1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
|
-- -*- coding: utf-8 -*-
newPackage(
"PseudomonomialPrimaryDecomposition",
Headline => "Primary decomposition of square free pseudomonomial ideals",
Version => "0.3",
Date => "January, 2022",
Authors => {{
Name => "Alan A. Veliz-Cuba",
Email => "avelizcuba1@udayton.edu",
HomePage => "https://sites.google.com/site/alanvelizcuba/"
}},
DebuggingMode => false,
Keywords => {"Commutative Algebra"},
Certification => {
"journal name" => "The Journal of Software for Algebra and Geometry",
"journal URI" => "https://msp.org/jsag/",
"article title" => "Primary decomposition of squarefree pseudomonomial ideals",
"acceptance date" => "18 July 2022",
"published article URI" => "https://msp.org/jsag/2022/12-1/p04.xhtml",
"published article DOI" => "10.2140/jsag.2022.12.27",
"published code URI" => "https://msp.org/jsag/2022/12-1/jsag-v12-n1-x04-PseudomonomialPrimaryDecomposition.m2",
"repository code URI" => "https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/PseudomonomialPrimaryDecomposition.m2",
"release at publication" => "4c86bb7c1f80a36c5e2ce6786863f5702c13ddda", -- git commit number in hex
"version at publication" => "0.3",
"volume number" => "12",
"volume URI" => "https://msp.org/jsag/2022/12-1/"
}
)
export({"isSquarefreePseudomonomialIdeal", "primaryDecompositionPseudomonomial","isPseudomonomial"})
-------------------------------------------------------------------
-- subroutines to translate between polynomials and bitwise form --
-------------------------------------------------------------------
-- obtains the generators of a ring in which an ideal lives
-- Input:
-- an ideal I
-- Output:
-- A list of generators of R
getAllVariables = I -> gens ring I;
-- define the zero polynomial in bitwise form
-- this is added only for clarity in the algorithm
zeropolynomial := {-1,-1};
-- transforms a square free pseudomonomial to bitwise string...
-- for example, x1*(x3-1)*x4 will be converted to {1001,0100} = {9,4}
-- Input:
-- Square free pseudomonomial P in polynomial form
-- Output:
-- A list of the form {num1,num2} (so-called bitwise form of P)
fromPoly2Bit = (P,allVariables) -> (
if P==0 then return zeropolynomial;
factoredP := factor P;
-- initialize bitwise form {0,0}
bitwisePOS := 0;
bitwiseNEG := 0;
-- add factors to bitwise form
for i to #factoredP-1 do (
-- evaluate ith factor and skip units
base := value factoredP#i;
if isUnit base then continue;
-- find variable of ith factor and position in allVariables
xi := (support base)_0;
pos := position(allVariables,x -> x === xi);
-- make position of variable equal to 1 in bitwise format (adding 2^pos)
if xi === base then bitwisePOS = bitwisePOS | (1 << pos);
if xi-1 === base then bitwiseNEG = bitwiseNEG | (1 << pos);
);
{bitwisePOS,bitwiseNEG}
)
-- finds log in base 2
-- Input:
-- a number m
-- Output:
-- a natural number
-- log2 = m -> round(log_2 m); -- OLD CODE
log2 = m -> (
ans := 0;
while (1 << ans) < m do ans = ans+1;
ans
)
-- transforms a polynomial in bitwise form to polynomial form
-- Input:
-- (B,allVariables), B must be of the form {2^(k-1),0} or {0,2^(k-1)}
-- Output:
-- polynomial polyB of the form xk or xk-1
fromBit2Poly = (B,allVariables) -> (
polyB := 1;
if B_0 != 0 then polyB = allVariables_(log2(B_0));
if B_1 != 0 then polyB = allVariables_(log2(B_1))-1;
polyB
)
------------------------------------------------------------------------------
-- subroutines for intermediate steps of primary decomposition ---------------
-- NOTE: In ALL subroutines here the polynomial inputs are in bitwise form ---
------------------------------------------------------------------------------
-- determines if a square free pseudomonomial divides another
-- Input:
-- Two square free pseudomonomials in bitwise form B1, B2
-- Output:
-- true or false
isDivisor = (B1,B2) -> (
-- we use the fact that P1|P2 if and only if
-- product of factors xi in P1 divides the product of factors xi in P2
-- and
-- product of factors xi-1 in P1 divides the product of factors xi-1 in P2.
-- This is equivalent to B1_0<=B2_0 and B1_1<=B2_1 (bitwise)
-- So we use the Boolean rule a<=b iff a&b=a (bitwise)
(B1_0)&(B2_0) == B1_0 and (B1_1)&(B2_1) == B1_1
)
-- sets zi=0 in a square free pseudomonomial
-- Input:
-- A square free pseudomonomial ideal in bitwise form, and zi=xi-0/1 in bitwise form
-- Output:
-- A square free pseudomonomial ideal G where zi was set to 0 and zi-1 was set to 1 (in bitwise form)
---- Uses the functions:
---- isDivisor
---- Uses the constants
---- zeropolynomial
setEqualtoZero = (G,zi) -> (
apply(G, B -> (
-- if zi divides B then zi=0 makes B=0
if isDivisor(zi,B) then return zeropolynomial;
-- if zi-1 divides B then zi=0 removes zi-1 from B
if (zi_0)&(B_1) == (zi_0) and 0 != zi_0 then return {B_0,B_1-zi_0};
if (zi_1)&(B_0) == (zi_1) and 0 != zi_1 then return {B_0-zi_1,B_1};
-- if neither zi nor zi-1 divide B then B is unchanged
return B;
))
)
-- finds the minimal elements according to a partial order
-- Input:
-- A list {G,ord}
-- G is a list and ord is a partial order
-- Output:
-- A set, minG
findMinimal = (G,ord) -> (
minG := {};
for i to #G-1 do (
-- if g<=Gi for some g in minG then Gi cannot be minimal
if any(minG, g-> ord(g,G_i)) then continue;
-- if g<!=Gi for all g in minG then Gi may be minimal
-- and we remove from minG all g's such that Gi<=g
minG = select(minG, g -> not ord(G_i,g));
minG = append(minG, G_i);
);
minG
)
-- removes redundant generators in the ideal <G>
-- Input:
-- list G of square free pseudomonomials in bitwise form
-- Output:
-- list with redundant generators removed in bitwise form
---- Uses the functions
---- findMinimal
---- isDivisor
---- Uses the constants
---- zeropolynomial
simplifyGens = G -> (
-- remove zero polynomials and polynomials that are multiples of others
redG := select(G,B -> B != zeropolynomial);
findMinimal(unique redG,isDivisor)
)
-- determines if square free pseudomonomial is linear nonconstant ( zi=xi-0/1)
-- Input:
-- Square free pseudomonomial in bitwise form
-- Output:
-- true or false
isLinearPseudomonomial = B-> (
-- if polynomial is 1 then false
-- (B={0,0} in bitwise form)
if (B_0) == 0 and (B_1) == 0 then return false;
-- if polynomial is xi or xi-1 then true
-- ({2^i,0} or {0,2^i} in bitwise form)
if (B_0)&(-1+B_0) == 0 and B_1 == 0 then return true;
if (B_1)&(-1+B_1) == 0 and B_0 == 0 then return true;
false
)
-- finds all the factors of a square free pseudomonomial P (in bitwise form B)
-- Input:
-- Square free pseudomonomial in bitwise form
-- Output:
-- A list of square free pseudomonomials, each in bitwise form
getFactors = B -> (
allfactors := {};
leftoverB := B;
i := 0;
while (leftoverB_0) != 0 or (leftoverB_1) != 0 do (
-- check if xi or xi-1 is a factor
pi := 1 << i;
-- checking if xi is a factor (using bitwise form)
if (leftoverB_0)&pi == pi then (
allfactors = append(allfactors,{pi,0});
leftoverB = {leftoverB_0-pi,leftoverB_1};
);
-- checking if xi-1 is a factor (using bitwise form)
if (leftoverB_1)&pi == pi then (
allfactors = append(allfactors,{0,pi});
leftoverB = {leftoverB_0,leftoverB_1-pi};
) ;
i = i+1;
);
allfactors
)
-- determines if a square free pseudomonomial ideal is generated by linear polynomials
-- Input:
-- list of generators of a square free pseudomonomial ideal in bitwise form
-- Output:
-- true or false
---- Uses the functions:
---- isLinearPseudomonomial
isPrimaryPseudomonomial = G -> (
not any(G, B -> not isLinearPseudomonomial B)
-- if any(G, B -> not isLinearPseudomonomial B) then return false;
-- true
)
-- determines if a square free pseudomonomial ideal has gens xi and xi-1
-- Input:
-- list of generators of a square free pseudomonomial ideal in bitwise form
-- Output:
-- true or false
---- Uses the functions:
---- isLinearPseudomonomial
isProperPseudomonomial = G -> (
if G == {{0,0}} then return false;
-- look for generators xi and xi-1
-- ({2^i,0} and {0,2^i} in bitwise form)
for i to #G-1 do (
if isLinearPseudomonomial(G_i) then (
for j from i+1 to #G-1 do (
if isLinearPseudomonomial(G_j) then (
if (G_i)_0 == (G_j)_1 and (G_i)_1 == (G_j)_0 then return false;
)
)
)
);
true
)
-- writes a square free pseudomonomial ideal as an intersection
-- Input:
-- list G of generators of I in bitwise form
-- Output:
-- a list G1,...,Gm of polynomials (in bitwise form) where the intersection(G1,...,Gm)=I
---- Uses the functions:
---- isLinearPseudomonomial
---- getFactors
---- setEqualtoZero
factorIdeal = G -> (
--check if there is a polynomial of degree 2 or higher
nonlinearpolynomials := select(1,G, B -> not isLinearPseudomonomial B);
if nonlinearpolynomials == {} then return {G};
-- use square free pseudomonomial of degree>=2: z1z2...zk
B := nonlinearpolynomials_0;
allfactors := getFactors(B);
-- find and simplify <G>=<G,z1>inter...inter<G,zk>
apply(allfactors, Bi -> append(setEqualtoZero(G,Bi),Bi))
)
-- finds the primary decomposition of a square free pseudomonomial ideal in bitwise form
-- Input:
-- list of generators of I in bitwise form
-- Output:
-- list of generators of primary ideals in bitwise form
---- Uses the following functions
---- isProperPseudomonomial
---- factorIdeal
---- simplifyGens
---- isPrimaryPseudomonomial
---- findMinimal
bitwisePD = G -> (
-- first check if ideal has generators xi and xi-1
if not isProperPseudomonomial G then return {};
-- initialize primary decomposition (P) and remaining ideals in the intersection (D)
P := {};
D := {G};
while D != {} do (
-- write <G>=<G,z1>inter...inter<G,zk>
-- for each G in D
DI := apply(D, GI -> (factorIdeal GI)/simplifyGens );
-- combine all intersections into a single intersection
---- List + List := (X,Y) -> join(X,Y); -- old line 1
---- D = sum DI; -- old line 2
--D = {}; scan(DI,GI -> D = join(D,GI));
D = flatten DI;
-- omit ideals that are generated by the polynomial 1
D = select(D, GI -> isProperPseudomonomial GI);
-- if ideal is primary save in G, if not primary save in D
P = join(P, select(D, GI -> isPrimaryPseudomonomial GI) );
D = select(D, GI -> not isPrimaryPseudomonomial GI);
);
findMinimal(P,isSubset)
)
-- determines if a polynomial is square free pseudomonomial
-- Input:
-- Polynomial P in bitwise form
-- Output:
-- true or false
isPseudomonomial = P -> (
-- check if polynomial is a unit or zero
if P == 0 then return false;
if isUnit P then return true;
-- factor polynomial P and initialize the support list
factoredP := factor P;
allSupport := {};
-- test if some factor is not of the form (xi-a) where a=0 or 1
for i to #factoredP-1 do (
-- evaluate ith factor
base := value factoredP#i;
-- if factor is not a unit but is a constant -> not a square free pseudomonomial
if isUnit base then continue;
if isConstant base then return false;
-- find if factor is equal to xi or xi-1
suppi := support base;
if #suppi >= 2 then return false;
if suppi_0 =!= base and suppi_0-1 =!= base then return false;
allSupport = append(allSupport,suppi_0);
);
-- find if there are factors xi, xi-1 simultaneously -> not a square free pseudomonomial
#(support P) == #allSupport
-- if #(support P) != #allSupport then return false;
-- true
)
--------------------------------
-- exported functions --
--------------------------------
-- determines if an ideal is square free pseudomonomial
-- Input:
-- Ideal I in polynomial form
-- Output:
-- true or false
---- Uses the functions:
---- isPseudomonomial
isSquarefreePseudomonomialIdeal = method()
isSquarefreePseudomonomialIdeal Ideal := Boolean => I -> (
-- remove zero polynomials
allgens := select(I_*, P -> P != 0);
-- look for polynomials that are not square free pseudomonomials
--for i to #allgens-1 do (
-- if not isPseudomonomial(allgens_i) then return false;
--);
--true
all(allgens, isPseudomonomial)
)
-- computes the primary decomposition of a square free pseudomonomial ideal
-- Input:
-- Square free pseudomonomial ideal in polynomial form
-- Output:
-- list of primary ideals in polynomial form
---- Uses the following functions:
---- isSquarefreePseudomonomialIdeal
---- fromPoly2Bit
---- isDivisor
---- findMinimal
---- bitwisePD
---- fromBit2Poly
---- getAllVariables
primaryDecompositionPseudomonomial = method()
primaryDecompositionPseudomonomial Ideal := I -> (
-- looking for errors
-- if class I =!= Ideal then error "Input must be a square free pseudomonomial ideal.";
if not isSquarefreePseudomonomialIdeal(I) then error "Not a square free pseudomonomial ideal.";
-- finding nonzero generators of ideal
gensI := select (I_*, P -> P != 0);
-- if zero ideal just return trivial primary decomposition
if gensI == {} then return {I};
-- transform to bitwise form
allVariables := getAllVariables I;
G := apply(gensI, P -> fromPoly2Bit(P,allVariables) );
-- remove redundant generators
G = findMinimal(G, isDivisor);
-- find primary decomposition using bitwise notation
PD := bitwisePD G;
-- go back to polynomial notation
-- print allVariables;
-- PDpolyform := apply( PD, PDi -> fromBit2Poly(PDi,allVariables) );
apply( PD, PDi -> ideal apply(PDi, P-> fromBit2Poly(P,allVariables) ))
)
-------------------
-- Documentation --
-------------------
beginDocumentation()
doc ///
Key
PseudomonomialPrimaryDecomposition
Headline
primary decomposition of a square free pseudomonomial ideal
Description
Text
A pseudomonomial is a polynomial in K[x1,x2,...,xn] that can be written as a product of factors of the form (xi-ai)^ni, where ai is 0 or 1. The xi's in the product should be distinct. A square free pseudomonomial ideal is an ideal generated by pseudomonomials such that each ni=1.
This package finds the primary decomposition of square free pseudomonomial ideals. It also determines if an ideal is a pseudomonomial ideal.
For example, x1^2*(x3-1) is a pseudomonomial, but not square free. The polynomial x1*(x3-1) is a square free pseudomonomial. The ideal ideal(x1*(x3-1),(x1-1)*(x2-1)*x4,x1*x2*x3,(x1-1)*x2*(x5-1)) is a square free pseudomonomial ideal.
Example
R = ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x1*(x3-1),(x1-1)*(x2-1)*x4,x1*x2*x3,(x1-1)*x2*(x5-1));
isSquarefreePseudomonomialIdeal I
C = primaryDecompositionPseudomonomial I
intersect C == I
///
document {
Key => {primaryDecompositionPseudomonomial, (primaryDecompositionPseudomonomial, Ideal)},
Headline => "primary decomposition of a square free pseudomonomial ideal",
SeeAlso => {"Macaulay2Doc::primaryDecomposition"},
Usage => "primaryDecompositionPseudomonomial(I)",
Inputs => {
"I" => {ofClass Ideal, ", a square free pseudomonomial ideal"}
},
Outputs => {
"L" => {ofClass List, ", list L={P1,P2,...,Pk} of primary ideals with intersection equal to I"}
},
Caveat => {
"The algorithm finds a decomposition even if the base field is not QQ or ZZ/p"
},
"The algorithm is implemented bitwise (using Macaulay2 bitwise operations), which makes calculations faster.",
" Examples:",
EXAMPLE lines ///
R=ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x1*x2,x3*x4,x5);
primaryDecompositionPseudomonomial(I)
///,
EXAMPLE lines ///
R=QQ[x1,x2,x3,x4,x5];
I = ideal(x1*(x2-1),(x3-1)*x4,x5);
primaryDecompositionPseudomonomial(I)
///,
EXAMPLE lines ///
R=ZZ/2[x1,x2];
I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2);
primaryDecompositionPseudomonomial(I)
///,
EXAMPLE lines ///
R=QQ[x1,x2,x3,x4,x5];
I = ideal(x5,x1*(x3-1)*(x5-1));
primaryDecompositionPseudomonomial(I)
///,
EXAMPLE lines ///
R=ZZ/3[x1,x2];
I = ideal(x5,(x3-1));
primaryDecompositionPseudomonomial(I)
///
}
document {
Key => {isSquarefreePseudomonomialIdeal, (isSquarefreePseudomonomialIdeal, Ideal)},
Headline => "determine if an ideal is a square free pseudomonomial ideal",
SeeAlso => {monomials, monomialIdeal},
Usage => "isSquarefreePseudomonomialIdeal(I)",
Inputs => {
"I" => {ofClass Ideal, ", an ideal"}
},
Outputs => {
Boolean => {"true or false"}
},
Caveat => {
"The algorithm disregards the base field. So, ideal(-x1) is a square free pseudomonomial ideal in F[x1] for F=ZZ,ZZ/p,QQ, whereas ideal(-x1) is not a monomial ideal when F=ZZ."
},
"An ideal is a square free pseudomonomial ideal if its generators are square free pseudomonomials. A square free pseudomonomial is a polynomial of the form P=z1*z2*...*zk such that zi is either xi or xi-1 and a variable can only appear once in P. For example, x1*x3, x1*(x2-1)*(x3-1) are square free pseudomonomial and x2*x3^2, x1*(x1-1)*(x3-1) are not.",
EXAMPLE lines ///
R=ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x1*x2,x3*x4,x5);
isSquarefreePseudomonomialIdeal(I)
///,
EXAMPLE lines ///
R=ZZ/2[x1,x2];
I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2);
isSquarefreePseudomonomialIdeal(I)
///,
EXAMPLE lines ///
R=ZZ/3[x1,x2];
I = ideal(x1,x2-1);
isSquarefreePseudomonomialIdeal(I)
///,
EXAMPLE lines ///
R=QQ[x1,x2,x3,x4,x5];
I = ideal(x1*(x1-1),(x3-1)*x4,x5);
not isSquarefreePseudomonomialIdeal(I)
///,
EXAMPLE lines ///
R=QQ[x1,x2,x3,x4,x5];
I = ideal(x1*(x5-1),(x3-1)*x4^2,x5);
isSquarefreePseudomonomialIdeal(I)
///
}
------------------------------------------------------------------------------
--- testing internal functions fromPoly2Bit, fromBit2Poly, log2, -----
--- findMinimal, isLinearPseudomonomial, getFactors (internal functions) -----
------------------------------------------------------------------------------
------ testing fromPoly2Bit----------
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x1*x2,gens R)=={3,0});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x3*x4,gens R)=={12,0});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x5,gens R)=={16,0});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x1*(x2-1),gens R)=={1,2});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit((x3-1)*x4, gens R)=={8,4});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit((x1-1)*(x2-1), gens R)=={0,3});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x1*(x3-1)*(x5-1),gens R)=={1,20});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(x2-1,gens R)=={0,2});
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(fromPoly2Bit(1_R,gens R)=={0,0});
///
------ testing fromPoly2Bit----------
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(x1==fromBit2Poly({1,0},gens R));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(x2==fromBit2Poly({2,0},gens R));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(x5==fromBit2Poly({16,0},gens R));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(x2-1==fromBit2Poly({0,2},gens R));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(x5-1==fromBit2Poly({0,16},gens R));
///
------- testing isDivisor
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B1=fromPoly2Bit(x1,gens R);
B2=fromPoly2Bit(x1*x2, gens R);
assert(isDivisor(B1,B2));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B1=fromPoly2Bit(x1*x2,gens R);
B2=fromPoly2Bit(x1, gens R);
assert(not isDivisor(B1,B2));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B1=fromPoly2Bit(x2-1,gens R);
B2=fromPoly2Bit((x1-1)*(x2-1), gens R);
assert(isDivisor(B1,B2));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B1=fromPoly2Bit(x1*(x5-1),gens R);
B2=fromPoly2Bit(x1*(x3-1)*(x5-1), gens R);
assert(isDivisor(B1,B2));
///
------- testing findMinimal (with respect to inclusion, ie isSubset)
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
G={set{2,1},set{2,3},set{2,1,3},set{4,5,3,2},set{5}};
assert(set findMinimal(G,isSubset) === set{set{1,2},set{5},set{2,3}})
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
G={set{2},set{2,3},set{2,1,3},set{4,5,3,2,1}};
assert(set findMinimal(G,isSubset) === set{set{2}})
///
-------- testing isLinearPseudomonomial
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(isLinearPseudomonomial(fromPoly2Bit(x1,gens R)));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(not isLinearPseudomonomial(fromPoly2Bit(x1*x2,gens R)));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(isLinearPseudomonomial(fromPoly2Bit(x1-1,gens R)));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(not isLinearPseudomonomial(fromPoly2Bit((x1-1)*(x2-1),gens R)));
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
assert(not isLinearPseudomonomial(fromPoly2Bit((x1-1)*x2,gens R)));
///
--------- testing getFactors
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B=fromPoly2Bit(x1*(x3-1)*(x5-1),gens R);
B1=fromPoly2Bit(x1,gens R);
B2=fromPoly2Bit(x3-1,gens R);
B3=fromPoly2Bit(x5-1,gens R);
assert(set getFactors(B) === set{B1,B2,B3})
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
B=fromPoly2Bit(x2,gens R);
B1=fromPoly2Bit(x2,gens R);
assert(set getFactors(B) === set{B1})
///
--------testing setEqualtoZero
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x1*(x3-1)*x5,x2*x3);
B1=fromPoly2Bit(x1*(x3-1)*x5,gens R);
B2=fromPoly2Bit(x2*x3*x4,gens R);
Idealbitform={B1,B2};
zi=fromPoly2Bit(x3,gens R);
anscode = setEqualtoZero(Idealbitform,zi);
ansmanual = {fromPoly2Bit(x1*(0-1)*x5,gens R),fromPoly2Bit(x2*0*x4,gens R)};
assert(set anscode === set ansmanual)
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x1*(x3-1)*x5,x2*x3*x4);
B1=fromPoly2Bit(x1*(x3-1)*x5,gens R);
B2=fromPoly2Bit(x2*x3*x4,gens R);
Idealbitform={B1,B2};
zi=fromPoly2Bit(x1-1,gens R);
anscode = setEqualtoZero(Idealbitform,zi);
ansmanual = {fromPoly2Bit(1*(x3-1)*x5,gens R),fromPoly2Bit(x2*x3*x4,gens R)};
assert(set anscode === set ansmanual)
///
---------- testing simplifyGens
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x1*(x3-1)*x5,x2*x3,x2,x1*(x3-1)*x4*x5,0);
B1=fromPoly2Bit(x1*(x3-1)*x5,gens R);
B2=fromPoly2Bit(x2*x3,gens R);
B3=fromPoly2Bit(x2,gens R);
B4=fromPoly2Bit(x1*(x3-1)*x4*x5,gens R);
B5=fromPoly2Bit(0,gens R);
Idealbitform={B1,B2,B3,B4,B5};
assert(set simplifyGens Idealbitform === set {B1,B3})
///
--------- testing isPrimaryPseudomonomial
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x1*(x3-1),x2,x4);
B1=fromPoly2Bit(x1*(x3-1),gens R);
B2=fromPoly2Bit(x2,gens R);
B3=fromPoly2Bit(x4,gens R);
Idealbitform={B1,B2,B3};
assert(not isPrimaryPseudomonomial Idealbitform)
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x3-1,x2,x4);
B1=fromPoly2Bit(x3-1,gens R);
B2=fromPoly2Bit(x2,gens R);
B3=fromPoly2Bit(x4,gens R);
Idealbitform={B1,B2,B3};
assert(isPrimaryPseudomonomial Idealbitform)
///
------ testing isProperPseudomonomial
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x3-1,x3,x4*x5);
B1=fromPoly2Bit(x3-1,gens R);
B2=fromPoly2Bit(x3,gens R);
B3=fromPoly2Bit(x4*x5,gens R);
Idealbitform={B1,B2,B3};
assert(not isProperPseudomonomial Idealbitform)
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x3-1,x2,x4*x5);
B1=fromPoly2Bit(x3-1,gens R);
B2=fromPoly2Bit(x2,gens R);
B3=fromPoly2Bit(x4*x5,gens R);
Idealbitform={B1,B2,B3};
assert(isProperPseudomonomial Idealbitform)
///
------- testing factorIdeal
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x3-1,x2,x4*x5);
B1=fromPoly2Bit(x3-1,gens R);
B2=fromPoly2Bit(x2,gens R);
B3=fromPoly2Bit(x4*x5,gens R);
Idealbitform={B1,B2,B3};
anscode=(factorIdeal Idealbitform)/simplifyGens
ansmanual={{B1,B2,fromPoly2Bit(x4,gens R)},{B1,B2,fromPoly2Bit(x5,gens R)}}
assert(set anscode/set=== set ansmanual/set)
///
TEST ///
debug needsPackage "PseudomonomialPrimaryDecomposition"
R=ZZ/2[x1,x2,x3,x4,x5];
I=ideal(x3-1,x2,x3*x5);
B1=fromPoly2Bit(x3-1,gens R);
B2=fromPoly2Bit(x2,gens R);
B3=fromPoly2Bit(x3*x5,gens R);
Idealbitform={B1,B2,B3};
anscode=(factorIdeal Idealbitform)/simplifyGens
ansmanual={{fromPoly2Bit(1,gens R)},{B1,B2,fromPoly2Bit(x5,gens R)}}
assert(set anscode/set=== set ansmanual/set)
///
---------------------------------------------------
--- testing primaryDecompositionPseudomonomial-----
---------------------------------------------------
TEST ///
R=ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x1*x2,x3*x4,x5);
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/3[x1,x2,x3,x4,x5];
I = ideal(x1*x2,x3*x4,x5);
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = QQ[x1,x2,x3,x4,x5];
I = ideal(x1*x2,x3*x4,x5);
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x1*(x2-1),(x3-1)*x4,x5)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/3[x1,x2,x3,x4,x5];
I = ideal(x1*(x2-1),(x3-1)*x4,x5)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = QQ[x1,x2,x3,x4,x5];
I = ideal(x1*(x2-1),(x3-1)*x4,x5)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/2[x1,x2];
I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/3[x1,x2];
I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = QQ[x1,x2];
I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R=ZZ/2[x1,x2,x3,x4,x5];
I = ideal(x5,x1*(x3-1)*(x5-1));
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R=ZZ/3[x1,x2,x3,x4,x5];
I = ideal(x5,x1*(x3-1)*(x5-1));
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R=QQ[x1,x2,x3,x4,x5];
I = ideal(x5,x1*(x3-1)*(x5-1));
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/2[x1,x2];
I = ideal(x1,x2-1)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = ZZ/3[x1,x2];
I = ideal(x1,x2-1)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = QQ[x1,x2];
I = ideal(x1,x2-1)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
TEST ///
R = QQ[x1,x2];
I = ideal(x1,x2-1)
PD = primaryDecompositionPseudomonomial(I);
PDold = primaryDecomposition(I);
PDsorted = sort(apply(PD, J -> sort(J_*)));
PDoldsorted = sort(apply(PDold, J -> sort(J_*)));
assert ( PDsorted == PDoldsorted )
///
------------------------------------------------
--- testing isSquarefreePseudomonomialIdeal-----
------------------------------------------------
TEST ///
R = ZZ/2[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/3[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = QQ[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(4)[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(9)[x1,x2];
I = ideal(x1,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/2[x1,x2];
I = ideal(x1^2,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = ZZ/3[x1,x2];
I = ideal(x1,x2*(x2-1))
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = QQ[x1,x2];
I = ideal(x1,x2*(x2-1))
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = ZZ[x1,x2];
I = ideal(x1,x2*(x2-1))
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = GF(4)[x1,x2];
I = ideal(x1,x2*(x2-1))
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = GF(9)[x1,x2];
I = ideal(x1,x2*(x2-1))
assert ( isSquarefreePseudomonomialIdeal I == false )
///
TEST ///
R = ZZ/2[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/3[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = QQ[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(4)[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(9)[x1,x2,x3,x4];
I = ideal(x1*(x2-1),x3*x4,x2-1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/2[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/3[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = QQ[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(4)[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(9)[x1,x2,x3,x4];
I = ideal(x1*(x2-1)*x3*(x4-1))
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = ZZ/2[x1,x2,x3,x4];
I = ideal(1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = QQ[x1,x2,x3,x4];
I = ideal(1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
TEST ///
R = GF(9)[x1,x2,x3,x4];
I = ideal(1)
assert ( isSquarefreePseudomonomialIdeal I == true )
///
end
-- installPackage("PseudomonomialPrimaryDecomposition"); check(PseudomonomialPrimaryDecomposition)
|