1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
|
--*- coding: utf-8 -*-
------------------------------------------------------------------------------
-- PURPOSE : Check positivity of toric vector bundles
-- PROGRAMMER : Andreas Hochenegger
------------------------------------------------------------------------------
newPackage("PositivityToricBundles",
Headline => "check positivity of toric vector bundles",
Version => "1.9",
Date => "August, 2024",
Authors => {
{Name => "Andreas Hochenegger",
Email => "andreas.hochenegger@polimi.it"}},
Keywords => {"Toric Geometry"},
Configuration =>{},
PackageImports => {},
PackageExports => {"ToricVectorBundles"}
)
export {
"groundSet",
"parliament",
"compatibleBases",
"isLocallyWeil",
"isLocallyFree",
"cartierInd",
"toricChernCharacter",
"graphToricChernCharacter",
"separatesJets",
"isGloballyGenerated",
"restrictToInvCurves",
"isNef",
"isAmple",
"drawParliament2Dtikz",
"wellformedBundleFiltrations",
-- Options
"Verbosity",
"DrawCohomology",
"DrawChernCharacter"
}
-- cacheValues
protect basesSortedByFiltrations
protect filtrationFlags
protect posetTvb
protect restrictionsToInvCurves
protect isLW
protect isLF
-- Options
protect DrawCohomology
protect DrawChernCharacter
protect Verbosity
protect preferredGenerators
---------------------------------------------------------------------------
-- COPYRIGHT NOTICE:
--
-- Copyright 2024 Andreas Hochenegger
--
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <http://www.gnu.org/licenses/>.
--
---------------------------------------------------------------------------
------------------------------------------------------------------------------
-- CAVEATS
------------------------------------------------------------------------------
-- 1) [K,RJS,P] uses decreasing filtration for Klyachko's description,
-- in contrast to the package 'ToricVectorBundles' (increasing filtration).
-- Source of confusion about different signs.
-- 2) We use same sign convention as in ToricVectorBundles, i.e.
-- given a polytope, the associated fan consists of inner normals
-- ([RJS,P] uses outer normals)
-- Another source of confusion about signs.
-- 3) We implicitly assume that the variety is at least complete and also smooth.
-- This is not tested, so methods might break or results might become
-- meaningless for varieties which are not complete or not smooth.
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- METHOD: groundSet
------------------------------------------------------------------------------
-- AUXILIARY METHODS FOR groundSet:
-- flags, getColumns, primitive,
------------------------------------------------------------------------------
flags = method()
flags (ToricVectorBundleKlyachko) := (cacheValue symbol filtrationFlags) ( tvb -> (
hashTable for rho in rays tvb list (
filtSteps := flatten entries (filtration tvb)#rho;
rayFlag := for i in unique filtSteps list (
((base tvb)#rho)_(positions(filtSteps, j->j<=i))
);
rayFlag = sort(rayFlag, mat -> numgens source mat);
rho => rayFlag
)
))
getColumns = method ()
getColumns (Matrix) := mat -> toList apply( 0..<numgens source mat, i->mat_i )
getColumns (Module) := M -> apply( getColumns gens M, c -> image matrix c)
primitive = method ()
primitive (Matrix) := mat -> (
m := 1;
if instance(mat_(0,0),QQ) then
m = lcm apply(flatten entries mat, denominator);
matmod := m*mat;
m = gcd flatten entries matmod;
lift(1/m*promote(matmod,QQ),ZZ)
)
-- is there a better way?
cartesianProduct2 = (L1,L2) -> flatten apply(L1, l1 -> apply(L2, l2 -> {l1,l2}))
cartesianProductNested = L -> fold(L, cartesianProduct2)
inductiveFlatten = (L,i) -> if i<=0 then L else ( {L#0} | inductiveFlatten (L#1,i-1))
cartesianProduct = L -> (
if #L==1 then return apply(L#0, l-> {l}); -- border case
n := #L-2;
apply( cartesianProductNested L, l -> inductiveFlatten(l,n))
)
poset = method()
poset (ToricVectorBundleKlyachko) := (cacheValue symbol posetTvb) (tvb -> (
-- do all possible intersections (over QQ)
intersections := apply( cartesianProduct values flags tvb, L -> intersect( apply(L, l -> image promote(l,QQ) ) ) );
-- remove 0-dimensional spaces and duplicates
intersections = toList set select( intersections, V -> rank V > 0 );
intersections
))
-- MAIN METHOD: groundSet ----------------------------------------
-- PURPOSE : Given a toric vector bundle in Klyachko's description,
-- compute the ground set of the associated matroid
-- IMPORTANT: Due to the implementation, elements might appear several times
-- INPUT : 'tvb', a ToricVectorBundleKlyachko
-- OUTPUT : ground set (list of nx1-matrices)
groundSet = method( Options => true )
groundSet (ToricVectorBundleKlyachko) := {Verbosity => 0, preferredGenerators => {}} >> opts -> (cacheValue groundSet) (tvb -> (
if opts#Verbosity>0 then << "METHOD: groundSet" << endl;
intersections := poset tvb;
if opts#Verbosity>0 then << "Poset of proper linear subspaces of E: " << endl << apply(intersections,gens) << endl;
G := toList set select( intersections, V -> rank V == 1 );
if opts#Verbosity>0 then << "Initialize G with the one-dimensional subspaces: " << endl << apply(G,gens) << endl;
for k in 2..rank tvb do (
Vs := select( intersections, V -> rank V == k );
if opts#Verbosity>0 then << "The " << k << "-dimensional subspaces: " << endl << apply(Vs,gens) << endl;
for V in Vs do (
GinV := select(G, g -> isSubset(g, V) );
if opts#Verbosity>0 then << "V = " << gens V << " contains " << apply(GinV,gens) << endl;
sumGinV := sum append(GinV, image map(QQ^(rank tvb),QQ^1,0)); -- works also if GinV empty
if rank sumGinV < rank V then (
newGs := {};
generatorsToChoose := {};
if #(opts#preferredGenerators) > 0 then (
generatorsToChoose = select( apply(opts#preferredGenerators, g -> image promote(g,QQ)), g -> isSubset(g, V));
)
else (
generatorsToChoose = toList getColumns V;
);
if opts#Verbosity>0 then << "generators in V: " << apply(generatorsToChoose, gens) << endl;
generatorsToChoose = select( generatorsToChoose, v -> not isSubset(v, sumGinV));
if opts#Verbosity>0 then << "generators not in " << apply(GinV,gens) << ": " << apply(generatorsToChoose, gens) << endl;
while rank(sumGinV + sum append(newGs, image map(QQ^(rank tvb),QQ^1,0))) < rank V do (
if rank(sumGinV+sum append(newGs, image map(QQ^(rank tvb),QQ^1,0))+generatorsToChoose#0) > rank(sumGinV+sum append(newGs, image map(QQ^(rank tvb),QQ^1,0))) then (
if opts#Verbosity>0 then << "add generator: " << gens generatorsToChoose#0 << endl;
newGs = append(newGs, generatorsToChoose#0);
);
generatorsToChoose = drop(generatorsToChoose,1);
);
G = G | newGs;
if opts#Verbosity>0 then << "Updated G to " << apply(G,gens) << endl;
)
else (
if opts#Verbosity>0 then << "is already generated by G." << endl;
)
)
);
-- return to ZZ
apply(toList set G, g -> primitive gens g)
))
------------------------------------------------------------------------------
-- METHOD: parliament
------------------------------------------------------------------------------
-- AUXILIARY METHODS FOR parliament:
-- polytopeTVB
------------------------------------------------------------------------------
polytopeTVB = method( Options => true )
polytopeTVB (ToricVectorBundleKlyachko, Matrix) := {Verbosity => 0} >> opts -> ( (tvb,e) -> (
if opts#Verbosity>0 then << "Calculate polytope for e = " << e << endl;
filtSteps := hashTable for rho in rays tvb list (
rho => unique flatten entries (filtration tvb)#rho
);
M := transpose matrix { apply( rays tvb, rho -> (filtSteps#rho)#(position((flags tvb)#rho, f -> isSubset(image promote(e,QQ), image promote(f,QQ))))) };
rhoMat := transpose fold( rays tvb, (i,j) -> i|j);
M = promote(M,QQ);
rhoMat = promote(rhoMat,QQ);
if opts#Verbosity>0 then << "the equations for the polytope are:" << endl << rhoMat << "*x >= " << M << endl;
pol := polyhedronFromHData(-rhoMat,-M);
if opts#Verbosity>0 then << "the associated polytope has vertices:" << endl << vertices pol << endl;
pol
))
-- Main method: parliament ---------------------------------------------------
-- PURPOSE : Given a toric vector bundle in Klyachko's description
-- and the ground set of the associated matroid,
-- compute the parliament of polytopes [RJS]
-- INPUT : 'tvb', a ToricVectorBundleKlyachko
-- OUTPUT : parliament of polytopes, hash table (ground set => parliament)
parliament = method( Options => true )
parliament(ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue parliament)( tvb -> (
if opts#Verbosity>0 then << "METHOD: parliament" << endl;
gs := groundSet(tvb, Verbosity=>(opts#Verbosity-1));
hashTable for e in gs list ( e => polytopeTVB(tvb,e, Verbosity=>opts#Verbosity) )
))
------------------------------------------------------------------------------
-- METHOD: compatibleBases
------------------------------------------------------------------------------
-- AUXILIARY METHODS FOR compatibleBases:
-- restrictToAffine, compatibleBasis
------------------------------------------------------------------------------
restrictToAffine = method( Options => true )
restrictToAffine (ToricVectorBundleKlyachko, Matrix) := {Verbosity => 0} >> opts -> ( (tvb,cone) ->
(
if opts#Verbosity>0 then << "METHOD: restrictToAffine" << endl;
E := toricVectorBundle(rank tvb, fan coneFromVData cone);
E = addFiltration( E, toList apply(rays E, rho -> (filtration tvb)#rho));
E = addBase( E, toList apply(rays E, rho -> (base tvb)#rho));
E
))
-- PURPOSE: Given the possible flags (as computed by possibleFlags) for rays of maximal cone
-- compute a common set of basis vectors
-- INPUT: 'tvb', toric vector bundle
-- 'sigma', maximal cone
-- OUTPUT: compatible base (matrix of vectors)
compatibleBasis = method( Options => true )
compatibleBasis (ToricVectorBundleKlyachko, Matrix) := {Verbosity => 0} >> opts -> ( (tvb, sigma) -> (
if opts#Verbosity>0 then << "METHOD: compatibleBasis" << endl;
E := restrictToAffine(tvb,sigma, Verbosity=>opts#Verbosity);
if opts#Verbosity>0 then << "details of bundle restricted to " << sigma << endl << details E << endl;
fold(groundSet (E, Verbosity=>opts#Verbosity-1, preferredGenerators=>groundSet tvb), (i,j) -> i|j)
))
-- MAIN METHOD: compatibleBases ----------------------------------------------
-- PURPOSE: Given a toric vector bundle in Klyachko's description
-- compute list of compatible bases as in [RJS, Section 3]
-- INPUT: 'tvb', toric vector bundle
-- OUTPUT: hash table: max cone => compatible basis
compatibleBases = method( Options => true )
compatibleBases (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue symbol compatibleBases) (tvb -> (
if opts#Verbosity>0 then << "METHOD: compatibleBases" << endl;
maxcones := apply(maxCones tvb, rays);
hashTable for sigma in maxcones list (sigma => compatibleBasis (tvb , sigma, Verbosity=>opts#Verbosity ))
))
------------------------------------------------------------------------------
-- isLocallyWeil
------------------------------------------------------------------------------
-- PURPOSE: Given a toric reflexive sheaf in Klyachko's description
-- check whether it is locally Weil, that is, locally a direct sum of reflexive sheaves of rank 1
-- INPUT: 'tvb', toric vector bundle
-- OUTPUT: true or false
isLocallyWeil = method( Options => true )
isLocallyWeil (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue isLW) (tvb -> (
if opts#Verbosity>0 then << "METHOD: isLocallyWeil" << endl;
cbs := compatibleBases (tvb, Verbosity=>opts#Verbosity );
isVB := applyValues(cbs, b -> numgens source b == rank tvb);
if opts#Verbosity>0 then (
<< "cones where sheaf is not locally Weil:" << endl;
for cb in pairs cbs do if not cb#1 then << cb#0 << endl;
);
all(values isVB, i->i)
))
------------------------------------------------------------------------------
-- toricChernCharacter
------------------------------------------------------------------------------
-- PURPOSE : Given a toric vector bundle in Klyachko's description and
-- given compatible bases as computed by compatibleBases,
-- compute the toric Chern character as introduced in [Payne]
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : hash table: max cone => points of toric Chern character.
toricChernCharacter = method( Options => true )
toricChernCharacter (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue toricChernCharacter) ( tvb -> (
compBases := compatibleBases(tvb);
if opts#Verbosity>0 then << "METHOD: toricChernCharacter" << endl;
filtSteps := hashTable for rho in rays tvb list (
rho => unique flatten entries (filtration tvb)#rho
);
cI := 1; -- cartierIndex
result := hashTable for cb in pairs compBases list (
maxcone := apply( 0..<numgens source cb_0, i->matrix (cb_0)_i );
if opts#Verbosity>0 then << "For maximal cone sigma: " << endl << maxcone << endl;
base := apply( 0..<numgens source cb_1, i->matrix (cb_1)_i );
if opts#Verbosity>0 then << "the compatible basis is: " << endl << base << endl;
cb_0 => for b in base list (
RHS := for rho in maxcone list (
i := position((flags tvb)#rho, f -> isSubset(image promote(b,QQ), image promote(f,QQ)));
filtSteps#rho#i
);
sol := solve(transpose promote(cb_0,QQ), transpose promote(matrix {RHS},QQ));
if opts#Verbosity>0 then << "Solve equation: " << endl << transpose cb_0 << " *x= " << transpose matrix {RHS} << endl << "Solution: " << sol << endl;
cI = lcm(cI, lcm( apply(flatten entries sol, denominator) ) );
--if all(flatten entries sol, e -> liftable(e,ZZ)) then
-- sol = lift(sol,ZZ);
sol
)
);
tvb.cache.cartierInd = cI;
if cI == 1 then (
tvb.cache.isLF = true;
result = applyValues(result, c -> apply(c, m -> lift(m,ZZ)));
)
else (
tvb.cache.isLF = false;
if opts#Verbosity>0 then << "Cartier index is: " << cI << endl;
);
result
))
isLocallyFree = method()
isLocallyFree (ToricVectorBundleKlyachko) := tvb -> (
if not isLocallyWeil tvb then return false;
if not tvb.cache.?isLF then
toricChernCharacter tvb;
tvb.cache.isLF
)
cartierInd = method()
cartierInd (ToricVectorBundleKlyachko) := tvb -> (
if not tvb.cache.?cartierInd then
toricChernCharacter tvb;
tvb.cache.cartierInd
)
-- PURPOSE : Given a toric vector bundle in Klyachko's description and
-- its toric Chern character,
-- connect components in adjacent maximal cones by lines
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : hash table: cone of codim 1 (curve) => list of pairs
graphToricChernCharacter = method( Options => true )
graphToricChernCharacter (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue graphToricChernCharacter) ( tvb -> (
torChern := toricChernCharacter(tvb, Verbosity=>opts#Verbosity);
if opts#Verbosity>0 then << "METHOD: graphToricChernCharacter" << endl;
F := fan tvb;
n := dim F;
curveCones := apply(cones(n-1,F), c -> (rays F)_c);
hashTable for tau in curveCones list (
if opts#Verbosity>0 then << "For curve cone: " << endl << tau << endl;
sigmas := {};
normal := kernel transpose tau;
if opts#Verbosity>0 then << "has normal: " << endl << normal << endl;
for sigma in keys torChern do
if contains(coneFromVData sigma, coneFromVData tau) then
sigmas = append(sigmas,sigma);
if opts#Verbosity>0 then << "the adjacent maximal cones are: " << endl << sigmas << endl;
edges := {};
for u1 in torChern#(sigmas_0) do (
for u2 in torChern#(sigmas_1) do (
if isSubset(image(u1-u2), normal) then (
if opts#Verbosity>0 then << "connect Chern components: " << endl << {u1,u2} << endl;
edges = append(edges, {u1,u2});
);
);
);
tau => edges
)
))
------------------------------------------------------------------------------
-- METHOD: separateJets
------------------------------------------------------------------------------
separatesJetsLocally = method( Options => true )
separatesJetsLocally (ToricVectorBundleKlyachko,Cone) := {Verbosity => 0} >> opts -> (tvb,sigma) -> (
if opts#Verbosity>0 then << "METHOD: separatesJetsLocally" << endl;
sigmaMat := rays sigma;
if opts#Verbosity>0 then << "for the maximal cone sigma " << sigmaMat << endl;
uSigma := apply((toricChernCharacter tvb)#sigmaMat, c -> promote(c,QQ));
uSigmaSet := toList set uSigma;
uSigmaMult := apply(uSigmaSet, u -> number(uSigma, w -> u==w));
if opts#Verbosity>0 then << "the u(sigma) are " << uSigmaSet << " with multiplicities " << uSigmaMult << endl;
par := parliament tvb;
parVertices := applyValues(par, pol -> apply(getColumns vertices pol, c -> matrix promote(c,QQ)) );
if opts#Verbosity>0 then << "the parliament is " << parVertices << endl;
-- [RJS, Thm 6.2, condition (i)]
uSigmaAreVertices := hashTable apply(uSigmaSet, u -> u => applyValues(parVertices, pol -> member(u, pol)));
uSigmaAreVerticesNumber := applyValues( applyValues(uSigmaAreVertices, values), trueFalse -> number(trueFalse, i->i==true));
-- check whether all uSigma are vertices of as many polytopes as their multiplicity
if not all(0 ..< #uSigmaSet, i-> uSigmaAreVerticesNumber#(uSigmaSet#i) >= uSigmaMult#i ) then
(
if opts#Verbosity>0 then << << "on sigma not globally generated." << endl;
return -infinity;
);
-- [RJS, Thm 6.2, condition (ii+iii)]
sigmaDual := dualCone sigma;
-- gives u=> {e's} such that u vertex of P(e) and u+sigma^vee contains P(e)
--uSigmaPE := applyPairs(uSigmaAreVertices, (u,eAV) -> (u, keys selectPairs(eAV, (e,AV) -> AV and contains(convexHull u + sigmaDual, par#e) ) ));
uSigmaPE := applyPairs(uSigmaAreVertices, (u,eAV) -> (u, keys hashTable select(pairs eAV, (e,AV) -> AV and contains(convexHull u + sigmaDual, par#e) ) ));
uSigmaPEnumber := applyValues(uSigmaPE, Ps -> #Ps);
-- [RJS, Thm 6.2, condition (iv)]
if min values uSigmaPEnumber == 0 then (
if opts#Verbosity>0 then << "there is no polytope with suitable local structure for at least one u(sigma): " << applyValues(uSigmaPE, l -> apply(l, e -> parVertices#e)) << endl;
if opts#Verbosity>0 then << << "on sigma not globally generated." << endl;
return -infinity;
);
if opts#Verbosity>0 then << "the u(sigma) appear as vertices (and with locally correct structure) of " << applyValues(uSigmaPE, l -> apply(l, e -> parVertices#e)) << endl;
oneFaces := facesAsCones(tvb#"dimension of the variety"-1, sigmaDual);
-- calculate the intersection of the edges of u+sigmaDual with P(e)
edges := applyPairs(uSigmaPE, (u,es) -> (u, apply(es, e-> apply(oneFaces, f-> intersection(convexHull u + f, par#e)))));
-- transform result into matrices whose columns are the vertices of the edges
edges = applyValues(edges, edgeSet -> apply(edgeSet, polSet -> apply(polSet, pol -> matrix vertices pol )));
if opts#Verbosity>0 then << "the intersections of u+sigmaDual with P(e) have vertices " << edges << endl;
-- calculate the lattice length and take for each P(e) the minimal one
edgeLengths := applyValues(edges, edgeSet -> apply(edgeSet, matSet -> min apply(matSet, mat -> gcd flatten entries (mat_0 - mat_(numgens source mat-1)))));
-- [RJS, Thm 6.2, condition (iv)]
-- check which combinations of P(e)s give a basis
checkBaseOfMatroid := apply(cartesianProduct values uSigmaPE, es -> rank fold(es, (i,j)->i|j) == rank tvb);
-- for all bases compute the minimal edge number, take maximum among all
l := max apply(select(pack(2, mingle(checkBaseOfMatroid , cartesianProduct values edgeLengths)), i -> i#0), i -> min i#1);
if opts#Verbosity>0 then (
if l >= 0 then ( << "separates " << l << "-jets" << endl ) else ( << "on sigma not globally generated." << endl )
);
l
)
-- PURPOSE : Given a toric vector bundle in Klyachko's description,
-- its parliament bases and toric Chern character
-- compute the maximal l such that the bundle separates l-jets
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : Integer, -infinity if not separates any l-jets, otherwise l
separatesJets = method( Options => true )
separatesJets (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue separatesJets) ( tvb -> (
if opts#Verbosity>0 then << "METHOD: separatesJets" << endl;
min( apply( maxCones tvb, sigma -> separatesJetsLocally(tvb,sigma, Verbosity=>opts#Verbosity) ) )
))
------------------------------------------------------------------------------
-- METHODS: isGloballyGenerated, isVeryAmple
------------------------------------------------------------------------------
-- PURPOSE : Given a toric vector bundle in Klyachko's description,
-- its parliament, compatible bases and toric Chern character
-- check if the vector bundle is globally generated, using [RJS, Thm. 1.2]
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : 'true' if globally generated, otherwise 'false'
isGloballyGenerated = method( Options => true )
isGloballyGenerated (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (tvb) ->
if separatesJets(tvb, Verbosity=>opts#Verbosity) >= 0 then true else false;
-- PURPOSE : Given a toric vector bundle in Klyachko's description,
-- its parliament, compatible bases and toric Chern character
-- check if the vector bundle is very ample, using [RJS, Cor. 6.7]
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : 'true' if very ample, otherwise 'false'
--isVeryAmple = method( Options => true ) -- already defined in Polyhedra
isVeryAmple (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> tvb -> separatesJets(tvb, opts) >= 1
------------------------------------------------------------------------------
-- METHOD: restrictToInvCurves, isNef, isAmple
------------------------------------------------------------------------------
-- AUXILIARY METHODS FOR isNef, isAmple:
-- restrictToCurve
------------------------------------------------------------------------------
-- PURPOSE : Given a toric vector bundle in Klyachko's description,
-- a cone corresponding to a curve of the toric variety and
-- its toric Chern character,
-- compute the restriction of the vector bundle to the curve.
-- INPUT :
-- 'tau', (n-1)-dim cone given as matrix of rays
-- 'torChern', toric Chern character
-- OUTPUT : list of integers (a_i) such that E|_C = \sum O_C(a_i)
restrictToCurve = method( Options => true)
restrictToCurve (Matrix,HashTable) := {Verbosity => 0} >> opts -> (tau,torChern) -> (
normal := generators kernel transpose tau;
if opts#Verbosity>0 then << "a vector normal to tau:" << endl << normal << endl;
sigmas := {};
for sigma in keys torChern do (
if contains(coneFromVData sigma, coneFromVData tau) then (
proj := flatten entries (transpose normal * sigma);
if all(proj, n -> n >= 0) then
sigmas = prepend(sigma,sigmas)
else
sigmas = append(sigmas,sigma);
);
);
if opts#Verbosity>0 then << "the adjacent maximal cones sigma1 and sigma2 are:" << endl << sigmas << endl;
for u0 in torChern#(sigmas_0) list (
local a;
for u1 in torChern#(sigmas_1) do (
-- opposite due to different sign convention in [RJS]
diff := u1-u0;
as := unique select(apply(entries(diff|normal), i -> if i_1==0 then (if not i_0==0 then infinity) else i_0/i_1), x -> instance(x,Number) or instance(x,InfiniteNumber));
if #as == 1 then (
a = as_0;
if opts#Verbosity>0 then << "the Chern components u1 and u2 lie on a line orthogonal to tau: " << endl << {u0,u1} << endl
<< "their difference is " << a << " times the normal." << endl;
break;
);
);
a
)
)
-- MAIN METHODS: restrictToInvCurves, isNef, isAmple -----------------------------
restrictToInvCurves = method ( Options => true)
restrictToInvCurves (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> (cacheValue symbol restrictionsToInvCurves) ( tvb -> (
torChern := toricChernCharacter( tvb, Verbosity=>(opts#Verbosity-1));
if opts#Verbosity>0 then << "METHOD: restrictToInvCurves" << endl;
F := fan tvb;
n := dim fan tvb;
curveCones := apply(cones(n-1,F), c -> (rays F)_c);
hashTable for tau in curveCones list (
if opts#Verbosity>0 then << "Restriction to codim1 cone tau:" << endl << tau << endl;
tau => restrictToCurve(tau,torChern, Verbosity=>(opts#Verbosity-1))
)
))
-- PURPOSE : Given a toric vector bundle in Klyachko's description and
-- its toric Chern character,
-- compute whether the bundle is nef or ample, using [HMP, Thm. 2.1]
-- INPUT : 'tvb', toric vector bundle
-- OUTPUT : hash table
isNef = method( Options => true)
isNef (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> tvb -> (
if opts#Verbosity>0 then << "METHOD: isNef" << endl;
restrictions := restrictToInvCurves(tvb, Verbosity => opts#Verbosity);
all(values restrictions, r -> all(r, x -> x >=0))
)
isAmple = method( Options => true)
isAmple (ToricVectorBundleKlyachko) := {Verbosity => 0} >> opts -> tvb -> (
if opts#Verbosity>0 then << "METHOD: isAmple" << endl;
restrictions := restrictToInvCurves(tvb, Verbosity => opts#Verbosity);
all(values restrictions, r -> all(r, x -> x >0))
)
------------------------------------------------------------------------------
-- METHOD: drawParliament2Dtikz
------------------------------------------------------------------------------
-- AUXILIARY METHODS FOR drawParliament2Dtikz:
-- sortByAngle, circularOrder
------------------------------------------------------------------------------
-- PURPOSE : Given a list of points in the plane,
-- and a list of the angles (interpret points as complex numbers),
-- sort the points by angle
sortByAngle = method()
sortByAngle (List,List) := (p, angles) -> (
if #p == 1 then return p;
for i from 0 to #p-2 do
if angles_(i+1) < angles_i then
return sortByAngle(switch(i,i+1,p),switch(i,i+1,angles));
p
)
-- PURPOSE : Given a list of points in the plane,
-- sort them in circular way around center of gravity
circularOrder = method()
circularOrder (List) := p -> (
mid := sum p/#p;
pmoved := apply(p, pt->pt-mid);
angles := apply(pmoved, pt -> atan2(pt_1,pt_0));
sortByAngle(p,angles)
)
-- MAIN METHOD: drawParliament2Dtikz -----------------------------------------
-- PURPOSE: Draw a two-dimensional parliament of polytopes using tikz
-- INPUT: 'tvb', toric vector bundle,
-- 'file', string with file name
-- OUTPUT: nothing to M2, output goes to file
drawParliament2Dtikz = method( Options => true)
drawParliament2Dtikz (ToricVectorBundleKlyachko,String) := {DrawCohomology => true, DrawChernCharacter => true } >> opts -> (tvb,file) -> (
-- check for dimension 2
if dim fan tvb != 2 then (
error "Error: only works for 2-dim parliaments.";
return;
);
polys := apply(values parliament tvb, vertices);
offset := 0.3;
-- want (0,0) to be inside picture
maxx := max append(apply(polys, p->max flatten entries p^{0}),0);
maxy := max append(apply(polys, p->max flatten entries p^{1}),0);
minx := min append(apply(polys, p->min flatten entries p^{0}),0);
miny := min append(apply(polys, p->min flatten entries p^{1}),0);
-- <<"" is taken from documentation about
-- creating and writing files in M2
f := file << "";
f << ///\begin{tikzpicture}[scale=0.5]/// << endl;
if not minx == infinity then (
f << /// \draw[thin, color=black!75]/// << endl;
f << " (" << minx-offset << "," << miny-offset << ") grid (" << maxx+offset << "," << maxy+offset << ");" << endl << endl;
);
for pMat in polys do (
-- check for empty polytope
if source pMat==0 then continue;
pts := circularOrder entries transpose pMat;
f << /// \fill[color=black,opacity=0.1]/// << endl << " ";
for p in pts do (
f << "(" << p_0 << "," << p_1 << ") -- ";
);
f << "cycle;" << endl;
f << /// \draw[color=black,opacity=0.5]/// << endl << " ";
for p in pts do (
f << "(" << p_0 << "," << p_1 << ") -- ";
);
f << "cycle;" << endl;
);
if opts#DrawCohomology then (
H := apply(0 .. 2, i->degrees HH^i tvb);
for h in H_0 do (
f << /// \fill[color=blue,opacity=0.3]/// << endl;
f << " (" << h_0 << "," << h_1 << ") circle (2pt);" << endl;
);
for h in H_1 do (
f << /// \fill[color=red,opacity=0.3]/// << endl;
f << " (" << h_0 << "," << h_1 << ") circle (2pt);" << endl;
);
for h in H_2 do (
f << /// \fill[color=green,opacity=0.3]/// << endl;
f << " (" << h_0 << "," << h_1 << ") circle (2pt);" << endl;
);
);
if opts#DrawChernCharacter then (
chern := values toricChernCharacter tvb;
for cs in chern do
for c in cs do (
f << /// \draw[thick, color=yellow!50]/// << endl;
f << " (" << c_(0,0) << "," << c_(1,0) << ") circle (2pt);" << endl;
);
graphChern := graphToricChernCharacter tvb;
for ray in keys graphChern do
for u in graphChern#ray do (
f << /// \draw[thin, color=yellow!50]/// << endl;
f << " (" << u_0_(0,0) << "," << u_0_(1,0) << ") -- (" << u_1_(0,0) << "," << u_1_(1,0) <<");" << endl;
);
);
f << /// \draw[thick, color=black!50]/// << endl;
f << " (0,0) circle (3pt);" << endl;
f << ///\end{tikzpicture}/// << endl;
f << close;
)
--- METHOD: wellformedBundleFiltrations -----------------------------------
-- PURPOSE: ensures ascending entries in the filtration matrices of a toric vector bundle
-- INPUT: 'tvb', toric vector bundle
-- OUTPUT: a toric vector bundle, whose filtration matrices have ascending entries
wellformedBundleFiltrations = method ()
wellformedBundleFiltrations (ToricVectorBundleKlyachko) := tvb -> (
fMTlist := applyValues(filtration tvb, f -> sort flatten entries f );
fMT := applyValues(fMTlist, f -> matrix {f});
fMTunique := applyValues(fMTlist, unique);
permutations := applyPairs(fMTunique, (rho,f)-> rho => apply(f, i-> positions(flatten entries (filtration tvb)#rho, j->i==j)) );
bT := applyPairs(base tvb, (rho,m) -> rho => fold(apply(permutations#rho, i -> m_i), (i,j) -> i|j));
-- the following is taken from ToricVectorBundles#makeVBKlyachko
fT := hashTable apply(pairs fMT, p -> (
L := flatten entries p#1;
L1 := sort unique L;
p#0 => hashTable ({(min L1-1) => {}} | apply(L1, l -> l => positions(L,e -> e == l)))));
new ToricVectorBundleKlyachko from {
"ring" => tvb#"ring",
"rayTable" => tvb#"rayTable",
"baseTable" => bT,
"filtrationMatricesTable" => fMT,
"filtrationTable" => fT,
"ToricVariety" => tvb#"ToricVariety",
"number of affine charts" => tvb#"number of affine charts",
"dimension of the variety" => tvb#"dimension of the variety",
"rank of the vector bundle" => tvb#"rank of the vector bundle",
"number of rays" => tvb#"number of rays",
symbol cache => new CacheTable}
)
---------------------------------------------------------------------------
-- DOCUMENTATION
---------------------------------------------------------------------------
beginDocumentation()
document {
Key => {PositivityToricBundles, Verbosity},
Headline => "checks positivity of toric vector bundles",
"Given a toric vector bundle, i.e. an equivariant vector bundle on a smooth complete toric variety, ",
"this package can check the positivity of this bundle. ",
TT "PositivityToricBundles", " can check whether a toric vector bundle is",
UL {
{"nef, i.e. whether the line bundle ", TEX ///$\mathcal{O}(1)$ on $\mathbb{P}(\mathcal E)$///, " is nef;"},
{"(very) ample, i.e. whether the line bundle ", TEX ///$\mathcal{O}(1)$ on $\mathbb{P}(\mathcal E)$///, " is (very) ample;"},
{"globally generated."}
},
"Additionally, ", TT "PositivityToricBundles", " can compute the toric Chern character of a toric vector bundle as introduced by Sam Payne.",
PARA{},
"For the computational purposes, ", TT "PositivityToricBundles", " uses the description of a toric vector bundles by filtrations developed by Alexander Klyachko, ",
"and relies on its implementation via the ", TO ToricVectorBundles, " package by René Birkner, Nathan Ilten and Lars Petersen. ",
BR{},
"To check nefness and ampleness, ", TT "PositivityToricBundles", " uses a result of Milena Hering, Mircea Mustaţă and Sam Payne, ",
"namely, that it is sufficient to check this for the restriction of the bundle to the torus invariant curves. ",
"The central method for this is ", TO restrictToInvCurves, "; the methods ", TT "isNef", " and ", TT "isAmple", " are based on it.",
BR{},
"For global generation and very ampleness, ", TT "PositivityToricBundles", " uses results of Sandra Di Rocco, Kelly Jabbusch and Gregory Smith, ",
"who describe these properties in terms of the so-called parliament of polytopes of a toric vector bundle. ",
"From the parliament of polytopes one can extract the information up to which order jets are separated by the vector bundle. Globally generated or very ample toric vector bundles are those that separate 0-jets or 1-jets, respectively. ",
"Here, the central method is ", TO separatesJets, "; built on it are ", TT "isGloballyGenerated", " and ", TT "isVeryAmple", ".",
PARA{},
"For the mathematical background see ",
UL {
{"[K] Alexander Klyachko, ", EM "Equivariant bundles over toral varieties", ", Izv. Akad. Nauk SSSR Ser. Mat., 53, 1989."},
{"[P] Sam Payne, ", EM "Moduli of toric vector bundles", ", Compos. Math, 144, 2008."},
{"[HMP] Milena Hering, Mircea Mustaţă, Sam Payne, ", EM "Positivity properties of toric vector bundles", ", Ann. Inst. Fourier (Grenoble), 60, 2010"},
{"[RJS] Sandra Di Rocco, Kelly Jabbusch, Gregory Smith, ", EM "Toric vector bundles and parliaments of polytopes", ", Trans. AMS, 370, 2018."},
},
"The following example computes the positivity for the tangent sheaf of ", TEX ///$\mathbb P^2$///, ":",
EXAMPLE {
"E = tangentBundle projectiveSpaceFan 2",
"isNef E",
"isAmple E",
"isVeryAmple E",
"isGloballyGenerated E",
"separatesJets E"
},
PARA{},
"The toric Chern character can be computed:",
EXAMPLE {
"toricChernCharacter E"
},
"which associates to each maximal cone (its rays put into matrices) the corresponding components.",
PARA{},
"The restrictions of the bundle to the torus invariant curves can be computed:",
EXAMPLE {
"restrictToInvCurves E"
},
"Here, in all three cases, the restriction splits into ", TEX ///$\mathcal{O}_{\mathbb P^1}(2) \oplus \mathcal{O}_{\mathbb P^1}(1)$///, ".",
PARA{},
"Most methods of ", TT "PositivityToricBundles", " support the option ", TT "Verbosity", ". ",
"So by adding ", TT "Verbosity => n", " with n a positive integer to the arguments of a method, hopefully useful insight about the course of the calculation is provided.",
Caveat => {
"The description of a toric variety and a toric vector bundle by filtrations involves the choice of signs. ", TT "PositivityToricBundles", " follows the same choice of signs as ", TT "ToricVectorBundles", ", which are",
UL {
{"the fan associated to a polytope will be generated by inner normals,"},
{"the filtrations for describing a toric vector bundle are increasing and that the filtration steps are stored in that way, see ", TO "wellformedBundleFiltrations", "."},
},
"Unfortunately, the above cited articles use decreasing filtrations and, moreover, [HMP], [P] and [RJS] use outer normals.",
PARA{},
"Contrary to what the name suggests, ", TO ToricVectorBundle, " may very well encode a toric reflexive sheaf, which is not necessarily locally free, that is, not necessarily a vector bundle. Some methods work also for toric reflexive sheaves, but this is not guaranteed.",
PARA{},
"Another warning concerns the toric variety: the methods of ", TT "PositivityToricBundles", " implicitly assume that the variety is complete (to apply the results of [HMP] and [P]) and in addition smooth (for [RJS]). For non-complete or singular toric varieties, methods might break or results might become meaningless."},
SeeAlso => {"Polyhedra::Polyhedra", "ToricVectorBundles::ToricVectorBundles"},
Contributors => {"The author of the package wants to thank Brett Nasserden and Alexandre Zotine for reporting bugs."}
}
document {
Key => {groundSet, (groundSet, ToricVectorBundleKlyachko)},
Headline => "computes the ground set of a matroid associated to a toric vector bundle",
Usage => "g = groundSet E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"g" => List => {"containing elements of ground set as one column matrices"} },
Consequences => { {"The result of ", TT "groundSet", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#groundSet", ". It will be used by other methods."}
},
TEX///
Given a toric vector bundle $\mathcal E$ in Klyachko's description on a toric variety $X = TV(\Sigma)$,
it is encoded by increasing filtrations $E^{\rho}(j)$ for each ray $\rho \in \Sigma(1)$.
To these filtrations we can associated the set $L(\mathcal E)$ of intersections $\cap_{\rho} E^{\rho} (j_{\rho})$, where $(j_{\rho})_\rho$ runs over all tuples in $\mathbb Z^{\Sigma(1)}$.
This set $L(\mathcal E)$ is ordered by inclusion and there is a unique matroid $M(\mathcal E)$ associated to it, see [RJS, Proposition 3.1].
///,
TT "groundSet", " computes the ground set (i.e. building blocks) of this matroid.",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"groundSet E"
},
"With the ground set, one can compute the parliament of polytopes using ", TO parliament, " or compute the set of compatible bases using ", TO compatibleBases, ".",
Caveat => {"This method works for any toric reflexive sheaf on any toric variety."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", parliament, compatibleBases}
}
document {
Key => {parliament, (parliament, ToricVectorBundleKlyachko) },
Headline => "computes the parliament of polytopes to a toric vector bundle",
Usage => "p = parliament E",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"g" => List => {"containing elements of ground set as one column matrices"} },
Outputs => {
"p" => HashTable => {"whose keys are elements of the ground set and the value of a key is a ", TO Polyhedron } },
Consequences => { {"The result of ", TT "parliament", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#parliament", ". It will be used by other methods."}
},
"Given a toric vector bundle in Klyachko's description, ",
TT "parliament", " computes its parliament of polytopes as introduced in [RJS, Section 3].",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"p = parliament E",
"applyValues(p, vertices)"
},
EXAMPLE {
"P112 = ccRefinement transpose matrix {{1,0},{0,1},{-1,-2}};",
"D = {1,0,0};",
"L = toricVectorBundle(1, P112, toList(3: matrix{{1_QQ}}), apply( D, i-> matrix{{-i}}));",
"details L",
"apply(values parliament L, vertices)",
},
"If the toric variety is two-dimensional, then the result can be visualised using ", TO drawParliament2Dtikz, ". ",
TT "parliament", " calls internally the method ", TO groundSet, ".",
Caveat => {"This method works for any toric reflexive sheaf on any toric variety."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", groundSet, drawParliament2Dtikz}
}
document {
Key => {drawParliament2Dtikz, (drawParliament2Dtikz,ToricVectorBundleKlyachko,String), DrawCohomology, DrawChernCharacter},
Headline => "visualises the parliament of polytopes for a vector bundle on a toric surface using TikZ",
Usage => "drawParliament2Dtikz(E,file)",
Inputs => {
"E" => ToricVectorBundleKlyachko,
"file" => String => {"containing name of file, where picture will be written"} },
Consequences => {
{"The file with name ", TT "file", " will contain a TikZ picture, ready to be included into a TeX file."} },
"Given a toric vector bundle in Klyachko's description on a toric surface, ",
TT "drawParliament2Dtikz", " writes to a file a TikZ picture visualising the ", TO parliament, ". ",
"Additionally, the picture may contain also information about the cohomology of the vector bundle as computed by ", TO cohomology, " from the ", TO ToricVectorBundle, " package and the toric Chern character as computed by ", TO toricChernCharacter, " and ", TO graphToricChernCharacter, ".",
PARA{},
"Extending the example from ", TO parliament, " by the command ",
PRE ///i5 : drawParliament2Dtikz(E,p,"picture.tikz")///,
"produces the file ", TT "picture.tikz", ". ",
"Embedded into a TeX file, this finally leads to a nice picture of the parliament.",
PARA{},
"By setting the options ", TT "DrawChernCharacter", " and ", TT "DrawCohomology", " to ", TT "true", " or ", TT "false", ", one can decide whether the picture also includes information about the cohomology or toric Chern character, respectively. By default, both are set to ", TT "true", ".",
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", parliament}
}
document {
Key => { compatibleBases, (compatibleBases, ToricVectorBundleKlyachko) },
Headline => "computes compatible bases for a toric vector bundle",
Usage => "b = compatibleBases E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"b" => HashTable => {"whose keys are maximal cones and the value of a key is a ", TO matrix} },
Consequences => { {"The result of ", TT "compatibleBases", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#compatibleBases", ". It will be used by other methods."}
},
"Given a toric vector bundle in Klyachko's description, ", TT "compatibleBases", " computes for each maximal cone of the underlying toric variety a compatible basis of the filtrations, see [RJS, Section 3] for details.",
BR{},
TT "compatibleBases", " calls internally the method ", TO groundSet, ".",
PARA{},
"The compatible bases serve as input for the computation of the toric Chern character by ", TO toricChernCharacter, ".",
Caveat => {"This method works for any toric reflexive sheaf (see ", TO isLocallyWeil, " for an example where the sheaf is not locally free) on a toric variety, whose fan is covered by cones of maximal dimension."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", groundSet, toricChernCharacter}
}
document {
Key => { toricChernCharacter, (toricChernCharacter, ToricVectorBundleKlyachko)},
Headline => "computes the toric Chern character of a toric vector bundle",
Usage => "c = toricChernCharacter E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"c" => HashTable => {"whose keys are maximal cones and the value of a key is a list of one column matrices"} },
Consequences => { {"The result of ", TT "toricChernCharacter", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#toricChernCharacter", ". ", BR{},
"As a side product, this method checks whether the sheaf given is locally free", " this will be stored as a ", TO cacheValue, " in ", TT "E.cache#isLF", ". This value is returned by the method ", TO "isLocallyFree", ". ", BR{},
"Additionally, ", TT "toricChernCharacter", " determines the Cartier index, which will be stored as a ", TO cacheValue, " in ", TT "E.cache#cartierInd", ". This value is returned by the method ", TO "cartierInd", "." }},
"Given a toric vector bundle in Klyachko's description, ", TT "toricChernCharacter", " computes its toric Chern character as introduced in [P]. ",
BR{},
TT "toricChernCharacter", " calls internally the method ", TO compatibleBases, ".",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"toricChernCharacter E"
},
Caveat => {"This method works for a toric reflexive sheaf which is locally Weil (see ", TO isLocallyFree, " for an example if the sheaf is locally Weil but not locally free) on a toric variety, whose fan is covered by simplicial cones of maximal dimension."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", compatibleBases, graphToricChernCharacter, isLocallyFree, cartierInd}
}
document {
Key => { isLocallyWeil, (isLocallyWeil, ToricVectorBundleKlyachko) },
Headline => "checks whether a toric reflexive sheaf is locally Weil",
Usage => "isLW = isLocallyWeil E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"isLW" => Boolean => {"true if the reflexive sheaf is locally Weil, false otherwise"} },
Consequences => { {"The result of ", TT "isLocallyWeil", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#isLW", "."} },
"Contrary to what the name suggests, ", TO ToricVectorBundle, " may well encode a toric reflexive sheaf that is not locally Weil (as soon as the toric variety has dimension at least three). ", TT "isLocallyWeil", " permits to check whether a toric reflexive sheaf is locally Weil, that is, locally a direct sum of reflexive sheaves of rank one. If the toric variety is smooth, this is equivalent to being locally free, that is, a vector bundle.",
BR{},
TT "isLocallyWeil", " calls internally the method ", TO compatibleBases, ", if all the bases have as many elements as the rank of the sheaf, then it is locally Weil.",
EXAMPLE {
"A3 = fan coneFromVData matrix {{1,0,0},{0,1,0},{0,0,1}};",
"filtMat = apply( { {{1,0,0},{0,1,0},{0,0,1}}, {{0,1,0},{1,0,0},{0,0,1}}, {{1,1,0},{1,0,0},{0,0,1}} }, matrix);",
"filtStep = apply( { {{0,1,1}}, {{0,1,1}}, {{0,1,1}} }, matrix);",
"E = toricVectorBundle (3,A3,filtMat,filtStep);",
"details E",
"isLocallyWeil E",
"compatibleBases E"
},
Caveat => {"This method works for any toric reflexive sheaf on a toric variety, whose fan is covered by cones of maximal dimension."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", compatibleBases, isLocallyFree }
}
document {
Key => { isLocallyFree, (isLocallyFree, ToricVectorBundleKlyachko) },
Headline => "checks whether a toric reflexive sheaf is locally free",
Usage => "isLF = isLocallyFree E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"isLF" => Boolean => {"true if the reflexive sheaf is locally free, false otherwise"} },
Consequences => { {"The result of ", TT "isLocallyFree", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#isLF", "."} },
"Contrary to what the name suggests, ", TO ToricVectorBundle, " may well encode a toric reflexive sheaf that is not locally free. ", TT "isLocallyFree", " permits to check whether a toric reflexive sheaf is locally free, that is, locally a direct sum of invertible sheaves, that is, a vector bundle.",
BR{},
TT "isLocallyFree", " calls internally the methods ", TO isLocallyWeil, " and ", TO toricChernCharacter, ".",
EXAMPLE {
"A3 = fan coneFromVData matrix {{1,0,0},{0,1,0},{0,0,1}};",
"filtMat = apply( { {{1,0},{0,1}}, {{0,1},{1,0}}, {{1,1},{1,0}} }, matrix);",
"filtStep = apply( { {{0,1}}, {{0,1}}, {{0,1}} }, matrix);",
"E = toricVectorBundle (2,A3,filtMat,filtStep);",
"details E",
"isLocallyFree E",
},
EXAMPLE {
"P112 = ccRefinement transpose matrix {{1,0},{0,1},{-1,-2}};",
"D = {1,0,0};",
"L = toricVectorBundle(1, P112, toList(3: matrix{{1_QQ}}), apply( D, i-> matrix{{-i}}));",
"details L",
"isLocallyWeil L",
"toricChernCharacter L",
"isLocallyFree L"
},
Caveat => {"This method works for any toric reflexive sheaf on a toric variety, whose fan is covered by cones of maximal dimension."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", toricChernCharacter, isLocallyWeil }
}
document {
Key => { cartierInd, (cartierInd, ToricVectorBundleKlyachko) },
Headline => "computes the Cartier index",
Usage => "i = cartierInd E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"i" => ZZ => {"Cartier index of E"} },
Consequences => { {"The result of ", TT "cartierInd", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#cartierInd", "."} },
"Contrary to what the name suggests, ", TO ToricVectorBundle, " may well encode a toric reflexive sheaf that is not locally free. ", TT "cartierInd", " computes the Cartier index, that is, the smallest non-negative integer i such that the pullback of the bundle under the i-th toric Frobenius becomes locally free. In case of the reflexive sheaf of a Weil divisor D, this is the smallest i such that iD is Cartier. This method works well only on simplicial toric varieties.",
BR{},
TT "cartierInd", " calls internally the method ", TO toricChernCharacter, ".",
EXAMPLE {
"P112 = ccRefinement transpose matrix {{1,0},{0,1},{-1,-2}};",
"D = {1,0,0};",
"L = toricVectorBundle(1, P112, toList(3: matrix{{1_QQ}}), apply( D, i-> matrix{{-i}}));",
"details L",
"cI = cartierInd L",
"isLocallyFree L",
"L2 = toricVectorBundle(1, P112, toList(3: matrix{{1_QQ}}), apply( cI*D, i-> matrix{{-i}}));",
"isLocallyFree L2"
},
Caveat => {"This method works for a toric reflexive sheaf, which is locally Weil (see ", TO isLocallyWeil, "), on a toric variety, whose fan is covered by cones of maximal dimension."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", toricChernCharacter }
}
document {
Key => { graphToricChernCharacter, (graphToricChernCharacter, ToricVectorBundleKlyachko)},
Headline => "computes the lines connected the components of the toric Chern character of a toric vector bundle",
Usage => "g = graphToricChernCharacter E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"g" => HashTable => {"whose keys are curve cones and the value of a key is a pair of the connected components"} },
Consequences => { {"The result of ", TT "graphToricChernCharacter", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#graphToricChernCharacter", ". It will be used by other methods."}
},
"Given a toric vector bundle in Klyachko's description, ", TT "graphToricChernCharacter", " connects the component of its toric Chern character. ",
BR{},
TT "graphToricChernCharacter", " calls internally the method ", TO toricChernCharacter, ".",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"c = toricChernCharacter E",
"g = graphToricChernCharacter E"
},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", groundSet, compatibleBases, toricChernCharacter}
}
document {
Key => {separatesJets, isGloballyGenerated, isVeryAmple, (separatesJets, ToricVectorBundleKlyachko), (isGloballyGenerated, ToricVectorBundleKlyachko), (isVeryAmple, ToricVectorBundleKlyachko) },
Headline => "computes up to which order a toric vector bundle separates jets",
Usage => "l = separateJets E \nb = isGloballyGenerated E \nb = isVeryAmple E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"l" => ZZ,
"b" => Boolean },
Consequences => { {"The result of ", TT "separatesJets", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#separatesJets", ". It will be used by other methods."}
},
"Given a toric vector bundle in Klyachko's description, ", TT "separatesJets", " determines up to which order the vector bundle separates jets. ",
"Note that a toric vector bundle is globally generated or very ample, if it separates 0-jets or 1-jets, respectively, see [RJS, Theorem 1.2, 6.2 and 6.5]. ",
"Hence, the methods ", TT "isGloballyGenerated", " and ", TT "isVeryAmple", " only ask whether ", TT "separatesJets", " returns a non-negative or positive integer, respectively. ",
BR{},
"If the vector bundle is not even globally generated, then ", TT "separatesJets", " returns the value ", TT "-infinity", ". ",
BR{},
TT "separatesJets", " calls internally the methods ", TO parliament, " and ", TO toricChernCharacter, "; ",
"whereas ", TT "isGloballyGenerated", " and ", TT "isVeryAmple", " are simple checks on the output of ", TT "separatesJets", ".",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"separatesJets E",
"isGloballyGenerated E",
"isVeryAmple E"
},
"In this example, the vector bundle ", TEX ///$\mathcal E$///, " separates 1-jets, hence is very ample.",
Caveat => {"These methods work for toric vector bundles on a complete simplicial toric variety.",
BR{},
"[RJS, Theorem 6.2, condition (iv)] is not checked, which might give a wrong result in special cases (too many polytopes of the parliament share common vertices). If this happens, the method ", TT "separatesJets", " will print a warning. In these cases, also the results of ", TT "isGloballyGenerated", " and ", TT "isVeryAmple", " might be wrong."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", parliament, compatibleBases, toricChernCharacter}
}
document {
Key => { restrictToInvCurves, isNef, isAmple, (restrictToInvCurves, ToricVectorBundleKlyachko), (isNef, ToricVectorBundleKlyachko), (isAmple, ToricVectorBundleKlyachko) },
Headline => "computes the restrictions of a toric vector bundle to the torus invariant curves",
Usage => "l = restrictToInvCurves E \nb = isNef E \nb = isAmple E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"l" => HashTable,
"b" => Boolean },
Consequences => { {"The result of ", TT "restrictToInvCurves", " will be stored as a ", TO cacheValue, " in ", TT "E.cache#restrictionsToInvCurves", ". It will be used by other methods."}
},
"Given a toric vector bundle in Klyachko's description, ", TT "restrictToInvCurves", " computes its restrictions to the torus invariant curves, which are isomorphic to a direct sum of line bundles ", TEX ///$\mathbb P^1$///, ". ",
"Recall that on ", TEX ///$\mathbb P^1$///, " any vector bundle splits into ", TEX ///$\oplus_i O_{\mathbb P^1}(a_i)$///, ". Therefore ", TT "restrictToInvCurves", " returns a hash table with keys the invariant curves and as values lists with the integers ", TEX ///$a_i$///, ". ",
BR{},
"By [HMP, Theorem 2.1], if all these integers", TEX ///$a_i$///, " are non-negative or positive, the original toric vector bundle is nef or ample. ",
"Hence, the methods ", TT "isNef", " and ", TT "isAmple", " check exactly that.",
BR{},
TT "restrictToInvCurves", " calls internally the method ", TO toricChernCharacter, "; ",
"whereas ", TT "isNef", " and ", TT "isAmple", " are simple checks on the output of ", TT "restrictToInvCurves", ".",
EXAMPLE {
"E = tangentBundle(projectiveSpaceFan 2)",
"restrictToInvCurves E",
"isNef E",
"isAmple E"
},
"In this example we see that the vector bundle is ample, as all integers are positive.",
Caveat => {"These methods work for toric vector bundles on a complete simplicial toric variety."},
SeeAlso => {"ToricVectorBundles::ToricVectorBundleKlyachko", parliament, compatibleBases, toricChernCharacter}
}
document {
Key => { wellformedBundleFiltrations, (wellformedBundleFiltrations, ToricVectorBundleKlyachko) },
Headline => "produces the same toric vector bundle, but where the filtration steps are stored in matrices with ascending entries.",
Usage => "F = wellformedBundleFiltrations E",
Inputs => {
"E" => ToricVectorBundleKlyachko },
Outputs => {
"F" => ToricVectorBundleKlyachko },
"A toric vector bundle in Klyachko's description as used in ", TO "ToricVectorBundles", " is given by ascending filtrations. Unfortunately, the filtration steps are not always stored in an ascending way by certain methods, like ", TO "ToricVectorBundles::dual(ToricVectorBundle)", " or ", TO "ToricVectorBundles::tensor(ToricVectorBundle,ToricVectorBundle)", " (and maybe others). This may cause problems in some methods of ", TT "PositivityToricBundles", ", for example in ", TO "toricChernCharacter", ". This method ensures that the filtration steps are stored in an ascending way and therefore, that the methods of this package can be used safely.",
EXAMPLE {
"T = tangentBundle projectiveSpaceFan 2",
"E = T ** (dual T)",
"details E",
"toricChernCharacter E"
},
"Note that the filtration steps of E are neither ascending nor descending. The method ", TO "toricChernCharacter", " produces nonsense here: ", TEX ///$\mathcal{O}_{\mathbb P^2}$///, " is a direct summand of E, so 0 has to appear in the toric Chern character.",
EXAMPLE {
"F = wellformedBundleFiltrations E",
"details F",
"toricChernCharacter F"
},
"By passing to ascending filtration steps, the result becomes correct.",
Caveat => {"This method works for any toric reflexive sheaf."},
SeeAlso => {"ToricVectorBundles::dual(ToricVectorBundle)", "ToricVectorBundles::tensor(ToricVectorBundle,ToricVectorBundle)"}
}
---------------------------------------------------------------------------
-- TESTS
---------------------------------------------------------------------------
-- We test against the examples from [RJS]
-- CAVEAT: 1) The data is copied from [RJS], but many signs are different,
-- as [RJS] and ToricVectorBundle (and therefore PositivityToricBundles)
-- follow different sign conventions.
-- 2) When setting up the vector bundles using ToricVectorBundles,
-- I have no direct influence on the (internal) order of rays.
-- Fortunately, it seems that the order is always chosen in the same way.
-- If this changes at some point in the future, all tests will fail.
-- Test 0
TEST ///
-- This is [RJS, Example 3.7]
-- auxiliary methods
V = toricVectorBundle(3,hirzebruchFan 0);
rays V
-- output:
-- {| 0 |, | 0 |, | -1 |, | 1 |}
-- | -1 | | 1 | | 0 | | 0 |
Vbasis = {
matrix{{0,0,1},{1,0,0},{0,1,0}}, -- for (0,-1)
matrix{{0,0,1},{1,0,0},{0,1,0}}, -- for (0,1)
matrix{{1,1,0},{0,0,1},{1,0,0}}, -- for (-1,0)
matrix{{1,1,0},{1,0,0},{0,0,1}} }; -- for (1,0)
Vfiltration = {
matrix{{-2,-1,0}}, -- for (0,-1)
matrix{{-2,-1,0}}, -- for (0,1)
matrix{{-1,0,1}}, -- for (-1,0)
matrix{{-1,0,1}} }; -- for (1,0)
V = addBase(V,Vbasis);
V = addFiltration(V,Vfiltration);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{0,0}}, set {{1,0}}, set {{-1,0}}, set {} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{-1,0},{0,-2},{1,-1}},
set {{1,0},{-1,-2},{0,-1}},
set {{1,0},{-1,2},{0,1}},
set {{0,2},{-1,0},{1,1}} } );
///
-- Test 1
TEST ///
-- This is [RJS, Example 3.8] for d=2
V = tangentBundle(projectiveSpaceFan 2);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{0,0},{-1,1},{-1,0}},
set {{0,0},{1,-1},{0,-1}},
set {{0,0},{1,0},{0,1}} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{1,0},{1,-1}},
set {{-1,1},{0,1}},
set {{-1,0},{0,-1}} } );
assert(isGloballyGenerated V);
assert(isVeryAmple V);
assert(isNef V);
assert(isAmple V);
///
-- Test 2
TEST ///
-- This is [RJS, Example 3.8] for d=3
V = tangentBundle(projectiveSpaceFan 3);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{0,0,0},{-1,0,1},{-1,1,0},{-1,0,0}},
set {{0,0,0},{1,-1,0},{0,-1,1},{0,-1,0}},
set {{0,0,0},{1,0,-1},{0,1,-1},{0,0,-1}},
set {{0,0,0},{1,0,0},{0,1,0},{0,0,1}} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{1,0,0},{1,-1,0},{1,0,-1}},
set {{0,1,0},{-1,1,0},{0,1,-1}},
set {{0,0,1},{-1,0,1},{0,-1,1}},
set {{-1,0,0},{0,-1,0},{0,0,-1}} } );
assert(isGloballyGenerated V);
assert(isVeryAmple V);
assert(isNef V);
assert(isAmple V);
///
-- Test 3
TEST ///
-- This is [RJS, Example 4.2]
-- auxiliary methods
V = toricVectorBundle(3, projectiveSpaceFan 2);
rays V
-- {| -1 |, | 0 |, | 1 |}
-- | -1 | | 1 | | 0 |
Vbasis = {
matrix{{1,0,0},{-1,1,0},{0,-1,1}}, -- for (-1,-1)
matrix{{0,0,1},{0,1,0},{1,0,0}}, -- for (0,1)
matrix{{1,0,0},{0,1,0},{0,0,1}} }; -- for (1,0)
Vfiltration = {
matrix{{-3,-2,1}}, -- for (-1,-1)
matrix{{-3,0,2}}, -- for (0,1)
matrix{{-4,0,1}} }; -- for (1,0)
V = addBase(V,Vbasis);
V = addFiltration(V,Vfiltration);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{-3,2},{-4,2},{-4,3}},
set {{1,2},{0,2},{0,3}},
set {},
set {{2,0},{1,0},{1,1}},
set {{2,-3},{1,-3},{1,-2}} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{1,2},{2,0},{2,-3}},
set {{-4,3},{0,3},{1,1}},
set {{-4,2},{0,0},{1,-3}} } );
assert(not isGloballyGenerated V);
assert(not isVeryAmple V);
assert(isNef V);
assert(isAmple V);
///
-- Test 4
TEST ///
-- This is [RJS, Example 4.4]
-- auxiliary methods
V = toricVectorBundle(2, hirzebruchFan 1);
rays V
-- {| 0 |, | -1 |, | 0 |, | 1 |}
-- | -1 | | 1 | | 1 | | 0 |
Vbasis = {
matrix{{1,1},{1,0}}, -- for (0,-1)
matrix{{0,1},{1,0}}, -- for (-1,1)
matrix{{1,0},{0,1}}, -- for (0,1)
matrix{{1,0},{0,1}} }; -- for (1,0)
Vfiltration = {
matrix{{-3,1}}, -- for (0,-1)
matrix{{-5,0}}, -- for (-1,1)
matrix{{-3,-2}}, -- for (0,1)
matrix{{-4,2}} }; -- for (1,0)
V = addBase(V,Vbasis);
V = addFiltration(V,Vfiltration);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{-1,-1},{-3,-3},{-4,-3},{-4,-1}},
set {{3,3},{2,2},{2,3}},
set {{4,-1},{3,-2},{2,-2},{2,-1}} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{2,-2},{-4,-3}},
set {{3,-2},{-3,-3}},
set {{4,-1},{3,3}},
set {{2,3},{-4,-1}} } );
assert(isGloballyGenerated V);
assert(isVeryAmple V);
assert(isNef V);
assert(isAmple V);
///
-- Test 5
TEST ///
-- This is [RJS, Example 6.4]
-- auxiliary methods
V = toricVectorBundle(3, projectiveSpaceFan 2);
rays V
-- {| -1 |, | 0 |, | 1 |}
-- | -1 | | 1 | | 0 |
Vbasis = {
matrix{{1,0,0},{-1,1,0},{0,-1,1}}, -- for (-1,-1)
matrix{{0,0,1},{0,1,0},{1,0,0}}, -- for (0,1)
matrix{{1,0,0},{0,1,0},{0,0,1}} }; -- for (1,0)
Vfiltration = {
matrix{{-4,-3,-1}}, -- for (-1,-1)
matrix{{-2,0,2}}, -- for (0,1)
matrix{{-2,1,2}} }; -- for (1,0)
V = addBase(V,Vbasis);
V = addFiltration(V,Vfiltration);
p = parliament V;
assert(
set apply(values p, q -> set entries transpose lift(vertices q,ZZ)) ===
set { set {{-1,2},{-2,2},{-2,3}},
set {{2,2},{1,2},{1,3}},
set {{1,0}},
set {{3,0},{2,0},{2,1}},
set {{3,-2},{2,-2},{2,-1}} } );
c = toricChernCharacter V;
assert(
set apply(values c, l -> set entries transpose fold(l, (i,j) -> i|j)) ===
set { set {{2,2},{3,0},{3,-2}},
set {{-2,3},{1,3},{2,1}},
set {{-2,2},{1,0},{2,-2}} } );
assert(isGloballyGenerated V);
assert(not isVeryAmple V);
assert(isNef V);
assert(isAmple V);
///
-- Test 6
TEST ///
-- Test with a randomized vector bundle on 3-dim variety
r = 2 + random 4
F = directProduct(projectiveSpaceFan 1, hirzebruch r)
E = randomDeformation(tangentBundle F,4)
while not isLocallyWeil E do (
E = randomDeformation(tangentBundle F,4)
)
tw = toList apply( 1 .. # rays E, i-> random 3)
E = twist(E, tw)
applyValues(filtration E, entries)
applyValues(base E, entries)
gs = groundSet E
p = parliament E;
par = unique entries transpose fold(flatten apply(values p, latticePoints), (i,j) -> i|j)
c = toricChernCharacter E
degs = unique degrees HH^0 E
assert( set par === set degs )
cList = apply(values c, l-> fold(l,(i,j)->i|j))
wList = findWeights E
assert( #cList == #wList )
-- assumes that both lists have equal length
areEqualListsModPerm = (L1,L2) -> (
if #L1 == 0 then return true; --implicit: #L2==0
pos := positions(L2, l-> l==L1#0);
if #pos == 0 then return false;
return areEqualListsModPerm(drop(L1,{0,0}),drop(L2,{pos#0,pos#0}))
)
getColumns := mat -> toList apply( 0..<numgens source mat, i->mat_i )
foundList = for i in 0 ..< #cList list (
found := -1;
for j in 0 ..< #wList do (
cChars := getColumns cList_i;
for k in 0 ..< #(wList_j) do (
wChars := getColumns (wList_j)_k;
if areEqualListsModPerm(cChars,wChars) then (
found = j;
break;
)
)
);
found
)
assert(all(foundList, i->i>=0))
///
-- Test 7
TEST ///
-- Test with a randomized vector bundle of rank 3 on hirzebruch
r = 0 + random 5
X = hirzebruch r
rk=3
while true do (
FiltMat = for i to 3 list matrix {{random(ZZ^rk,ZZ^rk)}};
if min apply(FiltMat, rank) == rk then break
)
FiltMat
FiltStep = for i to 3 list matrix{sort toList apply(0..<rk, i-> random(-5,5))}
apply(FiltMat,entries)
apply(FiltStep,entries)
E = toricVectorBundle(rk, X, FiltMat, FiltStep)
cB = compatibleBases E
tCC = toricChernCharacter E
cList = apply(values tCC, l-> fold(l,(i,j)->i|j))
wList = findWeights E
assert(#cList == #wList)
getColumns := mat -> toList apply( 0..<numgens source mat, i->mat_i )
-- assumes that both lists have equal length
areEqualListsModPerm = (L1,L2) -> (
if #L1 == 0 then return true; --implicit: #L2==0
pos := positions(L2, l-> l==L1#0);
if #pos == 0 then return false;
return areEqualListsModPerm(drop(L1,{0,0}),drop(L2,{pos#0,pos#0}))
)
foundList = for i in 0 ..< #cList list (
found := -1;
for j in 0 ..< #wList do (
cChars := getColumns cList_i;
for k in 0 ..< #(wList_j) do (
wChars := getColumns (wList_j)_k;
if areEqualListsModPerm(cChars,wChars) then (
found = j;
break;
)
)
);
found
)
assert(all(foundList, i->i>=0))
///
-- Test 8
TEST ///
-- Test with a randomized vector bundle of rank 4 on hirzebruch
r = 0 + random 3
X = hirzebruch r
rk=4
while true do (
FiltMat = for i to 3 list matrix {{random(ZZ^rk,ZZ^rk)}};
if min apply(FiltMat, rank) == rk then break
)
FiltMat
FiltStep = for i to 3 list matrix{sort toList apply(0..<rk, i-> random(-5,5))}
apply(FiltMat,entries)
apply(FiltStep,entries)
E = toricVectorBundle(rk, X, FiltMat, FiltStep)
cB = compatibleBases E
tCC = toricChernCharacter E
cList = apply(values tCC, l-> fold(l,(i,j)->i|j))
wList = findWeights E
assert(#cList == #wList)
getColumns := mat -> toList apply( 0..<numgens source mat, i->mat_i )
-- assumes that both lists have equal length
areEqualListsModPerm = (L1,L2) -> (
if #L1 == 0 then return true; --implicit: #L2==0
pos := positions(L2, l-> l==L1#0);
if #pos == 0 then return false;
return areEqualListsModPerm(drop(L1,{0,0}),drop(L2,{pos#0,pos#0}))
)
foundList = for i in 0 ..< #cList list (
found := -1;
for j in 0 ..< #wList do (
cChars := getColumns cList_i;
for k in 0 ..< #(wList_j) do (
wChars := getColumns (wList_j)_k;
if areEqualListsModPerm(cChars,wChars) then (
found = j;
break;
)
)
);
found
)
assert(all(foundList, i->i>=0))
///
-- Test 9
TEST ///
-- Test whether the filtration steps obtained from the toric Chern character are correct
-- Such a test would have failed before version 1.8,
-- because of a bug in the internal method flags:
-- the method made an assumption on the form how the filtration steps are ordered
-- in the bundles generated by the package ToricVectorBundles.
-- Usually true, this assumption does not apply, if the bundle arises
-- by using the method dual of ToricVectorBundles (e.g. cotangent bundles).
E = dual tangentBundle projectiveSpaceFan 2
getCols = mat -> toList apply( 0..<numgens source mat, i->mat_i )
filtE = applyValues(filtration E, filt -> flatten entries filt);
raysE = keys filtE;
filtFromTCC := applyPairs( toricChernCharacter E, (cone,us) ->
cone => (
filtRay := for ray in getCols cone list sort apply(us, u -> ( (transpose matrix ray)*u)_(0,0))
)
);
applyPairs(filtFromTCC, (cone, filts) -> (
cone => for ray in getCols cone do
assert isMember( sort filtE#(matrix ray), filts)
)
)
///
-- Test 10
TEST ///
-- the methods dual, tensor (and maybe others?) from ToricVectorBundles
-- may produce a ToricVectorBundleKlyachko whose matrices containing the filtration steps
-- have not ascending entries.
-- The method wellformedBundleFiltrations (added in version 1.9) ensures ascending entries.
-- The following test fails when omitting this method.
T = tangentBundle projectiveSpaceFan 2
E = wellformedBundleFiltrations( T ** (dual T))
F = wellformedBundleFiltrations((dual T) ** T)
origin = matrix map(ZZ^2,ZZ^1,0)
assert( all(values toricChernCharacter E, L -> isMember(origin, L)) )
assert( all(values toricChernCharacter F, L -> isMember(origin, L)) )
///
end
|