File: Probability.m2

package info (click to toggle)
macaulay2 1.24.11%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 171,648 kB
  • sloc: cpp: 107,850; ansic: 16,307; javascript: 4,188; makefile: 3,947; lisp: 682; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (1496 lines) | stat: -rw-r--r-- 45,726 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
-- Probability package for Macaulay2
-- Copyright (C) 2022-2024 Doug Torrance

-- This program is free software; you can redistribute it and/or
-- modify it under the terms of the GNU General Public License
-- as published by the Free Software Foundation; either version 2
-- of the License, or (at your option) any later version.

-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-- GNU General Public License for more details.

-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
-- 02110-1301, USA.

newPackage("Probability",
    Headline => "basic probability functions",
    Version => "0.5",
    Date => "September 13, 2024",
    Authors => {{
	    Name     => "Doug Torrance",
	    Email    => "dtorrance@piedmont.edu",
	    HomePage => "https://webwork.piedmont.edu/~dtorrance"}},
    Keywords => {"Algebraic Statistics"},
    Certification => {
	"journal name" => "Journal of Software for Algebra and Geometry",
	"journal URI" => "https://msp.org/jsag/",
	"article title" => "The Probability package for Macaulay2",
	"acceptance date" => "2024-01-23",
	"published article URI" => "https://msp.org/jsag/2024/14-1/p07.xhtml",
	"published article DOI" => "10.2140/jsag.2024.14.51",
	"published code URI" => "https://msp.org/jsag/2024/14-1/jsag-v14-n1-x07-Probability.m2",
	"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/Probability.m2",
	"release at publication" => "fe3f536ed3c90d114452e31a24fc3a935a3b9ca3",
	"version at publication" => "0.3",
	"volume number" => "14",
	"volume URI" => "https://msp.org/jsag/2024/14-1/"
	}
    )

---------------
-- ChangeLog --
---------------

-*

0.5 (2024-09-13, M2 1.24.11)
* add JSAG info
* remove Constant methods now that we can use inheritance
* adjust tests now that we use flint instead of boost for some special functions
* use mpfr's built-in function for generating normally distributed variates
* add subnodes to improve docs

0.4 (2024-01-23, M2 1.23)
* release under GPL
* add keyword

0.3 (2023-10-31, version submitted to JSAG)
* add Caveats to docs warning user to ensure that pdf's are well-defined
* use ASCII characters for chi-squared distribution
* clarify in docs that the support of a discrete distribution will be a subset
  of the integers
* add Caveat to docs mentioning limitations of floating-point arithmetic

0.2 (2022-10-31, M2 1.21)
* fix typos
* adjust some tests after MPFR support added for Boost special functions

0.1 (2022-05-04, M2 1.20)
* initial release

*-

export {
-- classes
    "ProbabilityDistribution",
    "DiscreteProbabilityDistribution",
    "ContinuousProbabilityDistribution",

-- generic constructor methods
    "discreteProbabilityDistribution",
    "continuousProbabilityDistribution",

-- discrete distributions
    "binomialDistribution",
    "bernoulliDistribution",
    "poissonDistribution",
    "geometricDistribution",
    "negativeBinomialDistribution",
    "hypergeometricDistribution",

-- continuous distributions
    "uniformDistribution",
    "exponentialDistribution",
    "normalDistribution",
    "gammaDistribution",
    "chiSquaredDistribution",
    "tDistribution",
    "fDistribution",
    "betaDistribution",

-- functions
    "density",
    "probability",
    "quantile",

-- symbols
    "DensityFunction",
    "DistributionFunction",
    "QuantileFunction",
    "RandomGeneration",
    "Support",
    "LowerTail"
    }

---------------------------------------------
-- abstract probability distribution class --
---------------------------------------------

ProbabilityDistribution = new Type of HashTable
ProbabilityDistribution.synonym = "probability distribution"

density' := (X, x) -> (
    if x < first X.Support or x > last X.Support then 0
    else X.DensityFunction x)

density = method()
density(ProbabilityDistribution, Number) := density'

probability' := true >> o -> (X, x) -> (
    p := if x < first X.Support then 0
    else if x > last X.Support then 1
    else X.DistributionFunction x;
    if o.LowerTail then p else 1 - p)

probability = method(Options => {LowerTail => true})
probability(ProbabilityDistribution, Number) := o -> (X, x) ->
     probability'(X, x, o)

quantile' = true >> o -> (X, p) -> (
    if p < 0 or p > 1 then error "expected number between 0 and 1"
    else if p == 0 and first X.Support == -infinity then -infinity
    else if p == 1 and last X.Support == infinity then infinity
    else X.QuantileFunction if o.LowerTail then p else 1 - p)

quantile = method(Options => {LowerTail => true})
quantile(ProbabilityDistribution, Number) := o -> (X, p) -> quantile'(X, p, o)

random ProbabilityDistribution := o -> X -> X.RandomGeneration()
net ProbabilityDistribution := X -> X.Description
texMath ProbabilityDistribution := texMath @@ net

-- helper functions for checking parameters
checkReal := n -> if not isReal n then error(
    "expected real parameter: ", n)
checkPositive := n -> if n <= 0 or not isReal n then error(
    "expected positive parameter: ", n)
checkNonnegative := n -> if n < 0 or not isReal n then error(
    "expected nonnegative parameter: ", n)
checkProbability := p -> if p < 0 or p > 1 or not isReal p then error(
    "expected parameter to be between 0 and 1: ", p)
checkSupport := A -> if not (instance(A, Sequence) and length A == 2 and
    (isReal first A or isInfinite first A) and
    (isReal last A or isInfinite last A) and first A < last A) then error(
    "expected an increasing pair of real or infinite numbers: ", A)

----------------------------------------
-- discrete probability distributions --
----------------------------------------

DiscreteProbabilityDistribution = new SelfInitializingType of
	ProbabilityDistribution
DiscreteProbabilityDistribution.synonym = "discrete probability distribution"

discreteProbabilityDistribution = method(Options => {
	DistributionFunction => null,
	QuantileFunction     => null,
	RandomGeneration     => null,
	Support              => (0, infinity),
	Description          => "a discrete probability distribution"})

discreteProbabilityDistribution Function := o -> f -> (
    checkSupport o.Support;
    a := first o.Support;
    cdf := if o.DistributionFunction =!= null
	then o.DistributionFunction
	else x -> sum(a..floor x, f);
    quant := if o.QuantileFunction =!= null
	then o.QuantileFunction
	else p -> (
	    x := a;
	    q := f x;
	    while q < p do (
		x = x + 1;
		q = q + f x);
	    x);
    rand := if o.RandomGeneration =!= null
	then o.RandomGeneration
	else () -> quant random 1.;
    DiscreteProbabilityDistribution hashTable {
	DensityFunction      => f,
	DistributionFunction => cdf,
	QuantileFunction     => quant,
	RandomGeneration     => rand,
	Support              => o.Support,
	Description          => o.Description})

density(DiscreteProbabilityDistribution, Number) := (X, x) ->
    if x != floor x then 0 else density'(X, x)

probability(DiscreteProbabilityDistribution, Number) := o -> (X, x) ->
    probability'(X, floor x, o)

quantile(DiscreteProbabilityDistribution, Number) := o -> (X, p) -> (
    maybefloor := x -> if isInfinite x then x else floor x;
    maybefloor quantile'(X, p, o))

binomialDistribution = method()
binomialDistribution(ZZ, Number) := (n, p) -> (
    checkPositive n;
    checkProbability p;
    discreteProbabilityDistribution(
	x -> binomial(n, x) * p^x * (1 - p)^(n - x),
	DistributionFunction => x -> regularizedBeta(1 - p, n - x, x + 1),
	Support => (0, n),
	Description => "B" | toString (n, p)))

bernoulliDistribution = method()
bernoulliDistribution Number := p -> binomialDistribution(1, p)

poissonDistribution = method()
poissonDistribution Number := lambda -> (
    checkPositive lambda;
    discreteProbabilityDistribution(x -> lambda^x / x! * exp(-lambda),
	DistributionFunction => x -> regularizedGamma(floor(x + 1), lambda),
	Description => "Pois(" | toString lambda | ")"))

geometricDistribution = method()
geometricDistribution Number := p -> (
    checkProbability p;
    discreteProbabilityDistribution(x -> p * (1 - p)^x,
	DistributionFunction => x -> 1 - (1 - p)^(x + 1),
	QuantileFunction => q -> ceiling(log((1 - q)/(1 - p)) / log(1 - p)),
	Description => "Geo(" | toString p | ")"))

negativeBinomialDistribution = method()
negativeBinomialDistribution(Number, Number) := (r, p) -> (
    checkPositive r;
    checkProbability p;
    discreteProbabilityDistribution(
	x -> Gamma(x + r) / (Gamma r * x!) * p^r * (1 - p)^x,
	DistributionFunction => x -> regularizedBeta(p, r, x + 1),
	Description => "NB" | toString(r, p)))

hypergeometricDistribution = method()
hypergeometricDistribution(ZZ, ZZ, ZZ) := (m, n, k) -> (
    checkNonnegative m;
    checkNonnegative n;
    checkNonnegative k;
    if k > m + n then error(
	"expected parameter to be at most ", m + n, ": ", k);
    discreteProbabilityDistribution(
	x -> binomial(m, x) * binomial(n, k - x) / binomial(m + n, k),
	Support => (0, m),
	Description => "HG" | toString(m, n, k)))

------------------------------------------
-- continuous probability distributions --
------------------------------------------

ContinuousProbabilityDistribution = new SelfInitializingType of
	ProbabilityDistribution
ContinuousProbabilityDistribution.synonym =
    "continuous probability distribution"

continuousProbabilityDistribution = method(Options => {
	DistributionFunction => null,
	QuantileFunction     => null,
	RandomGeneration     => null,
	Support              => (0, infinity),
	Description          => "a continuous probability distribution"})

bisectionMethod = (f, a, b, epsilon) -> (
    while b - a > epsilon do (
	mid := 0.5 * (a + b);
	if f(mid) == 0 then break
	else if f(a) * f(mid) > 0 then a = mid
	else b = mid);
    0.5 * (a + b))

continuousProbabilityDistribution Function := o -> f -> (
    checkSupport o.Support;
    (a, b) := o.Support;
    cdf := if o.DistributionFunction =!= null
    	then o.DistributionFunction
	else x -> integrate(f, a, x);
    quant := if o.QuantileFunction =!= null
    	then o.QuantileFunction
	else p -> (
	    c := if a > -infinity then a else 0;
	    while cdf c > p do c = c - 1;
	    d := if b < infinity then b else 0;
	    while cdf d < p do d = d + 1;
	    bisectionMethod(x -> cdf x - p, c, d, 1e-14));
    rand := if o.RandomGeneration =!= null
	then o.RandomGeneration
	else () -> quant random 1.;
    ContinuousProbabilityDistribution hashTable {
	DensityFunction      => f,
	DistributionFunction => cdf,
	QuantileFunction     => quant,
	RandomGeneration     => rand,
	Support              => o.Support,
	Description          => o.Description})

uniformDistribution = method()
uniformDistribution(Number, Number) := (a, b) -> (
    checkReal a;
    checkReal b;
    if a >= b then error("expected parameters to be in increasing order: ",
	a, ", ", b);
    continuousProbabilityDistribution(
	x -> 1/(b - a),
	DistributionFunction => x -> (x - a) / (b - a),
	QuantileFunction => p -> a + p * (b - a),
	Support => (a, b),
	Description => "U" | toString (a, b)))
installMethod(uniformDistribution, () -> uniformDistribution(0, 1))

exponentialDistribution = method()
exponentialDistribution Number := lambda -> (
    checkPositive lambda;
    continuousProbabilityDistribution(
	x -> lambda * exp(-lambda * x),
	DistributionFunction => x -> 1 - exp(-lambda * x),
	QuantileFunction => p -> -log(1 - p) / lambda,
	Description => "Exp(" | toString lambda | ")"))

importFrom(Core, "rawRandomRRNormal")
normalDistribution = method()
normalDistribution(Number, Number) := (mu, sigma) -> (
    checkReal mu;
    checkPositive sigma;
    continuousProbabilityDistribution(
	x -> 1 / (sigma * sqrt(2 * pi)) * exp(-1/2 * ((x - mu) / sigma)^2),
	DistributionFunction => x ->
	    1/2 * (1 + erf((x - mu) / (sigma * sqrt 2))),
	QuantileFunction => p ->
	    mu + sigma * sqrt 2 * inverseErf(2 * p - 1),
	RandomGeneration => (
	    p := min(precision numeric mu, precision numeric sigma);
	    () -> mu + sigma * rawRandomRRNormal p),
	Support => (-infinity, infinity),
	Description => "N" | toString (mu, sigma)))

-- standard normal distribution
installMethod(normalDistribution, () -> normalDistribution(0, 1))

gammaDistribution = method()
gammaDistribution(Number, Number) := (alpha, lambda) -> (
    checkPositive alpha;
    checkPositive lambda;
    continuousProbabilityDistribution(
	x -> lambda^alpha / Gamma(alpha) * x^(alpha - 1) * exp(-lambda * x),
	DistributionFunction => x -> 1 - regularizedGamma(alpha, lambda * x),
	QuantileFunction => p -> inverseRegularizedGamma(alpha, 1 - p) / lambda,
	Description => "Gamma" | toString (alpha, lambda)))

chiSquaredDistribution = method()
chiSquaredDistribution Number := n -> (
    checkPositive n;
    continuousProbabilityDistribution(
	x -> 1/(2^(n/2) * Gamma(n/2)) * x^(n/2 - 1) * exp(-x / 2),
	DistributionFunction => x -> 1 - regularizedGamma(n / 2, x / 2),
	QuantileFunction => p -> 2 * inverseRegularizedGamma(n / 2, 1 - p),
	Description => "chi2(" | toString n | ")"))

tDistribution = method()
tDistribution Number := df -> (
    checkPositive df;
    continuousProbabilityDistribution(
	x -> Gamma((df + 1)/2) / (sqrt(df * pi) * Gamma(df / 2)) *
	    (1 + x^2/df)^(-(df + 1) / 2),
	DistributionFunction => x -> (
	    p := 1 - 1/2*regularizedBeta(df/(x^2 + df), df/2, 1/2);
	    if x >= 0 then p else 1 - p),
	QuantileFunction => p -> (if p >= 0.5
	    then sqrt(df / inverseRegularizedBeta(2 - 2 * p, df/2, 1/2) - df)
	    else -sqrt(df / inverseRegularizedBeta(2 * p, df/2, 1/2) - df)),
	Support => (-infinity, infinity),
	Description => "t(" | toString df | ")"))

fDistribution = method()
fDistribution(Number, Number) := (d1, d2) -> (
    checkPositive d1;
    checkPositive d2;
    continuousProbabilityDistribution(
	x -> sqrt(
	    (d1 * x)^d1 * d2^d2 / (d1*x + d2)^(d1 + d2)) /
	    (x * Beta(d1 / 2, d2 / 2)),
	DistributionFunction => x ->
	    regularizedBeta(d1 * x / (d1 * x + d2), d1 / 2, d2 / 2),
	QuantileFunction => p ->
	    d2 / d1 * (1 / (1 - inverseRegularizedBeta(p, d1 / 2, d2 / 2)) - 1),
	Description => "F" | toString (d1, d2)))

betaDistribution = method()
betaDistribution(Number, Number) := (alpha, beta) -> (
    checkPositive alpha;
    checkPositive beta;
    continuousProbabilityDistribution(
	x -> x^(alpha - 1) * (1 - x)^(beta - 1) / Beta(alpha, beta),
	DistributionFunction => x -> regularizedBeta(x, alpha, beta),
	QuantileFunction => p -> inverseRegularizedBeta(p, alpha, beta),
	Support => (0, 1),
	Description => "Beta" | toString(alpha, beta)))

beginDocumentation()

doc ///
  Key
    Probability
  Headline
    basic probability functions
  Description
    Text
      This package provides a number of basic probability functions.  In
      particular, for both discrete and continuous probability distributions,
      there are the following four functions:

      @UL {
	  LI {TO density, ":  probability density (or mass) function"},
	  LI {TO probability, ":  cumulative distribution function"},
	  LI {TO quantile, ":  quantile function"},
	  LI {TO (random, ProbabilityDistribution),
	      ":  generate random samples"}}@

      A variety of common probability distributions are supported.

      @HEADER3 "Discrete distributions"@

      @UL {
	  LI {TO2 {binomialDistribution, "binomial"}},
	  LI {TO2 {poissonDistribution, "Poisson"}},
	  LI {TO2 {geometricDistribution, "geometric"}},
	  LI {TO2 {negativeBinomialDistribution, "negative binomial"}},
	  LI {TO2 {hypergeometricDistribution, "hypergeometric"}}}@

      @HEADER3 "Continuous distributions"@

      @UL {
	  LI {TO2 {uniformDistribution, "uniform"}},
	  LI {TO2 {exponentialDistribution, "exponential"}},
	  LI {TO2 {normalDistribution, "normal"}},
	  LI {TO2 {gammaDistribution, "gamma"}},
	  LI {TO2 {chiSquaredDistribution, "chi-squared"}},
	  LI {TO2 {tDistribution, "Student's t"}},
	  LI {TO2 {fDistribution, "F"}},
	  LI {TO2 {betaDistribution, "beta"}}}@

      You may also define your own probability distributions using
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@.
  Caveat
    As is always the case when working with real numbers in Macaulay2,
    unexpected results may occur due to the limitations of floating
    point arithmetic.
  Subnodes
    ProbabilityDistribution
///

doc ///
  Key
    ProbabilityDistribution
    DiscreteProbabilityDistribution
    ContinuousProbabilityDistribution
    (net, ProbabilityDistribution)
  Headline
    probability distribution class
  Description
    Text
      This is the class of which all probability distribution objects
      belong.  @TT "ProbabilityDistribution"@ is an abstract class
      defining the interface and should not be used directly.
      Instead, its subclasses @TT "DiscreteProbabilityDistribution"@ and
      @TT "ContinuousProbabilityDistribution"@ should be used.

      @TT "ProbabilityDistribution"@ objects are hash tables containing six
      key-value pairs:

      @DL{
	  DT {TT "DensityFunction"},
	  DD {"The probability mass or density function (for discrete or ",
	      "continuous distributions, respectively).  Do not use this ",
	      "directly.  Instead, use ", TO density, "."},
	  DT {TT "DistributionFunction"},
	  DD {"The cumulative distribution function.  Do not use this ",
	      "directly.  Instead, use ", TO probability, "."},
	  DT {TT "QuantileFunction"},
	  DD {"The quantile function.  Do not use this directly.  Instead, ",
	      "use ", TO quantile, "."},
	  DT {TT "RandomGeneration"},
	  DD {"A function to generate random samples of the distribution.  ",
	      "Do not use this directly.  Instead, use ",
	      TO (random, ProbabilityDistribution), "."},
	  DT {TT "Support"},
	  DD {"A sequence of two numbers, the lower and upper bound of the ",
	      "support of the distribution."},
	  DT {TT "Description"},
	  DD {"A string containing a description of the distribution.  This ",
	      "is the return value when a ", TT "ProbabilityDistribution",
	      " object is passed to ", TO net, "."}
	  }@
    Example
      Z = normalDistribution()
      ancestors class Z
      peek Z
    Text
      To create a @TT "ProbablityDistribution"@ object, use one of the
      constructor methods, @TO discreteProbabilityDistribution@,
      @TO continuousProbabilityDistribution@, or any of the various built-in
      methods for common distributions.
  Subnodes
    :Keys
    DensityFunction
    DistributionFunction
    QuantileFunction
    RandomGeneration
    Support
    :Constructor methods
    discreteProbabilityDistribution
    continuousProbabilityDistribution
///

doc ///
  Key
    DensityFunction
  Headline
    probability density function
  Description
    Text
      A key in @TO ProbabilityDistribution@ objects and an option for
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@ for setting the probability
      density/mass function to be used by @TO density@.
  Subnodes
    density
///

doc ///
  Key
    DistributionFunction
  Headline
    cumulative distribution function
  Description
    Text
      A key in @TO ProbabilityDistribution@ objects and an option for
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@ for setting the cumulative
      distribution function to be used by @TO probability@.
  Subnodes
    probability
///

doc ///
  Key
    QuantileFunction
  Headline
    quantile function
  Description
    Text
      A key in @TO ProbabilityDistribution@ objects and an option for
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@ for setting the quantile function
      to be used by @TO quantile@.
  Subnodes
    quantile
///

doc ///
  Key
    RandomGeneration
  Headline
    random generation function
  Description
    Text
      A key in @TO ProbabilityDistribution@ objects and an option for
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@ for setting the random generation
      function to be used by @TO (random, ProbabilityDistribution)@.
  Subnodes
    (random, ProbabilityDistribution)
///

doc ///
  Key
    Support
  Headline
    support for probability distribution
  Description
    Text
      A key in @TO ProbabilityDistribution@ objects and an option for
      @TO discreteProbabilityDistribution@ and
      @TO continuousProbabilityDistribution@ for setting the support of
      the probability distribution.
///

doc ///
  Key
    density
    (density, ProbabilityDistribution, Number)
    (density, DiscreteProbabilityDistribution, Number)
  Headline
    probability density (or mass) function
  Usage
    density_X x
  Inputs
    X:ProbabilityDistribution
    x:RR
  Outputs
    :RR
  Description
    Text
      For a discrete probability distribution, this returns values of
      of the @wikipedia "probability mass function"@ of the distribution, i.e.,
      \(f_X(x) = P(X = x)\).
    Example
      X = binomialDistribution(5, 0.25)
      density_X 2
      binomial(5, 2) * 0.25^2 * 0.75^3
    Text
      For a continuous probability distribution, this returns values of
      the @wikipedia "probability density function"@ of the distribution, i.e.,
      the integrand in \(\int_a^b f_X(x)\,dx = P(a\leq X \leq b)\).
    Example
      Z = normalDistribution()
      density_Z 0
      1/sqrt(2 * pi)
      integrate(density_Z, -1, 1)
      integrate(density_Z, -2, 2)
      integrate(density_Z, -3, 3)
///

doc ///
  Key
    LowerTail
  Headline
    whether to computer lower tail probabilities
  Description
    Text
      This is an option for @TO probability@ and @TO quantile@.
///

doc ///
  Key
    probability
    (probability, ProbabilityDistribution, Number)
    (probability, DiscreteProbabilityDistribution, Number)
    [probability, LowerTail]
  Headline
    cumulative distribution function
  Usage
    probability_X x
  Inputs
    X:ProbabilityDistribution
    x:RR
    LowerTail => Boolean
  Outputs
    :RR
  Description
    Text
      The @wikipedia "cumulative distribution function"@ of the probability
      distribution, i.e., the lower tail probability \(F_X(x) = P(X \leq x)\).
    Example
      Z = normalDistribution()
      probability_Z 1.96
    Text
      If the @TT "LowerTail"@ option is @TT "false"@, then it instead computes
      the value of the @wikipedia "survival function"@, i.e., the upper tail
      probability \(S_X(x) = P(X > x)\).
    Example
      probability_Z(1.96, LowerTail => false)
  Subnodes
    LowerTail
///

doc ///
  Key
    quantile
    (quantile, ProbabilityDistribution, Number)
    (quantile, DiscreteProbabilityDistribution, Number)
    [quantile, LowerTail]
  Headline
    quantile function
  Usage
    quantile_X p
  Inputs
    X:ProbabilityDistribution
    p:RR
    LowerTail => Boolean
  Outputs
    :RR
  Description
    Text
      For continuous probability distributions, the @wikipedia
      "quantile function"@ is the inverse of the cumulative
      distribution function, i.e., \(x\) for which \(P(X \leq x) = p\).
    Example
      Z = normalDistribution()
      quantile_Z 0.95
      probability_Z oo
    Text
      For discrete probability distributions, it returns the smallest \(x\)
      for which \(P(X \leq x) \geq p\).
    Example
      X = binomialDistribution(10, 0.25)
      quantile_X 0.75
      probability_X 2
      probability_X 3
    Text
      If the @TT "LowerTail"@ option is @TT "false"@, then it instead finds
      \(x\) for which \(P(X > x) = p\) in the continuous case.
    Example
      quantile_Z(0.95, LowerTail => false)
      probability_Z(oo, LowerTail => false)
    Text
      In the discrete case, it finds the smallest \(x\) for which
      \(P(X > x) \leq p\).
    Example
      quantile_X(0.75, LowerTail => false)
      probability_X(2, LowerTail => false)
      probability_X(1, LowerTail => false)
///

doc ///
  Key
    (random, ProbabilityDistribution)
  Headline
    randomly generate samples from probability distribution
  Usage
    random X
  Inputs
    X:ProbabilityDistribution
  Outputs
    :RR
  Description
    Text
      Randomly generate samples from the given probability distribution.
    Example
      Z = normalDistribution()
      for i to 10 list random Z
///

doc ///
  Key
    discreteProbabilityDistribution
    (discreteProbabilityDistribution, Function)
    [discreteProbabilityDistribution, DistributionFunction]
    [discreteProbabilityDistribution, QuantileFunction]
    [discreteProbabilityDistribution, RandomGeneration]
    [discreteProbabilityDistribution, Support]
    [discreteProbabilityDistribution, Description]
  Headline
    construct a discrete probability distribution
  Usage
    discreteProbabilityDistribution f
  Inputs
    f:Function
      the probability mass function of @TT "X"@, to be used by
      @TO density@.
    DistributionFunction => Function
      the cumulative distribution function of @TT "X"@, to be used by
      @TO probability@.  If @TT "null"@, then obtained by adding values of
      @TT "f"@.
    QuantileFunction => Function
      the quantile function of @TT "X"@, to be used by @TO quantile@.
      If @TT "null"@, then obtained by adding values of @TT "f"@.
    RandomGeneration => Function
      a function for generating random samples from @TT "X"@, to be used
      by @TO (random, ProbabilityDistribution)@.  If @TT "null"@, then obtained
      using @wikipedia "inverse transform sampling"@.
    Support => Sequence
      containing the lower and upper bounds, respectively, of the
      @wikipedia("Support (mathematics)", "support")@ of @TT "X"@.
      Elements of the support are assumed to be integers.
    Description => String
      describing the probability distribution.
  Outputs
    X:DiscreteProbabilityDistribution
  Description
    Text
      To construct a discrete probability distribution, provide the probability
      mass function and, if different than the default of \([0, \infty\]), the
      support.
    Example
      X = discreteProbabilityDistribution(x -> 1/6, Support => (1, 6))
      density_X 3
    Text
      Non-integers and values outside the support are automatically sent to 0.
    Example
      density_X 3.5
      density_X 7
    Text
      The cumulative distribution, quantile, and random generation functions
      are set to defaults based on the probability mass function.
    Example
      probability_X 3
      quantile_X 0.2
      random X
    Text
      However, if possible, it is good to provide these directly to
      improve performance.  A description may also be provided.
    Example
      X = discreteProbabilityDistribution(x -> 1/6, Support => (1, 6),
	  DistributionFunction => x -> x / 6,
	  QuantileFunction => p -> 6 * p,
	  Description => "six-sided die")
  Caveat
    When defining a probability mass function, the user must be careful that
    it satisfies the definition, i.e., it must be nonnegative and its values
    must sum to 1 on its support.
  Subnodes
    binomialDistribution
    poissonDistribution
    geometricDistribution
    negativeBinomialDistribution
    hypergeometricDistribution
///

doc ///
  Key
    continuousProbabilityDistribution
    (continuousProbabilityDistribution, Function)
    [continuousProbabilityDistribution, DistributionFunction]
    [continuousProbabilityDistribution, QuantileFunction]
    [continuousProbabilityDistribution, RandomGeneration]
    [continuousProbabilityDistribution, Support]
    [continuousProbabilityDistribution, Description]
  Headline
    construct a continuous probability distribution
  Usage
    continuousProbabilityDistribution f
  Inputs
    f:Function
      the probability density function of @TT "X"@, to be used by
      @TO density@.
    DistributionFunction => Function
      the cumulative distribution function of @TT "X"@, to be used by
      @TO probability@.  If @TT "null"@, then obtained by numerically
      integrating @TT "f"@.
    QuantileFunction => Function
      the quantile function of @TT "X"@, to be used by @TO quantile@.
      If @TT "null"@, then obtained by using the @wikipedia "bisection method"@.
    RandomGeneration => Function
      a function for generating random samples from @TT "X"@, to be used
      by @TO (random, ProbabilityDistribution)@.  If @TT "null"@, then obtained
      using @wikipedia "inverse transform sampling"@.
    Support => Sequence
      containing the lower and upper bounds, respectively, of the
      @wikipedia("Support (mathematics)", "support")@ of @TT "X"@.
    Description => String
      describing the probability distribution.
  Outputs
    X:ContinuousProbabilityDistribution
  Description
    Text
      To construct a continuous probability distribution, provide the
      probability density function and, if different than the default
      of \([0, \infty\]), the support.
    Example
      X = continuousProbabilityDistribution(x -> 2 * x, Support => (0, 1))
      density_X 0.75
    Text
      Values outside the support are automatically sent to 0.
    Example
      density_X 2
    Text
      The cumulative distribution, quantile, and random generation functions
      are set to defaults based on the probability density function.
    Example
      probability_X 0.75
      quantile_X 0.5625
      random X
    Text
      However, if possible, it is good to provide these directly to
      improve performance.  A description may also be provided.
    Example
      X = continuousProbabilityDistribution(x -> 2 * x, Support => (0, 1),
	  DistributionFunction => x -> x^2,
	  QuantileFunction => p -> sqrt p,
	  Description => "triangular distribution")
  Caveat
    When defining a probability density function, the user must be careful that
    it satisfies the definition, i.e., it must be nonnegative and it must
    integrate to 1 on its support.
  Subnodes
    uniformDistribution
    exponentialDistribution
    normalDistribution
    gammaDistribution
    chiSquaredDistribution
    tDistribution
    fDistribution
    betaDistribution
///

doc ///
  Key
    binomialDistribution
    (binomialDistribution, ZZ, Number)
    bernoulliDistribution
    (bernoulliDistribution, Number)
  Headline
    binomial distribution
  Usage
    binomialDistribution(n, p)
    bernoulliDistribution p
  Inputs
    n:ZZ
    p:Number -- between 0 and 1
  Outputs
    :DiscreteProbabilityDistribution
  Description
    Text
      The @wikipedia "binomial distribution"@, the distribution of the number
      of successes in a sequence of @TT "n"@ Bernoulli trials, where the
      probability of success is @TT "p"@.
    Example
      X = binomialDistribution(10, 0.1)
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
    Text
      A special case is the @wikipedia "Bernoulli distribution"@, where
      @TT "n"@ is 1.
    Example
      Y = bernoulliDistribution 0.1
///

doc ///
  Key
    poissonDistribution
    (poissonDistribution, Number)
  Headline
    Poisson distribution
  Usage
    poissonDistribution lambda
  Inputs
    lambda:Number -- the rate parameter
  Outputs
    :DiscreteProbabilityDistribution
  Description
    Text
      The @wikipedia "Poisson distribution"@, the distribution of the number
      of events to occur during some interval of time when the expected number
      of events is @TT "lambda"@.
    Example
      X = poissonDistribution 10
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
///

doc ///
  Key
    geometricDistribution
    (geometricDistribution, Number)
  Headline
    geometric distribution
  Usage
    geometricDistribution p
  Inputs
    p:Number -- between 0 and 1
  Outputs
    :DiscreteProbabilityDistribution
  Description
    Text
      The @wikipedia "geometric distribution"@, the distribution of the number
      of a failures in a sequence of Bernoulli trials before the first success,
      where @TT "p"@ is the probability of a success.
    Example
      X = geometricDistribution 0.1
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
  Caveat
    Some probability texts define the geometric distribution as the number
    of Bernoulli trials until the first success, and so the values will be
    one greater than ours.  Our definition is consistent with R.
///

doc ///
  Key
    negativeBinomialDistribution
    (negativeBinomialDistribution, Number, Number)
  Headline
    negative binomial distribution
  Usage
    negativeBinomialDistribution(r, p)
  Inputs
    r:Number -- positive
    p:Number -- between 0 and 1
  Outputs
    :DiscreteProbabilityDistribution
  Description
    Text
      The @wikipedia "negative binomial distribution"@, the distribution of
      the number of failures in a sequence of Bernoulli trials (with probability
      of success @TT "p"@) until the @TT "r"@th success.
    Example
      X = negativeBinomialDistribution(5, 0.1)
      density_X 20
      probability_X 30
      quantile_X 0.4
      random X
  Caveat
    Probability texts define the negative binomial distribution in a variety
    of different ways.  Our definition is consistent with R.
///

doc ///
  Key
    hypergeometricDistribution
    (hypergeometricDistribution, ZZ, ZZ, ZZ)
  Headline
    hypergeometric distribution
  Usage
    hypergeometricDistribution(m, n, k)
  Inputs
    m:ZZ -- nonnegative
    n:ZZ -- nonnegative
    k:ZZ -- between 0 and @TT "m + n"@
  Outputs
    :DiscreteProbabilityDistribution
  Description
    Text
      The @wikipedia "hypergeometric distribution"@, the number of white balls
      drawn after drawing @TT "k"@ balls from an urn containing @TT "m"@ white
      and @TT "n"@ black balls.
    Example
      X = hypergeometricDistribution(5, 6, 4)
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
 Caveat
   Probability texts often use the total number of balls (our @TT "m + n"@)
   as one of the parameters of this distribution.  Our definition is
   consistent with R.
///

doc ///
  Key
    uniformDistribution
    1:uniformDistribution
    (uniformDistribution, Number, Number)
  Headline
    continuous uniform distribution
  Usage
    uniformDistribution(a, b)
  Inputs
    a:Number
    b:Number -- greater than @TT "a"@
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @TT "continuous uniform distribution"@.
    Example
      X = uniformDistribution(3, 7)
      density_X 4
      probability_X 5
      quantile_X 0.6
      random X
    Text
      With no arguments, the standard uniform distribution on [0, 1] is
      returned.
    Example
      uniformDistribution()
///

doc ///
  Key
    exponentialDistribution
    (exponentialDistribution, Number)
  Headline
    exponential distribution
  Usage
    exponentialDistribution lambda
  Inputs
    lambda:Number -- the rate parameter (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "exponential distribution"@, the waiting time between
      events in a Poisson process, where @TT "lambda"@ is the expected number
      of events in one unit of time.
    Example
      X = exponentialDistribution 0.25
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
///

doc ///
  Key
    normalDistribution
    1:normalDistribution
    (normalDistribution, Number, Number)
  Headline
    normal distribution
  Usage
    normalDistribution(mu, sigma)
  Inputs
    mu:Number -- the mean
    sigma:Number -- the standard deviation (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "normal distribution"@ with mean @TT "mu"@ and standard
      deviation @TT "sigma"@.
    Example
      X = normalDistribution(30, 5)
      density_X 25
      probability_X 35
      quantile_X 0.75
      random X
    Text
      With no arguments, the standard normal distribution with mean 0 and
      standard deviation 1 is returned.
    Example
      Z = normalDistribution()
      quantile_Z 0.975
///

doc ///
  Key
    gammaDistribution
    (gammaDistribution, Number, Number)
  Headline
    gamma distribution
  Usage
    gammaDistribution(alpha, lambda)
  Inputs
    alpha:Number -- the shape parameter (positive)
    lambda:Number -- the rate parameter (positive)
  Description
    Text
      The @wikipedia "gamma distribution"@.  When @TT "alpha"@ is an integer
      (also known as the @wikipedia "Erlang distribution"@), this is waiting
      time until the @TT "alpha"@th event in a Poisson process where
      @TT "lambda"@ is the expected number of events in one unit of time.  In
      particular, when @TT "alpha"@ is 1, this is the
      @TO2 {exponentialDistribution, "exponential distribution"}@.
    Example
      X = gammaDistribution(5, 0.6)
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
  Caveat
    Some probability texts define the gamma distribution using a @EM "scale"@
    parameter instead of a rate parameter.  They are reciprocals of one another.
///

doc ///
  Key
    chiSquaredDistribution
    (chiSquaredDistribution, Number)
  Headline
    chi-squared distribution
  Usage
    chiSquaredDistribution n
  Inputs
    n:Number -- the degrees of freedom (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "chi-squared distribution"@, the distribution of the sum
      of @TT "n"@ squares of independent
      @TO2 {normalDistribution, "normally distributed"}@ random variables.
    Example
      X = chiSquaredDistribution 5
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
///

doc ///
  Key
    tDistribution
    (tDistribution, Number)
  Headline
    Student's t-distribution
  Usage
    tDistribution df
  Inputs
    df:Number -- the degrees of freedom (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "Student's t-distribution"@.
    Example
      X = tDistribution 5
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
///

doc ///
  Key
    fDistribution
    (fDistribution, Number, Number)
  Headline
    F-distribution
  Usage
    fDistribution(d1, d2)
  Inputs
    d1:Number -- the numerator degrees of freedom (positive)
    d2:Number -- the denominator degrees of freedom (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "F-distribution"@, widely used in
      @wikipedia "ANOVA"@.
    Example
      X = fDistribution(5, 6)
      density_X 2
      probability_X 3
      quantile_X 0.4
      random X
///

doc ///
  Key
    betaDistribution
    (betaDistribution, Number, Number)
  Headline
    beta distribution
  Usage
    betaDistribution(alpha, beta)
  Inputs
    alpha:Number -- shape parameter (positive)
    beta:Number -- shape parameter (positive)
  Outputs
    :ContinuousProbabilityDistribution
  Description
    Text
      The @wikipedia "beta distribution"@.
    Example
      X = betaDistribution(5, 6)
      density_X 0.2
      probability_X 0.3
      quantile_X 0.4
      random X
///

undocumented {(texMath, ProbabilityDistribution)}

TEST ///
X = binomialDistribution(10, 0.25)
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, binomial(10, 3) * 0.25^3 * 0.75^7)
assert Equation(density_X 3.5, 0)
assert Equation(density_X 11, 0)

assert Equation(probability_X(-1), 0)
assert Equation(probability_X 3,
    sum(0..3, x -> binomial(10, x) * 0.25^x * 0.75^(10 - x)))
assert Equation(probability_X 3.5,
    sum(0..3, x -> binomial(10, x) * 0.25^x * 0.75^(10 - x)))
assert Equation(probability_X 11, 1)

assert Equation(quantile_X 0, 0)
assert Equation(quantile_X 0.3, 2)
assert Equation(quantile_X 1, 10)
///

TEST ///
X = poissonDistribution 3
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 3^3/3! * exp(-3))
assert Equation(density_X 3.5, 0)

assert Equation(probability_X(-1), 0)
assert (abs(probability_X 3 - sum(0..3, x -> 3^x / x! * exp(-3))) < 1e-15)
assert (abs(probability_X 3.5 - sum(0..3, x -> 3^x / x! * exp(-3))) < 1e-15)

assert Equation(quantile_X 0, 0)
assert Equation(quantile_X 0.3, 2)
assert Equation(quantile_X 1, infinity)
///

TEST ///
X = geometricDistribution 0.25
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 0.25 * 0.75^3)
assert Equation(density_X 3.5, 0)

assert Equation(probability_X(-1), 0)
assert Equation(probability_X 3, 1 - 0.75^4)
assert Equation(probability_X 3.5, 1 - 0.75^4)

assert Equation(quantile_X 0, 0)
assert Equation(quantile_X 0.3, 1)
assert Equation(quantile_X 1, infinity)
///

TEST ///
X = negativeBinomialDistribution(3, 0.25)
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, binomial(5, 3) * 0.25^3 * 0.75^3)
assert Equation(density_X 3.5, 0)

assert Equation(probability_X(-1), 0)
assert(abs(probability_X 3 - 0.1694336) < 1e-7) -- R: pnbinom(3, 3, 0.25)
assert(abs(probability_X 3.5 - 0.1694336) < 1e-7)

assert Equation(quantile_X 0, 0)
assert Equation(quantile_X 0.3, 5)
assert Equation(quantile_X 1, infinity)
///

TEST ///
X = hypergeometricDistribution(5, 6, 7)
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 5/11)
assert Equation(density_X 3.5, 0)
assert Equation(density_X 6, 0)

assert Equation(probability_X(-1), 0)
assert Equation(probability_X 3, 43/66)
assert Equation(probability_X 3.5, 43/66)
assert Equation(probability_X 6, 1)

assert Equation(quantile_X 0, 0)
assert Equation(quantile_X 0.3, 3)
assert Equation(quantile_X 1, 5)
///

TEST ///
X = uniformDistribution(1, 7)
assert Equation(density_X 0, 0)
assert Equation(density_X 3, 1/6)
assert Equation(density_X 8, 0)

assert Equation(probability_X 0, 0)
assert Equation(probability_X 3, 1/3)
assert Equation(probability_X 8, 1)

assert Equation(quantile_X 0, 1)
assert Equation(quantile_X(1/3), 3)
assert Equation(quantile_X 1, 7)
///

TEST ///
X = exponentialDistribution 3
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 3 * exp(-9))

assert Equation(probability_X(-1), 0)
assert Equation(probability_X 3, 1 - exp(-9))

assert Equation(quantile_X 0, 0)
assert(abs(quantile_X(1 - exp(-9)) - 3) < 1e-13)
///

TEST ///
X = normalDistribution(3, 2)
assert Equation(density_X 0, 1/(sqrt(8 * pi)) *  exp(-9/8))
assert Equation(density_X 3, 1/(sqrt(8 * pi)))

assert(abs(probability_X 0 - 0.0668072) < 1e-7) -- R: pnorm(0, 3, 2)
assert Equation(probability_X 3, 0.5)

assert(abs quantile_X 0.0668072 < 1e-7)
assert Equation(quantile_X 0.5, 3)
///

TEST ///
X = gammaDistribution(3, 2)
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 36 * exp(-6))

assert Equation(probability_X(-1), 0)
assert(abs(probability_X 3 - 0.9380312) < 1e-7) -- R: pgamma(3, 3, 2)

assert Equation(quantile_X 0, 0)
assert(abs(quantile_X 0.9380312 - 3) < 1e-7)
///

TEST ///
X = chiSquaredDistribution 3
assert Equation(density_X(-1), 0)
assert Equation(density_X 3, 1/(2^1.5 * Gamma(1.5)) * sqrt 3 * exp(-1.5))

assert Equation(probability_X(-1), 0)
assert(abs(probability_X 3 - 0.6083748) < 1e-7) -- R: pchisq(3, 3)

assert Equation(quantile_X 0, 0)
assert(abs(quantile_X 0.6083748 - 3) < 1e-6)
///

TEST ///
X = tDistribution 3
assert(abs(density_X 0 - 0.3675526) < 1e-7)  -- R: dt(0, 3)
assert(abs(density_X 3 - 0.02297204) < 1e-7) -- R: dt(3, 3)

assert(abs(probability_X(-3) - 0.02883444) < 1e-7) -- R: pt(-3, 3)
assert(abs(probability_X 0 -  0.5) < 1e-7)
assert(abs(probability_X 3 - 0.9711656) < 1e-7) -- R: pt(3, 3)

assert(abs(quantile_X 0.02883444 + 3) < 1e-6)
assert(abs quantile_X 0.5 < 1e-7)
assert(abs(quantile_X 0.9711656 - 3) < 1e-5)
///

TEST ///
X = fDistribution(3, 2)
assert Equation(density_X(-1), 0)
assert(abs(density_X 3 - 0.06727939) < 1e-7) -- R: df(3, 3, 2)

assert Equation(probability_X(-1), 0)
assert(abs(probability_X 3 - 0.7400733) < 1e-7) -- R: pdf(3, 3, 2)

assert Equation(quantile_X 0, 0)
assert(abs(quantile_X 0.7400733 - 3) < 1e-7)
///

TEST ///
X = betaDistribution(3, 2)
assert Equation(density_X(-1), 0)
assert Equation(density_X 0.3, 0.756) -- R: dbeta(0.3, 3, 2)
assert Equation(density_X 2 , 0)

assert Equation(probability_X(-1), 0)
assert (abs(probability_X 0.3 - 0.0837) < 1e-15) -- R: pbeta(0.3., 3, 2)
assert Equation(probability_X 2, 1)

assert Equation(quantile_X 0, 0)
assert (abs(quantile_X 0.0837 - 0.3) < 1e-15)
assert Equation(quantile_X 1, 1)
///

TEST ///
-- sum of two dice
X = discreteProbabilityDistribution(
    x -> 1/36 * (if x < 8 then x - 1 else 13 - x),
    Support => (2, 12))
assert Equation(density_X 1, 0)
assert Equation(density_X 3, 1/18)
assert Equation(density_X 3.5, 0)
assert Equation(density_X 13, 0)

assert Equation(probability_X 1, 0)
assert Equation(probability_X 3, 1/12)
assert Equation(probability_X 3.5, 1/12)
assert Equation(probability_X 13, 1)

assert Equation(quantile_X 0, 2)
assert Equation(quantile_X 0.3, 6)
assert Equation(quantile_X 1, 12)
///

TEST ///
-- Cauchy distribution w/ location = 3, scale = 2
X = continuousProbabilityDistribution(
    x -> 1 / (pi * 2 * (1 + (x - 3)^2/4)),
    Support => (-infinity, infinity))

assert(abs(density_X 0 - 0.04897075) < 1e-7)   -- R: dcauchy(0, 3, 2)
assert(abs(probability_X 0 - 0.187167) < 0.01) -- R: pcauchy(0, 3, 2)
assert(abs(quantile_X 0.3 - 1.546915) < 0.1)   -- R: qcauchy(0.3, 3, 2)

-- try specifying cdf to improve things
X = continuousProbabilityDistribution(
    x -> 1 / (pi * 2 * (1 + (x - 3)^2/4)),
    DistributionFunction => x -> 1/pi * atan((x - 3)/2) + 1/2,
    Support => (-infinity, infinity))
assert(abs(probability_X 0 - 0.187167) < 1e-7)
assert(abs(quantile_X 0.3 - 1.546915) < 1e-7) 
///