnodes
///
doc ///
Key
(getTuples, TopeField)
Headline
tuples of a tope field
Usage
tuples = getTuples TF
Inputs
TF: TopeField
Outputs
tuples: List
list of tuples of the matching field of the tope field
Description
Text
Lists the tuples of the matching field of the tope field.
Example
L = diagonalMatchingField(3, 6);
T = topeField L
getTuples T
SeeAlso
TopeField
Subnodes
///
-- #########
-- # Tests #
-- #########
-- MF from weight matrix: tuples, pluecker weight, toric degen
TEST ///
L = grMatchingField matrix {
{0,0,0,0},
{1,3,2,4}};
tupleList = {{2,1},{3,1},{2,3},{4,1},{4,2},{4,3}};
assert(getTuples L == tupleList);
assert(getWeightPluecker L == {1, 1, 2, 1, 3, 2});
assert(isToricDegeneration L);
///
-- non coherent from tuples
TEST ///
L = grMatchingField(2, 3, {{1,2}, {2,3}, {3,1}});
assert(isCoherent L == false);
///
-- diagonal MF: weight matrix cone
TEST ///
L = diagonalMatchingField(2, 6);
assert(dim weightMatrixCone L == 12);
assert(numColumns rays weightMatrixCone L == 5);
assert(numColumns linealitySpace weightMatrixCone L == 7);
///
-- MF from permutations: equality
TEST ///
L = matchingFieldFromPermutation(2, 4, {2,1,4,3});
L' = matchingFieldFromPermutation(2, 4, {3,2,10,5});
assert(getTuples L == getTuples L');
assert(L == L')
///
-- pluecker algebra: isSAGBI
TEST ///
L = diagonalMatchingField(2, 4);
S = plueckerAlgebra L;
assert(isSAGBI S);
///
-- non diag pluekcer algebra
TEST ///
L = matchingFieldFromPermutation(2, 4, {2,3,1,4});
S = plueckerAlgebra L;
assert(isSAGBI S);
///
-- algebraic matroid
TEST ///
L = diagonalMatchingField(2, 4);
S = set {{1, 3}, {1, 4}, {2, 3}, {2, 4}};
assert(isSubset((algebraicMatroidCircuits L)_0, S))
assert(isSubset(S, (algebraicMatroidCircuits L)_0))
///
-- tope field amalgamations
TEST ///
L = grMatchingField(3, 5, {{1,3,2}, {1,4,2}, {1,5,2}, {3,4,1}, {1,3,5}, {1,4,5}, {3,4,2}, {2,3,5}, {2,4,5}, {3,4,5}});
T = topeField L;
assert(isLinkage T);
T2 = amalgamation(2, T);
assert(T2#"type" == {1,2,1});
assert(getTuples T2 == {{1, 3, 4, 2}, {1, 3, 5, 2}, {1, 4, 5, 2}, {1, 3, 4, 5}, {2, 3, 4, 5}});
T23 = amalgamation(3, T2);
assert(T23#"type" == {1,2,2});
assert(getTuples T23 == {{1,3,4,2,5}});
///
-- tope field linkage
TEST ///
L = grMatchingField(2, 3, {{1,2}, {3,1}, {2,3}});
assert(not isCoherent L);
assert(not isLinkage L);
///
-- matching field ideal for non-coherent
TEST ///
L = grMatchingField(2, 4, {{1,2}, {3,1}, {2,3}, {1,4}, {2,4}, {4,3}});
assert(not isCoherent L);
I = matchingFieldIdeal(L, MonomialOrder => "none");
assert(zero I);
///
-- non-coherent matching field ideal equals diagonal matching field ideal
TEST ///
S = subsets(1 .. 5, 3);
S = {{2,1,3}} | delete({1,2,3}, S);
L = grMatchingField(3, 5, S);
assert(not isCoherent L);
I = matchingFieldIdeal(L, MonomialOrder => "none");
D = diagonalMatchingField(3, 5);
I' = matchingFieldIdeal D;
m = map(ring I, ring I', vars ring I);
assert(m I' == I);
///
end --
|