1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
|
newPackage("MultigradedBGG",
Version => "1.1",
Date => "5 June 2023",
Headline => "the multigraded BGG correspondence and differential modules",
Authors => {
{Name => "Maya Banks", Email => "mdbanks@wisc.edu", HomePage => "https://sites.google.com/wisc.edu/mayabanks" },
{Name => "Michael K. Brown", Email => "mkb0096@auburn.edu", HomePage => "http://webhome.auburn.edu/~mkb0096/" },
{Name => "Tara Gomes", Email => "gomes072@umn.edu", HomePage => "https://cse.umn.edu/math/tara-gomes" },
{Name => "Prashanth Sridhar", Email => "pzs0094@auburn.edu", HomePage => "https://sites.google.com/view/prashanthsridhar/home"},
{Name => "Eduardo Torres Davila", Email => "torre680@umn.edu", HomePage => "https://etdavila10.github.io/" },
{Name => "Sasha Zotine", Email => "18az45@queensu.ca", HomePage => "https://sites.google.com/view/szotine/home" }
},
PackageExports => {"NormalToricVarieties", "Complexes"},
Keywords => {"Commutative Algebra"}
)
export {
--methods
"dualRingToric",
"toricRR",
"toricLL",
"stronglyLinearStrand",
"unfold",
"DifferentialModule",
"differentialModule",
"foldComplex",
"resDM",
"resMinFlag",
"minimizeDM",
"differential",
--symbols
"SkewVariable"
}
--------------------------------------------------
--- Differential Modules
--------------------------------------------------
DifferentialModule = new Type of Complex
DifferentialModule.synonym = "differential module"
differentialModule = method(TypicalValue => DifferentialModule)
differentialModule Complex := C -> (
if C != naiveTruncation(C, -1, 1) then error "--complex needs to be concentrated in homological degrees -1, 0, and 1";
if C.dd_0 != C.dd_1 then error "--the two differentials of the complex need to be identical";
if C.dd_0^2 != 0 then error "--differential must square to zero";
new DifferentialModule from C
);
differentialModule Matrix := phi -> (
if phi^2 != 0 then error "The differential does not square to zero.";
R := ring phi;
if target phi != source phi then error "source and target of map are not the same";
new DifferentialModule from (complex({-phi,-phi})[1])--the maps are negated to cancel out the sign introduced by the shift.
);
ring(DifferentialModule) := Ring => D -> D.ring;
module DifferentialModule := (cacheValue symbol module)(D -> D_0);
degree DifferentialModule := List => (D -> degree D.dd_1);
differential = method();
differential DifferentialModule := Matrix=> (D->D.dd_1);
kernel DifferentialModule := Module => opts -> (D -> kernel D.dd_0);
image DifferentialModule := Module => (D -> image D.dd_1);
homology DifferentialModule := Module => opts -> (D -> HH_0 D);
unfold = method();
--Input: a differential module and a pair of integers low and high
--Output: the unfolded chain complex of the differential module, in homological degrees
-- low through high.
unfold(DifferentialModule,ZZ,ZZ) := Complex => (D,low,high)->(
L := toList(low..high);
d := degree D;
R := ring D;
phi := differential D;
chainComplex apply(L,l-> phi)[-low]
)
minFlagOneStep = method()
minFlagOneStep(DifferentialModule) := (D) -> (
d := degree D;
R := ring D;
minDegree := min degrees trim HH_0 D;
colList := select(rank source (mingens HH_0(D)), i -> degree (mingens HH_0(D))_i == minDegree);
minDegHom := (mingens HH_0(D))_colList;
homMat := mingens image((minDegHom) % (image D.dd_1));
G := res image homMat;
psi := map(D_0,G_0**R^{d},homMat, Degree=>d);
newDiff := matrix{{D.dd_1,psi},{map(G_0**R^{d},D_1,0, Degree=>d), map(G_0**R^{d},G_0**R^{d},0, Degree=>d)}};
assert (newDiff*(newDiff) == 0);
differentialModule newDiff
)
--Input: a differential module D with degree 0, and an integer k
--Output: the first k iterations of an algorithm that produces the minimal free flag resolution of D
resMinFlag = method();
resMinFlag(DifferentialModule, ZZ) := (D, k) -> (
d := degree D;
assert(first d == 0);
R := ring D;
s := numgens D_0;
scan(k,i-> D = minFlagOneStep(D));
t := numgens D_0;
newDiff := submatrix(D.dd_1, toList(s..t-1),toList(s..t-1));
differentialModule (complex({-newDiff**R^{-d},-newDiff**R^{-d}})[1])
)
killingCyclesOneStep = method();
killingCyclesOneStep(DifferentialModule) := (D)->(
d := degree D;
R := ring D;
homMat := mingens image((gens HH_0 D) % (image D.dd_1));
G := res image homMat;
psi := map(D_0,G_0**R^{d},homMat, Degree=>d);
newDiff := matrix{{D.dd_1,psi},{map(G_0**R^{d},D_1,0, Degree=>d),map(G_0**R^{d},G_0**R^{d},0, Degree=>d)}};
assert (newDiff*(newDiff) == 0);
differentialModule newDiff
)
--Input: a differential module D and an integer k
--Output: the first k iterations of an algorithm that produces a free flag resolution of D.
resDM = method();
resDM(DifferentialModule,ZZ) := (D,k)->(
d := degree D;
R := ring D;
s := numgens D_0;
scan(k,i-> D = killingCyclesOneStep(D));
t := numgens D_0;
newDiff := submatrix(D.dd_1, toList(s..t-1),toList(s..t-1));
differentialModule (complex({-newDiff**R^{-d},-newDiff**R^{-d}})[1])
)
--same as above, but default value of k
resDM(DifferentialModule) := (D)->(
k := dim ring D + 1;
d := degree D;
R := ring D;
s := numgens D_0;
scan(k,i-> D = killingCyclesOneStep(D));
t := numgens D_0;
newDiff := submatrix(D.dd_1, toList(s..t-1),toList(s..t-1));
differentialModule (complex({-newDiff**R^{-d},-newDiff**R^{-d}})[1])
)
-- Subroutines and routines to produce the minimal part of a matrix.
-- Input: a square matrix
-- Output: a square matrix, the result of partially minimizing the input.
minimizeDiffOnce = method();
minimizeDiffOnce(Matrix,ZZ,ZZ) := (A,u,v) -> (
a := rank target A;
R := ring A;
inv := (A_(u,v))^(-1);
N := map(source A,source A, (i,j) -> if i == v and j != v then -inv*A_(u,j) else 0) + id_(R^a);
Q := map(target A,target A, (i,j) -> if j == u and i != u then -inv*A_(i,v) else 0) + id_(R^a);
A' := Q*N^(-1)*A*N*Q^(-1);
newRows := select(a,i-> i != u and i != v);
newCols := select(a,i-> i != u and i != v);
A'_(newCols)^(newRows)
)
units = method();
units(Matrix) := A->(
a := rank source A;
L := select((0,0)..(a-1,a-1), (i,j)-> isUnit A_(i,j));
L
)
-- Input: A square matrix
-- Output: a minimization of it.
minimizeDiff = method();
minimizeDiff(Matrix) := A ->(
NU := #(units A);
while NU > 0 do(
L := units A;
(u,v) := L_0;
A = minimizeDiffOnce(A,u,v);
NU = #(units A);
);
A
)
-- Input: A free differential module
-- Output: A minimization of that DM.
minimizeDM = method();
minimizeDM(DifferentialModule) := r ->(
R := ring r;
d := degree r;
A := minimizeDiff(r.dd_1);
degA := map(target A, source A, A, Degree=>d);
differentialModule (complex({-degA,-degA})[1])
)
---
---
-- Input: a free complex F and a degree d
-- Output: the corresponding free differential module of degree d
foldComplex = method();
foldComplex(Complex,ZZ) := DifferentialModule => (F,d)->(
R := ring F;
FDiff := directSum apply(min F .. max F + 1, i -> F.dd_i);
FMod := directSum apply(min F .. max F, i -> F_i ** R^{i*d});
degFDiff := map(FMod,FMod,FDiff, Degree=>d);
differentialModule(complex({-degFDiff,-degFDiff})[1])
)
--------------------------------------------------
--- Toric BGG
--------------------------------------------------
-- Exported method for dualizing an algebra.
-- Input: a polynomial ring or exterior algebra S
-- Output: the Koszul dual algebra. When S is a polynomial ring graded by a group A,
-- the Koszul dual exterior algebra has an A x Z grading, where
-- deg(e_i) = (-deg(x_i), -1). When S is an exterior algebra graded by A x Z,
-- the Koszul dual polynomial ring has an A grading where deg(x_i) = -\pi_A(deg(e_i)),
-- where pi_A : A x Z --> A is the natural surjection.
dualRingToric = method(Options => {
Variable => getSymbol "x",
SkewVariable => getSymbol "e"});
dualRingToric PolynomialRing := opts -> S ->(
kk := coefficientRing S;
degs := null;
if isSkewCommutative S == false then(
degs = apply(degrees S,d-> (-d)|{-1});
e := opts.SkewVariable;
ee := apply(#gens S, i-> e_i);
return kk[ee,Degrees=>degs,SkewCommutative=>true, MonomialOrder => Lex]
);
if isSkewCommutative S == true then(
degs = apply(degrees S, d-> drop(-d,-1));
y := opts.Variable;
yy := apply(#gens S, i-> y_i);
return kk[yy,Degrees=>degs,SkewCommutative=>false]
);
)
-- Non-exported method for contracting a matrix by another.
matrixContract = method()
matrixContract (Matrix,Matrix) := (M,N) -> (
S := ring M;
if M==0 or N==0 then return map(S^(-degrees source N),S^(degrees source M),0);
assert(rank source M == rank target N);
mapmatrix := transpose matrix apply(rank target M, i->
apply(rank source N, j->
sum(rank source M, k -> contract(M_(i,k),N_(k,j)))
)
);
-- this null input is intentional.
-- it chooses the source to make the map homogeneous.
transpose map(S^(-degrees source N), , mapmatrix)
)
-- Non-exported method for redefining a degree list which makes the quotient
-- operation in toricRR well-defined
pickOutMonomials = method();
pickOutMonomials (Ring, List) := (S, L) -> (
h := matrix {heft S};
D := max for l in L list (h * vector l)_0;
S' := (coefficientRing S)(monoid[gens S, Degrees => toList (#gens S:1)]);
fromS'toS := map(S,S', gens S);
i := -1;
stopflag := true;
newL := flatten while(stopflag and i < 15) list (
i = i + 1;
for m in first entries basis(i, S') list (
deg := degree fromS'toS m;
if (h * vector deg)_0 <= D then deg else continue
)
);
unique flatten for a in L list (
for b in newL list (
if member(a - b,newL) then a-b else continue
)
)
)
-- Exported method for computing the multigraded BGG functor of a module over
-- a polynomial ring.
-- Input: M a finitely generated (multi)-graded S-module.
-- L a list of degrees.
-- Output: The differential module RR(M) in degrees from L.
toricRR = method();
toricRR(Module,List) := (N,L) ->(
M := coker presentation N;
S := ring M;
if not isCommutative S then error "--base ring is not commutative";
if heft S === null then error "--need a heft vector for polynomial ring";
-- we need to modify L so that the "quotient" differential is well-defined
L = pickOutMonomials(S,L);
E := dualRingToric S;
-- pick out the generators in the selected degree range.
f0 := matrix {for d in unique L list gens image basis(d,M)};
-- this is the degree of the anti-canonical bundle, which
-- we need to twist by when we take the koszul dual.
wEtwist := append(-sum degrees S, -numgens S);
-- here are the degrees of the generators we will have in the dual.
f0degs := apply(degrees source f0, d -> (-d | {0}) + wEtwist);
if #f0degs == 0 then complex map(E^0, E^0, 0) else (
relationsM := presentation M;
SE := S**E;
tr := sum(dim S, i-> SE_(dim S+i)*SE_i);
newf0 := sub(f0,SE)*tr;
relationsMinSE := sub(relationsM,SE);
newf0 = newf0 % relationsMinSE;
newg := matrixContract(transpose sub(f0,SE), newf0);
-- null input is to make the map have the correct degrees to be homogeneous.
newg = transpose map(source newg, , transpose newg);
g' := sub(newg,E);
del := map(E^f0degs,E^f0degs, -g', Degree => degree 1_S | {-1});
differentialModule(complex({del, del})[1])
)
)
-- If there is no input of L, we make a simple choice based on some information on M.
toricRR Module := M -> (
L := if length M < infinity then unique flatten degrees basis M
else join(degrees M, apply(degrees ring M, d -> (degrees M)_0 + d));
toricRR(M,L)
)
-- Exported method for computing the multigraded BGG functor of a module over the exterior algebra.
-- Input: N a finitely generated (multi)-graded E-module.
-- Output: a complex of modules over the polynomial ring.
toricLL = method();
toricLL Module := N -> (
E := ring N;
if not isSkewCommutative E then error "ring N is not skew commutative";
S := dualRingToric E;
N = coker presentation N;
bb := basis N;
b := degrees source bb;
homDegs := sort unique apply(b, i-> last i);
inds := new HashTable from apply(homDegs, i-> i=> select(#b, j-> last(b#j) == i));
sBasis := new HashTable from apply(homDegs, i-> i => bb_(inds#i));
FF := new HashTable from apply(homDegs, i ->(
i => S^(apply((degrees sBasis#i)_1, j-> -drop(j,-1)))
)
);
EtoS := map(S,E,toList (numgens S:0));
differential := sum for i to numgens E-1 list (
S_i* EtoS matrix basis(-infinity, infinity, map(N,N,E_i))
);
if #homDegs == 1 then (complex {map(S^0,FF#0,0)})[1] else (
complex apply(drop(homDegs,-1), i-> map(FF#i,FF#(i+1), (-1)^(homDegs#0)*differential_(inds#(i+1))^(inds#(i))))[-homDegs#0]
)
)
-- Exported method for computing a strongly linear strand for a module over a polynomial ring.
-- Input: M a (multi)-graded module over a polynomial ring
-- Output: a Complex, the strongly linear strand of the minimal
-- free resolution of M (in the sense of the paper "Linear strands
-- of multigraded free resolutions" by Brown-Erman).
stronglyLinearStrand = method();
stronglyLinearStrand Module := M -> (
S := ring M;
h := heft S;
if h === null then error("--ring M does not have heft vector");
if not same degrees M then error("--M needs to be generated in a single degree");
degM := first degrees M;
canonical := sum flatten degrees vars S;
degrange := unique prepend(degM, apply(degrees S, d -> d + degM));
RM := toricRR(M,degrange);
mat := RM.dd_0;
cols := positions(degrees source mat, x -> drop(x,-1) == degM + canonical);
N := ker mat_cols;
toricLL N
)
beginDocumentation()
undocumented {
SkewVariable
}
--------------------------------------------------
--- Differential Modules
--------------------------------------------------
doc ///
Key
MultigradedBGG
Headline
Package for working with Multigraded BGG and Differential Modules
Description
Text
This package implements the multigraded BGG correspondence, as
described, for instance, in Section 2.2 of the paper "Tate resolutions
on toric varieties" by Brown-Erman. Applying the BGG functor to
a module over a multigraded polynomial ring gives a differential
E-module, rather than a complex of E-modules; this package therefore
also implements differential modules. Highlights of the package include
methods for building free resolutions of differential modules;
implementations of the multigraded BGG functors; and a method for
computing the strongly linear strand of the minimal free resolution of a
module over a multigraded polynomial ring, in the sense of the paper
"Linear strands of multigraded free resolutions" by Brown-Erman.
SeeAlso
DifferentialModule
resDM
toricRR
toricLL
stronglyLinearStrand
///
doc ///
Key
differential
(differential, DifferentialModule)
Headline
returns the differential of a differential module
Usage
differential D
Inputs
D : DifferentialModule
Outputs
: Matrix
Description
Text
This method returns the differential of a differential
module.
Example
R = QQ[x]/(x^3)
phi = map(R^1, R^1, x^2, Degree=>2)
D = differentialModule phi
differential D
SeeAlso
(degree, DifferentialModule)
(image, DifferentialModule)
(kernel, DifferentialModule)
(homology, DifferentialModule)
///
doc ///
Key
(degree, DifferentialModule)
Headline
returns the degree of the differential
Usage
degree D
Inputs
D : DifferentialModule
Outputs
: List
Description
Text
This method returns the degree of the differential of a differential
module. In more detail: since the source and target of the differential
are required to be equal, we must specify the degree of
the differential in order for the differential to
be homogeneous; this method returns that degree.
Example
R = QQ[x]/(x^3)
phi = map(R^1, R^1, x^2, Degree=>2)
D = differentialModule phi
degree D == {2}
SeeAlso
(differential, DifferentialModule)
///
doc ///
Key
(homology, DifferentialModule)
Headline
computes the homology of a differential module
Usage
HH D
Inputs
D : DifferentialModule
Outputs
: Module
Description
Text
This computes the homology of a differential module. More specifically:
since we interpret differential modules as 3-term complexes, this
returns the zeroth homology module.
Example
R = QQ[x,y]
M = R^1/ideal(x^2,y^2)
phi = map(M,M,x*y)
D = differentialModule phi
HH D
SeeAlso
(image, DifferentialModule)
(kernel, DifferentialModule)
///
doc ///
Key
(image, DifferentialModule)
Headline
computes the image of the differential of a differential module
Usage
image D
Inputs
D : DifferentialModule
Outputs
: Module
Description
Text
This method computes the image of the differential of $D$, as a
submodule of $D$.
Example
R = QQ[x,y]
M = R^1/ideal(x^2,y^2)
phi = map(M,M,x*y, Degree => 2)
D = differentialModule phi
D' = image D
SeeAlso
(differential, DifferentialModule)
(image, DifferentialModule)
(kernel, DifferentialModule)
///
doc ///
Key
(kernel, DifferentialModule)
Headline
computes the kernel of the differential in a differential module.
Description
Text
Computes the kernel of the differential in a differential module.
SeeAlso
(differential, DifferentialModule)
(image, DifferentialModule)
(homology, DifferentialModule)
///
doc ///
Key
(module, DifferentialModule)
Headline
computes the underlying module of a differential module.
Description
Text
Returns the underlying module of a differential module.
SeeAlso
(ring, DifferentialModule)
(image, DifferentialModule)
(differential, DifferentialModule)
///
doc ///
Key
(ring, DifferentialModule)
Headline
returns the ring of a differential module.
Description
Text
Returns the ring of a differential module.
SeeAlso
(module, DifferentialModule)
(differential, DifferentialModule)
///
doc ///
Key
differentialModule
(differentialModule, Matrix)
Headline
converts a square zero matrix into a differential module
Usage
differentialModule(f)cczx
Inputs
f : Matrix
representing a module map with the same source and target
Outputs
: DifferentialModule
Description
Text
Given a module map $f: M \rightarrow M$ of degree $a$ this creates a degree $a$
differential module from $f$ represented as a 3-term chain complex in homological
degrees $-1, 0$, and $1$. If $a \neq 0$, then since the source and target of $f$
are required to be equal, we must specify the degree of the differential to be $a$
in order for the differential to be homogeneous.
Example
R = QQ[x]
phi = map(R^1/(x^2),R^1/(x^2), x, Degree=>1)
differentialModule(phi)
SeeAlso
(differentialModule, Complex)
(differential, DifferentialModule)
///
doc ///
Key
(differentialModule, Complex)
Headline
converts a complex into a differential module
Usage
differentialModule C
Inputs
C : Complex
a complex concentrated in homological degrees -1, 0, 1
Outputs
: DifferentialModule
Description
Text
Given a complex of modules in homological degrees $-1, 0$, and $1$, with
the differentials being identical, this method produces the corresponding
DifferentialModule.
Example
S = QQ[x,y]
del = map(S^{-1,0,0,1},S^{-1,0,0,1},matrix{{0,y,x,-1},{0,0,0,x},{0,0,0,-y},{0,0,0,0}}, Degree=>2)
C = complex{-del, -del}[1]
D = differentialModule C
D.dd
SeeAlso
(differentialModule, Complex)
(differential, DifferentialModule)
///
doc ///
Key
unfold
(unfold,DifferentialModule,ZZ,ZZ)
Headline
converts a differential module into a 1-periodic complex
Usage
unfold(D,a,b)
Inputs
D : DifferentialModule
a : ZZ
b : ZZ
Outputs
: Complex
Description
Text
Given a differential module D and integers a and b, this method produces a
chain complex with the module D in homological degrees a through b, where
all maps are the differential of D.
Example
phi = matrix{{0,1},{0,0}};
D = differentialModule(phi);
unfold(D,-3,4)
SeeAlso
(differentialModule, Complex)
resMinFlag
resDM
foldComplex
///
doc ///
Key
resMinFlag
(resMinFlag, DifferentialModule, ZZ)
Headline
gives a minimal free flag resolution of a differential module of degree 0
Usage
resMinFlag(D, k)
Inputs
D: DifferentialModule
k: ZZ
Outputs
: DifferentialModule
Description
Text
Let $R$ be a positively graded ring with $R_0$ a field. Given a differential module $D$ of degree 0
with finitely generated homology, this method gives a portion of the minimal free flag resolution of
$D$, using Algorithm 2.11 from the accompanying paper for this package, "The multigraded BGG correspondence
in Macaulay2". As this resolution will often be infinite, the integer $k$ indicates how many steps of
this algorithm will be applied.
Example
R = ZZ/101[x, y];
k = coker vars R;
f = map(k, k, 0);
D = differentialModule(f);
F = resMinFlag(D, 3);
F.dd_0
SeeAlso
(differentialModule, Complex)
unfold
resDM
foldComplex
minimizeDM
///
doc ///
Key
foldComplex
(foldComplex,Complex,ZZ)
Headline
converts a chain complex into a differential module
Usage
foldComplex(C)
Inputs
C : Complex
d : ZZ
Outputs
: DifferentialModule
Description
Text
Given a chain complex C and integer d it creates the corresponding
(flag) differential module of degree d.
Example
R = QQ[x,y];
C = complex res ideal(x,y)
D = foldComplex(C,0);
D.dd_1
SeeAlso
(differentialModule, Complex)
unfold
resDM
resMinFlag
///
doc ///
Key
resDM
(resDM,DifferentialModule)
(resDM,DifferentialModule,ZZ)
Headline
uses a "killing cycles"-style construction to find a free resolution of a differential module
Usage
resDM(D)
resDM(D,k)
Inputs
D : DifferentialModule
k : ZZ
Outputs
: DifferentialModule
Description
Text
Given a differential module D, this method creates a free flag resolution of D, using Algorithm 2.7 from the accompanying
paper "The multigraded BGG correspondence in Macaulay2". The default resDM(D) runs the algorithm for the
number of steps determined by the dimension of the ambient ring. Alternatively, resDM(D,k) iterates k steps
of the algorithm.
Example
R = QQ[x,y];
M = R^1/ideal(x^2,y^2);
phi = map(M,M,x*y, Degree=>2);
D = differentialModule phi;
r = resDM(D)
r.dd_1
Text
The default algorithm runs for dim R + 1 steps.
Adding the number of steps as a second argument is like adding a LengthLimit.
Example
R = QQ[x]/(x^3);
phi = map(R^1,R^1,x^2, Degree=>2);
D = differentialModule phi;
r = resDM(D)
r.dd_1
r = resDM(D,6)
r.dd_1
SeeAlso
(differentialModule, Complex)
resMinFlag
unfold
foldComplex
minimizeDM
///
doc ///
Key
DifferentialModule
Headline
The class of differential modules.
Description
Text
A differential module is just a module with a square zero endomorphism.
Given a module map $f: M \rightarrow M$ of degree $a$, we represent a
differential module from $f$ as a 3-term chain complex in homological
degrees $-1, 0$, and $1$. If $a \neq 0$, then since the source and target of $f$
are required to be equal, we must specify the degree of the differential to be $a$
in order for the differential to be homogeneous.
SeeAlso
MultigradedBGG
differentialModule
(differentialModule, Matrix)
(differentialModule, Complex)
///
doc ///
Key
minimizeDM
(minimizeDM,DifferentialModule)
Headline
minimizes a square matrix or a differential module
Usage
minimizeDM(D)
Inputs
D : DifferentialModule
Outputs
: DifferentialModule
Description
Text
Given a differential module D, this code breaks off trivial
blocks, producing a quasi-isomorphic differential module D' with a minimal
differential.
Example
R = QQ[x,y];
M = R^1/ideal(x^2,y^2);
phi = map(M,M,x*y, Degree=>2);
D = differentialModule phi;
r = resDM(D)
r.dd_1
mr = minimizeDM(r)
mr.dd_1
SeeAlso
(differentialModule, Complex)
resMinFlag
unfold
foldComplex
resDM
///
--------------------------------------------------
--- Toric BGG
--------------------------------------------------
doc ///
Key
dualRingToric
(dualRingToric, PolynomialRing)
[dualRingToric, Variable]
[dualRingToric, SkewVariable]
Headline
computes the Koszul dual of a multigraded polynomial ring or exterior algebra
Usage
dualRingToric R
Inputs
R : PolynomialRing
either a standard polynomial ring, or an exterior algebra
Variable => Symbol
SkewVariable => Symbol
Outputs
: PolynomialRing
which is the Koszul dual of R
Description
Text
This method computes the Koszul dual of a polynomial ring or exterior algebra. In
particular, if $S = k[x_0, \ldots, x_n]$ is a $\mathbb{Z}^m$-graded ring for some $m$,
and $\operatorname{deg}(x_i) = d_i$, then the output of dualRingToric is the
$\mathbb{Z}^{m+1}$-graded exterior algebra on variables $e_0, \ldots, e_n$ with degrees
$(-d_i, -1)$.
Example
R = ring(hirzebruchSurface(2, Variable => y))
E = dualRingToric(R, SkewVariable => f)
Text
On the other hand, if $E$ is a $\mathbb{Z}^{m+1}$-graded exterior algebra on $n+1$
variables $e_0, \ldots, e_n$ with $\operatorname{deg}(e_i) = (-d_i, -1)$, then
dualRingToric E is the $\mathbb{Z}^m$-graded polynomial ring $k[x_0, \ldots, x_n]$ with
$\operatorname{deg}(x_i) = d_i$.
Example
RY = dualRingToric E
degrees RY == degrees R
Text
This method preserves the coefficient ring of the input ring.
Example
S = ZZ/101[x,y,z, Degrees => {1,1,2}]
E' = dualRingToric S
coefficientRing E' === coefficientRing S
SeeAlso
toricRR
toricLL
stronglyLinearStrand
///
doc ///
Key
toricRR
(toricRR, Module)
(toricRR, Module, List)
Headline
computes the BGG functor of a module over a multigraded polynomial ring.
Usage
toricRR M
toricRR(M,L)
Inputs
M : Module
a module over a multigraded polynomial ring
L : List
a list of multidegrees of the polynomial ring
Outputs
: DifferentialModule
a quotient of the differential module obtained by applying the multigraded BGG functor R
to M. The size of this quotient is determined by the list L.
Description
Text
Let $A$ be a finitely generated free abelian group. Given an $A$-graded polynomial ring $S$
with $A \oplus \mathbb{Z}$-graded Koszul dual exterior algebra E, the BGG functor
$\mathbf{R}$ sends an $S$-module $M$ to a free differential $E$-module with linear
differential: see Section 3 of the paper accompanying this package for details.
The free $E$-module underlying $\mathbf{R}(M)$ is $\bigoplus_{d \in A} M_d \otimes_k E^*(-d, 0)$,
where $E^*$ denotes the dual of $E$ over the ground field $k$. This module has rank given by the
dimension of $M$ as a $k$-vector space, which is typically infinite. Thus, this method usually only
computes a finite rank quotient of $\mathbf{R}(M)$. Specifically: toricRR(M) is the quotient
of $\mathbf{R}(M)$ given by those summands $M_d \otimes_k E^*(-d, 0)$ such that
$d = e + a \operatorname{deg}(x_i)$, where $e$ is a generating degree of $M$, $a \in \{0,1\}$,
and $0 \le i \le n$.
Example
S = ring weightedProjectiveSpace {1,1,2}
M = coker random(S^2, S^{3:{-5}});
toricRR M
T = ring hirzebruchSurface 3;
M' = coker matrix{{x_0}}
toricRR M'
Text
There is also an optional input for a list L of degrees in $A$: toricRR(M, L) is the quotient
$\bigoplus_{a \in L} M_d \otimes_k E^*(-d, 0)$ of $\mathbf{R}(M)$.
Example
L = {{0,0}, {1,0}}
toricRR(M',L)
Text
For some lists of degrees L, the denominator of the quotient is not a differential module. Hence,
the method sometimes enlarges the list of degrees in order to have a well-defined quotient. We
demonstrate that phenomenon with the following example.
Example
S = ring hirzebruchSurface 1
L1 = {{0,0}, {1,0}, {0,1}}
L2 = {{0,0}, {1,0}, {0,1}, {-1,1}};
N1 = toricRR(S^1, L1);
N2 = toricRR(S^1, L2);
phi = map(ring N2, ring N1, gens ring N2)
assert(phi N1.dd_0 - N2.dd_0 == 0)
Caveat
A heft vector is necessary for the computation to produce a well-defined differential module.
SeeAlso
dualRingToric
toricLL
stronglyLinearStrand
///
doc ///
Key
toricLL
(toricLL, Module)
Headline
computes the BGG functor of a module over the Koszul dual exterior algebra of a multigraded polynomial ring
Usage
toricLL N
Inputs
N : Module
a module over the Koszul dual exterior algebra of a multigraded polynomial ring
Outputs
: Complex
a complex of modules over a multigraded polynomial ring, the result of applying the
BGG functor L to N
Description
Text
Given a multigraded polynomial ring $S$ with Koszul dual exterior algebra E, the BGG functor
$\mathbf{L}$ sends an $E$-module to a linear complex of $S$-modules.
Example
S = ring hirzebruchSurface 3
E = dualRingToric S
C = toricLL(coker matrix{{e_0, e_1}})
SeeAlso
dualRingToric
toricRR
stronglyLinearStrand
///
doc ///
Key
stronglyLinearStrand
(stronglyLinearStrand, Module)
Headline
computes the strongly linear strand of the minimal free resolution of a finitely generated graded module over a multigraded polynomial ring, provided the module is generated in a single degree.
Usage
stronglyLinearStrand M
Inputs
M : Module
a finitely generated graded module over a multigraded polynomial ring that is generated
in a single degree
Outputs
: Complex
the strongly linear strand of the minimal free resolution of M
Description
Text
The strongly linear strand of the minimal free resolution of a multigraded module $M$ is defined
in the paper "Linear strands of multigraded free resolutions" by Brown-Erman. It is, roughly
speaking,the largest subcomplex of the minimal free resolution of $M$ that is linear, in the
sense that its differentials are matrices of linear forms. The method we use for computing
the strongly linear strand uses BGG, mirroring Corollary 7.11 in Eisenbud's textbook
"The geometry of syzygies".
Example
S = ZZ/101[x_0, x_1, x_2, Degrees => {1,1,2}]
M = coker matrix{{x_0, x_2 - x_1^2}}
L = stronglyLinearStrand(M)
L == koszulComplex {x_0}
SeeAlso
toricRR
toricLL
dualRingToric
///
--- TESTS
--------------------------------------------------
--- Differential Modules
--------------------------------------------------
-- Constructor tests
TEST ///
S = QQ[x,y]
m = matrix{{0,x,y,1},{0,0,0,-y},{0,0,0,x},{0,0,0,0}}
phi = map(S^{0,1,1,2}, S^{0,1,1,2} ,m, Degree=>2)
D = differentialModule phi
assert(D.dd_0^2==0)
assert(isHomogeneous D.dd_0)
assert(degree D=={2})
assert(prune homology D==cokernel matrix{{x,y}})
///
TEST ///
S = QQ[x,y]
del = map(S^{-1,0,0,1},S^{-1,0,0,1},matrix{{0,y,x,-1},{0,0,0,x},{0,0,0,-y},{0,0,0,0}}, Degree=>2)
C = complex{-del, -del}[1]
D = differentialModule C
assert(degree D == {2})
assert(isHomogeneous D.dd_0)
assert(D.dd_0^2 == 0)
assert(del == D.dd_0)
///
TEST ///
S = QQ[x,y]
m = matrix{{0,x^2,x*y,1},{0,0,0,-y},{0,0,0,x},{0,0,0,0}}
phi = map(S^{0,1,1,3}, S^{0,1,1,3} ,m, Degree=>3)
D = differentialModule phi
assert(D.dd_0^2==0)
assert(isHomogeneous D.dd_0)
assert(degree D=={3})
assert(prune homology D==cokernel matrix{{x*y,x^2}})
///
-- Testing minimizeDM
TEST ///
S = QQ[x,y]
m = matrix{{0,x,y,1},{0,0,0,-y},{0,0,0,x},{0,0,0,0}}
phi = map(S^{0,1,1,2}, S^{0,1,1,2} ,m, Degree=>2)
D = differentialModule phi
M = minimizeDM D
assert(M.dd_1^2==0)
assert(isHomogeneous M.dd_0)
assert(degrees M_0=={{-1},{-1}})
assert(degree M=={2})
///
TEST ///
S = QQ[x,y]
m = matrix{{0,x^2,x*y,1},{0,0,0,-y},{0,0,0,x},{0,0,0,0}}
phi = map(S^{0,1,1,3}, S^{0,1,1,3} ,m, Degree=>3)
D = differentialModule phi
M = minimizeDM D
delM = map(S^{1,1},S^{1,1},matrix{{x^2*y,x*y^2},{-x^3,-x^2*y}},Degree=>3)
assert(differential M==delM)
///
-- Testing resDM
TEST ///
S = QQ[x,y]
m = matrix{{x*y,y^2},{-x^2,-x*y}}
phi = map(S^2, S^2, m, Degree=>2)
D = differentialModule phi
F = resDM D
del = map(S^{-1,0,0,1},S^{-1,0,0,1},matrix{{0,y,x,-1},{0,0,0,x},{0,0,0,-y},{0,0,0,0}}, Degree=>2)
assert(F.dd_0^2==0)
assert(isHomogeneous F.dd_0)
assert(degree F=={2})
assert(differential F==del)
///
TEST ///
S = QQ[x,y,z]
phi = map(S^4, S^4, matrix{{x*y,y^2,z,0},{-x^2,-x*y,0,z},{0,0,-x*y,-y^2},{0,0,x^2,x*y}})
D = differentialModule phi
F = resDM D
assert(F.dd_0^2==0)
///
--Testing resMinFlag
TEST ///
R = ZZ/101[x, y];
k = coker vars R;
f = map(k, k, 0);
D = differentialModule(f);
F = resMinFlag(D, 3);
K = foldComplex(koszulComplex vars R, 0)
d1 = mutableMatrix F.dd_0
d2 = mutableMatrix K.dd_0
assert(d1 == columnSwap(rowSwap(d2, 1, 2), 1, 2))
///
-- Testing foldComplex
TEST ///
S = QQ[x,y,z]
K = koszulComplex vars S
F0 = foldComplex(K,0)
F1 = foldComplex(K,1)
F4 = foldComplex(K,4)
assert(isHomogeneous differential F1)
assert(degree F0=={0})
assert(degree F1=={1})
assert(degree F4=={4})
assert(F4.dd_0^2==0)
///
-- Testing unfold
TEST ///
S = QQ[x,y]
phi = map(S^{1,1},S^{1,1},matrix{{x^2*y,x*y^2},{-x^3,-x^2*y}},Degree=>3)
D = differentialModule phi
C = unfold(D,-2,2)
assert(C.dd_0==D.dd_0)
assert(C.dd_1==C.dd_0)
assert(degree C.dd_0=={3})
assert(C_-2==C_3)
///
--------------------------------------------------
--- Toric BGG
--------------------------------------------------
-- Testing dualRingToric
TEST ///
S = ring(hirzebruchSurface(2, Variable => y));
E = dualRingToric(S,SkewVariable => f);
SY = dualRingToric(E);
assert(degrees SY == degrees S)
///
-- Testing toricRR
TEST ///
S = ring hirzebruchSurface 3;
M = coker matrix{{x_0}};
L = {{0,0}, {1,0}};
D = toricRR(M, L);
assert(degree D == {0,0,-1})
E = ring D;
f = map(E^{{1, -2, -4}} ++ E^{{0, -2, -4}}, E^{{1, -2, -4}} ++ E^{{0, -2, -4}}, matrix{{0, 0}, {e_2, 0}});
assert(D.dd_0 == f)
L = {{0,0}, {1,0}, {-3, 1}, {0,1}, {2,0}};
D = toricRR(M,L);
assert(degree D == {0,0,-1})
assert(D.dd^2 == 0)
--this takes several seconds, so we don't include it
--M = coker random(S^2, S^{3:{-3,-2}});
--D = toricRR M
--assert(degree D == {0,0,-1})
--assert(D.dd^2 == 0)
///
TEST ///
S = ring weightedProjectiveSpace {1,1,2}
M = coker random(S^2, S^{3:{-5}});
D = toricRR M
assert(degree D == {0,-1})
assert(D.dd^2 == 0)
///
--Testing toricLL
TEST ///
S = ring hirzebruchSurface 3;
E = dualRingToric S;
C = toricLL(E^1)
assert (isHomogeneous C)
assert ((C.dd)^2 == 0)
--The following 5 assertions check that C is isomorphic to the
--Koszul complex on x_0, ..., x_3 (up to a twist and shift)
assert (HH_(0) C == 0)
assert (HH_(-1) C == 0)
assert (HH_(-2) C == 0)
assert (HH_(-3) C == 0)
assert (minors(1, C.dd_(-3)) == ideal vars ring C)
N = coker vars E
C = toricLL(N)
assert(rank C_0 == 1)
assert(C_-1 == 0)
assert(C_1 == 0)
///
TEST ///
S = ring hirzebruchSurface 3;
E = dualRingToric S;
-- cyclic but non-free module:
C = toricLL(coker matrix{{e_0, e_1}})--this should be isomorphic (a shift of) the Koszul complex on x_2, x_3
assert(isHomogeneous C)
assert(C.dd_(-1) == map((ring C)^{{1, 1}}, (ring C)^{{1, 0}} ++ (ring C)^{{0, 1}}, matrix{{x_3, -x_2}}))
assert(HH_(-1) C == 0)
assert(HH_(0) C == 0)
assert(C_(-3) == 0)
assert(C_(1) == 0)
///
TEST ///
E = dualRingToric (ZZ/101[x_0, x_1, Degrees => {1, 2}]);
--non-cyclic module
N = module ideal(e_0, e_1);
C = toricLL(N);
S = ring C;
f = map(S^{{3}}, S^{{1}} ++ S^{{2}}, matrix{{x_1, -x_0}});
C' = complex({f})[2];
assert(C == C')
///
--Testing stronglyLinearStrand
TEST ///
S = ring weightedProjectiveSpace {1,1,1,2,2};
I = minors(2, matrix{{x_0, x_1, x_2^2, x_3}, {x_1, x_2, x_3, x_4}});
M = Ext^3(module S/I, S^{{-7}});
L = stronglyLinearStrand M;
loadPackage "TateOnProducts"
M = coker(L.dd_1)
S = ring M
A = coker map(S^{-1} ++ S^{-1} ++ S^{-1}, S^{-2} ++ S^{-2} ++ S^{-2} ++ S^{-2} ++ S^{-3} ++ S^{-3}, matrix{{x_0, 0, x_1, 0, x_3, 0}, {0,x_0,-x_2,x_1,-x_4,x_3}, {-x_2,-x_1,0,-x_2,0,-x_4}})
assert(isIsomorphic(M, A))
assert(HH_2 L == 0)
assert(HH_1 L == 0)
--Aside: M is the canonical module of the coordinate ring of a copy of P^1 embedded in
--the weighted projective space P(1,1,1,2,2).
///
TEST ///
S = ring hirzebruchSurface 3;
M = coker vars S;
L = stronglyLinearStrand(M)--should give the Koszul complex, and the following 5 assertions check that it does.
assert(numcols basis HH_0 L == 1)
assert(HH_1 L == 0)
assert(HH_2 L == 0)
assert(HH_3 L == 0)
assert(HH_4 L == 0)
M = coker matrix{{x_1, x_2^2}}
L = stronglyLinearStrand(M)
assert(L == koszulComplex {x_1})
///
TEST ///
S = QQ[x,y]
K = koszulComplex vars S
assert(differential foldComplex(K, 0) == map(S^{{0}, 2:{-1}, {-2}},S^{{0}, 2:{-1}, {-2}},{{0, x, y, 0}, {0, 0, 0, -y}, {0, 0, 0, x}, {0, 0, 0, 0}}))
assert(differential foldComplex(dual K, 0) == map(S^{{2}, 2:{1}, {0}},S^{{2}, 2:{1}, {0}},{{0, -y, x, 0}, {0, 0, 0, x}, {0, 0, 0, y}, {0, 0, 0, 0}}))
///
|