1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
|
-- TODO:
-- finish doc
-- how to interact with pushForward?
-- issues: pushForward seems somewhat faster, in the homogeneous case...
-- also, are these stashed in that case? (They are not here, yet).
newPackage(
"PushForward",
Version => "0.6",
Date => "May 14, 2021",
Authors => {
{Name => "Claudiu Raicu",
Email => "craicu@nd.edu",
HomePage => "http://www3.nd.edu/~craicu"},
{Name => "David Eisenbud",
Email => "de@msri.org",
HomePage => "http://www.msri.org/~de"},
{Name => "Mike Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://pi.math.cornell.edu/~mike"}
},
Headline => "push forwards of finite ring maps",
Keywords => {"Commutative Algebra"}
)
-- note, this version has a slight change added by Karl Schwede. It has an option to turn off the prune calls.
-- Recently, David Eisenbud and Mike Stillman have extended it, fixing some bugs too.
export {
"isModuleFinite",
"pushFwd",
"NoPrune"
}
isInclusionOfCoefficientRing = method()
isInclusionOfCoefficientRing RingMap := Boolean => inc -> (
--checks whether the map is the inclusion of the coefficientRing
if source inc =!= coefficientRing target inc then return false;
inc vars source inc == promote (vars source inc, target inc)
)
isFinite1 = (f) -> (
A := source f;
B := target f;
matB := null;
mapf := null;
pols := f.matrix;
(FA, phiA) := flattenRing A;
iFA := ideal FA;
varsA := flatten entries phiA^-1 vars FA;
RA := try(ring source presentation FA) else FA;
(FB, phiB) := flattenRing B;
iFB := ideal FB;
varsB := flatten entries phiB^-1 vars FB;
RB := try(ring source presentation FB) else FB;
m := numgens FA;
n := numgens FB;
pols = pols_{0..(m-1)};
R := try(tensor(RB, RA, Join => false)) else tensor(RB, RA, Join => true);
xvars := (gens R)_{n..n+m-1};
yvars := (gens R)_{0..n-1};
iA := sub(ideal FA,matrix{xvars});
iB := sub(ideal FB,matrix{yvars});
iGraph := ideal(matrix{xvars}-sub(pols,matrix{yvars}));
I := iA+iB+iGraph;
inI := leadTerm I;
r := ideal(sub(inI,matrix{yvars | splice{m:0}}));
for i from 1 to n do
if ideal(sub(gens r,matrix{{(i-1):0,1_R,(m+n-i):0}}))!=ideal(1_R) then
return false;
true
)
isModuleFinite = method()
isModuleFinite Ring := Boolean => R -> (
I := ideal leadTerm ideal R;
ge := flatten select(I_*/support, ell -> #ell == 1);
set ge === set gens ring I
)
isModuleFinite RingMap := Boolean => f -> (
if isInclusionOfCoefficientRing f then
isModuleFinite target f
else
isFinite1 f
)
pushFwd=method(Options => {NoPrune => false})
pushFwd RingMap := Sequence => o -> (f) ->
--pfB is B^1 as an A-module
--matB is the set of monomials in B that form a set of generators as an A-module
--mapf takes as arg an element of B, and returns ??
(
A:=source f;
B:=target f;
deglenA:=degreeLength A;
deglenB:=degreeLength B;
(matB, mapfaux) := pushAuxHgs f;
pfB := makeModule(B^1,f,matB);
g := map(pfB,,gens pfB);
mapf := (b) -> g*(mapfaux b);
(pfB,matB,mapf)
)
pushFwd Ring := Sequence => o -> B -> pushFwd(map(B, coefficientRing B), o)
pushFwd Module := Module => o -> M -> pushFwd(map(ring M, coefficientRing ring M), M, o)
pushFwd Matrix := Matrix => o -> d -> pushFwd(map(ring d, coefficientRing ring d), d, o)
pushFwd(RingMap,Module):=Module=>o->(f,N)->
(
B:=target f;
aN:=ann N;
C:=B/aN;
bc:=map(C,B);
g:=bc*f;
matB:=(pushAuxHgs g)_0;
if (o.NoPrune == false) then prune makeModule(N**C,g,matB) else makeModule(N**C,g,matB)
)
pushFwd(RingMap,Matrix):=Matrix=>o->(f,d)->
(
A:=source f;
B:=target f;
pols:=f.matrix;
pM:=source d;
pN:=target d;
amn:=intersect(ann pM,ann pN);
C:=B/amn;
bc:=map(C,B);
g:=bc*f;
M:=pM**C;
N:=pN**C;
psh:=pushAuxHgs g;
matB:=psh_0;
mapf:=psh_1;
pushM:=makeModule(M,g,matB);
pushN:=makeModule(N,g,matB);
matMap:=symbol matMap;
gR:=matB**matrix d;
c:=numgens source gR;
l:=numgens target gR;
k := numcols matB;
matMap=mutableMatrix(A,k*l,c);
for i1 from 0 to c-1 do
for i2 from 0 to l-1 do
(
e:=mapf(gR_i1_i2);
for i3 from 0 to k-1 do matMap_(i2+l*i3,i1)=e_0_i3;
);
if (o.NoPrune == false) then prune map(pushN,pushM,matrix matMap) else map(pushN,pushM,matrix matMap)
)
-- TODO: stash the matB, pf? Make accessor functions to go to/from gens of R over A, or M to M_A.
-- TODO: given: M = pushFwd N, get the maps from N --> M (i.e. stash it somewhere).
-- also, we want the map going backwards too: given an element of M, lift it to N.
-- makeModule
-- internal function which implements the push forward of a module.
-- input:
-- N : Module, a module over B
-- f : RingMap, A --> B
-- matB : matrix over B, with one row, whose entries form a basis for B over A.
-- in fact, it can be any desired subset of A-generators of B, as well.
-- output:
-- the module N as an A-module.
-- notes:
-- if A is a field, this should be easier?
-- the map mp is basically
-- A^k --> auxN (over B)
-- and its kernel are the A-relations of the elements auxN
makeModule=method()
makeModule(Module,RingMap,Matrix):=(N,f,matB)->
(
N = trim N;
auxN:=ambient N/image relations N;
A:=source f;
k:=(numgens ambient N) * (numgens source matB);
--mp:=try(map(auxN,,f,matB**gens N)) else map(auxN,A^k,f,matB**gens N);
mp := if isHomogeneous f then
try(map(auxN,,f,matB**gens N)) else map(auxN,A^k,f,matB**gens N)
else
map(auxN,A^k,f,matB**gens N);
ke:=kernel mp;
(super ke)/ke
)
-- what if B is an algebra over A (i.e. A is the coefficient ring of B)
-*
TODO.
g = gens gb ideal L
m = lift(matB, ring g)
coker last coefficients(g, Monomials => m)
*-
pushAuxHgs=method()
pushAuxHgs(RingMap):=(f)-> (
A:=source f;
B:=target f;
matB := null;
mapf := null;
if isInclusionOfCoefficientRing f then (
--case when the source of f is the coefficient ring of the target:
if not isModuleFinite target f then error "expected a finite map";
matB = basis(B, Variables => 0 .. numgens B - 1);
mapf = if isHomogeneous f
then (b) -> (
(mons,cfs) := coefficients(b,Monomials=>matB);
lift(cfs, A)
)
else (b) -> (
(mons,cfs) := coefficients(b,Monomials=>matB);
-- strip degrees on the target, as otherwise, with differing degrees in A and B,
-- the degree cannot always be lifted:
cfs = map(B^(numrows cfs),B^(numcols cfs),cfs);
lift(cfs, A)
);
return(matB,mapf)
);
pols:=f.matrix;
FlatA:=flattenRing A;
FA:=FlatA_0;
iFA:=ideal FA;
varsA:=flatten entries FlatA_1^-1 vars FA;
RA:=try(ring source presentation FA) else FA;
FlatB:=flattenRing B;
FB:=FlatB_0;
iFB:= ideal FB;
varsB:=flatten entries FlatB_1^-1 vars FB;
RB:=try(ring source presentation FB) else FB;
m:=numgens FA;
n:=numgens FB;
pols=pols_{0..(m-1)};
R := try(tensor(RB, RA, Join => false)) else tensor(RB, RA, Join => true);
xvars := (gens R)_{n..n+m-1};
yvars := (gens R)_{0..n-1};
iA:=sub(ideal FA,matrix{xvars});
iB:=sub(ideal FB,matrix{yvars});
iGraph:=ideal(matrix{xvars}-sub(pols,matrix{yvars}));
I:=iA+iB+iGraph;
inI:=leadTerm I;
r:=ideal(sub(inI,matrix{yvars | splice{m:0}}));
for i from 1 to n do
if ideal(sub(gens r,matrix{{(i-1):0,1_R,(m+n-i):0}}))!=ideal(1_R) then
error "map is not finite";
mat:=lift(basis(R/(r+ideal(xvars))),R);
k:=numgens source mat;
matB = sub(mat,matrix{varsB|toList(m:0_B)});
assert(k == numcols matB);
phi:=map(R,B,matrix{yvars});
toA:=map(A,R,flatten{n:0_A,varsA});
mapf = (b)->(
(mons,cfs):=coefficients((phi b)%I,Monomials=>mat,Variables=>yvars);
toA cfs
);
matB,mapf
)
beginDocumentation()
doc ///
Key
PushForward
Headline
methods to compute the pushforward of a module along a ring map
Description
Text
Given a ring map $f \colon A \to B$, and a $B$-module $M$,
$M$ has the structure of an $A$-module, and if this module is
finitely generated over $A$, the routine @TO pushFwd@ in this package
will compute such an $A$-module. This is also functorial, in that if a
map of $B$-modules (both of which are finitely generated over $A$), then
@TO (pushFwd, RingMap, Matrix)@ will return the induced map
on $A$-modules.
In an algebraic sense, this is really a pull back, but thinking geometrically,
the functions here implement the push forward of a module (or sheaf).
This package was originally implemented by Claudiu Raicu, some changes were
introduced by Karl Schwede, and later by David Eisenbud and Mike Stillman.
Subnodes
(pushFwd, RingMap)
(pushFwd, RingMap, Module)
(pushFwd, RingMap, Matrix)
///
doc ///
Key
(pushFwd, RingMap)
(pushFwd, Ring)
Headline
push forward of a finite ring map
Usage
pushFwd f
pushFwd B
Inputs
f:RingMap
or a ring B, and the map is taken to be the natural map from coefficientRing B
Outputs
:Sequence
Description
Text
If $f: A \to B$ is a ring map, and $B$ is finitely generated as an $A$-module,
then the function returns a sequence $(M, g, pf)$ containing
(1) $M \cong B^1$ as $A$-modules,
(2) a 1-row matrix $g$ of elements of B whose entries generate B as A-module,
(3) a function $pf$ that
assigns to each element $b \in B$, a matrix $A^1 \to M$,
where the image of 1 is the element $b \in M$.
Example
kk = QQ;
S = kk[a..d];
I = monomialCurveIdeal(S, {1,3,4})
B = S/I
A = kk[a,d];
f = map(B,A)
(M,g,pf) = pushFwd f;
M
g
use B
pf(a*b - c^2)
Caveat
This function is meant to be internally used.
SeeAlso
(pushFwd, RingMap, Module)
(pushFwd, RingMap, Matrix)
///
doc ///
Key
(pushFwd, RingMap, Module)
(pushFwd, Module)
Headline
push forward of a module via a finite ring map
Usage
N = pushFwd(f, M)
N = pushFwd M
Inputs
f:RingMap
from a ring $A$ to a ring $B$
or the natural map from coefficientRing B if f not specified
M:Module
a $B$-module, which via $f$ is a finite $A$-module
Outputs
N:Module
Description
Text
Given a (not necessarily finite) ring map $f : A \to B$,
the $B$-module $M$ can be considered as a module over $A$.
If $M$ is finite, this method returns the corresponding
$A$-module.
Example
kk = QQ;
A = kk[t];
B = kk[x,y]/(x*y);
use B;
i = ideal(x)
f = map(B,A,{x})
pushFwd(f,module i)
SeeAlso
(pushFwd, Matrix)
///
doc ///
Key
(pushFwd, RingMap, Matrix)
(pushFwd, Matrix)
Headline
push forward of a module map via a finite ring map
Usage
gA = pushFwd(f, g)
gA = pushFwd g
Inputs
f:RingMap
from a ring $A$ to a ring $B$
or (if not specified) the natural map from A = coefficientRing ring g
g:Matrix
(a matrix), $g : M_1 \to M_2$ of modules over $B$
Outputs
gA:Matrix
Description
Text
If $M_1$ and $M_2$ are both finite generated as $A$-modules, via $f$, this returns the induced map
on $A$-modules.
Example
kk = QQ
A = kk[a,b]
B = kk[z,t]
f = map(B,A,{z^2,t^2})
M = B^1/ideal(z^3,t^3)
g = map(M,M,matrix{{z*t}})
p = pushFwd(f,g)
source p == pushFwd(f, source g)
target p == pushFwd(f, target g)
kerg = pushFwd(f,ker g)
kerp = prune ker p
k = ZZ/32003
A = k[x,y]/(y^4-2*x^3*y^2-4*x^5*y+x^6-y^7)
A = k[x,y]/(y^3-x^7)
B = integralClosure(A, Keep =>{})
describe B
f = map(B^1, B^1, matrix{{w_(3,0)}})
g = pushFwd(icMap A, f)
pushFwd(icMap A, f^2) == g*g
A = kk[x]
B = A[y, Join => false]/(y^3-x^7)
pushFwd B^1
pushFwd matrix{{y}}
Text
Pushforward is linear and respects composition:
Example
B = A[y,z,Join => false]/(y^3 - x*z, z^3-y^7);
pushFwd B^1
fy = pushFwd matrix{{y}}
fz = pushFwd matrix{{z}};
fx = pushFwd matrix{{x_B}};
g = pushFwd matrix{{y*z -x_B*z^2}}
g == fy*fz-fx*fz^2
fz^3-fy^7 == 0
SeeAlso
(pushFwd, Module)
///
document{
Key => pushFwd,
Headline => "push forward",
"The push forward functor",
UL {
{TO (pushFwd,RingMap)," - for a finite ring map"},
{TO (pushFwd,RingMap,Module), " - for a module"},
{TO (pushFwd,RingMap,Matrix), " - for a map of modules"}
}
}
-- document{
-- Key => (pushFwd,RingMap),
-- Headline => "push forward of a finite ring map",
-- Usage => "pushFwd f",
-- Inputs => { "f" },
-- Outputs => {{"a presentation of the target of ",TT "f", " as a module over the source"},{"the matrix of generators of the target of ",TT "f"," as a module over the source"},{"a map that assigns to each element of the target of ", TT "f"," its representation as an element of the pushed forward module"}},
-- EXAMPLE lines ///
-- kk = QQ
-- S = kk[a..d]
-- I = monomialCurveIdeal(S, {1,3,4})
-- R = S/I
-- A = kk[a,d]
-- use R
-- F = map(R,A)
-- (M,g,pf) = pushFwd F;
-- M
-- g
-- pf(a*b - c^2)
-- ///,
-- Caveat => {TEX "In a previous version of this package, the third output was a function which assigned to each element of the target of ", TT "f", " its representation as an element of a free module
-- which surjected onto the pushed forward module."}
-- }
-- document{
-- Key => (pushFwd,RingMap,Module),
-- Headline => "push forward of a module",
-- Usage => "pushFwd(f,N)",
-- Inputs => { "f", "N" },
-- Outputs => {{"a presentation of ",TT "N", " as a module over the source of ",TT "f"}},
-- TEX "Given a (not necessarily finite) ring map $f:A \\rightarrow{} B$ and a $B$-module $N$ which is finite over $A$, the function returns a presentation of $N$ as an $A$-module.",
-- PARA{},
-- EXAMPLE lines ///
-- kk = QQ
-- A = kk[t]
-- B = kk[x,y]/(x*y)
-- use B
-- i = ideal(x)
-- f = map(B,A,{x})
-- pushFwd(f,module i)
-- ///
-- }
-- document{
-- Key => (pushFwd,RingMap,Matrix),
-- Headline => "push forward of a map of modules",
-- Usage => "pushFwd(f,d)",
-- Inputs => { "f", "d" },
-- Outputs => {{"the push forward of the map d"}},
-- EXAMPLE lines ///
-- kk = QQ
-- R = kk[a,b]
-- S = kk[z,t]
-- f = map(S,R,{z^2,t^2})
-- M = S^1/ideal(z^3,t^3)
-- g = map(M,M,matrix{{z*t}})
-- p = pushFwd(f,g)
-- kerg = pushFwd(f,ker g)
-- kerp = prune ker p
-- ///
-- }
doc ///
Key
(isModuleFinite, RingMap)
(isModuleFinite, Ring)
isModuleFinite
Headline
whether the target of a ring map is finitely generated over source
Usage
isModuleFinite f
isModuleFinite R
Inputs
f:RingMap
or $R$ @ofClass Ring@
Outputs
:Boolean
Description
Text
A ring map $f \colon A \to B$ makes $B$ into a module over $A$.
This method returns true if and only if this module is a finitely generated
$A$-module.
Example
kk = QQ;
A = kk[t];
C = kk[x,y];
B = C/(y^2-x^3);
f = map(A, B, {t^2, t^3})
isWellDefined f
isModuleFinite f
Example
f = map(kk[x,y], A, {x+y})
assert not isModuleFinite f
Text
If a ring $R$ is given, this method returns true if and only if $R$
is a finitely generated module over its coefficient ring.
Example
A = kk[x]
B = A[y]/(y^3+x*y+3)
isModuleFinite B
SeeAlso
pushFwd
///
doc ///
Key
NoPrune
[pushFwd,NoPrune]
Headline
NoPrune option for pushFwd
Description
Text
This is an optional argument for the @TO pushFwd@ function. Its default value is {\tt false},
which means that the presentation of a pushed forward module is pruned by default. If NoPrune
is set to {\tt true}, then the prune calls in pushFwd are turned off.
Example
R5=QQ[a..e]
R6=QQ[a..f]
M=coker genericMatrix(R6,a,2,3)
G=map(R6,R5,{a+b+c+d+e+f,b,c,d,e})
notpruned = pushFwd(G,M,NoPrune => true)
pruned = pushFwd(G,M)
///
--test 0
TEST ///
kk=ZZ/32003
R4=kk[a..d]
R5=kk[a..e]
R6=kk[a..f]
M=coker genericMatrix(R6,a,2,3)
pdim M
G=map(R6,R5,{a+b+c+d+e+f,b,c,d,e})
F=map(R5,R4,random(R5^1,R5^{4:-1}))
P=pushFwd(G,M)
assert (pdim P==1)
Q=pushFwd(F,P)
assert (pdim Q==0)
///
-- test 1
TEST ///
P3=QQ[a..d]
M=comodule monomialCurveIdeal(P3,{1,2,3})
P2=QQ[a,b,c]
F=map(P3,P2,random(P3^1,P3^{-1,-1,-1}))
N=pushFwd(F,M)
assert(hilbertPolynomial M==hilbertPolynomial N)
///
-- test 2
TEST ///
kk = QQ
R = kk[x,y]/(x^2-y^3-y^5)
R' = integralClosure R
pr = pushFwd map(R',R)
q = pr_0 / (pr_0)_0
use R
assert(ann q==ideal(x,y))
assert isModuleFinite map(R', R)
///
-- test 3
TEST ///
kkk=ZZ/23
kk=frac(kkk[u])
T=kk[t]
x=symbol x
PR=kk[x_0,x_1]
R=PR/kernel map(T,PR,{t^3-1,t^4-t})
PS=kk[x_0,x_1,x_2]
S=PS/kernel map(T,PS,{t^3-1,t^4-t,t^5-t^2})
rs=map(S,R,{x_0,x_1})
st=map(T,S,{t^3-1,t^4-t,t^5-t^2})
assert isModuleFinite rs
assert isModuleFinite st
pst=pushFwd st
MT=pst_0
k=numgens MT
un=transpose matrix{{1_S,(k-1):0}}
MT2=MT**MT
mtt2=map(MT2,MT,un**id_MT-id_MT**un)
MMS=kernel mtt2
r1=trim minimalPresentation kernel pushFwd(rs,mtt2)
r2=trim minimalPresentation pushFwd(rs,MMS)
r3=trim (pushFwd rs)_0
assert(r1==r2)
assert(flatten entries relations r2 == flatten entries relations r3)
///
-- test 4
TEST ///
kk=ZZ/3
T=frac(kk[t])
A=T[x,y]/(x^2-t*y)
R=A[p]/(p^3-t^2*x^2)
S=A[q]/(t^3*(q-1)^6-t^2*x^2)
f=map(S,R,{t*(q-1)^2})
assert isModuleFinite f
pushFwd f
p=symbol p
R=A[p_1,p_2]/(p_1^3-t*p_2^2)
S=A[q]
f=map(S,R,{t*q^2,t*q^3})
assert isModuleFinite f
pushFwd f
i=ideal(q^2-t*x,q*x*y-t)
p=pushFwd(f,i/i^3)
assert(numgens p==2)
///
-- test 5
TEST ///
kk=QQ
A=kk[x]
B=kk[y]/(y^2)
f=map(B,A,{y})
assert isModuleFinite f
pushFwd f
use B
d=map(B^1,B^1,matrix{{y^2}})
assert(pushFwd(f,d)==0)
///
-- test 6
TEST ///
kk=QQ
A=kk[t]
B=kk[x,y]/(x*y)
use B
i=ideal(x)
f=map(B,A,{x})
assert not isModuleFinite f
assert(isFreeModule pushFwd(f,module i))
///
-- test 7
TEST ///
kk=ZZ/101
n=2
PA=kk[x_1..x_(2*n)]
iA=ideal apply(toList(1..n),i->(x_(2*i-1)^i-x_(2*i)^(i+1)))
A=PA/iA
PB=kk[y_1..y_(2*n-1)]
l=apply(toList(1..(2*n-1)),i->(x_i+x_(i+1)))
g=map(A,PB,l)
time iB=kernel g;
B=PB/iB
f=map(A,B,l)
assert isModuleFinite f
assert isModuleFinite g
time h1=pushFwd g;
ph1=cokernel promote(relations h1_0,B);
time h2=pushFwd f;
assert(ph1==h2_0)
///
--test 8
TEST ///
A = QQ
B = QQ[x]/(x^2)
N = B^1 ++ (B^1/(x))
f = map(B,A)
assert isModuleFinite f
pN = pushFwd(f,N)
assert(isFreeModule pN)
assert(numgens pN == 3)
///
TEST///
-*
restart
*-
debug needsPackage "PushForward"
kk = ZZ/101
A = kk[s]
B = A[t]
C = B[u]
f = map(C,B)
g = map(C,B,{t})
assert(isInclusionOfCoefficientRing f)
assert(isInclusionOfCoefficientRing g)
kk = ZZ/101
A = frac (kk[s])
B = A[t]
C = B[u]
f = map(C,B)
g = map(C,B,{t})
assert(isInclusionOfCoefficientRing f)
assert(isInclusionOfCoefficientRing g)
///
TEST///
-*
restart
*-
debug needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
A = kk[s,t]
-- note: this ideal is NOT the rational quartic, and in fact has an annihilator over A.
L = A[symbol b, symbol c, Join => false]/(b*c-s*t, t*b^2-s*c^2, b^3-s*c^2, c^3 - t*b^2)
isHomogeneous L
describe L
basis(L, Variables => L_*)
inc = map(L, A)
assert isInclusionOfCoefficientRing inc
assert isModuleFinite L
assert isModuleFinite inc
(M,B,pf) = pushFwd inc
assert( B*presentation M == 0)
assert(numcols B == 5)
///
TEST///
-*
restart
*-
debug needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
A = kk[s,t]
L = A[symbol b, symbol c, Join => false]/(b*c-s*t,c^3-b*t^2,s*c^2-b^2*t,b^3-s^2*c)
isHomogeneous L
describe L
basis(L, Variables => L_*)
inc = map(L, A)
assert isInclusionOfCoefficientRing inc
assert isModuleFinite L
assert isModuleFinite inc
(M,B,pf) = pushFwd inc -- ok. this works, but isn't awesome, as it uses a graph ideal.
assert( B*presentation M == 0)
assert(numcols B == 5)
///
TEST///
-*
restart
*-
debug needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
L = kk[s, symbol b, symbol c, t]/(b*c-s*t, t*b^2-s*c^2, b^3-s*c^2, c^3 - t*b^2)
A = kk[s,t]
isHomogeneous L
inc = map(L, A)
(M,B,pf) = pushFwd inc
assert( B * inc presentation M == 0)
assert(numcols B == 5)
pushForward(inc, L^1)
///
TEST///
-*
restart
needsPackage "PushForward"
*-
kk = QQ
A = kk[x]
R = A[y, Join=> false]/(y^7-x^3-x^2)
(M,B,pf) = pushFwd map(R,A)
(M1,B1,pf1) = pushFwd R
assert(pushFwd(R^3) == pushFwd(map(R,A), R^3))
assert((M1,B1) == (M,B))
assert(pushFwd matrix{{y}} == pushFwd(map(R,A),matrix{{y}}))
assert(isFreeModule M and rank M == 7)
assert(B == basis(R, Variables => R_*))
assert( pf(y+x)- matrix {{x}, {1}, {0}, {0}, {0}, {0}, {0}} == 0)
R' = integralClosure R
(M,B,pf) = pushFwd map(R',R)
use R
assert(M == cokernel(map(R^2,R^{{-6}, {-4}},{{-x^2-x,y^4}, {y^3,-x}})))
assert(pf w_(2,0) - matrix {{0}, {1}} == 0)
///
TEST ///
-*
restart
needsPackage "PushForward"
*-
kk = QQ
A = kk[x, DegreeRank => 0]
R = A[y,z, Join => false]
I = ideal(y^4-x*y-(x^2+1)*z^2, z^4 - (x-1)*y-z^2 - z - y^3)
B = R/I
assert isModuleFinite map(B,A)
(M,g,pf) = pushFwd B
pushFwd B^1
pushFwd B^{1}
fy = pushFwd matrix{{y}}
fz = pushFwd matrix{{z}}
assert(fy*fz == pushFwd matrix{{y*z}})
inc = map(B,A)
pushFwd(inc, B^1)
pushFwd(inc, B^{1})
fy = pushFwd(inc, matrix{{y}})
fz = pushFwd(inc, matrix{{z}})
assert(fy*fz == pushFwd(inc, matrix{{y*z}}))
kk = QQ
A = kk[x]
R = A[y,z, Join => false]
I = ideal(y^4-x*y-(x^2+1)*z^2, z^4 - (x-1)*y-z^2 - z - y^3)
B = R/I
assert isModuleFinite map(B,A)
(M,g,pf) = pushFwd B
pushFwd B^1
pushFwd B^{1}
fy = pushFwd matrix{{y}}
fz = pushFwd matrix{{z}}
assert(fy*fz == pushFwd matrix{{y*z}}) -- false
assert(fy*fz - pushFwd matrix{{y*z}} == 0)
inc = map(B,A)
pushFwd(inc, B^1)
pushFwd(inc, B^{1})
fy = pushFwd(inc, matrix{{y}})
fz = pushFwd(inc, matrix{{z}})
assert(fy*fz == pushFwd(inc, matrix{{y*z}}))
kk = QQ
A = kk[x, DegreeRank => 0]
R = A[y,z]
I = ideal(y^4-x*y-(x^2+1)*z^2, z^4 - (x-1)*y-z^2 - z - y^3)
B = R/I
assert isModuleFinite map(B,A)
(M,g,pf) = pushFwd B
pushFwd B^1
pushFwd B^{1}
fy = pushFwd matrix{{y}}
fz = pushFwd matrix{{z}}
fy*fz == pushFwd matrix{{y*z}}
kk = QQ
A = kk[x]
R = A[y,z]
I = ideal(y^4-x*y-(x^2+1)*z^2, z^4 - (x-1)*y-z^2 - z - y^3)
B = R/I
assert isModuleFinite map(B,A)
(M,g,pf) = pushFwd B
pushFwd B^1
pushFwd B^{{0,1}}
fy = pushFwd matrix{{y}} -- good
fz = pushFwd matrix{{z}}
assert(fy*fz == pushFwd matrix{{y*z}}) -- good
assert(fy*fz - pushFwd matrix{{y*z}} == 0)
///
TEST ///
-*
restart
needsPackage "PushForward"
*-
n = 4
d = 4
c = 2
kk = ZZ/32003;
S = kk[x_1..x_n];
I = ideal random(S^1, S^{c:-d});
R = S/I;
A = kk[t_1..t_(n-c)];
phi = map(R, A, random(R^1, R^{n-c:-1}));
elapsedTime assert isModuleFinite phi
elapsedTime M1 = pushFwd(phi, R^1)
elapsedTime M2 = pushForward(phi, R^1);
assert(M1 == M2)
///
end--
restart
uninstallPackage"PushForward"
restart
installPackage"PushForward"
x = symbol x;y= symbol y;
check PushForward
viewHelp PushForward
target oo == pr_0
pushFwd(map(R',R), R'^1)
---
A = QQ
B = QQ[x]/(x^2)
N = B^1 ++ (B^1/(x))
f = map(B,A)
pushFwd(f,N)
pushFwd f
-- example bug -----------------------------------
-- DE + MES
///
restart
needsPackage "PushForward"
-- This one works
kk = ZZ/101
A = kk[s,t]
C = A[x,y,z]/(x^2, y^2, z^2)
phi = map(C,A)
f = map(C^1, A^4, phi, {{x,s*y,t*y, z}})
ker f
-- This one fails, degrees are screwed up.
kk = ZZ/101
A = kk[s,t]
B = frac A
C = B[x,y,z]/(x^2, y^2, z^2)
phi = map(C,B)
f = map(C^1, B^3, phi, {{x,s*y,z}})
ker f
///
TEST ///
-*
restart
needsPackage "NoetherNormalForm"
*-
needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
A = frac(kk[s,t])
L = A[symbol a.. symbol d]/(d-t, a-s, b*c-s*t, b^2-(s/t)*c^2)
describe L
ML = pushFwd(map(L,frac A), L^1) -- dim 4, free -- FAILS
-- simpler example which fails
-- FIX THIS: should not create a graph ring.
restart
debug needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
A = frac(kk[s,t])
L = A[symbol b, symbol c]/(b*c-s*t, b^2-(s/t)*c^2)
basis L
describe L
inc = map(L, A)
assert isInclusionOfCoefficientRing inc
assert isModuleFinite L
pushFwd inc
ML = pushFwd(map(L,frac A), L^1)
-- FIX THIS: should not create a graph ring.
-- FIX ME?
restart
debug needsPackage "PushForward"
s = symbol s; t = symbol t
A = QQ
L = A[symbol b, symbol c]/(b*c-13, b^3-c^2)
describe L
inc = map(L, A)
assert isInclusionOfCoefficientRing inc
assert isModuleFinite L
(LA, bas, pf) = pushFwd inc -- this works
pf(b^2+c^2) -- maybe a better way?
restart
debug needsPackage "PushForward"
s = symbol s; t = symbol t
kk = ZZ/101
A = frac(kk[s,t])
L = A[symbol b, symbol c]/(b^2-(s/t)*c^2 - c, c^3)
basis L
describe L
inc = map(L, A)
pushForward(inc, A^1) -- now fails...
pushFwd inc
///
///
-- Case 1.
-- ring map is f : A --> B = A[xs]/I, A is a polynomial ring, quotient field, basic field.
///
///
Key
Headline
Usage
Inputs
Outputs
Description
Text
Example
Caveat
SeeAlso
///
|