1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
newPackage(
"QuadraticIdealExamplesByRoos",
Version => "0.1",
Date => "June, 2023",
AuxiliaryFiles => false,
Authors => {{Name => "David Eisenbud", Email => "de@msri.org"},
{Name => "Michael Perlman", Email => "mperlman@umn.edu"},
{Name => "Ritvik Ramkumar", Email => "ritvikr@cornell.edu"},
{Name => "Deepak Sireeshan", Email => "dsbx7@umsystem.edu"},
{Name => "Aleksandra Sobieska", Email => "asobieska@wisc.edu"},
{Name => "Teresa Yu", Email => "twyu@umich.edu"},
{Name => "Jacob Zoromski", Email => "jzoromsk@nd.edu"} },
Headline => "Examples of Quadratic Ideals with Embedding Dimension Four by Jan-Erik Roos",
PackageExports => {"Depth"},
PackageImports => {"Classic"},
Keywords => {"Examples and Random Objects"})
export {
"roosTable",
"higherDepthTable",
"depthZeroTable",
"almostKoszul",
"roosIsotopes",
"onedimToricIrrationalPoincare",
"twodimToricIrrationalPoincare"
}
---TO DO: make this a method to allow user to pick coefficient field
roosTable = (S = QQ[x,y,z,u];
L= {
ideal(0_S),
ideal "x2",
ideal "x2, y2",
ideal "x2, xy",
ideal "x2, y2, z2",
ideal "x2, y2 + xz, yz",
ideal "x2 + y2, z2 + u2, xz + yu",
ideal "x2, y2, xz",
ideal "x2, xy, y2",
ideal "x2, xy, xz",
ideal "x2, y2, z2, u2",
ideal "x2 + xy, y2 + xu, z2 + xu, u2 + zu",
ideal "x2 + z2 + u2, y2, xz, yu + zu",
ideal "xz, y2, z2 + u2, yu + zu",
ideal "xz, y2, yz + u2, yu + zu",
ideal "xy + z2 + yu, y2, yu + zu, xz",
ideal "xz, yz + xu, y2, yu + zu",
ideal "x2, y2, z2, yu",
ideal "xz, y2, yu + zu, u2",
ideal "xz,y2,yu+z2,yu+zu",
ideal "xz,y2,z2,yu+zu",
ideal "x2+xy,xu,xz+yu,y2",
ideal "xz,xu,y2,z2",
ideal "xz,y2,yz+z2,yu+zu",
ideal "x2,xy,xz,u2",
ideal "xz,y2,yu,zu",
ideal "xy,xz,y2,yz",
ideal "x2,xy,xz,xu",
ideal "x2+xy,y2+xu,z2+xu,zu+u2,yz",
ideal "xy+u2,xz,x2+z2+u2,y2,yu+zu",
ideal "x2-y2,y2-z2,z2-u2,xz+yu,-x2+xy-yz+xu",
ideal "x2+z2,xz,y2,yu+zu,u2",
ideal "x2+xy,y2+yz,y2+xu,z2+xu,zu+u2",
ideal "x2+xy+yu+u2,y2,xz,x2+z2+u2,yu+zu",
ideal "x2+z2+u2,y2,xz,xy+yz+yu,yu+zu",
ideal "x2+y2,z2,u2,yz-yu,xz+zu",
ideal "x2,y2,xy-zu,yz-xu,(x-y)(z-u)",
ideal "x2,y2,z2,zu,u2",
ideal "x2+yz+u2,xz+z2 +yu,xy, xu, zu",
ideal "x2-xu,xu-y2,y2-z2,z2-u2,xz+yu",
ideal "xy,y2,z2,zu,u2",
ideal "x2 +xy,zu,y2,xu,xz+yu",
ideal "x2,y2,yz,zu,u2",
ideal "xz,yz,y2,yu+zu,z2+u2",
ideal "xy+yz,xy+z2 +yu,yu + zu, y2, xz",
ideal "x2,xy,yz,zu,u2",
ideal "x2+xy,y2,xu,xz+yu,-x2+xz-yz",
ideal "xy,z2+yu,yu+zu,y2,xz",
ideal "xz, y2, z2, yu, zu",
ideal "x2, xy, xz, y2, z2",
ideal "xy,xz,yz+xu,z2,zu",
ideal "x2, xy, xz, y2, yz",
ideal "y2 -u2, xz, yz, z2, zu",
ideal "x2,xz,y2,z2,yu+zu,u2",
ideal "x2 +xy,xz+yu,xu,y2,z2,zu+u2",
ideal "x2+xz+u2,xy,xu,x2 -y2,z2,zu",
ideal "x2+yz+u2,xu,x2 +xy,xz+yu, zu+u2, y2+z2",
ideal "x2 + xy, x2 + zu, y2, z2, xz+yu, xu",
ideal "x2 - y2, xy, xu, z2, zu,xz + yu",
ideal "x2 + yz + u2, xz+yu, zu, xy, z2, xu",
ideal "x2-y2, xy, z2, xu, zu, u2",
ideal "x2 - y2, xy, xu, yz+yu, z2, zu",
ideal "x2, xy, xu, y2, z2, zu",
ideal "x2 - y2, xy, z2, xu, yu, zu",
ideal "x2, xy, xz, y2, yu+z2, yu+zu",
ideal "xz, y2, yu, z2, zu, u2",
ideal "xy, xz, y2, yu, z2, zu",
ideal "x2, xy, xz,y2, yz, z2",
ideal "x2, xz, xu, xy-zu, yz, z2",
ideal "x2, xy, xz xu, y2, yz",
ideal "x2, y2, z2, u2, xy, zu, yz+xu",
ideal "x2-y2, xy, yz, zu, z2, xz+yu, xu",
ideal "x2, y2, z2, u2, zu, yu, xu",
ideal "x2, xy+z2, yz, xu, yu, zu, u2",
ideal "x2,xy,xz,xu,y2,yz,u2",
ideal "x2, xy, xz, xu, z2, zu, yu",
ideal "x2, xy, xz, xu, y2, yz, yu",
ideal "x2,xy,y2,z2,zu,u2,xz+yu,yz-xu",
ideal "x2,xy,xz,xu,y2,yu,z2,zu",
ideal "x2,xy,xz,y2,yz,yu,z2,zu",
ideal "x2,y2,z2,u2,xy,xz,yz-xu,yu,zu",
ideal "x2,xy,xz,xu,y2,zu,u2,yz,yu",
ideal "x2,y2,z2,u2,xy,xz,xu,yz,yu,zu"
};
new HashTable from for i from 1 to 83 list i => L#(i-1)
)
higherDepthIndices = splice {1..6, 8..10, 23, 26, 27, 50, 52, 68};
depthZeroIndices = (lst = toList(1..83);
for i in higherDepthIndices do lst=delete(i,lst);
lst
)
higherDepthTable = new HashTable from for i in higherDepthIndices list i=> (roosTable#i);
depthZeroTable = new HashTable from for i in depthZeroIndices list i=> (roosTable#i);
roosIsotopes = (
S = QQ[x,y,z,u];
L = {
"46va" => ideal "xz + u2, xy,xu,x2,zu + y2 + z2", ---46va
"57v2" => ideal "x2+y2+z2,xy,xu,yz,zu,xz+u2", ----57v2
"59va" => ideal "x2-y2,xy,yz,zu,xz+u2,xu", ----59va
"62va" => ideal "x2+yz+u2,yu,zu,xy,z2,xu", ---62va
"63v4" => ideal "y2,xz+yu,zu,xy,z2,xu", ---63v4
"63v8" => ideal "x2,xy,xu,yu,z2,xz+u2,y2+z2+zu",------63v8
"63ne" => ideal "x2,xy,xz+u2,xu,y2+z2,zu", ----63ne
"66v5" => ideal "xy,xz+u2,xu,yu,zu,z2",----66v5
"68v" => ideal "x2,xy,xz,xu,u2,y2+z2+zu",----68v
"71v16" => ideal "x2,y2+z2,xy,yz,zu,xz+u2,xu", ----71v16
"71v4" => ideal "x2+u2,xy,xu,y2,yz,z2,zu",----71v4
"71v7" => ideal "x2,y2,z2,xz+u2,xu,yz,zu",----71v7
"71v5" => ideal "x2+xy,x2+yz,xy+y2,z2,z2,xu,zu,xz+u2",---71v5
"72v1" => ideal "xu+u2,x2+xy,y2+xu,y2+yz,y2+yz,yu+zu,z2+xu,zu+u2",---72v1
"72v2e" => ideal "yz,x2+xy,xz+yu,xu,z2,zu,x2+u2", ---72v2e
"75v1" => ideal "y2,xz,yz+xu,z2,yu,zu,u2",----75v1
"75v2" => ideal "xy,xz+u2,xu,yz+u2,yu,zu,z2",---75v2
"78v1" => ideal "x2,y2,z2,u2,xy,xz,xu,yu",----78v1
"78v2e" => ideal "xu,yu+xz,yz,x2,y2,z2+xy,u2,zu", ---78v2e
"78v3v" => ideal "xu,yu+xz,yz,x2,y2,z2+xz,u2,zu",----78v3v
"81va" => ideal "x2,y2,z2,u2,xy,xz,xu,yu,zu"---81va
};
new HashTable from L
)
-----need to export and document the following two functions
onedimToricIrrationalPoincare = (degs1 := {18,24,25,26,28,30,33}; --this example is from froberg-roos 2000, lofwall-lundqvist-roos
ker map(QQ[t], QQ[w_1 .. w_7, Degrees => degs1], apply(degs1, a -> t^a))
)
twodimToricIrrationalPoincare = (degs2 := {{36,0}, {33,3}, {30,6}, {28,8}, {26,10}, {25,11}, {24,12}, {18,18}, {0,36}};
ker map(QQ[t,s], QQ[w_1 .. w_9, Degrees => degs2], apply(degs2, a -> t^(a#0)*s^(a#1)))
)
almostKoszul = method()
almostKoszul (Ring, ZZ) := Ring => (kk, a)-> (
--A series of examples discovered by Jan-Erik Roos:
--
--If kk = QQ then the resolution of kk over the output
--ring has linear resolution for a steps but 1 quadratic syzygy
--at the a+1-st step.
--It also seems to have the first socle summand
--at the a+1-st step!
--These phenomena are also visible with kk = ZZ/32003, at
--least for moderate size a.
x := symbol x;
y := symbol y;
z := symbol z;
u := symbol u;
v := symbol v;
w := symbol w;
S := kk[x,y,z,u,v,w];
I := ideal (x^2,x*y,y*z,z^2,z*u,u^2,u*v,v*w,w^2,
x*z+a*z*w-u*w,z*w+x*u+(a-2)*u*w);
S/I
)
---TO DO: create a function to identify non-Koszul examples (see Table 8)
-* Documentation section *-
beginDocumentation()
doc ///
Key
"QuadraticIdealExamplesByRoos"
Headline
Examples of Quadratic Ideals with Embedding Dimension Four by Jan-Erik Roos
Description
Text
Quadratic ideals based on Main Theorem and Tables in "Homological properties of the homology algebra
of the Koszul complex of a local ring: Examples and questions" by Jan-Erik Roos,
Journal of Algebra 465 (2016) 399-436.
Subnodes
"roosTable"
"higherDepthTable"
"depthZeroTable"
"roosIsotopes"
"almostKoszul"
"onedimToricIrrationalPoincare"
"twodimToricIrrationalPoincare"
///
doc ///
Key
"roosTable"
Headline
Creates hashtable of Jan-Erik Roos' examples of quadratic ideals
Usage
H = roosTable ()
Outputs
H: HashTable
Description
Text
This is based on Main Theorem and Tables 3-7 in "Homological properties of the homology
algebra of the Koszul complex of a local ring: Examples and questions" by Jan-Erik Roos, Journal of Algebra
465 (2016) 399-436. The ideals in this table exemplify 83 known cases of bi-graded Poincar\'e series of
quadratic ideals of embedding dimension four in characteristic zero. The coefficient field is QQ.
Example
roosTable
///
doc ///
Key
"higherDepthTable"
Headline
Creates hashtable of Jan-Erik Roos' examples of quadratic ideals with positive depth
Usage
H = higherDepthTable ()
Outputs
H: HashTable
Description
Text
This outputs the examples in Tables 3-7 of positive depth. These are those in the tables
with non-bold row index.
Example
higherDepthTable
///
doc ///
Key
"depthZeroTable"
Headline
Creates hashtable of Jan-Erik Roos' examples of quadratic ideals with depth zero
Usage
H = depthZeroTable ()
Outputs
H: HashTable
Description
Text
This outputs the examples in Tables 3-7 of depth zero. These are those in the tables
with bold row index.
Example
depthZeroTable
///
doc ///
Key
"almostKoszul"
(almostKoszul, Ring, ZZ)
Headline
Examples discovered by Jan-Erik Roos
Usage
R = almostKoszul(kk,a)
Inputs
kk:Ring
the field over which R will be defined
a: ZZ
length of the linear part of the resolution of kk over R
Outputs
R:Ring
Description
Text
A standard graded ring R is Koszul if the
minimal R-free resolution F of its residue field kk
is linear. Roos' examples, which are 2-dimensional rings of
depth 0 in 6 variables, show that it is not enough to require
that F be linear for a steps, no matter how large a is.
The examples are also remarkable in that (as far as we could check)
the (a+1)-st syzygy, and all subsequent syzygies
of kk have socle summands, but none before the (a+1)-st do.
This shows that the the socle summands do NOT all come from the
Koszul complex, but leaves open the conjecture that
(with the one exception) the socle summand persist once they start.
It's also striking that (in this case) the first socle
summands come from the linear strand of the resolution,
though they begin to appear exactly where the resolution
ceases to be linear.
Example
R = almostKoszul(ZZ/32003, 4)
F = res (coker vars R, LengthLimit =>6)
betti F
References
J.E.Roos, Commutative non Koszul algebras
having a linear resolution of arbitrarily high order.
Applications to torsion in loop space homology,
C. R. Acad. Sci. Paris 316 (1993),1123-1128.
///
doc ///
Key
"roosIsotopes"
Headline
Creates hashtable of Jan-Erik Roos' quadratic "isotopes"
Usage
H = depthZeroTable ()
Outputs
H: HashTable
Description
Text
This outputs the examples in Tables B,C,D of Roos' quadratic "isotopes" (see Main Theorem in "Homological properties of the homology
algebra of the Koszul complex of a local ring: Examples and questions", Journal of Algebra
465 (2016) 399-436). The key is the alphanumeric
name provided by Roos. While these have the same bigraded Poincar\'e series as their corresponding example in
Tables 3-7, they have different homology algebra (called "HKR" in Roos). These all have depth zero. The coefficient field is QQ.
Example
roosIsotopes
///
doc ///
Key
"onedimToricIrrationalPoincare"
Headline
Produces the example of a one-dimensional toric ideal whose Poincar\'e series is irrational.
Usage
I = onedimToricIrrationalPoincare ()
Outputs
I: Ideal
Description
Text
This returns the example from Fr\:oberg and Roos' "An affine monomial curve with irrational with irrational Poincar\'e-Betti series"
of a toric ideal whose quotient ring has an irrational Poincar\'e series.
It is the toric ideal of the numerical subsemigroup of $\mathbb{N}$ generated by $\{18, 24, 25, 26, 28, 30, 33\}.$
Example
I = onedimToricIrrationalPoincare
///
doc ///
Key
"twodimToricIrrationalPoincare"
Headline
Produces the example of a two-dimensional toric ideal whose Poincar\'e series is irrational.
Usage
I = twodimToricIrrationalPoincare ()
Outputs
I: Ideal
Description
Text
Returns the example from Roos and Sturmfels' "A toric ring with irrational Poincar\'e-Betti series" (1998)
of a toric ideal whose quotient ring has an irrational Poincar\'e series.
It is the toric ideal of the numerical subsemigroup of $\mathbb{N}^2$
generated by ${(36,0), (33,3), (30,6), (28,8), (26,10), (25,11), (24,12), (18,18), (0,36)}.$
Example
I = onedimToricIrrationalPoincare
///
-* Test section *-
TEST///
I=roosTable#7
S=ring I
assert(depth (S/I) == 0)
///
TEST///
I=roosTable#68
S=ring I
assert(depth (S/I) == 1)
///
TEST///
I=roosIsotopes#"59va"
F=res (ideal vars ((ring I)/I), LengthLimit => 6)
assert(betti F == new BettiTally from {(0,{0},0) => 1, (1,{1},1) => 4, (2,{2},2) => 12, (3,{3},3) => 33, (4,{4},4) => 87, (5,{5},5) => 225, (6,{6},6) => 576, (6,{7},7) => 1})
///
TEST///
R = almostKoszul(ZZ/32003, 2)
F = res (coker vars R, LengthLimit =>4)
assert( betti F === new BettiTally from {(0,{0},0) => 1, (1,{1},1) => 6, (2,{2},2) => 26, (3,{3},3) => 104, (3,{4},4) => 1,
(4,{4},4) => 404, (4,{5},5) => 10})
///
end--
uninstallPackage "QuadraticIdealExamplesByRoos"
restart
installPackage "QuadraticIdealExamplesByRoos"
check QuadraticIdealExamplesByRoos
|